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Abstract
MCMC algorithm is widely used in parameters’ estimation of GARCH-type models. 
However, the existing algorithms are either not easy to implement or not fast to run. 
In this paper, Hamiltonian Monte Carlo (HMC) algorithm, which is easy to perform 
and also efficient to draw samples from posterior distributions, is firstly proposed 
to estimate for the Gaussian mixed GARCH-type models. And then, based on the 
estimation of HMC algorithm, the forecasting of volatility prediction is investigated. 
Through the simulation experiments, the HMC algorithm is more efficient and flex-
ible than the Griddy-Gibbs sampler, and the credibility interval of forecasting for 
volatility prediction is also more accurate. A real application is given to support the 
usefulness of the proposed HMC algorithm well.

Keywords  Mixed Gaussian · GARCH-type models · HMC algorithm · Forecasting · 
Baysesian inference

1  Introduction

Financial time series, such as exchange rates and stock returns, often have exhibited 
time-varying volatility, excess kurtosis and volatility clustering reported by Man-
delbrot (1963) and Fama (1965). The family of autoregressive conditional heter-
oskedastic (ARCH) model of Engle (1982) and the generalized ARCH (GARCH) 
model of Bollerslev (1986) provide effective techniques to fit the volatility of the 
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financial time series. Since then, huge research works for the GARCH model and 
its extensions can be found in the literature for the past three decades, such as the 
GJR-GARCH model of Glosten et  al. (1993), the threshold GARCH (TGARCH) 
model of Zakoian (1994), the exponential GARCH (EGARCH) model of Nelson 
(1991), the integrated GARCH (IGARCH) model of Engle and Bollerslev (1986), 
the power-transformed and threshold GARCH model (PTTG​ARC​H) of Pan et  al. 
(2008). For the GARCH type models, Westerfield (1977) and McFarland et  al. 
(1982) have shown that the assumption of the GARCH model with normal errors 
can not provide an appropriate framework for some return series with excessive kur-
tosis and volatility clustering. Bollerslev (1987) suggested that the GARCH models 
with t-student innovations should be considered to describe the conditional distribu-
tions of the stock returns. However, these models can not capture volatility clus-
tering, high kurtosis, heavy-tailed distributions and the phenomenon of extreme 
events. A mixture normal GARCH-type model with zero mean and different vari-
ances is generated by a normal density with a small variance, while a small number 
of innovations are generated by a normal density with a large variance. Therefore it 
becomes very popular to model the financial return data, and provide a better fitting 
and forecasting than the GARCH-type models with normal or t-student innovations. 
See Bauwens et al. (1999), McLachlan and Peel (2000), Bai et al. (2003), Wong and 
Li (2001), Haas et al. (2004), Zhang et al. (2006) and Alexander and Lazar (2006) 
among others.

In the literature, maximum likelihood, quasi-maximum likelihood, the general-
ized method of moments and the least absolute deviations approach are traditionally 
carried out to infer the GARCH-type models, see Bollerslev and Wooldridge (1992) 
and Pan et al. (2008) for details. It is well known that the Bayesian inference offers a 
natural way to overcome computing problems and to avoid analytical difficulties in 
the estimation of volatilities. Some authors have applied Markov chain Monte Carlo 
(MCMC) algorithm to approximate the posterior distributions of the parameters 
for the GARCH-type models. For example, Geweke (1994) suggested the impor-
tance sampling to provide an efficient and generic method for updating posterior 
distributions. The Griddy-Gibbs sampler suggested by Ritter and Tanner (1992) has 
been used by Bauwens and Lubrano (1998) and Xia et  al. (2017) for a GARCH-
type model with normal or t-distributed errors, and Ausín and Galeano (2007) for 
a GARCH model with Gaussian mixture errors. In fact, finding an appropriate pro-
posal distribution in the Metropolis-Hastings algorithm suggested by Metropolis 
et al. (1953) and Hastings (1970) or an importance function is not easy. Although 
the Griddy-Gibbs sampler is easier to implement than other methods, it takes much 
computation time. Therefore, designing an algorithm that is easier to implement 
and less heavy to run, is very important for inferring the mixed normal distribution 
GARCH-type models in practise.

In recent years, attention has been paid for Hamiltonian Monte Carlo (HMC) 
algorithm proposed by Neal (2011) in the literature, because people realized that 
it can search the typical set of parameters effectively by using the gradient infor-
mation of the target distribution. Different from the Metropolis-Hastings algo-
rithm, the HMC sampler may not lead to random walk. Hence, the HMC algo-
rithm has been introduced for inferring the time series models. For instance, 
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Paixão and Ehlers (2017) used the HMC algorithm to estimate the GJR-GARCH 
model proposed by Glosten et al. (1993) with normal and t-Student errors. Burda 
and Bélisle (2019) applied HMC algorithm to overcome the difficulty of inferring 
the Copula-GARCH model, of which the distribution of parameters is skewness, 
asymmetry and truncation. Kreuzer and Czado (2021) proposed Bayesian infer-
ence for a single factor copula stochastic volatility model. Their related results 
show that the HMC algorithm can be implemented more easily in practice. Stan 
suggested by Carpenter et al. (2016) can provide HMC and No-U-Turn [NUTS, 
Hoffman and Gelman (2014)] methods to carry out Bayesian inference, but it aim 
at the models with continuous-variable. In the GARCH-type models with mixed 
normal errors, the latent variable is regarded as discrete parameter to define the 
likelihood function, thus we can not implement HMC procedure directly by Stan. 
Therefore, the main objective of this article is to propose a procedure for Bayes-
ian inference and prediction of the general GARCH-type models with the Gauss-
ian mixture innovations based on the HMC algorithm.

The arrangements of this paper are as follows. Section 2 presents the general 
GARCH-type models with mixed normal innovations and describes a Bayesian 
inference of the model. A Hamiltonian Monte Carlo algorithm for sampling the 
posterior density of volatilities and VaR forecasts is also addressed. Section  3 
provides some simulation experiments and a real data application, which illus-
trate the accuracy in the estimation of the parameters and the prediction of vola-
tilities and VaR. Section 4 is our conclusions.

2 � Gaussian Mixture GARCH‑Type Models and Bayesian Inference

2.1 � GARCH‑type Models with Mixed Gaussian Innovations

A series {yt} is said to follow the normal mixture GARCH-type models given by

where f (Θ,Ft−1) is a differentiable function of Θ and given the previous information 
Ft−1 = {yt−1, yt−2,…} . The error term �t is taken from independent mixed normal 
distributions as follows,

where �1(�t) =
1√
2��2

exp(−
�2
t

2�2
) , �2(�t) =

√
�√

2��2
exp(−

��2
t

2�2
) and �2 =

�

1+(�−1)�
 with 

0 < 𝜆 < 1 . Then E(�t) = 0 , var(�t) = 1.
As we can see, model (2.1) includes the following conditional heteroscedastic-

ity models: 

(2.1)
yt =

√
ht�t,

ht =var(yt�Ft−1) = f (Θ,Ft−1),

(2.2)�(�t) =

{
�1(�t), with probability �,

�2(�t), with probability 1 − �,
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(1)	 If f (Θ,Ft−1) = �0 +
∑p

i=1
�iy

2
t−i

+
∑q

j=1
�jht−j , then (2.1) becomes the standard 

GARCH model [Bollerslev (1986)];
(2)	 If f (Θ,Ft−1) = �0 +

∑p

i=1
�iy

2
t−i

 , then (2.1) is the ARCH model [Engle (1982)], 
which is a special case of GARCH;

(3)	 If f (Θ,Ft−1) = �0 +
∑p

i=1
(�i + �iNt−i)y

2
t−i

+
∑q

j=1
�jht−j , where 𝛾i > 0, i = 1, .., p 

and Nt−i = 1 if yt−i < 0 or Nt−i = 0 if yt−i ⩾ 0 , then (2.1) is the GJR-GARCH 
model [Glosten et al. (1993)];

(4)	 If f (Θ,Ft−1) = �0 + �1ht−1 + (1 − �1)y
2
t−1

 , then (2.1) is the IGARCH(1,1) model 
[Engle and Bollerslev (1986)];

(5)	 If ln f (Θ,Ft−1) = �0 +
∑p

i=1
�ig(�t−i) +

∑q

j=1
�j ln ht−j , then (2.1) becomes the 

EGARCH model [Nelson (1991)], where �1 = 1 , g(�t) = ��t + �[|�t| − E(|�t|)].
(6)	 If f (Θ,Ft−1) =

�
�0 +

∑p

i=1
�1i(y

+
t−i
)2� +

∑p

i=1
�2i(y

−
t−i
)2� +

∑q

j=1
�jh

�
t−j

�1∕�
 , (2.1) 

represents the PTTG​ARC​H model [Pan et al. (2008)], where � is a known posi-
tive number.

Remark 2.1  Diebolt and Robert (1994) defined the latent variables 
z = {zt, 1 ≤ t ≤ n} , where zt is a Bernoulli random variable with probability � , and 
I{⋅} is the indicator function. Then (2.2) can be interpreted as

Thus, if zt can be identified, then the distribution of �t can be determined.

2.2 � The Posterior Distribution

Let Θ denote the parameter vector of the Gaussian mixed GARCH-type models 
(2.1), and y = {yt, t = 1, 2,… , n} is observed series with n sample size. Then the 
posterior density can be written as

where �(Θ) is the prior and l(Θ;y, z) is the likelihood function, which can be derived 
in terms of latent variables z = {zt, t = 1, 2,… , n} , i.e.,

The parameter � controls the proportion of the two normal distributions. When � 
goes to 1, the innovations �t will almost come from the first normal distribution; 
when � tends to 0, �t will almost come from the second normal distribution. It would 

(2.3)�t = �
(1)
t I{zt=1} + �

(2)
t I{zt=0},

(2.4)�
(1)
t ∼ N(0, �2), �

(2)
t ∼ N(0, �2∕�).

(2.5)p(Θ|y) ∝ �(Θ)l(Θ;y, z),

(2.6)l(Θ;y, z) ∝
∏

t∶zt=1

��1

[
yt

f (Θ,Ft−1)

] ∏

t∶zt=0

(1 − �)�2

[
yt

f (Θ,Ft−1)

]
.
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be assumed that 0.5 < 𝜌 < 1 , so that most of the innovation �t comes from the first 
part.

To implement the Bayesian inference about the parameters Θ in model (2.1), we 
need the joint posterior distribution P(Θ|y) , which can be obtained by using the con-
ditional posterior distribution in a HMC process. Therefore, we need to choose pri-
ors to derive the conditional posterior distribution for the unknown parameters.

For any priors �(Θ) , as ht is a function of Θ in (2.1), the conditional posterior 
densities of most parameters in Θ will contain ht in (2.5). Consequently, they cannot 
be a normal or any other well known density, from which random numbers could 
be easily generated. Also, they are less likely to have the property of conjugacy. 
Therefore, the uninformative prior distributions will be preferred, and the relevant 
posterior distribution will be obtained.

If model (2.1) is the standard GARCH model, the uniform prior of 
Θ = (�0, �1,… , �p, �1,… , �q, �, �)

� can be chosen as follows:

Therefore, according to the uninformative prior distribution, the joint posterior dis-
tribution function of Θ is,

2.3 � Sampling Scheme Using HMC

Since Neal (2011) introduced the HMC algorithm, which originated from the algo-
rithm when Duane et al. (1987) studied molecular dynamics simulation, the statisti-
cal inference method based on Hamiltonian dynamics became popular. According 
to Betancourt (2017), Girolami and Calderhead (2011) and Neal (2011), the HMC 
algorithm has an excellent performance in solving some difficult high-dimensional 
inference problems and pathological behaviors of distribution functions.

In Hamiltonian dynamics, there are two parameters with the same dimension, the 
position vector Θ and the momentum vector Φ , to describe the motion process. The 
system is described by a function H(Θ,Φ) defined on the phase space (Θ,Φ) . At the 
point (Θ,Φ) , H(Θ,Φ) is known as the Hamiltonian, and can be decomposed into two 
parts, i.e.,

where U(Θ) and K(Φ) are called the potential energy and the kinetic energy, 
respectively. In particular, the canonical distribution of H(Θ,Φ) has the form 
�(Θ,Φ) = exp(−H(Θ,Φ)) . From Hamilton’s equations (2.10), we can know how Θ 
and Φ change over time t,

(2.7)
�0 ∼ U(0,+∞); �i ∼ U(0, 1), i = 1,… , p;

�j ∼ U(0, 1), j = 1,… , q; � ∼ U(0.5, 1); � ∼ U(0, 1).

(2.8)

p(Θ�y, z) ∝
�

t∶zt=1

�
1

√
�2ht

exp

�
−y2

t

2�2ht

�
�

t∶zt=0

(1 − �)

�
�

�2ht
exp

�
−�y2

t

2�2ht

�
.

(2.9)H(Θ,Φ) = U(Θ) + K(Φ),
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In a non-physical context, the position parameter corresponds to the parameter of 
interest with the density �(Θ) , and the parameter momentum is assumed to be a nor-
mal distribution random vector with the density �(Φ) independent of the parameter 
position. The joint probability distribution is written as the product of two densities,

Since the joint distribution is regarded as a canonical distribution, then the Hamilto-
nian function can be written as follows,

In the mixed normal GARCH-type models, the parameter Θ corresponds to the posi-
tion in Hamiltonian function H(Θ,Φ) , and the momentum variable is denoted as Φ 
with the same dimension as Θ . In order to calculate the Hamiltonian H(Θ,Φ) of the 
Gaussian mixed GARCH type models, we adopt Φ follows a normal distribution 
with mean zero and covariance Σ , then the Hamiltonian function can be further writ-
ten as,

The normalising constant omitted in the HMC iteration will not affect the program. 
Using the above Hamiltonian function, we perform the HMC algorithm to update 
the parameter Θ.

Each iteration of the HMC algorithm has two steps. The first changes only the 
momentum, while the second can change both position and momentum. Both steps 
leave the canonical joint distribution of (Θ,Φ) invariant, and hence their combination 
also maintains the distribution invariant. In the first step, new value of Φ is randomly 
drawn from its Gaussian distribution, independently of the current value of Θ . Because 
Θ is not changed, and Φ is drawn from its correct conditional distribution. Thus, this 
step obviously keeps the canonical joint distribution invariant. In the second step, a 
Metropolis update is performed to propose a new state by using Hamiltonian dynam-
ics. Starting with the current state (Θ,Φ) , Hamiltonian dynamics is simulated for L 
steps using the leapfrog method with a stepsize of Δs . Here, L and Δs are parameters 
of the algorithm, which need to be tuned to obtain good performance. The momentum 
variables at the end of this L-step trajectory are then negated, giving a proposed state 
(ΘL,ΦL) . It is easy to obtain P(Θ,Φ)∕P(ΘL,ΦL) = exp{−H(Θ,Φ) + H(ΘL,ΦL)} . 
Then this proposed state is accepted as the next state of the Markov chain with 
probability

(2.10)

dΘi

dt
= +

�H

�Φi

,

dΦi

dt
= −

�H

�Θi

.

(2.11)�(Θ,Φ) = �(Θ)�(Φ).

(2.12)H(Θ,Φ) = − ln�(Θ)�(Φ) = − ln �(Θ) − ln�(Φ) = U(Θ) + K(Φ).

H(Θ,Φ) = U(Θ) + K(Φ) = − ln p(Θ|y, z) + 1

2
Φ�Σ−1Φ.

(2.13)
min

[
1,�(ΘL,ΦL)∕�(Θ,Φ)

]
= min

[
1, exp

(
− H(ΘL,ΦL) + H(Θ,Φ)

)]
.
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If the proposed state is not accepted, the next state is the same as the current state. 
The negation of the momentum variables at the end of the trajectory makes the 
Metropolis proposal symmetrical, as needed for the acceptance probability (2.13) to 
be valid.

For the mixed normal GARCH-type models, the gradient of the kinetic func-
tion ∇K(Φ) is Σ−1Φ , and the potential function U(Θ) = U(Θ|y, z) is first-order dif-
ferentiable. Then the gradient ∇U(Θ) can be calculated. Note that �, � is different 
from the other parameters in U(Θ) . The partial derivatives of U with respect to � 
and � can be calculated directly.

However, the other parameters in U(Θ) can not be expressed as the explicit for-
mula, and can be calculated according to the chain rule as follows:

Example 2.1  Notice that the partial derivative (ht)�Θi

 can be obtained indirectly. For 
example, for the standard GARCH model, the parameters in f (Θ,Ft−1) are 
�0, �i, �j, i = 1, 2,… , p, j = 1, 2,… , q . The derivative of �0 can be written as 
follows,

where l = max(p + 1, q + 1) , ut =
1

2
(
1

ht
−

y2
t

�2h2t
)I{t∶zt=1} +

1

2
(
1

ht
−

�y2
t

�2h2t
)I{t∶zt=0} . (ht−k)

�
�i
 , 

(ht−k)
�
�j
 and hk , for l − q ≤ k ≤ l − 1 , i = 0, 1, 2,… , p , j = 1, 2,… , q are assumed to 

be known. The derivatives of other parameters �i, �j have similar expressions, for 
i = 1, 2,… , p, j = 1, 2,… , q . Thus using the above formula, the gradient of U(Θ) 
can be calculated.

If f (Θ,Ft−1) is the case 5 in (2.1), one can treat ln ht as ht to calculate the partial 
derivatives.

In the mixed normal GARCH-type models, generating the latent data z is 
very important for inferring the interested parameter. There are several meth-
ods can be found in the literature. For example, Tanner and Wong (1987) led to 
the posterior of the interested parameter by combining the observed data with 
latent data. Diebolt and Robert (1994) presented a Bayesian method to evaluate 
the interested mixture distribution in terms of the missing data scheme. Denote 
y = (y1, y2,… , yn)

� to be the observed data. Referring to Tanner and Wong 
(1987) and Diebolt and Robert (1994), we first generate the missing values 
z = (z1, z2,… , zn)

� , and then sample the parameters from the posterior function 

(2.14)

�U

�Θi

=
∑

t

(U(Θ|y, z))�
f (Θ,Ft−1)

(f (Θ,Ft−1))
�
Θi

=
∑

t

(U(Θ|y, z))�
ht
(ht)

�
Θi
.

(2.15)(ht)
�
�0
= 1 + �1(ht−1)

�
�0
+…+ �q(ht−q)

�
�0
,

(2.16)�U∕��0 =

n∑

t=l

(ht)
�
�0
ut,
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p(Θ|y, z) based on the complete data (yt, zt), t = 1, 2,… , n . The algorithm works at 
the step m for m = 1,… ,N as follows: 

(1)	 Use Θ(m) and y to generate z(m)t  from posterior p(zt|Θ(m), yt) , where 

B(1,
pr1

pr1+pr2
) is the Bernoulli distribution with probability pr1

pr1+pr2
 and 

pr1 =
�√
�2ht

exp(−
y2
t

2�2ht
) , pr2 =

(1−�)√
�2ht∕�

exp(−
�y2

t

2�2ht
).

(2)	 Draw momentum variable Φ from a zero-mean Gaussian distribution with covari-
ance matrix Σ = diag(1, 1,… , 1) , Φ ∼ N(0,Σ).

(3)	 Use the Algorithm 1 to propose a new state (Θ∗,Φ∗).
(4)	 Accept the proposal (Θ∗,Φ∗) with probability Pr and reject the proposal with 

probability 1 − Pr , where 

Remark 2.2  In fact, Algorithm 1 is the leapfrog method. Here, UBi and LBi represent 
the upper and lower bounds of each parameter respectively.

The simplest method of discretization equations (2.10) is leapfrog method with 
order (Δs)3 local error, while Euler’s method and its modified version have order 
(Δs)2 local error [See Leimkuhler and Reich (2004) for details]. Because a big step 
size will lead to a poor acceptance rate and a small step size will waste computation 
time. As Neal’s comments, a relatively suitable step size Δs should be considered 
based on computational efficiency. The adjustment of parameter Δs is necessary as 
well as misleading. Hence, it is essential to run multiple Markov chains with differ-
ent initial values to ensure that the parameter Δs is sufficient to keep the algorithm 
stable.

(2.17)p(zt|Θ(m)
, yt) = B

(
1,

pr1

pr1 + pr2

)
,

(2.18)Pr = min
[
1, exp(−H(Θ∗,Φ∗) + H(Θ,Φ))

]
.
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According to Beskos et  al. Beskos et  al. (2013) and Hoffman and Gelman 
Hoffman and Gelman (2014), tuning of parameters Δs and L determines the per-
formance of the HMC algorithm. An inappropriate step size Δs will destroy the 
stability of simulated trajectory, and then affects the acceptance rate. The steps L 
means the total run in the leapfrog trajectory. Care must be taken when we choose 
the step size of HMC algorithm, because too small step size can maintain the sta-
bility of the trajectory. After a leapfrog iteration we can only get proposal point, 
which is close to the previous one. Moreover, an overlong step size will destroy 
the stability. A selected critical step size can keep the algorithm stable and effi-
cient. The initial L is assumed to be 1. Given the initial Θ0,Φ0 and s, then one use 
the leapfrog method to get ΘL,ΦL . If exp{−H(ΘL,ΦL) + H(Θ0,Φ0)} > 0.5 , then 
s = 1∕2s ; otherwise, s = 2s . In simulation experiments and empirical analysis, 
taking into account the acceptance rate of these two stages, we set a threshold 0.5 
and run the Metropolis update multiple times. According to Algorithm 1, repeat-
ing this process until the algorithm remains stable. The final acceptance rate for 
the proposed points is about 0.85. After getting the stable step size, the number of 
steps L can be increased according to the correlation of the sampling results. One 
can find an appropriate step size through sufficient preliminary runs of several 
chains. Furthermore, it’s necessary to choose an appropriate L that avoids produc-
ing a dependent point.

In the previous works, the HMC algorithm performs well in sampling uncon-
strained parameters. As for handling distributions with the constraints on the vari-
ables, we can reparameterize the variables. Taking the GARCH model as an exam-
ple, because the coefficients of autoregressive term �i is on interval (0,1), we can 
take logarithm of �i . Under the transformation �∗

i
= ln(�i∕(1 − �i)) , the HMC algo-

rithm also performs well. However, the reparameterization will take more arithme-
tic operations. Another way for the posterior with restricted variables can produce 
similar results. In order to deal with the constraints, once the variable violates any 
constraints, we set the value of the potential energy and obtain an acceptance rate of 
almost zero immediately. Thus the parameters will fall in the limited interval, see 
e.g. Algorithm 1. In each leapfrog iteration, the boundaries of variables can be seen 
as “walls”. If Θi is beyond the boundaries, the state (Θi,Φi) bounces off the “walls" 
perpendicularly, see Betancourt (2011) for details.

2.4 � Bayesian Forecasting

Volatility and VaR forecasting are important in analyzing derivative pricing, 
yielding a good portfolio for investments and managing market risks in financial 
markets. In this section, the estimation of in-sample volatilities and the predic-
tion of future volatilities are also investigated. In order to predict the volatility 
and VaR, based on the HMC iterations, a simulation-based approach is used to 
obtain the posterior samples and distributions of volatilities ht, t = 1, 2,… , n , 
where ht = f (Θ,Ft−1) is a function of parameter Θ . For each HMC iteration of 
Θ(m),m = 1, 2,… ,N , we estimate the in-sample volatilities h(1)t ,… , h

(N)
t ,
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where yn = (y1, y2,… , yn)
�.

For one-step ahead prediction of yn+1 and hn+1 , one can obtain samples from the 
predictive distributions f (yn+1|yn) and f (hn+1|yn) , respectively. Note that h(m)

n+1
 is the 

function of parameter Θ(m) and yn . Then h(1)
n+1

, h
(2)

n+1
,… , h

(N)

n+1
 can be obtained and 

form a sample of the predictive distribution f (hn+1|yn) . The posterior distribution 
f (yn+1|yn,Θ(m)) has a simple form, so y(m)

n+1
 can be drawn from a zero mean mixed 

normal distribution with variance h(m)
n+1

 . Hence, y(1)
n+1

, y
(2)

n+1
,… , y

(N)

n+1
 is a sample of the 

predictive distribution f (yn+1|yn) . From this perspective, the distribution of yn+1 can 
be calculated by means of the posterior sample mean, that is

For the prediction of two-step ahead volatility, we can obtain the predictive distri-
bution of hn+2 through the calculated yn+1 and hn+1 . According to the Θ(m) and h(m)

n+1
 , 

the predictive y(m)
n+1

 and h(m)
n+2

 can be obtained in the same way. Similarly, y(m)
n+2

 also 
follows the mixed normal distribution given h(m)

n+2
 . Then it can be generated from the 

mixed normal density with known Θ(m) and h(m)n+1
 . For t = n + j, j ≥ 2 , the prediction 

of the volatilities ht and yt can be carried out through the above process. If we need 
to obtain the predicted distributions f (ht|yn+j−1) and f (yt|yn+j−1) , we can repeat the 
prediction process above. The final prediction distribution can help us compute the 
prediction interval and the prediction mean at time t.

Due to the common presence of extreme events in financial time series, VaR has 
become a widely used measure of market risk. It is usually defined as the loss of a 
financial asset or securities portfolio, which is exceeded with a predetermined prob-
ability � over a time horizon of d periods,

where y[d] = yn+1 + yn+2 +⋯ + yn+d . In fact, VaR is the �-quantile of distribu-
tion of y[d] at a given confidence level � . To forecast VaR, we need to estimate the 
extreme � th percentiles. In this paper, the probability � of interest is 0.01 and 0.05. 
Given y(m)

n+1
, y

(m)

n+2
,… , y

(m)

n+d
,m = 1, 2,… ,N , the d-period � % VaR can be evaluated 

from distribution of f (y[d]|y) , see Jorion (2000) for details.

(2.19)ĥt ≃ E(ht|yn) ≃
1

N

N∑

m=1

h
(m)
t , t = 1, 2,… , n,

(2.20)f (yk+1|yn) ≃
1

N

N∑

m=1

f (yk+1|yn,Θ(m)).

(2.21)Pr(y[d] ≤ −VaR) = �,
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3 � Simulated Example and Real Data Example

In this section, we first use the simulated experiment to illustrate the performance 
of the HMC method for the standard GARCH model with mixed normal errors, and 
then apply the proposed method to a real data analysis. The program is written based 
on R.

3.1 � Simulation Experiment

Here, the mixed Gaussian GARCH(1,1) model is adopted as the simulated example, that is

where �t follows a mixture Gaussian distribution (2.3) and the true values are set as 
follows,

We first generated three series with sample size 800, 1000, 2000, which are denoted 
as (s1), (s2) and (s3) respectively. Then 10,000 HMC iterations are carried out for all 

(4.1)
yt =

√
ht�t,

ht =�0 + �1y
2
t−1

+ �1ht−1,

(4.2)�0 = 0.1, �1 = 0.2, �1 = 0.5, � = 0.8, � = 0.15.
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Fig. 1   The CUMSUM plots of posterior mean estimates for s2 of the model 4.1
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series with the same initial value Θ(0) = (0.5, 0.4, 0.4, 0.65, 0.5) . The first 5000 itera-
tions considered as burn-in, the trace plots and histograms of all series are shown in 
Figs 9–14 in Appendix. The trace plots indicate that the HMC algorithm is success-
ful in exploring the posterior density of the parameters. The CUMSUM plots for 
simulated s2 are displayed in Fig. 1, which shows that the estimates of parameters 
have good convergence. Meanwhile, convergence diagnosis was investigated by the 
Geweke test [Geweke (1992)], and the results are more convinced that the chains 
have converged from Table 8.

Remark 3.1  In Algorithm 1, as Neal (2011) discussed, the stability and periodicity of 
the trajectory needs to be considered when the HMC algorithm is executed. The leap-
frog step L = 59 and multiple step sizes Δs are 0.003, 0.002, 0.002, 0.012 and 0.003 
are reasonable. They ensure the stability as well as take into account the excellent 
performance of the program. The multiple step sizes used here can reduce the corre-
lation of the samples. As discussed above, when discretizing the Hamilton equations, 
the discretization error can be kept equal to 0 theoretically. However, if the discretiza-
tion error exists, then the acceptance rate is less than 1, that is round 85%.

Remark 3.2  Here two tests are used to test the convergence of the Markov chain. 
One is the visual inspection of CUMSUM statistics proposed by Yu and Mykland 
(1994), and defined by

where �� and �� are the empirical mean and standard deviation of the N draws. 
Another is the Geweke test, which can be obtained by the R package “coda" [see 
Plummer et al. (2008) for details].

To verify the usefulness of our method a bit further, we conduct an comparison 
between the HMC algorithm and the Griddy-Gibbs (GG) sampler through 100 simula-
tions. The summary of the results for the two methods is recorded in Table 1, which 
includes the posterior means, medians and standard deviations (SD) in parentheses.

From Table 1, we can see that the estimated results of two methods are very well. 
The average of 100 samples of all estimated parameters is very close to the true 

(4.3)CSt =

(
1

t

t∑

i=1

�i − ��

)/
�� ,

Table 1   Comparison results for the mixture normal GARCH(1,1) model using HMC algorithm and GG 
sampler based on 100 replicates samples

Parameter �
0
(0.1) �

1
(0.2) �

1
(0.5) �(0.8) �(0.15) Time

HMC-mean 0.1167 0.2155 0.4478 0.7922 0.1486
HMC-median 0.1187 0.2139 0.4356 0.7970 0.1486 12.23 mins

(0.0269) (0.0621) (0.0866) (0.0449) (0.0210)
GG-mean 0.1163 0.2339 0.4611 0.7929 0.1406
GG-median 0.1128 0.2244 0.4636 0.7961 0.1416 56.22 mins

(0.0247) (0.0604) (0.0917) (0.0467) (0.0200)
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parameters, excluding a little bias for �1 . In particular, the posterior estimate of � is 
good and equal to 0.7922, its SD is small. Meanwhile, the median and mean of each 
parameter are very close, which indicate that the distributions are approximately 
symmetrical.

The posterior estimates of the HMC algorithm are close to the GG sampler. How-
ever, the HMC algorithm runs more quickly than the Griddy-Gibbs sampler. As 
shown in the last column of Table 1, the computation time of the HMC algorithm 
for the mixed Gaussian GARCH(1,1) model is 12.23 minutes (mins), while the GG 
sampler is 56.22 mins. In other words, with the same sample size, the time con-
sumption of the GG sampler is almost 5 times that of the HMC algorithm.

1 2 3 4 5
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Fig. 2   The boxplot of AE of predictive volatilities for future times T = 1001, .., 1005
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Fig. 3   The histograms of predictive dsitribution of volatilities for simulated series at times 
T = 1001, .., 1005 with sample size 1000
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Table 3   The predictive means, SD’s and 95% credibility intervals for volatilities at times 
T = 1001, .., 1005 based on 100 replicates

h
1000+1 h

1000+2 h
1000+3 h

1000+4 h
1000+5

True 0.2304 0.1984 0.1898 0.1872 0.1823
Mean 0.2402 0.2051 0.1948 0.1915 0.1905

(0.2254,0.2550) (0.1953,0.2149) (0.1851,0.2046) (0.1817,0.2014) (0.1805,0.2005)
SD 0.0813 0.0534 0.0530 0.0538 0.0542

Table 4   The predictive means, SD’s and 95% credibility intervals of VaR at times T = 1001, .., 1005 with 
probabilities �=0.05 and 0.01 based on 100 replicates

1 VaR with probability 0.05
2 VaR with probability 0.01

VaR
1000+1 VaR

1000+2 VaR
1000+3 VaR

1000+4 VaR
1000+5

Mean1 0.5165 0.7085 0.8519 0.9718 1.0783
(0.5029,0.5302) (0.6911,0.7260) (0.8315,0.8723) (0.9486,0.9950) (1.0524,1.1043)

SD1 0.0729 0.0933 0.1090 0.1241 0.1385

Mean2 0.7458 1.0332 1.2477 1.4287 1.5866
(0.7256,0.7660) (1.0073,1.0591) (1.2176,1.2778) (1.3946,1.4628) (1.5486,1.6246)

SD2 0.1089 0.1397 0.1621 0.1836 0.2047
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In addition, Table 2 shows the detailed comparisons of the two methods, includ-
ing mean square error (MSE), mean absolute deviation (MAD) for each parameter 
and effective sample size per minute (ESS/min). We can see that compared with GG 
sampler, HMC algorithm has a lower MAD and a lower MSE for most parameters. 
However, ESS/min of HMC algorithm is much higher than GG sampler.

Furthermore, we consider the forecasting by the proposed HMC algorithm. 1005 
time series data by model (4.1) is used for predictions, while the first 1000 data 
are used for the posterior estimation of the model. The HMC algorithm is also per-
formed 10000 iterations with the initial value Θ(0) = (0.5, 0.4, 0.4, 0.65, 0.5)� , and 
the first 5000 iterations are as burn-in values. We repeat the process to obtain the 
posterior means, SD’s, 95% credibility intervals and predictive distributions of vola-
tilities and VaR. Moreover, in order to ensure the validity of the prediction, we cal-
culate the results of 100 replicates and obtain the absolute error (AE) of volatilities, 
which are |ĥ1000+m − h1000+m|,m = 1, 2,… , 5 plotted in Fig. 2.

Remark 3.3  Ausín and Galeano (2007) and Xia et  al. (2017) suggested choosing 
fixed grids with 40 points to compute the value of GG sampler. For the GG sampler, 
we choose 40 griddy points and the same initial value Θ(0) , which can explore the 
parameter space sufficiently. In addition, linear interpolation is used to implement 
the approximation of the cumulative distribution function.

Using the steps described above, one can obtain the estimation of predictive distribu-
tion. The histograms of the predictive distributions of volatilities and VaR are shown in 
Figs. 3 and 4. The estimated means, SD’s and 95% credibility intervals are summarized 
in Tables 3 and  4. From the histograms of predictive volatilities in Fig. 3, we believe 
that the distributions of future volatilities are nearly symmetric. For the forecasting of 
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volatility, the predictive mean is very close to the true value, and the SD’s are very 
small. For the boxplot of predictive volatilities in Fig. 2, we can see that AE plots are 
pretty small, which indicates that our suggested method provides an accurate estima-
tion. Figure 4 shows that most of the predictive distributions of VaR are symmetric, 
while a small part of them are skewed.

Compared with GG sampler, the simulation results show that HMC algorithm 
not only provides more accurate estimations and predictions, but also performs 
higher efficiency for the mixture normal GARCH model.

3.2 � Real Data Example

In order to illustrate the good performance of the mixed GARCH type models in 
practice, we demonstrate the feasibility of the model with the real data analysis. The 
daily closing prices of SP500 index from Sep./3/2015 to Apr./7/2021 are selected 
with T = 1407 observed data. The sample mean, variance, skewness and kurtosis of 
log return series are 0.0525, 1.196, −1.0865 and 24.1190 respectively. The return 
of the observation series is defined by yt = 100(logPt − logPt−1) shown in Fig. 5, 
where Pt is the closing price at time t. The Dickey-Fuller test is used to verify the 
stationarity of this time series, and the results show that the log return series is sta-
tionary. Pt is used to study the estimation problem of the volatility model. The vol-
atility means the movement of the stock price. For example, the bigger volatility 
indicates that the stock will increase in price at a future point in time. Then, the pre-
diction of volatilities in the future time can help investors to judge whether to hold 
the stock or not. Meanwhile, the predicted distribution of VaR is also carried out, 
which is concerned with a forecast of the possible losses of the investment portfolio 
over a given time interval. Thus, using the forecast results, financial institutions or 
individuals can respond in time to reduce losses when dealing with market risks.

The analysis of the real data is based on model (4.1). We use the HMC algorithm 
to estimate parameters of the model, and GG sampler is also used for the compari-
son. 10,000 iterations are carried out for the HMC algorithm and the GG sampler 
with discarding the first 5000 iterations. The posterior means, medians and SD’s in 
parentheses are shown in Table 5.

Table 5 shows that the estimation for posterior mean of the two methods are very 
close, indicating that the HMC algorithm is as much reliable as the GG sampler. 
Although the posterior results of the parameters are generally close, the SD’s of the 

Table 5   The posterior estimations for SP500 by using HMC algorithm and GG sampler

Parameter �
0

�
1

�
1

� � Time

HMC-mean 0.0239 0.1936 0.8032 0.8873 0.1631 14.52 mins
HMC-median 0.0231 0.1915 0.8046 0.8964 0.1618

(0.0068) (0.0307) (0.0273) (0.0426) (0.0323)
GG-mean 0.0453 0.2351 0.7649 0.8593 0.1560 55.65 mins
GG-median 0.0431 0.2370 0.7630 0.8644 0.1609

(0.0191) (0.0626) (0.0489) (0.0732) (0.0504)
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estimated parameters of the HMC method is smaller, and HMC algorithm consumes 
less time in terms of running time. Moreover, the posterior mean of parameter � 
equals to 0.8873 and SD is 0.0426. That is to say, about 89% of the data may come 
from a normal distribution with a small variance 0.64, and the other 11% of the data 
may come from a normal distribution with a big variance 3.96. In reality, this find-
ing result is very close to the features of the log return series. For example, there 
were many trade disputes around the world in 2018, which caused the daily closing 
price of stocks to fall. Another notable example is the global epidemic of COVID-
19 in 2020. The epidemic has caused unprecedented trauma to the economies of 
countries around the world, and the stock market has also experienced severe shocks. 
Many stock prices, including the SP500 index, have been strongly affected by the epi-
demic. The observed data in Fig. 5 has a little volatility for most of the period before 
2020, and large fluctuations in the short term after 2020. The excess kurtosis of the 
observed series is 24.12, which implies that capturing the extreme events using t or 
normal distribution is not a good choice. Under the framework of the mixture normal 
GARCH model, the heavy-tailed distributions of the returns can be well fitted.
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Fig. 6   The CUMSUM plots of posterior mean estimates for mixed normal GARCH model

Table 6   The predictive means, SD’s and 95% credibility intervals for volatilities h
T
 at times 

T = 1408,… , 1412 of SP 500 using HMC method

h
1407+1 h

1407+2 h
1407+3 h

1407+4 h
1407+5

Mean 1.1798 1.1027 1.0324 0.9683 0.9101
(1.1795,1.1801) (1.1019,1.1035) (1.0313,1.0335) (0.9669,0.9697) (0.9086,0.9117)

SD 0.0014 0.0041 0.0058 0.0069 0.0078
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In addition, the diagrams and histograms of the posterior estimation for each 
parameter are shown in Figs. 15, 16 of Appendix. It can be seen from trace plots 
of each parameter that the HMC algorithm explores the parameter space well and 
does not fall into the local region in Fig. 15. According to the histograms in Fig. 16, 
except that the histogram of � is slightly right skew, the marginal posterior distribu-
tion of the other parameter is almost symmetrical.

We use the visual inspection of CUMSUM statistics to check convergence of 
the HMC algorithm, and the plots based on 5000 draws with discarding the first 
5000 draws are reported in Fig.  6. In the CUMSUM plots, we can see that the 
convergence of parameter � is slower than other parameters, and the convergence 
is relatively good for the parameters �0 , �1 , �1 and � . The Geweke statistics of �0 , 
�1 , �1 , � and � are 0.6575, −0.3713, −0.1276, −0.2118 and 0.1332, respectively, 
indicating that all estimated results are convergent. For the parameters of the 
HMC algorithm, we run several Markov chains to find a suitable step size. In fact, 
we can refer to Beskos et al. (2013), which provided theoretical analysis of opti-
mal step sizes for HMC algorithm. It’s worth noting that the multiple step size Δs 
selected to keep a good performance are {0.0025, 0.0017, 0.0025, 0.0067, 0.0042} , 
and the leapfrog step is 55. Considering the discretization error of the leapfrog, 
the selection of Δs and L results in an acceptance rate of 77%.

For the future prediction, we use the same approach described in Sect. 2.4, which is 
to perform 10000 iterations in each HMC algorithm. We consider 5-step predictions of 
1407 observations. Table 6 displays the estimations and confidence intervals of volatili-
ties. As can be seen from Table 6, the length of confidence intervals and the SD’s of 
volatilities are quite small, although the SD’s of volatilities increases over time. The 
results of credibility intervals show that HMC algorithm provides an accurate forecast-
ing intervals. The predictive histogram of yt and forecasts of ht are shown in Fig. 7, 
which can be found that the predictive distributions of yt and ht are nearly symmetric. 
The mean of yt in the next 5 steps is about zero, which indicates that the future log 
returns are unlikely to occur large volatilities.

The predictive distributions of VaR at 1% and 5% level can be seen from Fig. 8 that 
they are almost symmetric. The posterior estimations of VaR are shown to be well in 
Table 7. From the results shown in Table 7 and Fig. 8, the predictive distributions and 

Table 7   The predictive means, SD’s and 95% credibility intervals of VaR at times T = 1408.., 1412 with 
probabilities �=0.05 and 0.01 for SP 500

1 VaR with probability 0.05
2 VaR with probability 0.01

VaR
1407+1 VaR

1407+2 VaR
1407+3 VaR

1407+4 VaR
1407+5

Mean1 1.3472 1.8703 2.2513 2.555 2.8108
(1.3417,1.3527) (1.8627,1.8778) (2.2416,2.2611) (2.5442, 2.5662) (2.7989,2.8228)

SD1 0.0279 0.0377 0.0491 0.0556 0.0603

Mean2 1.9090 2.7373 3.3527 3.8446 4.2381
(1.8982,1.9189) (2.7223,2.7523) (3.3356,3.3718) (3.8236,3.8657) (4.2086,4.2677)

SD2 0.0545 0.0756 0.0963 0.1061 0.1489
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credibility intervals for VaR are fairly symmetric. From the Table 7, we can see that the 
estimated values of VaR increase over time, which imply that the maximum possible 
loss increases as the future period [d] increases. VaR is related to the market risk, inves-
tors should choose a reasonable trading time to prevent from loss.

The log return of the SP500 index exhibits heavy-tailed distributions and vola-
tility cluster. The GARCH model with mixed normal distribution can capture the 
extreme events of market risk as well as the heavy-tailed distribution of the real 
data well. Meanwhile, the final estimated results illustrate that HMC algorithm per-
forms more accurate and faster than GG sampler. Therefore, we can conclude that 
the HMC algorithm provides a good estimate and forecast for the log return of the 
SP500 index using GARCH model with mixed normal errors.

4 � Conclusion

In this article, we carry out Bayesian inference and prediction for the GARCH-type 
models with mixed normal errors by the HMC algorithm. This new approach can 
be simply constructed to capture the GARCH effect in the heavy-tailed behavior of 
the distributions. Comparing with the GG sampler, the HMC algorithm performs 
higher sampling efficiency and accuracy for the mixture normal GARCH model in 
the simulation experiments as well as the empirical analysis.

Because the step size and the number of steps will affect the performance of the 
HMC algorithm, attention should be paid to design the scheme for adjusting the 
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Fig. 16   The histograms of parameters for SP 500

Table 8   Convergence diagnosis 
by Geweke test for each 
parameter

Parameter �
0

�
1

�
1

� �

s1 0.95 −0.16 0.07 −0.45 0.58
s2 2.42 0.86 −2.12 −0.59 0.17
s3 1.03 1.22 −1.77 −0.95 1.25

Table 9   Statistics summay of 
three simulation series

Series Mean Variance Skewness Kurtosis

s1 −0.0184 0.3556 0.4520 6.2986
s2 0.0161 0.3007 0.2480 7.2510
s3 −0.001 0.3614 −0.698 7.6601
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parameters to obtain best performance in the HMC algorithm. Meanwhile, the exten-
sion of the multiple mixture distribution is a challenging problem, it is not easy to 
identify mixture components. These issues are still worthy of further study and 
explore.

Appendix

See Figures 9, 10, 11, 12, 13, 14, 15 and 16, Tables 8, 9 and 10.  
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