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Abstract
Noise is an important factor affecting portfolio performance, how to construct an 
effective denoising strategy is becoming increasingly important for investors. In 
this study, we theoretically explain the impact of noise on portfolio and argue the 
necessity of denoising. Next, the empirical mode decomposition (EMD) denoising 
strategy based on the correlation coefficient test criterion is proposed to improve 
portfolio performance. In detail, EMD is used to decompose the noisy price, then, 
a series of correlation coefficient tests are performed to determine which intrinsic 
mode functions (IMFs) are noise. In the empirical analysis, we apply the proposed 
method to denoise the SSE 50 index’s constituents, and further test the out-of-sam-
ple performance under the mean–variance framework. The empirical results show 
that the proposed denoising method outperforms four common EMD, Ensemble 
EMD (EEMD) and wavelet denoising methods in return-risk ratio. The proposed 
method is the optimal denoising strategy, which can help investors improve portfolio 
performance to the greatest extent.
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1 Introduction

Portfolio selection problem has been one of the core issues of the modern invest-
ment theory (Ao et al., 2019). How to construct an effective portfolio to improve 
the out-of-sample performance is the focus in academia and industry (Ma et al., 
2019). In practice, an often ignored fact is that noise is an important factor affect-
ing portfolio performance (Kondor et al., 2007; Dessaint et al., 2019; Peress and 
Schmidt, 2020). Some studies indicate that denoising can significantly improve 
investors’ returns (Aloui and Jammazi, 2015; Zhu et al., 2019, 2021). However, 
the previous common denoising methods, especially empirical mode decompo-
sition (EMD) denoising, have some weaknesses in portfolio management, such 
as inadequate or excessive denoising (He et  al., 2017; Helong et  al., 2019). To 
address these weaknesses, an EMD denoising strategy based on the correlation 
coefficient test criterion is proposed to improve portfolio performance.

The existence of noise originates from that individual investors have no access 
to inside information, they do not follow buy and hold strategies, and tend to 
select stocks with strong past returns (Black, 1986; Odean, 1999). A result from 
this concentrated trading is that prices tend to deviate from their fundamental val-
ues (Odean, 1999). Black (1986) labels these deviations as "noise". One often 
ignored fact is that the time series in financial market are easily interfered by 
noise, which may mislead the model fitting (Kondor et al., 2007). As results, the 
portfolio models may provide inaccurate results, investors who make decisions 
based on biased results will inevitably suffer losses. To eliminate noise interfer-
ence, some researchers try to introduce data decomposition methods, such as the 
popular wavelet decomposition, into portfolio management. For example, Aloui 
& Jammazi (2015), Zhu et al. (2019, 2021) propose different denoising methods 
to construct portfolio models based on the wavelet decomposition technique, their 
empirical results indicate that the profitability, Sharpe ratio, and model accuracy 
have been improved after filtering the noise from original data. Overall, there 
are limited theoretical and empirical studies to investigate portfolio performance 
from a denoising perspective.

Except for the wavelet decomposition, EMD also receives extensive attention 
(Huang et al., 1998). Compare to wavelet decomposition, EMD does not require 
any prior assumptions about signal modes or system orders, and can directly 
decompose original data into finite intrinsic mode functions (IMFs) and a trend 
item. To date, it has shown outstanding advantages in decomposing financial data 
(Zhu et al., 2017; Yang et al., 2019). In this study, we use EMD instead of wavelet 
decomposition to construct different denoising strategies.

The key to EMD denoising is how to select the decomposed IMFs. It is gen-
erally accepted that different IMFs represent different fluctuation levels (Huang 
et al., 1998), the high-frequency IMFs are disordered and display minimal regu-
larity, which are mainly caused by a series of factors that have short-term effects, 
such as bad weather and strikes, etc. Flandrin et al. (2004) consider these high-
frequency components as noise and argue that the main information is concen-
trated in the low-frequency IMFs. Thus, there must be a key index, the IMFs after 
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IMFindex are regarded as the dominant modes, and the formers are considered as 
noise. Numerous studies follow this framework to denoise different types of data 
in engineering and medical fields, etc (Boudraa and Cexus, 2007; Nguyen and 
Kim, 2016). However, these denoising methods may not be suitable for finance 
data since the optimal denoising strategy highly depends on the data character-
istic, i.e., different types of data have different optimal denoising strategies (Li 
et  al., 2016; Nguyen and Kim, 2016; Zhu et  al., 2019, 2021). In practice, the 
approach might face many weaknesses, such as inadequate or excessive denoising.

Therefore, a new EMD denoising strategy based on the correlation coefficient 
test criterion is proposed to improve portfolio performance. In detail, we first 
theoretically prove that noise can cause the optimal portfolio weights and effec-
tive frontier to deviate from their true positions. Thus, it is necessary to elimi-
nate noise. Next, we apply EMD to decompose original noisy price and perform a 
series of correlation coefficient tests to identify which IMFs are noise. If the tests 
accept the null hypothesis, the IMFs are considered as noise. Conversely, they are 
considered as non-noisy components. Finally, we sum the non-noisy components 
and residual to construct the denoised price.

In the empirical analysis, the daily closing prices of 3180 trading days ranging 
from October 8, 2007 to October 30, 2020 are collected to test portfolio perfor-
mance. Four quantitative indicators including Sharpe ratio, Sortino ratio, upside 
potential ratio and tracking error ratio, are used to deeply summarize out-of-sam-
ple performance. The empirical results show that the proposed denoising method 
outperforms common EMD, Ensemble EMD (EEMD) and wavelet denoising 
methods under the mean–variance framework. Besides, the portfolio performance 
is examined in four different subsamples, including bull, bear markets and two 
special periods, i.e., the 2007–2008 financial crisis and coronavirus disease 2019 
(COVID-19) pandemic in 2020. The results reconfirm the superiority of the pro-
posed denoising method. The simulation study by setting different parameters 
validates the above conclusions. Overall, the proposed denoising method can 
minimize noise interference, and help investors improve portfolio performance to 
the greatest extent.

This paper contributes to portfolio management in the following two dimensions. 
First, we theoretically analyze the impact of noise on the portfolio, and prove that 
noise causes the optimal portfolio and effective frontier to deviate from their true 
positions. In this way, the theoretical basis of denoising is argued. Second, we point 
out the weaknesses of common denoising methods applied to portfolio management 
and construct an EMD denoising strategy based on the correlation coefficient test 
criterion, whose portfolio performance significantly outperforms other common 
denoising methods.

Figure 1 plots the framework of this paper. Section 2 theoretically analyzes the 
motivation of denoising. Section 3 introduces the proposed EMD denoising method 
based on the correlation coefficient test criterion. As a comparison, four common 
EMD denoising methods are also described. Section 4 compares the portfolio per-
formance of different denoising methods under the mean–variance framework with 
different sample periods. Section 5 further evaluates the robustness of the proposed 
denoising method through simulated data. The last section concludes the paper.
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2  Portfolio Theory Under Noisy Environment

In this section, we decompose the noisy price into non-noisy component and noise, 
and further construct the mean–variance model under the noisy environment. By 
comparing the portfolio under non-noisy environment, we explain the impact of 
noise on portfolio and argue the necessity of denoising.

2.1  The Noisy Portfolio Returns

Due to the asymmetry and incompleteness of information, the stock prices are 
generally noisy (Black, 1986; Odean 1999). Considering the price xi(t) of stock 
i (i = 1,… , k) at time t (t = 1,… , T) is composed of non-noisy component si(t) and 
noise ni(t).

where the noise ni(t) and non-noisy component si(t) are uncorrelated, i.e., 
cov(si(t), ni(t)) = 0 . Then, the return ri(t) for stock i can be calculated as

(1)xi(t) = si(t) + ni(t), t = 1,… , T

(2)

ri(t) =
xi(t) − xi(t − 1)

xi(t − 1)
=

si(t) − si(t − 1) + ni(t) − ni(t − 1)

xi(t − 1)

=
si(t) − si(t − 1)

si(t − 1)

si(t − 1)

xi(t − 1)
+

ni(t) − ni(t − 1)

ni(t − 1)

ni(t − 1)

xi(t − 1)

= ri,s(t)
si(t − 1)

xi(t − 1)
+ ri,n(t)

xi(t − 1) − si(t − 1)

xi(t − 1)
= �i(t − 1)ri,s(t) + (1 − �i(t − 1))ri,n(t)

Fig. 1  The framework of this paper
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where ri,s(t) = (si(t) − si(t − 1))∕si(t − 1) is the return of non-noisy compo-
nent. Similarly, ri,n(t) = (ni(t) − ni(t − 1))∕ni(t − 1) is the return for noise. 
�i(t − 1) = si(t − 1)∕xi(t − 1) denotes the share of non-noisy component in x(t). For 
reading convenience, the variables ri(t), ri,s(t), ri,n(t), xi(t), si(t), ni(t) and �i(t − 1) are 
denoted by ri, ri,s, ri,n, xi, si, ni and �i , respectively. Furthermore, the noisy returns 
r = (r1,… , rk)

� can be expressed as

where (r1,… , rk)
� and ⊙ denote the transposition of (r1,… , rk) and Hadamard prod-

uct (Johnson, 1990). r
s
= (r1,s,… , rk,s)

� and r
n
= (r1,n,… , rk,n)

� present the noisy 
and non-noisy returns, their shares in the noisy returns are � = (�1,… , �k)

� and 
� − � = (1 − �1,… , 1 − �k)

� , respectively. Besides, we let R
s
= (R1,s,… ,Rk,s)

� and 
R
n
= (R1,n,… ,Rk,n)

� denote 𝜶 ⊙ r
s
 and (1− 𝜶)⊙ r

n
 , where Ri,s = 𝛼i ⊙ ri,s = ri,ssi∕xi 

and Ri,n = (1 − 𝛼i)⊙ ri,n = ri,nni∕xi.
Since the price xi is generally bounded, i.e., M1 ≤ xi ≤ M2 , where M1 and M2 are 

constants. Besides, it is deduced that cov(ri,s, ri,n) = cov(siri,s, niri,n) = 0 based on 
cov(si, ni) = 0 . Finally, the covariance cov(Ri,s,Ri,n) follows the inequality if consider-
ing 1∕xi as a coefficient term.

Equation 4 shows that cov(Ri,s,Ri,n) = 0 , which means that the return ri are mainly 
composed of non-noisy component Ri,s and noise Ri,n . Besides, we can deduce that 
cov(Ri,s,Rj,n) = 0, i ≠ j . In this way, the portfolio return rp is

where w = (wi,… ,wk)
� are the portfolio weights, and cov(R

s
,R

n
) = 0 . Further-

more, we can obtain that the expectation and variance of the portfolio return rp are

where �
s
 and �

n
 denote the expectations of non-noisy component Rs and noise Rn . 

Similarly, �
s
 and �

n
 denote the covariance matrices of R

s
 and R

n
 , respectively.

2.2  Mean–Variance Model Under Noisy Environment

Following Markowitz’s portfolio optimization framework (Markowitz 1952). The clas-
sical mean–variance portfolio model, which aims at minimizing portfolio variance 
under the given expected return �(rp) = �0 , can be expressed as

(3)
r = 𝜶 ⊙ r

s
+ (1− 𝜶)⊙ r

n

= R
s
+ R

n

(4)

0 =
1

M2
2

cov(siri,s, niri,n) ≤ cov(Ri,s,Ri,n) = cov

(
si

xi
ri,s,

ni

xi
ri,n

)
≤ 1

M2
1

cov(siri,s, niri,n) = 0

(5)rp = w
�
r = w

� (R
s
+ R

n
)

(6)
�(rp) = w

� (�
s
+ �

n
)

var(rp) = w
�𝚺

s
w + w

�𝚺
n
w

(7)
w(�0) = argmin w

�𝚺
s
w+ w

�𝚺
n
w

s.t. w
� (�

s
+ �

n
) = �0



396 K. Su et al.

1 3

For calculation convenience, we consider an investor’s wealth might be partially 
allocated to the risk-free security and short sales are allowed, the restriction w�1 = 1 
is not included in Eq. (7). By using the Lagrange multiplier algorithm, the optimal 
solution can be obtained by solving min

(w,�)
L(w, �),

where w is the optimal solution of Eq.  (7) when the Lagrange function L(w, �) 
satisfies

Then under the noisy environment, the optimal mean–variance portfolio weight vec-
tor w∗

noise
 is computed as

Similarly, the optimal portfolio weight vector w∗

nonnoise
 under the noise-free environ-

ment is calculated as follows:

Equations  (10), (11) show that noise affects portfolio weight not only through the 
covariance matrix but also through the expected return, which confirms the fact that 
noise is an important factor affecting portfolio performance. In practice, what inves-
tors need is the portfolio weight w∗

nonnoise
 under non-noisy environment, however, 

due to the existence of noise, the actual portfolio weight they obtain is w∗

noise
 . As a 

result, it is difficult for investors to construct an effective diversification, therefore, 
it is necessary to use some appropriate denoising strategies to suppress the noise 
interference.

When focusing on noise, a common assumption in practice is that the mean of 
noise is 0, i.e., �

n
= 0 (Donoho and Johnstone, 1994). In this case, the optimal 

portfolio weight w†

noise
 under noisy environment is

It is clear that noise affects portfolio performance only through the covariance 
matrix, which confirms the validity of previous studies to filter the covariance matrix 
(Daly et al., 2008; Tian and Zhao, 2020). However, when the assumption �

n
= 0 is 

not satisfied, only filtering the covariance matrix is not sufficient.

(8)L(w, �) = w
�𝚺

s
w+ w

�𝚺
n
w − �

[
w
� (�

s
+ �

n
) − �0

]

(9)

⎧
⎪⎨⎪⎩

�L

�w
= 2(𝚺

s
+ 𝚺

n
)w − �(�

s
+ �

n
) = 0

[3mm]
�L

��
= w

� (�
s
+ �

n
) − �0 = 0

(10)w
∗

noise
= �0

(𝚺
s
+ 𝚺

n
)−1(�

s
+ �

n
)

(�
s
+ �

n
)� (𝚺

s
+ 𝚺

n
)−1(�

s
+ �

n
)

(11)w
∗

nonnoise
= �0

(𝚺
s
)−1�

s

��
s
(𝚺

s
)−1�

s

(12)w
†

noise
= �0

(𝚺
s
+ 𝚺

n
)−1�

s

��
s
(𝚺

s
+ 𝚺

n
)−1�

s
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2.3  Mean–Variance Effective Frontier

When analyzing the interference of noise on portfolio variance, since the mean of 
returns is close to 0 in practice, we can consider a simple scenario, i.e., the assump-
tion �

n
= 0 is satisfied. In this way, we bring Eq. (12) into Eq. (6), then, the portfo-

lio variance under noisy environment is calculated as

If taking the portfolio variance �2
noise

 and expected return �0 as the axis, the shape 
of mean–variance effective frontier is a parabola that opens to the right and passes 
through the origin point. The reason for this result is that we impose certain con-
straints on the mean–variance model, such as �

n
= 0 , etc. Similarly, the portfolio 

variance under the non-noisy environment is computed as

Equation (14) shows that noise causes the portfolio variance to deviate from the true 
position, which is consistent with the results of optimal portfolio weights. Besides, 
when comparing the portfolio variance under noisy and non-noisy environments, the 
magnitude between them can be obtained from the following equation.

where |��

s
�
s
| ≥ 0 , the matrices �

s
 , �

n
 and 𝚺

s
+ 𝚺

n
 are positive definite. Based on 

the knowledge of higher algebra, the inverse matrices 𝚺−1
s

 , 𝚺−1
n

 and (𝚺
s
+ 𝚺

n
)−1 

are also positive definite. Besides, it can be deduced that |𝚺
s
+ 𝚺

n
| ≥ |𝚺

s
|,1 and 

|(𝚺
s
+ 𝚺

n
)−1| ≤ |𝚺−1

s
|,2 In this way, we can obtain the following inequality.

(13)�2
noise

= (w
†

noise
)� (𝚺

s
+ 𝚺

n
)w

†

noise
=

�2
0

��

s
(𝚺

s
+ 𝚺

n
)−1�

s

(14)�2
nonnoise

= (w∗

nonnoise
)�𝚺

s
wv

∗ =
�2
0

��

s
𝚺−1
s
�
s

(15)

�2
0

�2
noise

−
�2
0

�2
nonnoise

= ��

s
(𝚺

s
+ 𝚺

n
)−1�

s
− ��

s
𝚺−1
s
�
s

[−1mm] = |��

s
(𝚺

s
+ 𝚺

n
)−1�

s
| − |��

s
𝚺−1
s
�
s
|

= |(𝚺
s
+ 𝚺

n
)−1| ⋅ |��

s
�
s
| − |𝚺−1

s
| ⋅ |��

s
�
s
|

= [ |(𝚺
s
+ 𝚺

n
)−1|− |𝚺−1

s
| ] ⋅ |��

s
�
s
|

(16)
�2
0

�2
noise

≤ �2
0

�2
nonnoise

⟺ �2
noise

≥ �2
nonnoise

1 For any vectors z, if matrices Σn , Σs + Σn are positive definite, then we have z� (Σs + Σn)z ≥ 0 , and 
z�Σnz ≥ 0 ⇒ z� (Σs + Σn)z = z�Σsz + z�Σnz ≥ z�Σsz ⇒ |z� (Σs + Σn)z|
= |(Σs + Σn)| ⋅ |z�z| ≥ |z�Σsz| = |Σs| ⋅ |z�z| ⇒ |Σs + Σn| ≥ |Σs|

.

2 If the matrices A,  B are invertible, then, |AA−1| = |A| ⋅ |A−1| = 1 ⇒ |A−1| = 1∕|A| . In this way, 
|A| ≥ |B| ⇒ |A−1| ≤ |B−1|.
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Equation  (16) implies that noise increases the portfolio variance and shifts the 
mean–variance effective frontier to the right. Therefore, denoising is equivalent to 
changing from a noisy environment to a non-noisy environment. As consequence, 
the effective frontier will shift to the left compared to that of using original price, 
and the higher the denoising degree is, the farther the shift to the left will be. Fig-
ure 2 summarizes the mean–variance effective frontier for different scenarios.

2.4  Measures of Portfolio Performance

In practice, investors are more concerned about the return they can achieve under a cer-
tain level of risk tolerance (Moura et al., 2020). Thus, four common quantitative indica-
tors are considered to evaluate portfolio performance, which include the Sharpe ratio, 
Sortino ratio, upside potential ratio, and tracking error ratio. The higher these indicators 
are, the better the effect of portfolio will be.

As we know, the Sharpe ratio, abbreviated SR, is the most common indicator 
adopted by investors to measure portfolio return.

Due to potential drawbacks of Sharpe ratio in evaluating portfolio performance, we 
apply the Sortino ratio, abbreviated SoR, to take account of the asymmetric pattern 
of financial volatility which cannot be captured via Sharpe ratio (Sortino and Van 
Der Meer, 1991).

(17)SR =
�(rp)√
var(rp)

Fig. 2  Mean–variance effective frontier
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Additionally, as described by Sortino et al. (1999), we take into account the upside 
potential return, and use the upside potential ratio, abbreviated UPR, to study the 
information in the higher moment.

Also, in order to quantify the differences between competing portfolio strategies, 
the tracking error ratio, abbreviated TR, is used to evaluate the error-tracking ability 
(Berger and Czudaj, 2020).

where rb denotes the portfolio based on original unfiltered return, which is defined 
as the benchmark. TR gives the tracking error, i.e. the difference between the evalu-
ated portfolio return and the benchmark. Thus, a higher TR denotes that the portfo-
lio performance on error-tracking is better.

3  EMD Denoising Methodology

Section  2 points out that noise is an important factor affecting portfolio perfor-
mance, take a step forward, a new EMD denoising method is constructed to improve 
portfolio performance. The reason for preferring EMD to construct the denoising 
method is that compared to traditional denoising methods such as wavelet denoising, 
etc, it is adaptive and does not require any prior assumptions about signal pattern 
or system order, such as basis function, decomposition level, etc, which are impor-
tant factors affecting the denoising results. For investors, how to choose the right 
parameters is a difficult task. Besides, EMD shows better properties in dealing with 
nonlinear and non-stationary data (Huang et al., 1998), and has been widely applied 
to decompose financial data (Zhu et al., 2017; Yang et al., 2019). To illustrate the 
superiority of the proposed denoising method, we thoroughly compare several com-
mon denoising methods and test the portfolio performance under the mean–variance 
framework.

3.1  Empirical Mode Decomposition

The EMD proposed by Johnson et al. (1998) decomposes original noisy price x(t) 
into a series of IMFs, which need to satisfy the following two conditions: (1) The 

(18)SoR =
�(rp)√

�(min(rp, 0))
2

(19)UPR =
�(max(rp, 0))√
�(min(rp, 0))

2

(20)TR =
�(rp − rb)√
var(rp − rb)



400 K. Su et al.

1 3

extremum numbers and zero-crossing points must be equal or differ at most by one 
in the whole time series. (2) The mean value of the envelope defined by the local 
maxima and minima is zero at any point. With this definition, the noisy price x(t) 
can be decomposed according to Table 1:

Using the sifting procedure, the price x(t) can be expressed as the sum of IMFs and 
a residual,

where v(t) is the residual, C is the number of IMFs.

3.2  Common EMD Denoising Methods

EMD decomposes the noisy data into several IMFs with frequencies ranging from high 
to low to represent the periodic change from highly time variant to long periodicity. Dif-
ferent IMFs represent different fluctuation levels of noisy data. Generally, the high-fre-
quency IMFs are disordered and display minimal regularity, which are mainly caused 
by a series of factors that have short-term effects, such as bad weather and strikes, etc. 
Flandrin et al. (2004) consider these high-frequency IMFs as noise and argue that the 
main information is concentrated in the low-frequency IMFs. Thus, there must be a key 
index, the IMFs after IMFindex are considered as the dominant modes, and the formers 
are considered as noise. In this way, the denoised price ŝ(t) can be expressed as

In practice, numerous studies follow the framework to construct denoising strategies 
in engineering and medical fields, etc (Boudraa and Cexus 2007; Nguyen and Kim, 
2016). Following the previous approaches, four common criteria are considered to 
determine the index.

Criterion 1: As argued by Boudraa and Cexus (2007); An et al. (2013); Chen et al. 
(2021), minimizing the mean square error (MSE) between s(t) and an approximation 
ŝi(t) is a common selection criterion, which is defined as

(21)x(t) =

C∑
j=1

IMFj(t) + v(t)

(22)ŝ(t) =

C∑
j=index

IMFj(t) + v(t)

Table 1  EMD algorithm

Step 1 Find the local extrema of xi(t) , including both maxima and minima
Step 2 Identify its upper and lower envelopes, xi,up(t) and xi,low(t) with cubic spline interpolation
Step 3 Compute the point-by-point means mi from upper and lower envelopes: x(t) = (xup(t) + xlow(t))∕2

Step 4 Subtract the means from the time series to obtain an IMF candidate y(t) = x(t) − x(t)

Step 5 Check the properties of y(t): If y(t) meets the above two conditions, then IMF is extracted and 
replace x(t) with the residue r(t) = x(t) − y(t) , If y(t) does not meet, replace x(t) with y(t)

Step 6 Repeat steps 1–5 until the stop criterion is satisfied
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where ŝi(t) =
∑C

j=i IMFj(t) + v(t) , C is the number of IMFs. However, the MSE cannot 
be calculated directly because s(t) is unknown. The consecutive MSE (CMSE) does 
not require any knowledge of s(t), which is

Finally, the index is given by

Criterion 2: The change-point method proposed by Kokoszka and Leipus (1998) is 
a popular technique for identifying turning points. Instead of minimizing CMSE, we 
apply the change-point technique to find the index.

where ej =
1

T

T∑
t=1

IMF2
j
(t) . Finally, the index is given by

Criterion 3: Komaty et al. (2013), Nguyen and Kim (2016) suggest the probability 
density function (PDF) of IMF contains its complete information, the PDF similar-
ity measure can be used to identify the non-noisy modes.

where dist() is a distance metric used to compute the similarity.
Komaty et al. (2013) show that the similarity measures can be classified into two 

categories: (1) The information-theoretic measures such as Kullback–Leibler diver-
gence (KLD), etc., (2) The distance measures between two PDFs such as Euclidean 
distance (ED), etc. Therefore, we construct criterions 3 and 4 based on these two 
metrics.

The KLD, which relies primarily on Shannon’s concept of probabilistic uncer-
tainty, has been the most frequently used information-theoretic distance measure 
(Nguyen and Kim, 2016).

(23)MSE(s(t), ŝi(t)) =
1

T

T∑
t=1

(
s(t) − ŝi(t)

)2

(24)
CMSE(ŝi(t), ŝi+1(t)) =

1

T

T∑
t=1

(
ŝi(t) − ŝi+1(t)

)2
, i = 1,… ,C − 1

[4mm] =
1

T

T∑
t=1

(
IMFi(t)

)2

(25)index = argmin
1≤i≤C−1

CMSE(ŝi(t), ŝi+1(t))

(26)R(i) =
i(C − i)

C2

(
1

i

i∑
j=1

ej −
1

(C − i)

C∑
j=i+1

ej

)
, i = 1,… ,C − 1

(27)index = argmax
1≤i≤C−1

|R(i)|

(28)PDFsimilarity(i) = dist(PDFx(t),PDFIMFi(t)
)
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where P and Q are PDFs. To eliminate the interference of asymmetric factors, we 
apply the symmetric version of KLD, which is

The index is given by

Criterion 4: Euclidean distance is also a common method to measure PDF similarity 
(Komaty et al., 2013; Nguyen et al., 2015; Hao et al., 2017). Instead of KLD, crite-
rion 4 applies the Euclidean distance to identify the relevant IMFs, which is

3.3  The Proposed Denoising Method

Although the common EMD denoising methods mentioned in Sect.  3.2 have 
achieved great success in signal analysis (Komaty et al., 2013; Hao et al., 2017, 
engineering (Nguyen and Kim, 2016), etc., these denoising methods may not be 
suitable for finance data since the optimal denoising strategy highly depends on 
the data characteristic, i.e., different types of data have different optimal denois-
ing strategies (Li et al., 2016; Nguyen and Kim, 2016; Zhu et al., 2019, 2021). In 
practice, these approaches might face many weaknesses, such as inadequate or 
excessive denoising (Helong et  al., 2019). To better adapt to financial data and 
improve investors’ portfolio return, we propose a new EMD denoising method 
based on the correlation coefficient test criterion, which can be expressed as 
follows:

The correlation between noise n(t) and non-noisy component s(t) is relatively 
low or irrelevant, i.e., cor(s(t), n(t)) = 0 . Then, we can obtain

where �2
s
 and �2

n
 are the variances of non-noisy component s(t) and noise n(t), 

respectively. When denoising the price series in the stock market, �2
s
 is generally 

very large, while �2
n
 is relatively small (Li et  al., 2016). Therefore, we can judge 

which IMFs are noise based on the covariances with noisy price x(t). However, 
the range of covariance is not fixed, the correlation coefficient ranges from − 1 to 
1. Thus, it is better to replace covariance with correlation coefficient. Furthermore, 

(29)distKLD(P,Q) = ∫
+∞

−∞

P(u) log
P(u)

Q(u)
du

(30)dist(P,Q) =
distKLD(P,Q) + distKLD(Q,P)

2

(31)index = argmax
1≤i≤C−1

PDFsimilarity(i)

(32)dist(P,Q) = ‖P − Q‖2 =
�
∫

+∞

−∞

(P(u) − Q(u))2du

� 1

2

(33)
cov(x(t), n(t)) = cov(s(t), n(t)) + cov(n(t), n(t)) = �2

n

cov(x(t), s(t)) = cov(s(t), s(t)) + cov(s(t), n(t)) = �2
s
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the correlation coefficients between non-noisy component s(t), noise n(t) and noisy 
price x(t) are

where �x is the standard deviation of x(t). Based on the difference between �n and �s , 
we can judge that the IMFs are noises if they have low correlation coefficients with 
noisy price x(t), otherwise, they are non-noise components.

In this study, we use the hypothesis test method to verify which IMFs are noise. 
Let �j (j = 1,… ,C) denotes the correlation coefficient between noisy price x(t) and 
each IMF. Then, the null hypothesis is

The test statistic is

If the test accepts H0 , we consider that the IMF has a low or no correlation with 
original price, then, the IMF is regarded as noise. Conversely, the IMF is consid-
ered as a non-noise component. In this study, the test p-value3 is used to identify the 
noise. In detail, the smaller the p-value, the greater the probability that the test result 
will reject the null hypothesis. Therefore, by setting the confidence level � , we can 
determine that the IMFs with p-values higher than � are noise. Conversely, the IMFs 
are non-noisy components. Table 2 summarizes the identification results.

Based on the above information, the noisy price x(t) can be decomposed as

(34)
corr(x(t), n(t)) =

cov(x(t), n(t))

�x�n
=

�2

n

�x�n
=

�n

�x

corr(x(t), s(t)) =
cov(x(t), s(t))

�x�s
=

�2

s

�x�s
=

�s

�x

(35)H0 ∶ �j = 0, H1 ∶ �j ≠ 0

(36)�j

√
T − 2

1 − �2
j

∼ �(T− 2)

(37)
x(t) =

∑
{j∶pj>𝛽}

IMFj(t) +
∑

{j∶pj≤𝛽}
IMFj(t) + v(t)

n̂(t) + ŝ(t)

Table 2  Noise identification 
based on correlation coefficient 
test

pj denotes the p-value of the hypothesis test H
0
∶ �j = 0

H
0
∶ �j = 0 H

1
∶ �j ≠ 0

IMF j Noise Non-noisy component
p  value pj > 𝛽 pj ≤ �

3 P-value is calculated by the formula p(z ≥ �j

√
T − 2

1 − �2
j

) , where z follows a �(T− 2) distribution.
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where n̂(t) and ŝ(t) are the estimations of noise n(t) and non-noisy component s(t), 
respectively. Finally, the denoised price ŝ(t) can be expressed as

To verify the accuracy of denoised price, we also test the correlation between the 
denoised price ŝ(t) and original price x(t) according to Eq.  (35). If the test rejects 
H0 , then we can obtain the final denoised price. It is notable that the confidence 
level � determines the denoising degree, the lower the confidence level is, the higher 
the denoising degree is. In the empirical section, we choose a low confidence level 
� = 0.001 to fully remove the noise, which means that we can confirm the IMF as 
noise with a 99.9% probability. In practice, alternative values, such as 0.01, 0.05, 
etc, were also tried. However, we finally found that � = 0.001 is more appropriate. 
The selected confidence level may produce some deviations when denoising other 
financial data. Therefore, it should be treated with caution.

4  Empirical Analysis

To illustrate the superiority of the proposed denoising method, abbreviated EMD� , 
we comprehensively compare four common EMD denoising methods discussed in 
Sect. 3.2, which include combining CMSE, change-point technique, Kullback–Lei-
bler divergence, and the Euclidean distance. For presentation purposes, they are 
abbreviated as EMDMSE , EMDCP , EMDKLD , and EMDED , respectively.

4.1  Data Resource

The dataset is the daily closing prices of SSE 50 index’s latest constituents traded 
on the Shanghai Stock Exchange. The SSE 50 index picks the top 50 stocks ranked 
by total market value and turnover as its constituents. Therefore, the index’s con-
stituents are the most representative stocks in terms of transaction size and liquidity 
(Chen et al., 2020). Besides, these constituents have been widely applied in portfolio 
management (Chen and Zhou, 2018; Ren et  al., 2019). The dataset comprises the 
daily closing prices of 3,180 trading days ranging from October 8, 2007, to October 
30, 2020, which are collected from the Wind website (www.wind.com.cn). To make 
the data as continuous as possible, we eliminate 20 stocks with missing values over 
10 days. The appendix reports the IDs and names of the selected SSE 50 index’s 
constituents.

In practice, the in-sample and out-of-sample test method is often adopted. The 
former is used to calculate portfolio weights and calibrate the model, while the lat-
ter is used to evaluate portfolio performance. We divide the full dataset into two 
subsets: in-sample and out-of-sample periods. The first 60% of the sample, which 
covers the period from October 8, 2007 to August 6, 2015, is used as the in-sample 

(38)ŝ(t) =
∑

{j∶pj≤𝛽}
IMFj(t) + v(t)
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estimation. The last 40% of the sample for the out-of-sample analysis covers from 
August 7, 2015 to October 30, 2020.

4.2  Denoising Analysis

The proposed denoising method is constructed based on EMD technique. As an 
example, Fig. 3 shows the decomposition results for the price of Pudong Devel-
opment Bank (ID: 600000). EMD splits the original price into a series of IMFs, 
with cycles ranging from short to long, and frequencies varying from high to low. 
The high-frequency IMFs fluctuated sharply during the 2007–2008 financial cri-
sis, due to that the market is sensitive during the financial crisis and some minor 

Fig. 3  EMD decomposition for the price of Pudong Development Bank

Table 3  Descriptive statistics of decomposed IMFs

Var denotes the variance. Cov and � denote the covariance and correlation coefficient between different 
IMFs and original price, respectively. H 

0
 denotes the null hypothesis H

0
∶ �j = 0 . The result is 0 if the 

test accepts the null hypothesis and 1 otherwise. p denotes the p-value, a larger p value implies a higher 
probability of accepting the null hypothesis

IMF
1

IMF
2

IMF
3

IMF
4

IMF
5

IMF
6

IMF
7

IMF
8

Res Original

Var 0.0061 0.0088 0.0185 0.0252 0.1072 0.0970 0.5142 0.8462 7.1420 8.3707
Cov 0.0029 0.0057 0.0158 0.0220 0.1096 0.1813 0.4315 0.6735 6.9285 –
� 0.0126 0.0210 0.0401 0.0479 0.1157 0.2012 0.2080 0.2530 0.8961 –
H

0
0 0 0 0 1 1 1 1 1 –

p 0.4776 0.2372 0.0236 0.0069 0.0000 0.0000 0.0000 0.0000 0.0000 -
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events may trigger huge market panics or fluctuations (Erkens et  al., 2012). As 
results, the high-frequency IMFs, which are caused by some factors with short-
term effects, show large fluctuations during the financial crisis period. Finally, the 
decomposition results for the other 29 constituents exhibit similar patterns, we do 
not report to save space.

To explain the rationality and better understand the proposed denoising 
method, the price of Pudong Development Bank is used as an example. Table 3 
reports the descriptive statistics of decomposed IMFs. It is shown that the covari-
ance and correlation coefficients between IMFs 1–4 and original noisy price are 
close to 0, while the covariance and correlation between IMFs 5–8, residuals 
and original noisy price are relatively high. These findings are consistent with 
the underlying assumption, which implies that the proposed method is reason-
able. The test results also indicate that the IMFs 1–4 are noise at the given confi-
dence level � = 0.001 . Finally, we sum the IMFs 5–8 and residual to construct the 
denoised price of Pudong Development Bank.

Figure  4 provides six heatmaps to visualize the correlation structures across 
different denoised returns. It is shown that EMD� and EMDCP significantly 
increase the correlations between returns. The main reason is that denoising 
removes the short-term heterogeneous fluctuations and retains the long-term 
common trend from the noisy price. The correlation structure for EMDCP is com-
pletely different from that of original return, which means that the denoising 
degree is too high to achieve a good portfolio performance. Besides, EMDMSE 

(a) (b) (c)

(d) (e) (f)

Fig. 4  Correlation between return series for different denoising methods



407

1 3

Portfolio Selection Based on EMD Denoising with Correlation…

and EMDED have similar correlation structures with original return, indicat-
ing that denoising is not sufficient. Thus, the portfolios based on EMDMSE and 
EMDED hardly outperform the portfolio based on original return. By contrast, 
EMD� has a relatively high denoising degree, and does not completely the cor-
relation structure.

4.3  Optimal Portfolio Construction

The optimal portfolio is constructed through efficient frontier. In detail, we take 
equidistant 100 points between the minimum and maximum average returns of 30 
stocks, resulting in 101 points of E(rp) = �0 . Then, the efficient frontier is obtained 
according to Equation (7).4

Figure  5 plots the mean–variance efficient frontiers for different denoising 
methods. It is shown that the effective frontiers based on denoised returns are on 
the left-hand side of that based on original unfiltered return. Generally, the higher 
the denoising degree is, the lower risk can be achieved, resulting in the effective 
frontier being closer to the vertical axis. Therefore, EMDCP (Yellow dotted line 
marked by lower triangle) and EMD� (Green solid line marked by pentagram) have 
a high denoising degree. It is abnormal that the efficient frontier for EMDKLD (Red 
solid line marked by upper triangle) is a segmented straight line, due to the fact 
that EMDKLD removes too much effective information for a few stocks, resulting in 
the concentration of portfolio weights in these few stocks. Table 13 in the appen-
dix confirms the point that EMDKLD denoises too many for Zhongjin Gold (ID: 
600489). These results imply that EMDKLD can not diversify risk well and achieve 

Fig. 5  In-sample mean–variance efficient frontier

4 For practical needs, the constraint w�
1 = 1 is added in the empirical study.
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satisfactory portfolio performance. In practice, there are two challenges in construct-
ing the optimal portfolio: (1) The input parameters have a large impact on the port-
folio (Chen et al., 2020). (2) The effective frontiers do not correspond to each other, 
i.e., the maximum and minimum average returns for different methods are not equal. 
To eliminate the interference from the human factor, and overcome these challenges, 
we construct a return interval by the maximum Sharpe ratio and use the return inter-
val as a benchmark to search for the optimal portfolio weights. Table 4 shows the 
construction steps of optimal portfolio.

4.4  Portfolio Performance Evaluation

To illustrate the superiority of the proposed denoising method, we analyze the port-
folio performance not only from the full sample, but also from four subsamples, 

Table 4  Constructing the optimal portfolio

a The same variance corresponds to two different returns on the efficient frontier, we take �
0
 a relatively 

high value, to ensure that investors can take the maximum return. In practice, investors can set different 
�
0
 , and choose different portfolio weights

Step 1 Calculate the maximum Sharpe ratios s
1
,… , sm for different effective frontiers, where m 

is the number of effective frontiers. Then, the maximum and minimum Sharpe ratios are 
smin = min(s

1
,… , sm) and smax = max(s

1
,… , sm) , respectively

Step 2 Locate the average returns corresponding to the Sharpe ratios smin, smax as rm1 and rm2 . 
By combining the maximum average returns rk1,… , rkm of different efficient fron-
tiers, we can construct the return interval [rmin, rmax] , where rmin = min(rm1, rm2) , 
rmax = min(max(rm1, rm2), rk1,… , rkm)

Step 3 Using the return interval [rmin, rmax] as the benchmark to search the portfolio weight. Finally, 
different methods include n

1
,… , nm group portfolio weights within the interval, respectively

Step 4 Construct the average portfolio return using the selected portfolio weights and in-sample 
unfiltered return. Check whether the portfolio return meets the investors’ expectation, 
E(rp) ≥ �

0
a . If they do, the portfolio weights are determined. If not, gradually reduce the 

interval [rmin, rmax] range, repeat steps 2–4 to obtain the final portfolio that meets the inves-
tor’s expectation

Step 5 Construct the portfolio return using the selected portfolio weights, and the out-of-sample unfil-
tered return. Finally, calculate the average portfolio return to represent the optimal portfolio 
return

Table 5  Mean–variance portfolio performance based on EMD denoising methods

Bold indicates optimal performance

Original EMDMSE EMDCP EMDKLD EMDED EMD�

SR − 0.0240 − 0.0258 − 0.0407 − 0.0371 − 0.0400  0.0200
SoR − 0.0321 − 0.0343 − 0.0531 − 0.0491 − 0.0517  0.0280
UPR 0.4455 0.4416 0.4111 0.4163 0.4133  0.5115
TE – − 0.0080 − 0.0543 − 0.0556 − 0.0544  0.0605
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including the bear market, bull market, the 2007–2008 financial crisis and COVID-
19 pandemic periods.

4.4.1  Full Sample Analysis

Table  5 reports the performance statistics for different denoising methods. It is 
shown that EMD� outperforms other competitors under all the metrics, which 
fully demonstrates the superiority of the proposed method. By contrast, other 
denoising methods have poor performance due to that the noise is not correctly 
removed. In detail, EMDMSE and EMDED have poor performance since the noise 
is not sufficiently removed, while too much effective information is removed for 
EMDCP . The weakness for EMDKLD is that denoising too much for single stock, 
which leads that the portfolio weights concentrated on a single stock. Overall, the 
proposed denoising method addresses these weaknesses, it is the optimal denois-
ing strategy, which can help investors improve their portfolio return to the great-
est extent.

The EEMD proposed by (Wu and Huang, 2009) is also a common data decompo-
sition technique. By adding a lot of Gaussian white noise to the decomposed signal, 
it effectively solves the problem of mode mixing in EMD and has been widely used 

Table 6  Mean–variance portfolio performance based on EEMD denoising methods

Bold indicates optimal performance. Ref to Wu and Huang (2009), the ensemble number and standard 
deviation of added white noise in EEMD are set to 50 and 0.1, respectively

Original EEMDMSE EEMDCP EEMDKLD EEMDED EEMDρ EMD�

SR − 0.0240 − 0.0240 − 0.0472 − 0.0433 − 0.0241 − 0.0389  0.0200
SoR − 0.0321 − 0.0320 − 0.0603 − 0.0560 − 0.0321 − 0.0502  0.0280
UPR 0.4455 0.4518 0.3997 0.4074 0.4515 0.4132  0.5115
TE − 0.0053 − 0.0553 − 0.0504 0.0053 − 0.0342  0.0605

Table 7  Mean–variance 
portfolio performance based on 
wavelet soft threshold denoising 
methods

Bold indicates optimal performance. Equal denotes the equal-
weighted portfolio. The soft threshold is selected since it has a better 
estimation accuracy (Zhu et al., 2019). The formula of soft threshold 

denoising is wj,t =

⎧⎪⎨⎪⎩

sign
�
wj,t

�����wj,t
��� − 𝜆

� ���wj,t
��� ≥ 𝜆

0
���wj,t

��� < 𝜆
 where wj,t and 

wj,t express the wavelet coefficients before and after denoising, 
respectively. The threshold � is derived from the sqtwolog method 
(Zhu et al., 2021)

Original Sym8 Haar Coif4 Equal EMD�

SR − 0.0240 − 0.0185 − 0.0275 − 0.0181 0.0075 0.0200
SoR − 0.0321 − 0.0249 − 0.0366 − 0.0244 0.0100 0.0280
UPR 0.4455 0.4578 0.4380 0.4584 0.4453 0.5115
TE – 0.0595 − 0.0670  0.0622 0.0354 0.0605
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to decompose financial data (Nguyen and Kim, 2016; Yan et al., 2020). To further 
demonstrate the superiority of the proposed method, we apply EEMD to reconstruct 
different denoising methods.

Table 6 presents the performance metrics for different denoising methods. It is 
shown that the sophisticated EEMD denoising methods do not achieve satisfactory 
results. As argued by Yeh et al. (2010), EEMD introduces a new problem when solv-
ing the mode mixing problem, i.e., the decomposed IMFs remain additional white 
noise, which inevitably increases the model error and deteriorates the portfolio per-
formance. Scheller and Auer (2018) show that some simple methods usually achieve 
satisfactory results in portfolio management. This is the reason why we use the sim-
plest EMD to decompose the noisy price.

Wavelet denoising is a prevalent denoising method in portfolio management 
(Hamdi et  al., 2019, Zhu et  al., 2021). The key of wavelet denoising is to deter-
mine the wavelet basis function. Following the previous studies (Zhu et al., 2019), 
three common basis functions: sym8, haar and coif4, are chosen to check the portfo-
lio performance for wavelet denoising. Table 7 reports the corresponding portfolio 
results. Besides, DeMiguel et  al. (2009) discuss that the equal-weighted portfolio 
can reap a better Sharpe ratio and turnover. As a comparison, Table 7 also presents 
the equal-weighted portfolio results.

Table 7 confirms the superiority of the proposed denoising method over wavelet 
denoising. Except for the tracking error ratio, the performance metrics for EMD� are 
far higher than those of wavelet denoising. Besides, the choice of wavelet basis func-
tion has a large impact on portfolio performance. For example, the portfolio perfor-
mance for haar wavelet denoising is relatively poor, while, the wavelet denoising 
using sym8 and coif4 wavelets achieves better portfolio performance. In practice, it 
is a difficult task to pick the proper basis function in advance for investors. By con-
trast, the proposed denoising method avoids this challenge. Lastly, Table 7 also con-
firms that the proposed denoising method outperforms the equal-weighted portfolio.

4.4.2  Subsamples Analysis

Considering the differences between bull and bear markets, the denoising perfor-
mance is tested not only in the full sample but also in different subsamples. Besides, 
to test the sensitivity of different methods to extreme events, we consider two spe-
cial periods in the bear and bull markets, i.e., the 2007–2008 financial crisis and 
the COVID-19 pandemic in 2020. The different periods are identified according to 
the actual economic context and SSE 50 index’s tendency. Figure 6 plots the prices 
(Dot-dash line in the upper panel) and returns for SSE 50 index. Besides, the upper 
panel in Fig. 6 also plots the noise (Yellow solid line) and non-noisy components 
(Black solid line) based on the correlation coefficient test criterion.

Between 2007 and 2008, the global economy experienced a recession with the 
outbreak of financial crisis, the prices and returns of SSE 50 index fell sharply. 
Therefore, the data from October 8, 2007 to November 11, 2008 was used as the 
financial crisis subsample. To revive the economy, the Chinese government launched 
a 4 trillion bailout plan, the economy gradually emerged from the financial crisis and 
experienced a short-term bull market. However, due to the ensuing European debt 
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crisis and the continued deterioration of the global economy, the economy was still 
in a downward spiral. Therefore, the period from October 8, 2007 to November 2, 
2014 was considered as a bear market. After that, with the recovery of major econo-
mies and the transformation and upgrading of the economy, China’s economy was 
gradually emerging from the gloom and heading towards a better future. The prices 
of SSE 50 index were upward, giving an increase more than 100% from trough to 
peak, and the fluctuation in return is relatively moderate. Therefore, the remaining 
data in the full sample was identified as a bull market. Finally, on the last day of 
2019, a novel coronavirus was first detected in Wuhan city. Since then, COVID-19 

Fig. 6  The prices (upper panel) and returns (bottom panel) of SSE 50 index

Table 8  In-sample and out-of-sample subsample periods

In-sample Obs Out-of-sample Obs

Bear market 2007/10/8–2011/12/23 1032 2011/12/24–2014/11/2 688
Bull market 2014/11/3–2018/6/5 876 2018/6/6–2020/10/30 584
Financial crisis 2007/10/8–2008/6/3 163 2008/6/4–2008/11/11 108
COVID-19 pandemic 2020/1/1–2020/7/2 119 2020/7/3–2020/10/30 80
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has continued to impact the global economy. Thus, the interval from January 1, 2020 
to the endpoint of the full sample is set as the COVID-19 pandemic period.

Table 8 shows the division of in-sample and out-of-sample periods for different 
subsamples. Similar to the full sample, the first 60% of subsample data is set as the 
in-sample period, while, the remaining 40% is used as the out-of-sample period to 
test portfolio performance.

Table 9 reports the subsample portfolio results for different denoising meth-
ods. The results reconfirm the superiority of the proposed denoising approach, 
EMD� outperforms others in both bear and bull markets. As a comparison, other 
EMD denoising methods hardly achieve satisfactory results during all the sub-
sample periods, which implies that it is critical to denoise the correct IMFs. 
Similarly, a better portfolio performance is hard to achieve for EEMD denoising 
due to the existence of additional white noise. It is notable that wavelet denois-
ing reaps satisfactory results, indicating that it is a powerful denoising method. 
However, as noted above, wavelet denoising requires setting the basis function 
in advance, and an inappropriate basis function may lead to poor performance.

Focusing on the financial crisis and COVID-19 pandemic periods, EMD� is 
slightly ineffective during the financial crisis, which indicates that the proposed 
method is slightly weaker in reducing extreme loss. However, the proposed 
method still outperforms other EMD denoising methods. Besides, compared to 

Table 9  Mean–variance portfolio performance for different subsamples

Bold indicates optimal performance. The parameters in different denoising methods are consistent with 
the full sample

Original EMDMSE EMDCP EMDKLD EMDED Wavelet EEMD� EMD�

Panel A: Bear market
SR 0.0216 0.0189 − 0.0384 0.0038 0.0189 0.0213 0.0388  0.0430
SoR 0.0307 0.0266 − 0.0540 0.0053 0.0266 0.0301 0.0570  0.0634
UPR 0.5485 0.5475 0.4901 0.5393 0.5475 0.5477 0.5868  0.5896
TE – − 0.0180 − 0.0563 − 0.0345 − 0.0180 − 0.0143  0.0342 0.0295
Panel B: Bull market
SR 0.0168 0.0253 0.0117 0.0175 0.0249 0.0425 0.0427  0.0591
SoR 0.0239 0.0359 0.0165 0.0246 0.0353 0.0623 0.0623  0.0886
UPR 0.5342 0.5361 0.5386 0.5294 0.5366 0.5640 0.5726  0.5980
TE – 0.0368 − 0.0082 0.0096 0.0360 0.1078 0.1042  0.1267
Panel C: Financial crisis
SR − 0.1079 − 0.1435 − 0.0987 − 0.1130 − 0.1263 − 0.0732 − 0.1001 − 0.1076
SoR − 0.1396 − 0.1848 − 0.1300 − 0.1473 − 0.1632 − 0.0951 − 0.1300 − 0.1399
UPR 0.4247 0.4065  0.4612 0.4350 0.4147 0.4559 0.4358 0.4280
TE – − 0.1115 − 0.0129 − 0.0500 − 0.0913  0.0913 0.0387 0.0299
Panel D: COVID-19 pandemic
SR 0.0109 0.0068 0.0215 − 0.0400 0.0212 0.0399 0.0589  0.0790
SoR 0.0153 0.0095 0.0304 − 0.0616 0.0304 0.0555 0.0809  0.1120
UPR 0.5002 0.4862 0.4875 0.5239 0.5138 0.5202 0.5291  0.5640
TE − − 0.0371 0.0248 − 0.0669 0.0624 0.1419 0.1539  0.2135
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the financial crisis, the COVID-19 pandemic had a relatively small shock on the 
portfolio performance, which due to that the Chinese government controlled the 
epidemic in a timely and effective manner, such as the closure of Wuhan city, 
the national joint prevention and control, etc.

5  Simulation Study

To further test the reliability of the conclusions, we further generate a series of 
price matrices through Monte Carlo simulation. The simulated price xi(t) of asset 
i, (i = 1,… , k) at time t, (t = 1,… , T) is composed of two parts: non-noisy price 
si(t) and noise ni(t) . The non-noisy price si(t) is generated by the Ito process: 
dsi(t) = �isi(t)dt + �isi(t)dW , where �i and �i are the annualized rates of return and 

Table 10  Parameter setting for simulated price

Setting 1 All parameters are artificially specified with �i = 0.1 and �i = 0.5, 1, 1.5 (i = 1,… , k) . The 
initial prices are set to 100, and the dimension k = 30, 50, 100 . We assume that the added 
noise is white noise, which is sampled from the standard normal N(0,1) distribution

Setting 2 Different from setting 1, all parameters are estimated from the real-world dataset, More 
precisely, we calculate different parameters based on SSE 50 sample. Besides, the added 
noise is sampled from the standard normal N(0,1) distribution

Setting 3 The parameters keep the same as setting 2 except that the added noise follows a uniform 
U(0,1) distribution

Table 11  Mean–variance portfolio performance for different simulated samples

Bold indicates optimal performance. The parameters in different denoising methods are consistent with 
the full sample

Original EMDMSE EMDCP EMDKLD EMDED Wavelet EEMD� EMD�

Panel A: Setting 1
SR 0.0648 − 0.0181 0.0151 − 0.0040 − 0.0120 0.0197 − 0.0209  0.1423
SoR 0.0958 − 0.0254 0.0219 − 0.0056 − 0.0169 0.0280 − 0.0296  0.2258
UPR 0.6429 0.5464 0.5925 0.5577 0.5522 0.5878 0.5464  0.7528
TE – − 0.0418 − 0.0366 − 0.0323 − 0.0347 − 0.0791 − 0.1132  0.1269
Panel B: Setting 2
SR 0.0122 0.0007 − 0.0070 0.0009 0.0006 0.0014 0.0081  0.0292
SoR 0.0176 0.0010 − 0.0102 0.0012 0.0008 0.0020 0.0118  0.0421
UPR 0.5860 0.5376 0.5103 0.5714 0.5388 0.5119 0.5793  0.5942
TE – − 0.0002 − 0.0097 − 0.0007 − 0.0003 − 0.0012 0.0007  0.0262
Panel C: Setting 3
SR 0.0100 − 0.0191 − 0.0179 − 0.0053 − 0.0192 − 0.0080 − 0.0126  0.0451
SoR 0.0144 − 0.0274 − 0.0259 − 0.0076 − 0.0276 − 0.0113 − 0.0177  0.0636
UPR  0.5962 0.5343 0.5728 0.5799 0.5324 0.5589 0.5619 0.5943
TE – − 0.0212 − 0.0274 − 0.0086 − 0.0213 − 0.0140 − 0.0193  0.0412
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volatility, respectively, W follows a standard Brownian motion. The noise ni(t) is 
obtained by sampling from a specific distribution. In this way, the simulated noisy 
price can be expressed as xi(t) = si(t) + ni(t) . When focusing on the parameter set-
ting and distribution characteristic, Table 10 reports different setting methods.

We generate a price matrix of 1000 observations for each simulated sample. Table 11 
reports the performance metrics for different denoising methods. In setting 1, since the 
results are similar, panel A only concerns �i = 0.1, �i = 0.5 (i = 1,… , k) and k = 50 . 
Besides, to eliminate the influence of sample period on the simulation results, the in-depth 
simulation studies with 500 and 3000 observations are conducted for different settings. 
Table 16 in the appendix reports the portfolio results. The overall conclusions remain con-
sistent with the previous, the portfolio for EMD� has the best performance, which fully 
illustrates the superiority and robustness of the proposed denoising method. The com-
mon EMD denoising methods perform poorly since the noise components are not cor-
rectly removed. The wavelet and EEMD denoising methods also exist some weaknesses, 
such as the choice of basis function and noise interference, etc. To sum up, the proposed 
method is the optimal denoising strategy, which can help investors significantly improve 
their out-of-sample portfolio performance.

6  Conclusions

Noise is an important factor affecting portfolio performance, in this study, we theo-
retically prove that noise can cause the optimal portfolio weights and effective fron-
tier to deviate from their true positions. Thus, it is necessary to eliminate noise. 
Besides, considering the previous common denoising methods, especially EMD 
denoising, have some weaknesses in portfolio management, such as inadequate or 
excessive denoising, we further construct the EMD denoising strategy based on the 
correlation coefficient test criterion to improve portfolio performance. In detail, the 
EMD is used to decompose original noisy price. Then, a series of correlation coef-
ficient tests are performed to determine which IMFs are noise. If the tests accept the 
null hypothesis, the IMFs are considered as noise. Conversely, they are considered 
as non-noisy components.

In the empirical analysis, we apply the proposed denoising method to denoise 
the SSE 50 index’s constituents and summarize out-of-sample performance based 
on four return-risk ratios including Sharpe ratio, Sortino ratio, upside potential 
ratio and tracking error ratio. The empirical results show that the proposed method 
outperforms four common EMD denoising, EEMD and wavelet denoising under 
the mean–variance framework. Besides, the portfolio performance is examined 
in four subsamples, including bull, bear markets and two special periods, i.e., the 
2007–2008 financial crisis and the COVID-19 pandemic in 2020. The results indi-
cate that the proposed method performs better in bear, bull markets, and COVID-19 
pandemic periods, while, slightly weaker during the financial crisis. The simulation 
studies by setting different parameters and sample periods validate the above con-
clusions. The proposed denoising method can minimize noise interference and help 
investors improve their portfolio performance to the greatest extent.
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Appendix 1

See Table 12.

Table 12  The IDs and names of the selected SSE 50 index’s constituents

ID 600000 600016 600019 600028
Name Pudong Development 

Bank
Minsheng Bank Baosteel Sinopec

ID 600030 600031 600036 600048
Name CITIC Securities SANY China Merchants Bank Poly Real Estate
ID 600050 600111 600123 600256
Name China Unicom Northern Rare Earths Lanhua Scitech Venture Guanghui Energy
ID 600348 600362 600383 600489
Name Yangquan Coal Jiangxi Copper Gemdale Corporation Zhongjin Gold
ID 600518 600519 600549 600585
Name Kangmei Moutai Xiamen Tungsten Conch Cement
ID 600837 600887 601006 601088
Name Haitong Securities Yili Corporation Daqin Railway China Shenhua
ID 601166 601169 601328 601398
Name Industrial Bank Beijing Bank Bank of Communications ICBC
ID 601628 601699
Name China Life Lu’an Environmental Energy Development

Table 13  The removed IMFs for different EMD denoising methods

ID 600000 600016 600019 600028 600030 600031 600036 600048 600050 600111

EMDMSE 1 1 1 1 1 1 1 1 1–2 1
EMDCP 1–6 1–6 1–5 1–5 1–6 1–6 1–5 1–5 1–6 1–7
EMDKLD 1 1 1–2 1–2 1 1 1–2 1–2 1–3 1
EMDED 1 1 1 1 1 1 1 1 1–2 1
EMD � 1–4 1–6 1–5 1–5 1–3 1–3,5–6 1–8 1–5,8 1,3–5 1–5
ID 600123 600256 600348 600362 600383 600489 600518 600519 600549 600585
EMDMSE 1 1 1 1 1 1 1 1 1 1
EMDCP 1–6 1–6 1–5 1–5 1–5 1–6 1–7 1–7 1–6 1–6
EMDKLD 1–3 1 1–2 1–2 1–2 1–9 1–2 1–2 1 1
EMDED 1 1–2 1 1 1 1 1 1 1 1
EMD � 1–5 1–6 1–3,5 1–4,8 1–6,9 1–3 1–5,7 1–5,7,8 1–4 1–4,6
ID 600837 600887 601006 601088 601166 601169 601328 601398 601628 601699
EMDMSE 1 1 1 1–2 1 1 1 1 1 1
EMDCP 1–6 1–4 1–5 1–5 1–5 1–6 1–8 1–6 1–6 1–6
EMDKLD 1–3 1 1 1–2 1 1 1–3 1–2 1–2 1–2
EMDED 1–2 1 1 1 1 1–2 1 1 1 1
EMD � 1–3,10 1–8 1–5 1–3 1–5,8 1–5 1–4 1–6,8 1–3 1–5
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Appendix 2: Denoising Analysis

Table 13 reports the removed IMFs for 30 stocks to capture the differences between 
different methods. It is shown that the denoising degrees for EMDMSE , EMDKLD and 
EMDED are relatively low, which mainly focus on removing the 1–2nd IMFs. By con-
trast, the denoising degrees for EMDCP and EMD � are relatively high, and EMDCP has 
the highest denoising degree among all denoising methods. For example, when denois-
ing the prices of Pudong Development Bank (ID: 600000), EMDMSE , EMDKLD and 
EMDED denoise the first IMF, while EMDCP removes the 1–6th IMFs, EMD � removes 
the 1–4th IMFs. These results imply that EMDMSE , EMDKLD and EMDED may suffer 
from inadequate denoising. It is notable that there are definite jumps for EMD � . For 
example, when denoising the prices of SANY (ID: 600031), EMD � denoising skips 
the 4th IMF, indicating that medium-frequency components contain important infor-
mation. In other words, EMDCP might denoise too much.

Table 14 presents the descriptive statistics of different denoised returns. The differ-
ence in mean is small, while the standard deviations of denoised returns are signifi-
cantly lower than that of original return, due to that denoising reduces the volatility of 
original return. Overall, EMDCP has the lowest standard deviation, implying it has the 
highest denoising degree. It is notable that the skewness and kurtosis are extremely 
high for EMD � and EMDCP . As shown in Table 13, the main difference among these 
denoising methods is whether more medium and low-frequency components are 
removed. Thus, these results imply the medium and low-frequency components have 
a critical influence on skewness and kurtosis. Besides, these results indicate that the 
returns have more extreme values for these two methods. The last column reports the 
average duration of removed noise, it is shown that the removed noise mainly reflects 
the short-term 1–4 days fluctuations, both EMDCP and EMD � remove the noise over a 
longer period, indicating that they denoise more adequately.

Table 14  Descriptive statistics of different denoised returns

This table reports the mean, standard deviation, skewness, kurtosis, 95% VaR, 95% CVaR and the aver-
age duration of removed noise. This table only reports the average values of 30 stock returns to save 
space

Mean SD Min Max Skew Kurt Days

Original 0.0015 0.0252  − 0.1057 0.0958  − 0.0434 6.5429 –
EMDMSE 0.0014 0.0153  − 0.0851 0.0788  − 0.0621 6.3852 3.1607
EMDCP 0.0011 0.0047  − 0.0689 0.0776 0.2192 22.6717 3.9230
EMDKLD 0.0015 0.0114  − 0.0589 0.0537  − 0.0912 5.8432 3.4286
EMDED 0.0015 0.0150  − 0.0827 0.0767  − 0.0737 6.3944 3.1838
EMD � 0.0002 0.0188  − 0.3530 0.3616 0.0371 66.3609 3.9151
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Appendix 3: Portfolio performance based on different wavelet soft 
threshold denoising methods

To illustrate the universality of the proposed method, the correlation coefficient 
test is applied for wavelet decomposition. Different from traditional wavelet 
denoising which uses the filtered wavelet coefficients to reconstruct denoised 
price (Zhu et  al., 2019, 2021), we apply the correlation coefficient test to 
directly denoise the noisy price. Table 15 confirms the superiority of the corre-
lation coefficient test criterion in identifying noise, the portfolio performance for 
sym8� , haar � and coif4 � outperform that for sym8, haar and coif4. Overall, the 
proposed correlation coefficient test is more suitable for wavelet decomposition 
and EMD. As argued by Kondor et al. (2007), portfolio performance is sensitive 
to noise. EEMD remains too much white noise in the decomposed IMFs. By 
contrast, EMD and wavelet denoising avoid the problem and reap better portfo-
lio performance.

Table 15  Mean–variance portfolio performance based on wavelet soft threshold denoising and wavelet 
denoising using correlation coefficient test

Bold indicates optimal performance. Sym8� , Haar� and Coif4� denote applying the proposed correlation 
coefficient test for wavelet decomposition

Original Sym8 Haar Coif4 Sym8� Haar� Coif4�

SR  − 0.0240  − 0.0185  − 0.0275  − 0.0181  − 0.0050  − 0.0300  − 0.0016
SoR  − 0.0321  − 0.0249  − 0.0366  − 0.0244  − 0.0068  − 0.0396  − 0.0022
UPR 0.4455 0.4578 0.4380 0.4584 0.4847 0.4339 0.4897
TE – 0.0595  − 0.0670 0.0622 0.0637  − 0.0251 0.0693

Table 16  Mean–variance portfolio performance with different sample periods

Bold indicates optimal performance. The parameters in different denoising methods are consistent with 
the full sample

Original EMDMSE EMDCP EMDKLD EMDED Wavelet EEMD � EMD �

Panel A: 500-day sample period
SR 0.0148  − 0.0103  − 0.0062  − 0.0047  − 0.0096 0.0035 0.0292 0.0400
SoR 0.0215  − 0.0147  − 0.0087  − 0.0065  − 0.0139 0.0051 0.0418 0.0580
UPR 0.5863 0.5535 0.5250 0.5496 0.5649 0.5942 0.5856 0.5980
TE –  − 0.0129  − 0.0103  − 0.0088  − 0.0124  − 0.0051 0.0207 0.0309
Panel B: 3000-day sample period
SR 0.0343 0.0180 0.0341 0.0105 0.0190 0.0267 0.0283 0.0426
SoR 0.0489 0.0260 0.0491 0.0151 0.0274 0.0383 0.0413 0.0612
UPR 0.5835 0.5730 0.5790 0.5509 0.5745 0.5769 0.5760 0.5922
TE –  − 0.0011 0.0056  − 0.0022  − 0.0011  − 0.0006 0.0043 0.0152
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Appendix 4: Simulation study based on different sample lengths

To eliminate the influence of sample period on the simulation results, the in-depth 
simulation studies with 500 and 3000 observations are also conducted for different 
settings, Table 16 reports the portfolio results. The overall conclusions remain con-
sistent with the previous, the portfolio for EMD� has the best performance, which 
fully illustrates the superiority and robustness of the proposed denoising method. 
The common EMD denoising methods perform poorly since the noise components 
are not correctly removed. The wavelet and EEMD denoising methods also exist 
some weaknesses, such as the choice of basis function and noise interference, etc. 
To sum up, the proposed method is the optimal denoising strategy, which can help 
investors significantly improve their out-of-sample portfolio performance.

Appendix 5: Robustness Test

We discuss the robustness from two aspects: (1) Change the objective functions to 
be optimized. (2) Change the window width. When one of these items is changed, 
the other conditions are consistent with the previous.

Table  17 presents the portfolio results by optimizing the minimum-variance 
objective. Furthermore, Table  18 shows the portfolio results at 80%5 window 
width. In detail, the first 80% of the full sample is used as the in-sample period, 

Table 17  Minimum-variance portfolio performance

Bold indicates optimal performance. Among three different wavelets, we only report the optimal portfo-
lio results to save space

Original EMDMSE EMDCP EMDKLD EMDED Wavelet EEMD � EMD �

SR  − 0.0106 0.0127  − 0.0108 0.0012 0.0167 0.0173 0.0062 0.0330
SoR  − 0.0142 0.0173  − 0.0139 0.0018 0.0233 0.0243 0.0083 0.0467
UPR 0.4588 0.4684 0.4116 0.5062 0.5054 0.5091 0.4518 0.5215
TE  − 0.0289 0.0060 0.0099 0.0361 0.0425 0.0179 0.0410

Table 18  Mean–variance portfolio performance at 80% windows width

Bold indicates optimal performance. Among three different wavelets, we only report the optimal portfo-
lio results to save space

Original EMDMSE EMDCP EMDKLD EMDED Wavelet EEMD � EMD �

SR  − 0.0437  − 0.0497  − 0.0713  − 0.0561  − 0.0497  − 0.0512 0.0228 0.0260
SoR  − 0.0592  − 0.0670  − 0.0943  − 0.0752  − 0.0670  − 0.0689 0.0321 0.0369
UPR 0.4783 0.4726 0.4329 0.4594 0.4726 0.4678 0.5223 0.5319
TE –  − 0.0856  − 0.1243  − 0.1242  − 0.0856  − 0.1277 0.0630 0.0680

5 Other window lengths such as 70%, 90% of the full sample were also tried. The results exhibit similar 
patterns. Thus, Table 17 only reports portfolio results at 80% window width to save space.
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and the remaining 20% of the sample is utilized to test the portfolio performance. 
The overall conclusions are consistent with the previous conclusions. The pro-
posed EMD denoising method is the optimal denoising strategy, which can help 
investors improve their portfolio performance to the greatest extent. The common 
EMD denoising methods perform poorly since they do not correctly remove the 
noise components. The wavelet and EEMD denoising also have satisfactory portfo-
lio performance. However, as noted above, they all have their weaknesses, such as 
the choice of basis function and noise interference, etc. Besides, Tables 17 and 18 
show that they are not robust enough and can not achieve superior performance in 
all cases. All those results fully illustrate the superiority and robustness of the pro-
posed EMD denoising method.
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