
Vol.:(0123456789)

Computational Economics (2024) 63:437–475
https://doi.org/10.1007/s10614-022-10348-1

1 3

Analyzing the Impact of Strategic Behavior in an  
Evolutionary Learning Model Using a Genetic Algorithm

Vinícius Ferraz1   · Thomas Pitz2 

Accepted: 17 November 2022 / Published online: 14 December 2022 
© The Author(s) 2022

Abstract
This study presents an experimental approach to strategic behavior and economic 
learning by integrating game theory and Genetic Algorithms in a novel heuristic-
based simulation model. Inspired by strategic scenarios that change over time, we 
propose a model where games can change based on agents’ behavior. The goal is to 
document the model design and examine how strategic behavior impacts the evolu-
tion of optimal outcomes in various choice scenarios. For diversity, 144 unique 2 × 2 
games and three different strategy selection criteria were used: Nash equilibrium, 
Hurwicz rule, and a random selection technique. The originality of this study is that 
the introduced evolutionary algorithm changes the games based on their overall out-
come rather than changing the strategies or player-specific traits. The results indi-
cated optimal player scenarios for both The Nash equilibrium and Hurwicz rules, 
the first being the best-performing strategy. The random selection method failed to 
converge to optimal values in most of the selected populations, acting as a control 
feature and reinforcing the need for strategic behavior in evolutionary learning. Two 
further observations were recorded. First, games were frequently transformed so 
agents could coordinate their strategies to create stable optimal equilibria. Second, 
we observed the evolution of game populations into groups of fewer (repeating) iso-
morphic games with strong preceding game characteristics.
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1  Introduction

Our world is constantly going through systemic transformations. Technological and 
scientific advancements, in combination with changes in economic, political, socio-
logical, and other factors, result in new decision contexts in which strategic interac-
tion occurs. By analyzing such situations, one can observe the ever-arising need for 
individuals to update their beliefs and adapt to the new informational and strategic 
structures. As an example, Freedman (1998, 2017) reported the example of socioec-
onomic and political transformations occasioned by the development of technology 
and communication structures, resulting in changes in how nations engage in war-
fare conflict. When making decisions, economic agents will act according to their 
interests, as well as the action of other agents and information available in the given 
scenarios, as outlined by Von Neumann and Morgenstern (1953).

As stated by Axelrod (1997), one can understand the properties of complex social 
and economic systems by applying simulations. The nature of human interaction is 
often modeled and analyzed in computational models of society, which introduce 
autonomous agents that interact with one another and the environment into which 
they are placed according to predefined rules (Billari et al., 2006). Adding dynamics 
to models of strategic interaction, social learning, and the evolutionary process are 
often simulated by introducing evolutionary biology concepts, as outlined by Gin-
tis (2000). This evolutionary approach introduces the notion of predefined strategies 
that are repeatedly applied in an evolutionary process, operating dynamically on the 
distribution of behavior (Weibull, 1997).

Game theory models describe strategic scenarios and behavior (Von Neumann & 
Morgenstern, 1953). In game theory, political or socioeconomic conflicts or crises 
are often modeled in a strategic form by matrix games or in an extensive form by 
game trees. One often restricts oneself to a fixed game that does not change sig-
nificantly over time. Prominent examples are the analysis of the Cold War as a Pris-
oner Dilemma (Plous, 1993) or the Cuba crisis as a Chicken Game (Russell, 1959). 
In reality, however, it is observable that the strategic character of conflicts or cri-
ses changes over time. A crisis modeled as a Prisoner Dilemma can intensify into 
a Chicken Game with higher conflict potential or transform into a less conflictual 
Stag Hunt (Skyrms, 2004) or Harmony Game (Bruns, 2010). Therefore, it would 
be appropriate to describe these strategic changes by transforming the original 
game into a new game. In empirical settings, fundamental behavioral changes are 
observed when making decisions that can affect not only the strategic behavior of 
the agents involved but also environmental conditions and individual preferences. 
Heckathorn (1996) documented the transformation of games with dynamic interac-
tion, where changes in decision-influencing factors changed the whole structure of 
the initial game. Similarly, Simpson (2004) empirically demonstrated how behavio-
ral factors, such as social preferences, can transform one game into another (see also 
Hayashi et al. (1999); Kollock (1998)).
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Motivated by this fact, in the present paper, we introduce a novel heuristic pro-
cedure that describes these changes in strategic interaction scenarios with Genetic 
Algorithms, a search procedure inspired by the process of biological evolution (Hol-
land, 1992; Goldberg & Holland, 1988). Genetic Algorithms have been employed 
in economics-based problems since their introduction and are regarded as a power-
ful tool for finding optimal solutions over complex search spaces (Schmertmann, 
1996), as well as a method that shows remarkable results for the simulation of deci-
sion behavior that is in line with empirical observations in similar research frame-
works (Arifovic & Ledyard, 2012; Lensberg & Schenk-Hoppé, 2021; Manson, 
2006). Given a pool of 2 × 2 strategic-form games, the games, represented as binary 
sequences, are transformed by a Genetic Algorithm depending on the players’ expe-
rience with the games in the pool. In each round, after making decisions, the game 
is evaluated based on the players’ payoffs. This process determines the probability 
of staying in the pool, or being replaced by another new game created via crossover 
and mutation. We describe the dynamics of the game pools related to the different 
types of strategy selection rules adopted by the players, establishing the notion of 
strategic behavior for the agents. The populations are defined based on two rules for 
aggregating sets of games. The first rule is based on topological proximity, using the 
periodic table of 2 × 2 games concept introduced by (Robinson & Goforth, 2005); 
the second rule clusters games by similar characteristics, based on the families cat-
egorization introduced in Bruns (2010, 2015a).

The introduced model focuses on analyzing the impact of strategic behavior in 
this evolutionary learning process, where games are allowed to change over time 
and the performance of different decision rules. We aimed to document the imple-
mentation, testing, and assessing different decision-making rules and their influ-
ence on dynamic game populations. For a comprehensive analysis, the simulation 
model described here analyzes 144 unique types of 2 × 2 games and three distinct 
strategy selection rules: Nash equilibrium, Hurwicz rule, and a Random selection 
method. The goal is to outline how strategic behavior affects the transformation of 
dynamic decision-making scenarios by pairing different strategy selection rules with 
distinct populations of 2 × 2 games. The analysis of the simulation results focused 
on convergence speed (optimal utility levels reached) using different combinations 
as a performance measure, as the encoding of strategies and convergence process 
are seemingly interconnected (Dawid & Kopel, 1998). We have also documented the 
findings derived from the simulation process, including the consistent transforma-
tion of games and behavioral traits highlighted during the process.1

1  The documented source code, data, and resources used in this paper are published in the CoMSES 
Library. The material is available to download at: https://​doi.​org/​10.​25937/​smg0-​0t92.

https://doi.org/10.25937/smg0-0t92
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2 � Evolutionary Computation Overview

Evolutionary computation methods arose from taking inspiration from biological 
mechanisms to design and implement computer-based problem-solving systems 
(Spears et  al., 1993). This collection of methods allowed the creation of evolving 
and adaptive solutions to complex problems, especially the ones that impose chal-
lenges to traditional algorithms, such as randomness, chaotic disturbances, and com-
plex non-linear dynamics, as outlined by Fogel (2000). The family of evolutionary 
algorithms contains several different methods, each with its particularities, but all of 
them share a connection with biological evolution. Among the most known meth-
ods in the literature are Genetic Algorithms (Holland, 1992), Genetic Programming 
(Koza et al., 1992), Differential Evolution (Storn & Price, 1997), Evolution Strate-
gies (Rechenberg, 1978) and Evolutionary Programming (Fogel, 1998). For an over-
view of each of these methods, see Slowik and Kwasnicka (2020). The literature 
discussion that follows next outlines applications of some of these methods in simi-
lar contexts, highlighting the elements that led to adopting a Genetic Algorithm as 
an appropriate method to simulate the dynamic transformations of games over time.

2.1 � Evolutionary Models: Applications for Learning, Strategic Interaction, 
and Optimization

As Camerer (2003) outlined, some aspects of learning are sometimes overlooked by 
economic theory. If perfect information and rationality are assumed, the equilibrium 
point will always be known from the beginning, and people will only modify the 
equilibrium if information changes. Moreover, Camerer and Weigelt (1988) empha-
sized the importance of achieving better outcomes in experimental games, especially 
when dealing with scenarios having potentially inefficient equilibrium outcomes, 
such as trust games, public goods games, beauty contests, and others. Consequently, 
well-formulated economic learning theories are crucial in providing predictive 
power, coherence, and concomitantly revealing new insights (Camerer, 2011).

The multidisciplinary combination of game theory and genetic programming has 
grown in several distinct fields, from economics and sociology to computer science 
and natural sciences such as biology. Evolutionary game dynamics provide compre-
hensive frameworks for studying interaction, learning, and evolution (Roca et  al., 
2009). In addition, in contrast with the neoclassic assumption of perfect rationality, 
economic models of learning provide the possibility to study agents as they learn 
and update their beliefs since the application of an evolutionary model assumes 
that strategies can change over time (Baddeley, 2018). According to Axelrod et al. 
(1987), individuals cannot thoroughly analyze the situation and calculate optimal 
strategies when interacting in complex environments. Alternatively, strategies are 
updated and based on achieved results, highlighting how a Genetic Algorithm can 
be particularly adept as a learning mechanism for creating effective strategies. The 
given approach serves as an inspiration for the analysis performed in this article. 
The following are some of the relevant constructs.
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Holland and Miller (1991) stresses that the employment of artificial adaptive 
agents in economic theory can help us understand real-world economic issues by 
enabling the free exploration of system dynamics under controlled conditions and 
the opportunity to check several unfolding behavioral patterns. Furthermore, Dawid 
(1999) argued that the decentralized structure of Genetic Algorithms, which natu-
rally resembles a group of interacting economic agents, is well-suited to simulate the 
behavior of economic systems.

Isaac (2008) provided an introductory overview of an agent-based model using 
Genetic Algorithms in the iterated Prisoner’s Dilemma, reporting variations in the 
payoff structures that create new player types, introducing an interaction between 
payoff cardinality and players’ attributes. Pitz et  al. (2005); Chmura et  al. (2007) 
presented a novel simulation model for analyzing action patterns in social systems 
mainly based on the concepts of Genetic Algorithms and the Theory of Action Trees 
(Goldman, 1971). They explained how the emergence and disappearance of actions 
could be described with a uniform algorithm, succeeding in endogenously elicit-
ing comprehensive changes in the agents’ behavior. Manson (2006) documented 
experiments exploring the concept of bounded rationality, stating that Genetic Algo-
rithms are an appropriate tool to model actors that are not perfectly rational, that is, 
addressing characteristics of human decision-making such as cognitive limits, learn-
ing, and innovation.

Similarly, the algorithm for optimization problems reported by Yang (2017) build 
on a similar conceptual framework. Their main idea is a game theory-inspired evo-
lutionary model that updates the strategy sets by replacing individuals of the popu-
lation with better-performing offspring generated by replication or belief learning 
operators, creating a model that outperforms four other algorithms often used for 
similar purposes. Pereira et  al. (2020) also introduced a constrained optimization 
model that explored two ideas, the first being a Genetic Algorithm with social inter-
actions (for diversification of solutions in the selection process). The second model 
consisted of game-based crossovers (tournament simulations for more diverse off-
spring). The presented construct demonstrated robust performance when compared 
to traditional methods in the engineering design optimization process. Continuing 
on the topic of optimization.

Savin and Egbetokun (2016) formulated an agent-based model of innovation 
networks with endogenic absorption capacity, where dynamic cooperation for 
knowledge can occur between different agents, represented as firms, with different 
knowledge positions. In their simulation model, the authors applied a Differential 
Evolution algorithm to find optimal investment budget decisions regarding trade-
offs between cooperative and non-cooperative scenarios. Their findings demonstrate 
that networks generated with the model display small-world properties, which tend 
to be efficient structures for knowledge distribution. Another interesting observation 
is that firms with higher absorptive capacity tend to be better positioned within their 
networks, ultimately demonstrating that their ability to learn drives network perfor-
mance effects.

With a similar objective to this paper, Savin et  al. (2018) introduced a meta-
heuristic approach for solving non-linear dynamic games, proposing a method that 
allows the analysis of more realistic strategic scenarios. The method can solve the 
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standard version of the introduced game, like other traditional techniques, and solve 
non-standard extensions of the problem (inequality constraint and asymmetry in 
penalties) by identifying optimal equilibrium strategies, both cooperative and non-
cooperative. The proposed procedure combines Differential Evolution (for individ-
ual optimal strategies) and Approximation of a Nash Equilibrium. The set consists 
of a three-player macroeconomic game between two groups of countries exercis-
ing fiscal policy and one joint central bank. The results shed light on a more realis-
tic analysis of strategic scenarios for policy insights and finding optimal strategies, 
contrasting with traditional methods. In further developments on the Differential 
Evolution method application, Savin and Blueschke (2016) introduced a model to 
solve optimal control problems, addressing the limitations of classical methods in 
specific situations. The model’s performance demonstrated a superior optimization 
of expected outcomes, strengthening the claim that heuristic methods are well-suited 
to navigate complex search spaces and find good approximations to global optima. 
Blueschke et  al. (2020) later extended on this subject by introducing a novel Dif-
ferential Evolution-based method for solving optimal control problems with passive 
learning. This learning method models the observation of the world’s current state 
and employs new information to improve the system’s general knowledge. The pro-
posed approach does not imply the modification of the original problems and pro-
vides more robust results regarding the learning process.

Bullard and Duffy (1998) documented a macroeconomics experiment using a 
Genetic Algorithms-based learning model to simulate the behavior, outlining that 
a population of artificial agents can coordinate depending on the information struc-
tures they are inserted into, as chaotic and complex structures tend to hinder coordi-
nation. Another related framework was developed by Gooding (2014), who formu-
lated a simulation model for capturing evolutionary trends observed in society, such 
as wealth aggregation, inequality, and climate change. Where experimental data 
verify changes in actions, surroundings, and decision-making, such social trends 
remain resilient and difficult to alter, according to the study, offering insights into 
how to impact social development. Macedo et  al. (2020) applied a Genetic Algo-
rithm to optimize trading strategies, which outperformed the analyzed market indi-
cators by employing a more comprehensive search space than traditional methods.

In a similar context, Glynatsi et al. (2018) used an evolutionary game theoretic 
model in the ecology field to examine the interaction between poachers and wildlife. 
The model analysis reported how the devaluation of rhino horns would likely lead 
to higher poaching activity and that such an approach was only practical when com-
bined with disincentives, intending to contribute to informing debates on the issue 
with scientific facts.

Arifovic and Ledyard (2011) introduced an evolutionary learning model with rela-
tively good performance at matching the behavior of agents engaged in repeated strate-
gic interactions when the behavior converges to a Nash equilibrium state. The authors 
state that most games do not require sophisticated strategies, except for the case of coor-
dination games, which reduces the model’s performance. Arifovic and Ledyard (2012) 
later reinforced the predictive power of evolutionary learning methods by introducing 
a comprehensive model able to generate data quantitatively similar to the empirical 
values, focused on the contribution mechanism of a public goods game. Price (1997) 
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also reported a good performance from Genetic Algorithms in searching for equilibria 
in standard games from industrial organization theory, such as Bertrand and Cournot 
competition scenarios.

Koza et al. (1992); Koza (1994) provided an early framework for Genetic Program-
ming that introduced the notions of learning by modeling agents and their learning 
behavior over time. The author defines adaptive learning as the process of changing 
the structure of a potential solution. Hence, it performs better in its environment, where 
positive changes are rewarded and negative changes are discouraged by the underly-
ing fitness function. Similarly, Chen et  al. (2005) introduced a comprehensive game 
theory and Genetic Algorithms framework that approach several topics present in 
this research, such as coordination, adaptive learning, and equilibrium selection. The 
authors compared the behavior of computational agents to human subjects. They con-
cluded that the behavior was remarkably similar in the applied experiment, supporting 
the idea of Genetic Algorithms as a credible tool to model human behavior.

Lensberg and Schenk-Hoppé (2021) studied the process of learning in one-shot 
multiple 2 × 2 games, where the agents never only see each game once and should 
learn to find optimal strategies based on information acquired across games. The 
author proposes a solution concept based on multiple artificial agents that learned 
how to play the games through Genetic Algorithms. The proposed theoretical model 
is reported to perform well, in line with intuition and empirical evidence.

Other interesting applications of the combination of Genetic Algorithms and 
game theory described in published literature include practitioners in other dis-
tinct and diverse fields, such as engineering (Périaux et al., 2001), energy (Castillo 
& Dorao, 2012, 2013; Mohamed & Koivo, 2011), communications (Kusyk et  al., 
2011), land usage (Liu et al., 2015), biology (Hamblin & Hurd, 2007) and ecology 
(Hamblin, 2013).

In summary, the literature suggests that Genetic Algorithms are an appropriate 
model for adaptive learning and optimizing strategic decisions. It performs well in 
problems of strategic interaction models (such as ours) while incorporating behav-
ioral traits that are close to empirical findings in experiments with human behav-
ior. Genetic algorithms suit our objective since they allow us to manipulate binary 
sequences under imposed constraints. In this case, one can transform the numerical 
structure of game elements so that essential characteristics are taken into account, 
as well as the outcomes of the decisions performed by the agents, expressed by the 
fitness function generated by different strategy selection rules. In this way, repeated 
decisions of the agents can influence the transformation of the games to directions 
that are consistent with the agents’ behavior, providing us the necessary building 
blocks to simulate a situation where games can transform and analyze how the 
behavior of the agents influences these transformations.

3 � Game‑Theoretical Features

This article adopted the standard representation of strategic-form games as 
a model of simultaneous interaction between two agents, denoted by a 2 × 2 
matrix. This form encompasses the following elements: the (two) players, who 
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are the parties making the decisions; the strategies that can be selected by each 
player (two for each) and the payoffs being the rewards received as a function of 
the chosen strategy (Von Neumann & Morgenstern, 1953; Robinson & Goforth, 
2005). The strategic representation of games focuses on static analyses while 
overlooking dynamic aspects such as the order of the players’ moves, changes 
in the moves, and the informational structure. This approach suggests the strate-
gies that are more likely to be used by each player or alternatively recommend 
to players which strategies to choose in similar scenarios (Maschler et al., 2013). 
In Robinson and Goforth (2005) ’s notation, the players in the context of this 
article are named after how the strategy profiles are organized, with the player 
ROW’s strategies displayed in the rows of the matrix and player COL’s strategies 
in the columns, respectively.

The adopted classes of 2 × 2 strategic-form games were based on the “peri-
odic table” categorization provided in Robinson and Goforth (2005), which 
formally connects all ordinal rank games with distinct player preferences since 
swaps topologically linked the games in adjoining payoffs. The space of 2 × 2 
is infinite, though as we were only interested in ordinal preference relations, we 
can concentrate on classes of isomorphic games, where for each class, we can 
choose one representation of the form {1, 2, 3, 4} × {1, 2, 3, 4} . Respectively, as 
Robinson and Goforth (2005) have demonstrated, there are 576 ways to arrange 
two sequences of four numbers in a bi-matrix scheme. The ordinal structure of a 
game does not change by switching rows, columns, or both simultaneously; the 
576 games can be reduced by a factor of 4 to 144. For a broader representation 
of strategic scenarios, all 144 unique classes of games - including a wide range 
of well-known applied game theory situations such as the Prisoner’s Dilemma, 
Chicken game, Stag Hunt, Battle of Sexes, and several others - are included in 
the simulation model.

In complement to the periodic table approach, Bruns (2010) further catego-
rized the games by similarity in Layers, which outlines topological proximity, 
and Families, which groups similar games (based on equilibria and payoff struc-
tures, see Table 1). The games were split into populations following both group-
ing rules, as the scheme described in Fig. 1 and Table 1.

Fig. 1   Representation of the 
game families and layers in the 
periodic table of 2 × 2 games 
(Bruns, 2010, 2011, 2015a, b)
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4 � Simulation Model Design

To have dynamic and transforming games, this simulation model processes the 
game-theoretical elements described earlier by allowing the games to change as 
a function of the players’ strategic behavior. The Genetic Algorithms method 
becomes a fundamental building block, an enabler of these dynamic transforma-
tions. Genetic Algorithms are a class of search heuristic programs inspired by the 
process of natural evolution (Holland & Miller, 1991; Holland, 1992), being part 
of a broader set of comparable methods named Optimization Heuristics. The lat-
ter term, usually linked to algorithms inspired by nature, is defined by Gilli and 
Winker (2009) as methods that provide high-quality approximations to the global 
optimum, robust to changes, not too sensitive to parameters, easily deployable 
to many types of problems and might be stochastic, but without subjective ele-
ments. In Genetic Algorithms, the search space for potential solutions imitates 
the process of biological evolution. There are many variants of methods that are 
considered Genetic Algorithms. However, usually, this class of algorithms shares 
the following characteristics: having a population of individuals as potential solu-
tions represented as binary strings, an objective function (fitness or cost), and 
the three types of genetic operators: selection, crossover, and mutation (Holland, 
1992; Mitchell, 1998; Leszek, 2008; Slowik & Kwasnicka, 2020). The following 
sections will explain these individual elements in detail as we describe our imple-
mentation method.

Our approach allows the agents to modify their environment, especially regarding 
how they decide, to measure the progress of the genetic learning process in terms 
of strategy performance. The simulation process basically consists of playing the 
games in the designated populations and adopting one of three different strategy 
selection rules: (1) Nash equilibrium, (2) Hurwicz rule, and (3) random selection. 
After the strategies’ selection, the games were assigned fitness scores based on the 
aggregated payoffs from both agents’ choices; therefore, the games can be selected 
for replication in a way that favors higher-performing combinations of strategies. 
These preferences were implicitly expressed by the fitness function, which defined 
the quality of the selected strategies in terms of gained utility. In the next step, the 
games were processed by the Genetic Algorithm, which selects two games (parents) 
from the pool and generates a new game via the crossover and mutation operators. 
The new games were inserted back into the population, and the process was iterated 
a fixed number of times. See the high-level model overview in Fig. 2.

Table 1   Characteristics of games categorized in families (Bruns, 2015a, b)
Game
Family

Nash
Equilibria Pareto-optimal

Dominant
Strategies Count % Details

Biased 1 2 0-2 44 31% One player gets the best and the other second best
outcome

Cyclic 0 2-4 0 18 13% In each cell one player would prefer to change their
move, no pure strategy equilibrium

Prison 1 2-3 1-2 15 10% Dominant strategies based on individual incentives
leads to a worse outcome than cooperation

Second Best 1 3 1-2 12 8% Both players gets the second best outcome

Unfair 1 2-3 1-2 19 13% One player gets the best and the other the second-worst
outcome

Win-Win 1 1 1-2 36 25% Both players get the best outcome
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To manage the complexity and the processing requirements, the population num-
bers were kept constant throughout the iterations of the evolutionary model, which 
means when a new game is added, another game is excluded.

4.1 � Populations and Data Structures

The encoding of games is based on a vector representation (payoff structure repro-
duced by integer vectors, as in Fig.  3). The analysis was rooted in two primary 
divisions of game pools based on families and layers. On the one hand, the first 
restriction derived from Robinson and Goforth (2005) ’s division of layers in their 
definition of the periodic table of 2 × 2 games, which considers all the 36 neighbor-
ing games according to the number of payoff swaps (see Fig. 1). The entire space 
(all 144 games, not allowing ties) was also handled as one distinct population, being 

Fig. 2   Simulation model overview

Fig. 3   Game vector encoding scheme
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processed apart from the others, allowing us to analyze the population’s results using 
the complete set of available characteristics in the pool.

On the other hand, the second restriction was based on Bruns (2015a) ’s game 
families’ categorization, split into six groups (as in Table 1). These two restrictions 
separated our groups of games into eleven distinct populations, processed and ana-
lyzed individually.

4.1.1 � Binary Encoding

We adopted a binary representation of the vector form for the genetic operations. As 
our payoff matrices were represented by integers between1 and 4, each possible pay-
off value has been encoded with one pair of bits. Consequently, the binary encoding 
was based on four possible sequences using a double binary representation:

As an example of a vector transformed to binary, the representation of the Prisoners’ 
Dilemma game (game in Fig. 3) is defined as:

This encoding scheme was applied in all 144 games. All game binary strings con-
tained 16 bits, with each pair of bits representing one of the payoff values in the 
matrix. The game vectors could only be modified in accordance with this frame-
work; thus, the structural scheme remained unchanged.

4.2 � Evolution Environment: Strategy Selection and Fitness

This section explains the processes that govern the agents’ strategy selection rules 
and how the players should act in the scenarios presented. The three approaches for 
selecting strategies were used to measure the impact of distinct types of strategic 
behavior.

4.2.1 � Nash Equilibrium Strategy Selector

The Nash equilibrium is a strategy profile in which each strategy is an optimum 
response to other players’ strategies. This logic holds to pure and mixed-strategy 
profiles (probability distribution over the available choices). As expected, utili-
ties are linear in terms of probabilities. If a player in Nash equilibrium utilizes a 
non-degenerate mixed strategy, it must be indifferent from all other pure strategies 
assigned with a positive probability. A strict Nash equilibrium exists when each 
player has a unique best response to its rivals’ strategies (Von Neumann & Morgen-
stern, 1953; Fudenberg & Tirole, 1991; Maschler et al., 2013). In our games, we will 

(1)

0, 0 → 1

0, 1 → 2

1, 0 → 3

1, 1 → 4

(2)[1, 3, 2, 4, 4, 3, 2, 1] → [0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0]
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encounter all Nash Equilibrium situations, with strict and weak equilibria and pure 
and mixed strategies.

Because there can be multiple equilibria in bi-matrix games, the approach 
selected is the support enumeration method. (von Stengel, 2007; Widger & Grosu, 
2008; Knight & Campbell, 2018). The support enumeration computes all equilib-
ria for a degenerate 2 × 2 game (A,B) ∈ IR

m×n2 , for all 1 ≤ k1 ≤ m and 1 ≤ k2 ≤ n 
(enumeration of all possible equilibrium strategies); for all pairs of support, (I, J) 
with |I| = k1 and |J| = k2 . In other words, the goal was to find support for strategies 
played with a non-zero probability. At this point, the algorithm evaluated the best 
response condition, ensuring no better utility residing outside of the supports.

The steps outlined in equations (3) and (4) iterate through all potential support 
pairs.

Sequentially, for considering mixed strategies:

There were two equilibrium-selection rules for games with more than one Nash 
equilibrium. The first rile rule is based on the payoff dominance concept for simulat-
ing self-maximizing behavior (Harsanyi et al., 1988). The equilibrium points might 
be finite or infinite, with at least one equilibrium (pure or mixed) for each game. 
Our structure identified three main configurations: pure-strict, pure-weak (when a 
stronger pure-strategy equilibrium was available), or mixed. The Nash equilibrium is 
payoff-dominant and henceforth selected if it is Pareto superior to all other possible 
equilibrium situations in a game. The second rule applied a simple random selection 
from the sample of computed Nash equilibria for each game. The objective was to 
enable the comparison of the maximization versus randomization approaches, and 
meaure the effects in the evolutionary process generated by more diverse procedures 
for Equilibrium selection.

4.2.2 � Hurwicz Rule Strategy Selector

This study’s second strategy selection rule employed the Hurwicz criterion (Hur-
wicz, 1951). This rule introduces a coefficient of realism, � , which serves as a tool 
for balancing pessimism and optimism in decision-making under uncertain scenar-
ios, allowing decision-makers to account for different possible outcomes. The pes-
simistic option employs the maximin criterion, while the optimistic option employs 

(3)

∑

i∈I

�riBij = v for all j ∈ J,

∑

j∈J

Aij�cj = u for all i ∈ I.

(4)

m∑

i=1

�ri = 1 and �ri ≥ 0 for all i,

n∑

i=1

�ci = 1 and �cj ≥ 0 for all j.
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the maximax criterion. The � parameter introduces a weighting factor between both 
extremes, simulating different degrees in behavior profiles.

Following Gaspars-Wieloch (2014) ’s implementation, we applied the following 
formula.

resulting in the Hurwicz criterion, hj , with � as the coefficient of realism, being 
� ∈ [0, 1] . In this paper, 0 represents the pessimistic extreme, the risk-averse behav-
ior, while 1 represents the optimistic extreme, or the risk-prone behavior (Colman, 
2016). The optimal alternative between the two is expressed by:

This strategy selector introduced another model of behavior profiles and enriched 
the dataset to analyze simulation results. Three variations of the Hurwicz coefficient 
( � ) were applied, simulating three distinct decision-making profiles: pessimistic 
(0.0), neutral (0.5), and optimistic (1.0). For other applications of the Hurwicz cri-
terion in decision-making under uncertain scenarios, see Jaffray et al. (2007), Pažek 
and Rozman (2009), and Puerto et al. (2000).

4.2.3 � Random Strategy Selector

The third strategy selection mechanism consisted of a random choice of strategies 
for both players, simulating the total absence of strategic behavior. This method 
was added mainly as a control scheme, so one could assess if the populations were 
able to progress in terms of utility by not having any simulated decision rule and 
only relying on the maximization mechanism of the Genetic Algorithm - through 
selection, crossover, and mutation. The random selection was essential to outline the 
effects of strategic behavior introduced by the other two rules.

4.2.4 � Payoffs and Fitness

Our fitness function reflected the players’ preferences defined by the strategy selec-
tion rules applied at the game-playing stage, consequently taking the aggregated 
payoffs from each player as the overall game utility. The previously defined strategy 
selectors returned an array of probabilities (pure or mixed) of the agents selecting 
between the various available strategies. For systematic computations of payoffs, 
this algorithm employs a matrix multiplication method, using the dot product alge-
braic operation (Tanimoto, 2015). In this case, the strategies adopted by an agent 
during the execution of a game yielded probabilities distributions over the two pos-
sible strategies, expressed as the state vectors ( p1

i
(t), p2

i
(t) ), that is, the probability of 

player i selecting the strategy j (1 or 2) at period t.
We may depict the game (choice scenario) between two players by representing 

the reward matrix of the game structure as the matrix ABCD, the computation of the 
payoffs (�j

1
,�

j

2
) at period t for a game as:

(5)hj = � ⋅ wj + (1 − �) ⋅ mj,

(6)hj = max
j
{hj} = max

j
{� ⋅ wj + (1 − �) ⋅ mj}.
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This approach returns the matrix cell containing the expected payoffs (�j

1
,�

j

2
) for 

players ROW and COL, respectively, at time t, which we will denote throughout the 
analysis as utility, for the sake of simplicity. The fitness (f) for a game (g) in the 
population (G) was then defined as:

The acquired utilities were aggregated to represent the overall utility derived from a 
game, then squared to give higher weights to the best-performing games in the game 
selection step relative to the current population’s performance.

All variations of strategy selectors were applied to all game populations, as 
illustrated in Fig.   4. Once the strategies were selected, and the utility scores 
were assigned to the entire set of games, the game population was ready to be 
processed by the Genetic Algorithm environment.

4.3 � Genetic Algorithms Implementation: Genetic Operators

The application of the Genetic Algorithms method in this study was designed to 
model the collective learning process within a population of games. Each indi-
vidual (game) represented a search point in the space of all potential solutions 
for the introduced problems and a potential temporal container of current knowl-
edge regarding the laws of the environment. The process starts by initializing a 
population, then it evolves towards enhanced performance regions of the search 
space utilizing randomized crossover, mutation, and selection processes, or 
genetic operators (Back, 1996). The optimization process in this context aimed 
to adjust the payoff structures in the games, to disseminate the best outcomes for 
the defined strategy selection rules, as described by Haupt et al. (1998).

(7)�
j

1
(t),�

j

2
(t) =

(
p1
2
(t),

p2
2
(t)

)
.

[
A B

C D

]
.(p1

1
(t), p2

1
(t))

(8)fg(t) = (�
j

1
(t) + �

j

2
(t))2.

Fig. 4   Overview—Strategy Selectors versus Populations
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4.3.1 � Selection and Replacement

Selection is a crucial factor for directing the search process toward better indi-
viduals. According to Rowe (2015); Reeves and Rowe (2002), the fitness function 
assigns positive scores to well-performing games in the search space. To avoid early 
convergence, we opted for a non-deterministic approach, meaning that all individu-
als are considered with a certain probability during the selection process. Based on 
the experiments with distinct methods, we adopted the fitness proportionate selec-
tion, where the probability of a game g being selected is based on its performance 
against the rest of the population: f (g)

F
 . Where f is the game’s fitness scores and F is 

the total fitness of the current population (aggregated).
The applied replacement method was based on the Inverse Selection crite-

rion (Rowe, 2015), which links directly to the fitness function and the previously 
described selection method. The standard replacement rate chosen for the algorithm 
was 1. Since the population size remained constant, another game required removal 
whenever a new game was added to the current population. This rule made the 
poorer performing solutions more likely to be replaced than the better ones since the 
fitness determined the probability of being replaced.

4.3.2 � Reproduction: Crossover and Mutation

The chosen reproduction method was a single-point crossover (Holland, 1992; Luca-
sius & Kateman, 1993) that chooses a random index position within the individual’s 
binary structure, and the parts of the two parents were exchanged at this point - gen-
erating a new individual, or offspring, as demonstrated in Fig. 5. The idea was to 
recombine building blocks (schemes) on different strings. The crossover operator 
ensured that new individuals inherited the parents’ characteristics, likely to be high 
performers among the population.

As the next step, the mutation operator introduced a probability of changing one 
bit within the binary structure of an offspring game at a given generation. As illus-
trated in Fig. 5 (Right-hand side), if mutation takes place, one random bit will be 

Fig. 5   Crossover and Mutation Operators Example
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selected within the offspring game’s (generated via crossover) binary string, with a 
uniform probability distribution over the possible 16 bits. The selected bit element 
is then flipped, from 1 to 0, or 0 to 1, generating a new game with new attributes, 
potentially not present in the parents’ original gene pools. This step ensures the 
diversity of characteristics in the population and the possibility of generating more 
diverse games while avoiding fixation in determined sets of characteristics.

4.3.3 � Evolutionary Loop

The outlined steps are iterated through multiple generations. The populations of 
games and their fitness scores were the main object of analysis for accessing the 
algorithm’s properties and effects. The final data output consisted of a population of 
games with the same length as the initial set, outlining the effects of N generations of 
simulated natural selection, breeding, and mutation. Consequently, such generations 
directed the population to a convergence process towards an optimal point expected 
to become constant when first reached, meaning that the algorithm found an optimal 
solution for the problem. As a recap, the model applied the following steps: 

1.	 Initialization of a pre-filtered population of 2 × 2 strategic form games
2.	 Implementation of the strategy selection methods outlined previously
3.	 Calculation of the fitness for each individual (game) in the population, based on 

the strategies performance (fitness proportionate selection).
4.	 Execute the genetic operators: selection, crossover, and probably mutation within 

selected individuals in order to create a new game from the selected games.
5.	 Insert the offspring back into the population, replacing a game by inverse selec-

tion.
6.	 Return to step 2 and iterate this process until the termination criterion is satisfied

One important remark is that we employed a unified termination criterion for sim-
plicity and experimental purposes at 10000 generations. Theoretically, the algo-
rithm would have served its purpose when the entire game population reached the 
maximum fitness level (global optimum). We have recorded and documented the 
generation number in which all populations reach an optimal point as a measure of 
performance (speed of convergence) in Table 3. The shared termination threshold 
allowed straightforward comparisons of the datasets and the observation of the sta-
bility of equilibrium states over more extended periods. Similarly, for the mutation 
rate, we have applied a unified parameter value at 1% . The mutation rate affects the 
evolutionary process and speed of convergence. Since we analyzed several different 
combinations of populations and strategy selection rules, we kept a constant param-
eter for simplicity and comparability. However, we encourage practitioners to find 
optimal mutation rates for individual problems in optimization-based tasks through 
parameter fitting or experimentation. We have performed a few tests with different 
mutation rates in terms of convergence. An example of such tests is found in Appen-
dix D.
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Apart from the termination criterion situation described above, the simulation 
model comes with a range of other distinct parameters to be defined by the practi-
tioner. Table 2 summarizes the methods and parameters applied in this experiment.

5 � Simulation Results

This study’s concept of strategic behavior in decision-making was represented by 
variations of both the Nash equilibrium and the Hurwicz Rule strategy selectors. 
Alternatively, the absence of any strategic behavior was simulated by allowing the 
agents to select random strategies from the available options utilized as a control 
feature. The analysis of the experiment findings focused primarily on studying the 
effect of strategic behavior during the evolutionary learning process.

We quantified the influence of strategic behavior as the ability and speed of con-
verging to optimal outcomes for an entire population, expressed by the individual 
utility levels. We applied the variations of the strategy selection methods into a 
range of different game pools, intending to assess this performance and also judging 
by the ability to transform the initial scenarios, which might be anything between 
pure conflict and harmony.

In addition to the utility convergence and strategies performance, the analysis of 
the simulation outcomes revealed two other interesting points, the coordination pat-
terns in strategy selection by the agents and the transformation of the diverse game 
pools into sets of repeated games. Each of these points was explored more in-depth 
hereunder.

5.1 � Utility Convergence

The simulation results indicated that the model mostly evolved in conformity with 
the reported literature and the expected development in accordance with the self-
maximizing applied behavioral patterns. The evolutionary process drove the play-
ers into creating better outcomes throughout the learning generations, individu-
ally, by changing the structure of the games they were inserted into. The overall 
tendency was that once an optimal strategy was found, there were no incentives 

Table 2   Summary: algorithmic parameters adopted in the model execution

Parameter Value Short description

Distinct populations 11 Populations restricted according to layers and families logic
Strategy selectors 3 Nash equilibrium, Hurwicz rule and Random
Selection rule FPS Fitness Proportionate Selection (roulette wheel)
Crossover points 1 Random point where the binary string is divided and recombined
Mutation rate 1% Probability of mutation taking place
Replacement rate 1 Number of games replaced by the offspring in each generation
Termination 10000 Maximum number of generations (iterations) allowed
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for the participants to deviate. Over time, successful tactics were generally repli-
cated, resulting in an evolutionary equilibrium, as described in Riechmann (1998); 
Reschke et al. (2001); Riechmann (2002). When the equilibrium was disturbed by 
the stochastic mechanisms in place, the players tended to evolve again toward an 
optimal strategy. Only the rounds with the Nash and Hurwicz strategy selectors get 
the aforementioned results. The Random approach produced fuzzier and unordered 
payoffs, which were usually non-optimal.

The analysis of the utility development, that is, the payoffs gained as results of 
strategies selected, was plotted in Figs. 6, 7 and 8, for each of the populations and 
strategy selectors. Each plot’s data divides into two combined plots displaying the 
utility development for each generic player type, ROW, and COL. The Y axes show 
the average utility levels for the whole population in each generation (X axes), using 
different colors for each population. Each figure shows the results for each of the 
strategy selector types, being Fig. 6 for the Nash equilibrium-based methods, Fig. 7 

Fig. 6   Utility Development—Nash equilibrium Strategies
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Fig. 7   Utility Development—Hurwicz rule Strategies
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for the variations of the Hurwicz rule, and Fig. 8 for the completely random method. 
The populations are further divided into plots using the layers and family groups 
described earlier.

The evolutionary process gradually increased the individual utility to optimal val-
ues. The agents proceeded to select strategies that maximized the individual payoffs 
to maximize the overall outcomes of the games themselves, as defined by the fitness 
function. In this manner, the equilibrium became stable when all games in the given 
population achieved optimal payoffs. The selected strategies tended to persist and 
resist other invading strategies, as also observed by Friedman (1991). The charts 
displayed similar convergence curves in most cases.

Due to the stochastic mechanisms inherent to Genetic Algorithms, some games in 
the population may have lost an optimal pair of strategies during the evolutionary pro-
cess. Nevertheless, the subsequent generations quickly adapted to the optimal strategies 
again. Similar effects of genetic experiments are observed in Riechmann (1998, 2001, 
2002), where the learning process was given in two states: (1) the movement of popula-
tions towards a stable state, denominated behavioral stability and (2), once such state 
has been reached, the learning process presents a near-equilibrium dynamic of getting 
out of the evolutionarily stable state and returning there again. We observed similar 
trends in the equilibrium states observed in our results.

When looking at the Nash equilibrium runs (Fig. 6), one can observe that in all 
game pools, the Nash strategies could drive the convergence to the optimal utility 
values. Interestingly, the population that took the longest to achieve the equilibrium 
was Layer 2 (left side), which contained the most Biased games, mixed with Unfair, 
Second Best and Prison games. Similarly, when compared to the population contain-
ing all Biased games (right side), they also displayed a lower convergence time, even 
when compared with games having initially inferior strategies. Analysis inferences 

Fig. 8   Utility Development—Random Strategies
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from the random Nash equilibrium strategy selection, apart from the inferior perfor-
mance to the payoff maximizing version (as expected), include the fact that the more 
diverse pools (layers division) presented a better performance than the pools with 
all similar games together (families division). In this case, the pools with Biased, 
Unfair, and Prison games displayed a significantly higher convergence time.

Following data analyses of the populations using the Hurwicz rule, the equilib-
rium state was reached at similar speeds (see Fig. 7) compared to the Nash equilib-
rium runs. According to the simulation results, the layers-based families presented 
similar effects as before, with Layers 1and 2 being slower than the others in some 
cases. There was a more distinct evolutionary pattern in the families-based popula-
tions until reaching stability. The Second Best and Prison families demonstrated a 
much noisier and longer process to reach equilibrium when considering the optimis-
tic and, even more so, the pessimistic approaches.

The random pools displayed an interesting control feature, exhibiting a noisier 
process, with marked lower populations that could not converge to the evolution-
ary stability, even after ten thousand iterations, for both layers- and families-based 
populations (Fig. 8). This lack of convergence properties is an essential contrast to 
the other runs, implying that the presence of strategic behavior highly influenced the 
evolutionary process itself. Even with a model tailored to favor individual payoffs, it 
was insufficient to drive the equilibrium state.

5.2 � Strategies Performance

This section analyses the strategy selectors’ performance in terms of convergence 
speed to optimal values. Table 3 summarizes the speed of convergence results, that 
is, the number of generations it took for the entire population to reach maximum fit-
ness scores. The payoff dominant Nash equilibrium strategy displays the best overall 
performance, followed by the Hurwicz rule with � = 0.5 , which alternates between 
the maximin and maximax strategies according to the game structures. In the third 
place, we have the Hurwicz rule with � = 1 , or maximax (optimistic), followed by 
the Nash equilibrium with random equilibrium selection, and the Hurwicz rule with 

Table 3   Rank of strategies performance in each of the distinct populations
Population NE: pdom eq. NE: rand eq. HR α = 0 HR α = 0.5 HR α = 1 Random

deliaf712293737104363desaiB
deliaf981610994107cilcyC
deliaf458921888061259nosirP
deliaf945455841310135tseBdnoceS
deliaf85532372834611riafnU
deliaf10433721niW-niW
deliaf194149416226138021L
deliaf006287190227918282L

1023193183213L
24861729132341865534L

Entire Space 701 653 742 709 612 failed
Average 254 988 1332 356 904 n.a.
Min 1 23 33 39 1 n.a.
Max 828 4382 8881 1494 4549 n.a.
Std. Deviation 283 1349 2658 424 1456 n.a.
Rank (avg.) 1 4 5 2 3 6
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� = 0 , or maximin (pessimistic). As denoted in the previous chapter, one can notice 
the lack of convergence for the random strategy selection method. In most cases, the 
random selection failed to converge within the allowed time, reinforcing the influ-
ence of strategic behavior simulation in the process.

Upon analyzing the game pools separately, we observed that pools with a higher 
number of conflict and non-optimal types of games, such as Biased, Unfair, Second-
Best and Prison, affect the speed of convergence as well, requiring more iterations 
in order to reach optimized fitness values. Although the games will be transformed 
in every case and eventually converge to optimal scenarios when in the presence of 
strategic behavior, the available population characteristics directly influence how the 
games will transform in the next generations.

The charts in Fig.  9 demonstrate the utility development for both players by 
adopting each strategy selector and variations used in the simulation model, aggre-
gated by average across all populations. Here it is easy to understand this rank and 
compare the random method against the others. The performance of the strategies 
varied on a game basis; a complete overview of each combination of game pool and 
strategy selector is presented in Appendix A.

Fig. 9   Strategies Performance—Consolidated
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5.3 � Evolutionary Stability: Coordination

Following our game structure, each agent could select between two strategies, 
generically denominated as Strategy1 and Strategy2. Additionally, for the Nash 
equilibrium-based pools, mixed strategies were allowed. The frequency of selected 
strategies based on a random sample of populations is presented in Fig. 10. One can 
notice that the evolutionary stability, in terms of utility, is reflected directly in the 
stability of the strategies adopted by each player. This observed trend was in line 
with the examples detailed in Weibull (1997); Hines (1987). Furthermore, most dis-
played a symmetric plot, especially after reaching equilibrium.

The literature suggests that in equilibrium situations, the players coordinate their 
strategies. For each strategy one of the players adopts, there is a strategy that is 
always the best response, giving no incentives for the players to deviate from this 
equilibrium state by selecting another strategy. This allows the equilibrium state to 
persist throughout the generations (see Fig. 10).

In addition, due to their inferior outcomes, mixed strategies have been eliminated 
early in the evolutionary process. Figure 10 displays a random sample of six strategy 
selectors and game pool combinations. The complete overview of the frequency of 
the selected strategies in all pools is presented in Appendix B.

Fig. 10   Evolutionary Stability—Sample Pools (percentage of strategies used in each round)



460	 V. Ferraz, T. Pitz 

1 3

5.4 � Transformation of Games

We started with a game pool containing the following equilibrium structure: one 
pure Nash equilibrium ( 75% of the games), one completely mixed Nash equilib-
rium ( 12.5% of the games), and two pure and mixed (one or infinitely many) Nash 
equilibrium ( 12.5% of the games). Table 4, depicts the resulting equilibria struc-
ture, depending on the strategy selection method, of the new games generated by 
the evolutionary process, considering the games in the last period of the simula-
tion rounds.

Games with completely mixed Nash equilibria have been eliminated during the 
evolutionary process, making all new games with at least one pure Nash equilib-
rium. The symmetry in the payoff structures was only sometimes present. A high-
lighted finding was the existence of an optimal equilibrium cell (4, 4), where both 
players attained the maximum payoffs by playing that strategy, as in the Win-Win 
(harmonious) game family.

The analysis of the results uncovered another interesting fact. Most games trans-
formed and replicated one-selves, reducing the number of unique games in the final 
populations, where successful games appeared repeatedly. There was no restriction 
to how the game may change, except for the rules defining the periodic table of 2 × 2 
games (Robinson & Goforth, 2005). Even when the payoff symmetry was broken, 
both players had an optimal equilibrium state, which tended to survive across gen-
erations. The games were changed in such a way that they retained (in the majority 
of cases) the strategy choices, and payoff yield stabilized according to the character-
istics of the initial populations and the decision rules applied. In this case, the games 
were specifically optimized to create favorable decision scenarios for both players.

This point is visualized in Fig.  11, which contains a random sample of pools 
plotting the count of unique games in each of the denoted populations. This reduc-
tion pattern was equivalent across every population and strategy selector. The 
model yielded populations with few different games, repeatedly occurring within 
the same pool. The complete overview of the count of games in all pools is found 
in appendix C.

5.5 � Comparison with Reinforcement Learning

Reinforcement Learning is a broadly applied concept in the economics litera-
ture, especially when it comes to game theory and situations of strategic interac-
tion, as a model of the human learning process, as it is regarded as an alternative 
method to this paper for modeling learning behavior. A popular version of the 

Table 4   Frequencies of the equilibrium structure for games in the final populations, compared to the ini-
tial pools

Equilibrium Structure Initial Pools Hurwicz Pools Nash Pools Random Pools
1 pure 75.0% 74.8% 48.7% 0.0%
1 completely mixed 12.5% 0.0% 0.0% 0.0%
2 pure (and mixed) 12.5% 25.2% 51.3% 100.0%

%0.001latoT 100.0% 100.0% 100.0%
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model was introduced by Erev and Roth (1998), in which payers change their 
choice probabilities in reaction to payoffs from previous rounds. Duffy (2006) 
documented comparisons between Genetic Algorithms and Reinforcement 
Learning in the context of economics by mentioning two examples. In the first 
comparison, Haruvy and Ünver (2002) analyzes a scenario based on a procure-
ment-type market experiment, where buyers and sellers are supposed to reach 
a stable outcome. Applying Reinforcement Learning and Genetic Algorithms 
yielded similar predictions consistent with empirical evidence. In the second 
example, Arifovic and Ledyard (2004) compare both methods’ performances 
in the context of a public goods game, also employing a reinforcement-belief 
hybrid model known as Experience-Weighted Attraction (Camerer & Hua Ho, 
1999). By measuring performance in terms of time taken to converge to an equi-
librium state (same rule used in our paper), the authors conclude that Reinforce-
ment Learning ranks significantly worse than the other two methods. In contrast, 
the Genetic Algorithm displays the best performance.

As the model introduced in this paper is highly customized, a comparison might 
be beneficial for the reader to understand the discussion about performance and 
speed of convergence. For this reason, we applied a version of Erev and Roth (1998) 
’s model to the same pools of games and identically documented the results in terms 
of utility optimization and strategy selection. However, it is of uttermost importance 
to understand that in our original model, we allow the Genetic Algorithm to modify 
the games in a population. In contrast, the Reinforcement Learning model can only 
learn optimal strategies restricted by the static structure of the games, which will not 
change over time. In other words, as the programs start iterating through the data, 
they will eventually be processing different sets of games, even though the starting 
pools are the same.

Details on how we implemented the Reinforcement Learning algorithm can 
be found in Appendix E. The model implemented for the comparison takes two 
parameters for a better fit to the data: � , denoting the “forgetting rate,” that is, how 
quickly the agents forget past payoffs, and λ , which defines the sensitivity to the 
weights assigned to strategies for the generation of choice probabilities. For sim-
plicity, we applied static parameter values for all game pools, found through over 

Fig. 11   Count of unique games in pool across generations—Sample pools
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1000 simulations of 1000 rounds each. We calculated the average values of the pair 
of parameters that were most frequent in optimized outcomes in each population. 
Based on the results, the global parameter values were set at � = 0.42 and λ = 0.9 , 
and initial attractions were set to 0; that is, no previous experience is assumed for 
the agents in any of the games.

Figure  12 displays the results for the Reinforcement Learning application. As 
suggested by earlier comparisons, Reinforcement Learning (and many other simi-
lar models), by nature, find suitable strategies that maximize the rewards in a given 
scenario. The fitness values converged to local optimum values. However, the main 
difference in our setting is that the Reinforcement learning model is constrained to 
the structure of the games, as observed in the summary of the results. The utility 
will never reach a global optimum if optimal-yielding strategies are not available for 
selection, as the games remain static over time.

When analyzing the strategy selection behavior of the agents, we noticed weaker 
coordination of strategies using reinforcement learning, as demonstrated in Fig. 13. 
Agents learned optimal strategies within each of the games. However, no consist-
ent optimal-yielding strategies can be selected across an entire population, outlin-
ing the Genetic Algorithm’s capacity to optimize multiple scenarios by transforming 
individual situations. Therefore this higher coordination effect cannot be achieved in 
optimizing multiple static games, and it shows similar figures to the random strategy 
selection method introduced before within the Genetic Algorithm implementation.

Fundamentally, both methods are based on similar premises but have different 
operating processes. Reinforcement Learning methods, such as the one used for this 
comparison, proved to be very efficient in finding optimal payoff-maximizing strate-
gies, even using global parameters. However, the Genetic Algorithm performs bet-
ter in our environment as strategic behavior rules allow the algorithm to change the 

Fig. 12   Reinforcement Learning Algorithm Application
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games based on well-performing strategies. This ability enables the transformation 
of the games based on the agents’ behavior, which optimizes the decision environ-
ment as a whole, introducing the possibility of new, potentially better strategies.

6 � Conclusion and Discussion

This paper introduced a novel game-theoretical approach for analyzing dynamic 
scenarios that uses a heuristic approach to transform games played sequentially 
based on the decisions performed by the agents, taking inspiration from observed 
scenario transformations over time. Based on how economic agents learn and trans-
form their decision environments in the real world, our motivation was to document 
and describe the process of implementing a Genetic Algorithm as a mechanism for 
evolutionary economic learning. For this purpose, we compared the convergence 
rate to optimal scenarios of different strategy selection rules in different populations 
of diverse 2 × 2 game types. The presented analysis demonstrated how strategic 

Fig. 13   Reinforcement Learning Strategies Selection Overview



464	 V. Ferraz, T. Pitz 

1 3

behavior can influence this dynamic learning process and how different strategic 
behavior mechanisms perform.

The core observations extracted from the presented results are summarized in the 
following points: 

1.	 The simulated strategic behavior for decision-making directly impacted the evolu-
tionary process, being responsible for transforming games into optimal scenarios 
(from conflict to harmony).

2.	 Similarly, the absence of strategic behavior negatively affects the Evolutionary 
process, preventing the evolution toward optimized scenarios.

3.	 The rank of the strategy selection methods from best to worse performance is 
given as follows: (1) payoff dominant Nash equilibrium, (2) Hurwicz rule with 
� = 0.5 , (3) Hurwicz rule with � = 1 , (4) Nash equilibrium with random equilib-
rium selection, (5) Hurwicz rule with � = 0 and (6) random strategy selection.

4.	 When agents maximize their utility (i.e., behave strategically), the games evolve 
to have higher payoff structures, optimizing their decision environments and trans-
forming conflict into harmonious games.

5.	 The evolution of dynamic strategic situations tends to create games where coor-
dination is possible.

6.	 Decision rules and the environment characteristics influence the optimization 
process’s agility in reaching an evolutionarily stable equilibrium.

7.	 Comparisons with reinforcement learning outline the power of transforming the 
games for the evolution of conflict to optimal scenarios. The reinforcement learn-
ing model can find optimal strategies within the game constraints but cannot 
optimize further without structural changes in the population of games.

The diverse set of games used for this analysis provided a rich representation of multiple 
real-life scenarios, including conflict, biased, dilemma, and harmonious situations. In 
addition, combining multiple game types with multiple behavior types yielded a diverse 
data set for exploring additional individual factors, such as which strategies performed 
better and which games were the most challenging to achieve a stable equilibrium.

The introduced decision rules presented a satisfactory performance in supporting 
the transformation of the games in maximizing individual payoffs. An exception was 
the random selection method, which failed to reach the evolutionary equilibrium 
multiple times in the allowed time. In many points, the performance of the Nash 
equilibrium and Hurwicz rule variations ranked similarly. However, in essence, 
the Nash equilibrium was still found to be, in this study, the most rapid and robust 
method for optimization modeling, in conformity with past findings by Sefrioui and 
Perlaux (2000).

The self-maximizing behavior and the transformation of the games allowed the 
individual strategies to evolve so that the agents tended to coordinate their strategies. 
Hence, for each player’s strategies, an optimal best response is consistent over time. 
When the genetic process eliminates stable strategies, the evolutionary learning process 
eventually creates new optimal strategies that enable a new equilibrium state, reinforc-
ing the findings in Kalai and Lehrer (1993); Chmura et al. (2012), the rational learning 
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in replicated games eventually leads to stationary points of the Nash equilibrium. Such 
a result is also in line with the concept of genetic stability documented in Riechmann 
(1998, 2001, 2002). In essence, strategic behavior allowed the agents to transform each 
game scenario into mutually optimal situations, eliminating conflicts and inequality.

Per Savin et al. (2018), incorporating the dynamics of strategic scenarios in equi-
librium analysis allows for more realistic interpretations of possible environmental 
transformations and policy outcomes. Compared to this paper, our results relied on 
transforming strategic scenarios due to strategic behavior. We also conclude that 
heuristic techniques and their extensions provide flexible tools with broader search 
spaces, potentially resulting in superior and even innovative outcomes than tradi-
tional procedures. The comparison with Reinforcement Learning in our research also 
outlines the limitations of commonly employed methods, proposing new solutions to 
more flexible problems and providing insights into reality-inspired dynamics.

As discussed by Erev and Roth (1998); Brown and Rosenthal (1990); Chmura 
et  al. (2012), the actual human behavior is at times not well predicted by the 
standard theory. However, in reality, the evolutionary social models are more 
complex and require significant efforts to create representative pictures that cap-
ture relevant characteristics of social systems (Reschke et al., 2001). The model 
created in this study aimed at an exploratory analysis that contributes to the dis-
cussion on how to envision and build representative models of strategic behavior 
and economic learning in different situations, exploring the effects of decisions in 
repeated strategic interaction.

We developed our simulation model to be flexible and integrate other ideas 
that enable the examination of dynamic games, strategic behavior, and economic 
learning in the future. Further research shall be performed by enriching the cur-
rent model with different types of games (also diverse populations) and encoding 
different strategy selection models, which should capture more diverse behavioral 
profiles of decision-makers in varying contexts. In another exploration direction, 
practitioners can add another layer of processing payoffs and utilities by defining 
a spectrum of profiles based on social preferences, such as altruism, envy, fair-
ness, and justice, defined by the agents’ utility functions. Furthermore, different 
Evolutionary Programming methods can be compared with the results achieved 
with the Genetic Algorithms application.

Appendix A: Complete Diagram of Strategies Performance

Figure  14 contains the overview of the performance achieved by the different 
decision rules in every population, individually
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Appendix B: Complete Diagram of Evolutionarily Stable Strategies

Complete overview of the strategies selection frequency for the Nash equilibrium 
Pools in Fig. 15.

Complete overview of the strategies selection frequency for the Hurwicz Pools 
in Fig. 16.

Fig. 14   Strategies performance—All pools
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Complete overview of the strategies selection frequency for the Random Pools 
in Fig. 17.

Fig. 15   Evolutionary stability—Nash pools

Fig. 16   Evolutionary stability—Hurwicz pools
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Appendix C: Complete Diagram of Games Transformation

Figure 18 displays the overview of the count of unique games across generations 
in all pools, for all strategy selectors.

Fig. 17   Evolutionary stability—Random pools
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Appendix D: Mutation Rate Tests

Figure 19 summarizes the tests performed with mutation rates using the Payoff 
Dominant Nash Equilibrium strategy selector, which is the highest performing 
and most robust of our rules, applied in the whole pool of 144 games.

Fig. 18   Count of unique games in pool across generations—All pools
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Appendix E: Reinforcement Learning Algorithm

The reinforcement learning algorithm applied for a comparison with the Genetic 
Algorithms was based on Erev and Roth (1998) ’s model and in the formulation 
presented in Camerer and Hua Ho (1999); Moffatt (2020), which introduced the 
concept of attractions Aj

i
 , as weights attached to strategies. Initial attractions Aj

i
(0) 

can be given values to assume a degree of previous experience from the agents 
with the game (having to be estimated by the practitioner), or they can be neutral 
by setting default values to 0. The generalized model has two main components. 
First, the attractions’ update function at time t Aj

i
(t) , given as:

where �i(si(t), s−i(t)) is the player i’s payoff in round t (scalar-valued function) and 
I is the indication function, taking the value of 1 if the statement is true and 0 oth-
erwise. This means that in reinforcement learning, a player’s attraction to a strategy 
can only increase if that strategy is chosen. � indicates the speed at which past pay-
offs are forgotten. � = 0 would indicate that only the most recent payoff is remem-
bered. � = 1 would indicate that all past payoffs have equal weights in the current 
decision.

The second component is the transformation of attraction into choice probabil-
ities via logistic transformation, given as:

Where Pj

i
(t + 1) is the probability of player i playing strategy j in round t and mi 

is the number of strategies player i has. The parameter λ defines the sensitivity to 
attractions; attractions are irrelevant if λ = 0 , and attractions are important if λ is 

(E1)Ai
j
(t) = �A

j

i
(t − 1) + I(s

j

i
, si(t))�i(s

j

i
, s

−i(t)),

(E2)P
j

i
(t + 1) =

eλA
j

i
(t)

∑mi

k=1
e
λAk

j
(t)

Fig. 19   Mutation rate tests—Payoff-Dominant Nash Eq. applied on the complete pool of games
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large. The choice probabilities are then used as means of selecting strategies in each 
round.
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