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Abstract
We investigate the performance of VaR (Value at Risk) forecasts, considering dif-
ferent multivariate models: HS (Historical Simulation), DCC-GARCH (Dynamic 
Conditional Correlation-Generalized Autoregressive Conditional Heteroskedastic-
ity) with normal and Student’s t distribution, GO-GARCH (Generalized Orthogo-
nal-Generalized Autoregressive Conditional Heteroskedasticity), and copulas Vine 
(C-Vine, D-Vine, and R-Vine). For copula models, we consider that marginal distri-
bution follow normal, Student’s t and skewed Student’s t distribution. We assessed 
the performance of the models using stocks belonging to the Ibovespa index dur-
ing the period from January 2012 to April 2022. We build portfolios with 6 and 12 
stocks considering two strategies to form the portfolio weights. We use a rolling 
estimation window of 500 and 1000 observations and 1%, 2.5%, and 5% as signifi-
cance levels for the risk estimation. To evaluate the quality of the risk forecasts, we 
compute the realized loss and cost. Our results show that the performance of the 
models is sensitive to the use of different significance levels, rolling windows, and 
strategies to determine portfolio weights. Furthermore, we find that the model that 
presents the best trade-off between the costs from risk overestimation and underesti-
mation does not coincide with the model suggested by the realized loss.
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1 Introduction

The increase in financial collapses and periods of instability have increased atten-
tion to the reappraisal of the models used to forecast risk. A risk overestimation 
generates an opportunity cost, as an unnecessary portion of capital is allocated to 
investment security. On the other hand, risk underestimation can lead to irreversible 
losses, as insufficient capital is destined to fulfill the safety purpose.

Value at Risk (VaR) is the standard measure used to forecast market risk in the 
financial industry. VaR computes the maximum loss that is expected for a given 
period and significance level. For more details regarding on VaR, we suggest Duffie 
and Pan (1997) and Jorion (2000). Although VaR has been historically criticized 
for not being a coherent risk measure1, recently the literature has paid attention to 
its statistical properties. Among these properties, we refer to robustness. According 
to Kou and Peng (2016), a risk measure is robust if it is stable to small deviations 
in the model and theoretical distribution of the data. Robust risk measures, used for 
regulatory purposes, allow reducing the problem of regulatory arbitrage (Kou et al., 
2013).2 Another interesting statistical property that VaR satisfies is the elicitabil-
ity. A risk measure is elicitable when it minimizes the expected value of a score 
function (Ziegel, 2016; Acerbi & Szekely, 2017). This property is interesting in risk 
management because it allows determining, among competing models, the model 
that generates the best forecast.

The most common VaR estimation approach is the non-parametric one, known 
as Historical Simulation (HS). Pérignon and Smith (2010) verify that approximately 
73% of banking institutions that disclose the value of their VaR use this procedure. 
Other frequently applied methods are the parametric, such as the models of the 
GARCH family (Generalized Autoregressive Conditional Heteroskedasticity), and 
the semiparametric, including the Filtered Historical Simulation. However, the VaR 
results are conditioned to the model and specification. Two models or a model with 
two different specifications generate different values and consequently compromise 
decision-making. The uncertainty regarding model choice and specification leads to 
a risk referred to in the literature as model risk. Although there is no unanimous 
definition for this risk, regulatory agencies define it as the uncertainty present in the 
estimation process and the choice of the estimation model (Reserve, 2011).

In order to minimize the impacts of model risk, many studies are carried out 
comparing different VaR forecasting models. Research developed in this regard can 
be found in Kuester et  al. (2006); Marinelli et  al. (2007); Weiß (2013); Telmoudi 

1 A coherent risk measure fulfills Monotonicity, Translation Invariance, Subadditity, and Positive Homo-
geneity (Artzner et al., 1999). VaR does not respect the Subadditity axiom. By this axiom, the risk of a 
combined position (portfolio) is less than the individual sum of the risks of the stocks that make up the 
portfolio. Another criticism of VaR is that it ignores the size and the probabilistic distribution of the 
losses beyond the �-quantile of interest.
2 For two or more institutions that maintain the same portfolio, it is required to maintain the same or 
approximately the same amount of regulatory capital. However, even if institutions employ the same risk 
measure, they will use different models, resulting in different amounts of capital requirement. This prob-
lem can be reduced as long as the risk measures are robust.
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et al. (2016); Patton et al. (2019), and Müller et al. (2022). In most of these studies, 
the main focus has been using empirical data and univariate models. However, in a 
practical sense, the models used for risk management are multivariate. Furthermore, 
studies such as Weiß (2013); Righi and Ceretta (2015), among others, use back-
testing tools to compare different estimation procedures. This procedure performs 
the validation of a given estimation procedure for a risk measure using historical 
data (Ziegel, 2016). For VaR, backtesting is generally used to compare predicted 
losses, that is, VaR forecasts, against actual losses, for a given time horizon. See 
Kupiec (1995) and Christoffersen (1998) for examples of backtesting for VaR. How-
ever, these tests do not allow direct comparison and ranking of the performance of 
competing risk forecasting procedures (Gneiting, 2011; Ziegel, 2016). For elicitable 
measures (including VaR), a suitable procedure for comparing and verifying current 
forecasting models is to use the scoring rule (Gneiting, 2011; Ziegel, 2016; Acerbi 
& Szekely, 2017).

In this sense, this work aims to analyze the performance of multivariate mod-
els to predict VaR. The estimation procedures considered are HS, copulas (C-Vine, 
D-Vine, and R-Vine),3 and multivariate models from the GARCH family, which 
including GO (Generalized Orthogonal)-GARCH e DCC (Dynamic Conditional 
Correlation)-GARCH. We consider these models because they are the main estima-
tion methods considered in risk management studies (Pérignon & Smith, 2010; Mül-
ler & Righi, 2018; Silahli et al., 2019; Nagler et al., 2019). To assess the quality of 
the predictions, we consider descriptive statistics, such as mean and standard devia-
tion, realized loss function (elicitable loss function), and a measure of model risk 
(Müller & Righi, 2020), which allows us to be quantified realized cost. The data set 
used in the study refers to the main stocks belonging to the Bovespa Index (Brazilian 
market index) from January 2012 to April 2022, making 2,559 daily observations 
for each stock. In the analysis, we use two rolling estimation windows and the main 
significance levels considered in the literature.

This research contributes to the literature investigating what model results in 
more reliable risk predictions. Previous studies mainly compare univariate risk pre-
diction models. Besides that, the researchers that evaluate multivariate models focus 
mainly on the bivariate case. An example is the study of Weiß (2013), which inves-
tigates multivariate GARCH models and bivariate copulas to predict VaR and ES 
(Expected Shortfall). Müller and Righi (2018) consider a set of models similar to the 
one used in our study. However, the authors focus on a numerical assessment. The 
limitations of numerical analysis are that simulated returns do not have stylized facts 
so close to real stock returns. Additionally, our study contributes to the studies car-
ried out to identify the model with the lowest model risk to predict VaR. Estimation 
methods with lower model risk are essential for the financial system’s stability. In 
addition to financial losses, this risk can compromise strategic decision-making and 
damage the financial institution’s reputation (Reserve, 2011).

3 We consider Vine copulas because they perform well compared to other types of multivariate copulas 
(Aas et al., 2009).
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Regarding structure, the remainder of this paper divides into the following contents: 
in Sect. 2, we expose the multivariate models, which we use to forecast VaR; in Sect. 3, 
we exhibit the empirical procedures of VaR forecasts assessing; in Sect. 4, we describe 
empirical results; in Sect. 5, we summarize and conclude the paper.

2  Background

This section briefly describes the multivariate models that we consider in VaR forecast-
ing. Consider X as a financial random variable, where X ≥ 0 is a gain and X < 0 is a 
loss. X is defined in a random variable space X(Ω,F,ℙ) . FX represents the cumulative 
distribution function of X and F−1

X
 its inverse (left) function. VaR can be defined by:

where � ∈ (0, 1) corresponds to the significance level. The negative sign of the 
measure is to represent a monetary loss. This measure represents the maximum loss 
for a given period and significance level.

2.1  Multivariate GARCH Models

Consider N series of log-returns, and XT a returns vector ( N × 1 ). We represent Xt by:

where t ∈ T  refers to the period, �t is the conditional mean (for simplicity, for the 
definition, we assume that �t = 0 ), �t is the error process, H

1

2

t,m is a matrix N × N 
positive definite, which is specific for each m model, and zt is a white noise pro-
cess. Besides that, Ht,m = E[XtX

�

T
] is the conditional covariance matrix of Xt , given 

the information passed, which can be computed from multivariate GARCH models. 
The main difference between multivariate GARCH models is the treatment given to 
obtain the conditional covariance matrix. This study focuses on the DCC-GARCH 
and GO-GARCH models. See Francq and Zakoian (2019) for a review regarding 
GARCH models.

2.1.1  DCC‑GARCH

The DCC-GARCH model, presented by Engle (2002) and Tse and Tsui (2002), allows 
jointly modeling of volatility and conditional correlation. Through this model, the con-
ditional covariance matrix is obtained by:

where Ht is the conditional covariance matrix, Dt is the diagonal matrix of condi-
tional standard deviations, which is computed with a univariate GARCH model for 

VaR�(X) = − inf{x ∶ FX(x) ≥ �} = −F−1
X
(�),

Xt = �t + �t

�t = H
1

2

t,mzt

Ht = DtRtDt, Dt = diag{
√
�i,t},



79

1 3

Comparison of Value at Risk (VaR) Multivariate Forecast Models  

each asset i and period t. Moreover, Rt is the correlation matrix containing the con-
ditional correlation coefficients.

In general, Rt can be defined as follows:

where Qt is given by:

where Qt is the conditional covariance matrix of residuals with unconditional covar-
iance matrix Q̄ , which is obtained by means of a univariate GARCH model. a and 
b are non-negative parameters, which satisfy a + b < 1 , and Q∗

t
 is a diagonal matrix 

containing the square root of the diagonal elements of Qt.

2.1.2  GO‑GARCH

The GO-GARCH model, proposed by Van der Weide (2002), belongs to the fam-
ily of factorial GARCH models. This model is an extension of the Orthogonal 
Factor GARCH Model (Alexander & Chibumba, 1997). The main assumption 
of the model is that the process Xt is governed by a linear combination of unob-
served variables (factors) zt , independent and with zero mean. For this model, 
the covariance matrix of Xt is defined by:

where Hz
t
 is the conditional variance matrix, which is obtained through the univari-

ate GARCH model. The positivity of Ht results from the positivity of Hz
t
 , which 

is ensured by the positivity of the GARCH model estimators. W is a non-singular 
matrix and invertible parameter.

Since E[Xt,X
�

T
] = H = WW

�

 , Van der Weide (2002) use a singular value 
decomposition to obtain W , as:

The orthonormal eigenvectors of H form the columns of P , and their respective 
eigenvalues make up of the diagonal matrix � . U is an orthogonal matrix ( N × N ) of 
eigenvectors of H , with determinant equal to 1. The matrices P and � are obtained 
considering the unconditional information of the matrix H , while U depends on the 
conditional information of Ht . For more information regarding approaches that can 
be considered to compute W , we suggest Boswijk and Van Der Weide (2006) and 
Lanne and Saikkonen (2007).

Rt = Q∗−1

t
QtQ

∗−1

t
,

Qt = (1 − a + b)Q̄ + a�t−1�
�

t−1
+ bQt−1,

Ht = WHz
t
W

�

,

W = P�
1

2U.
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2.2  Copulas

Consider X1,X2,⋯ ,XN with cumulative distribution functions F1,F2,⋯ ,FN and 
inverse distribution functions given by F−1

1
,F−1

2
,⋯ ,F−1

N
 . A copula function C is a 

N-dimensional distribution with uniformly distributed marginals [0, 1]N . Using Theo-
rem of Sklar (1959), one can obtain the N-dimensional distribution function F of the 
copula by:

for all x = (x1, x2,⋯ , xN)
�

∈ ℝ
N , C is unique if the corresponding distribution func-

tions are continuous.
Given (1), C is obtained in the following way:

where F−1
i

 is the inverse function of the marginal distribution function of Fi . For a 
formal definition of multivariate copulas, we suggest Nelsen (2007).

2.3  Vine Copula

Copula Vine is a flexible model to describe multivariate copulas, which are con-
structed from a cascade of bivariate copulas. We will work with three variations 
of these copulas, R-Vines (Regular Vines), D-Vines and C-Vines. As presented in 
Kurowicka and Cooke (2006), the density of the R-Vine copula is given by:

where Ei, i = 1, 2,⋯ ,N , are the edges, D(e) are the nodes that the bivariate copulas 
share, and j(e) and k(e) are the nodes that do not share. The nodes j(e) and k(e) are 
called the conditioned nodes and D(e) indicates the conditioning set, and the union 
between the three nodes is called the constraint set. uD(e) is a sub-vector of pseudo-
observations. fk is the density function of each asset i, and c is the bivariate copula 
density, which can be different for each pair-copula.

In the case of D-Vine copula, the density can be represented by (Aas et al., 2009):

where u = (u1, u2,⋯ , uN)
�

∈ [0, 1]N are pseudo-observations, the index j indicates 
the trees, and i connects each edge in each tree. Similarly, the density of the C-Vine 
copula is given by:

(1)F(x1, x2,⋯ , xN) = C(F1(x1),F2(x2),⋯ ,FN(xN)),

C(u1, u2,⋯ , uN) = F(F−1
1
(u1),F

−1
2
(u2),⋯ ,F−1

N
(uN)) (u1, u2,⋯ , uN) ∈ [0, 1]N ,

f (u1, u2,⋯ , uN) =

N∏

k=1

fk(uk)

N−1∏

i=1

∏

e∈Ei

cj(e),k(e)|D(e)

{
F(uj(e)|uD(e)),
F(uk(e)|uD(e)).

}
,

f (u1, u2,⋯ , uN) =

N∏

k=1

fk(uk)

N−1∏

j=1

N−j∏

i=1

ci,i+j|i+1,⋯,i+j−1

{
F(ui|ui+1,⋯ , ui+j−1),

F(ui+j|ui+1,⋯ , ui+j−1).

}
,

f (u1, u2,⋯ , uN) =

N∏

k=1

fk(uk)

N−1∏

j=1

N−j∏

i=1

ci,i+j|i+1,⋯,i+j−1

{
F(uj|u1,⋯ , uj−1),

F(uj+i|u1,⋯ , uj−1).

}
.
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The difference between the densities of the D-Vine and C-Vine copulas is that in the 
former, no node in any tree is connected at more than two ends, and in the case of 
C-Vine copulas, each tree has a unique node, which is connected with N − j ends. 
The marginal distribution for cascade-like constructions, such as Vine copulas, can 
be obtained by (Joe, 1996; Czado et al., 2013):

where i, j ∈ ℕ , i ≠ j , Cui, uj|u−j is the dependency structure of ui and uj.
We refer the reader to Joe (2014) for a review on vine copulas and related topics.

3  Methodological Procedures

In this section, we describe the methodological procedures used in our empiri-
cal analysis. As a dataset to build the portfolios, we used stocks belonging to the 
Ibovespa index during the period from January 2, 2012 to April 28, 2022, making 
a total of 2559 observations for each stock.4 The period from 2012 to April 2022 
allows us to analyze periods of calm in the Brazilian market and turbulence, includ-
ing, for example, the crisis triggered by the COVID-19 outbreak. Besides that, our 
sample includes the period of the Russian invasion of Ukraine. We consider the Bra-
zilian market because it is an emerging market and the largest stock exchange in 
Latin America. Besides that, we selected this market because of data availability. 
Countries in emerging financial markets differ substantially from those in developed 
markets. In periods of financial instability, emerging markets are more affected than 
developed economies. Gencay and Selcuk (2004) comment that a significant part of 
total savings in developed economies is invested in emerging markets, either for the 
hedge or mutual funds. Thus, the implications of modeling emerging countries’ risk 
investments are not limited to investors residing in the country. We compute the log-
returns for each stock in our sample using the adjusted price series. According to the 
KPSS test (Kwiatkowski et al., 1992), the log-returns are stationary. For the sake of 
brevity, these results are omitted but are available on request.

To build the portfolios, we use two strategies: equally weighted portfolio (naive 
diversification) and minimum risk portfolio.5 To limit transaction and information 
costs, we limit the number of stocks in the portfolio with a cardinality constraint. In 
general, we use the simplest model for the minimum risk portfolio with cardinality 

F(ui|u) =
�Cui, uj|u−j{F(ui|u−j),F(uj|u−j)}

�F(uj|u−j)
,

4 Our dataset contains 63 stocks. We verified the composition of the Ibovespa index in April 2022 and 
maintained this composition throughout our sample. In total, the index presents 91 stocks in April 2022. 
Due to the lack of data availability for the entire period, some stocks were excluded from the sample. For 
this reason, our sample is made up of only 63 stocks. The database is available in the package Quandl 
(Dotson et al., 2021) from Comprehensive R Archive Network.
5 The equally weighted portfolio was considered in the study because it is common in studies that com-
pare models to predict risk measures; see Müller and Righi (2018). Moreover, DeMiguel et al. (2009) 
point out that the performance out-of-sample of the naive portfolio is competitive concerning optimal 
portfolios. The stocks considered in the equally weighted portfolio were those selected by the optimiza-
tion problem defined in 2.
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constraint since we want to check the impact of the weights on the performance of 
the risk prediction models.6 This model is given by:

where Xi ∈ X, i = 1,⋯ ,N , being N the number of stocks, is a vector of returns 
(stocks) that might compose the portfolio, wi refers to the weight of the i− th stock, zi 
is a binary decision variable that receives value 1 if the i-th stock is included and 0 
(zero) otherwise, and K sets the maximum number of stocks to be allowed.7 Our 
problem does not allow short selling 

(
wi ≥ 0, ∀ i = 1,⋯ ,N

)
 and requires all capital 

will be allocated 
�∑N

i=1
wi = 1

�
 . These restrictions are common in portfolio optimi-

zation problems. See, for example, Righi and Borenstein (2018). The weights 
obtained by the formulation (2) were not rebalanced. �(⋅) refers to the Expected 
Shortfall. We use this measure in the portfolio optimization problem because it is a 
subadditive/convex measure. For details see Artzner et al. (1999). Thus, the risk of 
the combined position is less than or equal to the sum of the individual risks of the 
stocks. ES is quantified using Historical Simulation. We selected the HS method 
because our focus is not on selecting the most appropriate model for portfolio opti-
mization. Furthermore, this method is widely used in academic studies and the 
financial industry (Pérignon & Smith, 2010). We did not determine the portfolio 
weights using VaR because this does not respect the subadditivity axiom.

The estimation methods used to predict VaR are the traditional HS, Vine copulas, 
and multivariate GARCH models, being the last two groups of models explained in 

(2)

min
W∈RN , z∈{0,1}N

�

(
N∑

i=1

wiXi

)

st

N∑

i=1

wi = 1

wi ≥ 0, ∀ i = 1,⋯ ,N,

wi ≤ zi, ∀ i = 1,⋯ ,N,

N∑

i=1

zi ≤ K,

6 We emphasize that the construction of portfolios is not the focus of this study but the comparison of 
multivariate models to predict VaR. For this reason, we prefer to use a simple model, such as the one per-
formed by Righi and Borenstein (2018).
7 To compute this portfolio we use the fPortfolio package (Wuertz et al., 2020). In this study, we con-
sidered K equal to 6 and 12 stocks. Larger portfolios were not used due to computational difficulty. For 
both portfolios, we used two sample sizes (500 and 1000 observations) to estimate the weights. For 1000 
observations, the weights were obtained considering data from January 2, 2012, to January 20, 2016. 
For 500 observations, the weights were obtained considering data from January 13, 2014, to January 20, 
2016. Thus, considering the risk minimization problem, we have 4 distinct portfolios: 6 stocks consider-
ing 500 and 1000 observations for estimating the weights and 12 stocks considering 500 and 1000 obser-
vations for estimating the weights.
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Sect. 2. For the copula method and multivariate GARCH models, at first, we model 
the mean ( �i,t ) and conditional standard deviation ( �i,t ) of each univariate series, that 
is, of each stock i. The Ljung-Box test (Ljung & Box, 1978) indicated the presence 
of significant autocorrelation in the stocks log-returns. Thus, we fit the conditional 
mean with an autoregressive (AR) model of order 1 with a constant. According to 
Garcia-Jorcano and Novales (2021), the AR(1) model is sufficient to produce seri-
ally uncorrelated innovations. We also applied the Ljung-Box test to the squared 
standardized residuals. Test values indicate a significant presence of conditional 
heteroskedasticity.8 To model the conditional standard deviation, we consider the 
GARCH model. We use the AR-GARCH because the risk forecasting literature 
shows that the model presents good results in forecasting risk measures for univar-
iate series. See, for instance, Hartz et  al. (2006) and Garcia-Jorcano and Novales 
(2021). Furthermore, it is a common model to obtain the uniform marginal distri-
butions, which are necessary for estimating the copulas and multivariate GARCH 
models (Müller & Righi, 2018).

The AR(p)-GARCH(q, s) model is represented by:

where Xi,t for time t and stock i is the return. �l , for l = 1,⋯ , p , being p the autore-
gressive order, are parameters of the autoregressive model, �i,t is the error term, zi,t 
is a white noise process with distribution F(zi,t;�) , where � is a vector of parameters 
of distribution, including zero mean, unit variance and some additional parameter 
that varies with the distribution. �i,t and �2

i,t
 are the mean and conditional variance 

given past information of each stock i, and aj , for j = 1,⋯ , q , as well as bk , for 
k = 1,⋯ , s , are parameters of the GARCH model ( a0 > 0 , aj ≥ 0 , bk ≥ 0 ), and q 
and s are its order. For F, we assume the normal (norm), Student’s t (std) and skewed 
Student’s t (sstd) distribution. We use the normal distribution as it is the most com-
mon and is often used in stock market analyses (Müller & Righi, 2018). The first 
two moments describe this distribution: mean ( � ) and variance ( �2 ). We also con-
sider the Student’s t distribution because it considers the heavy-tailed behavior of 
financial stocks. This distribution is described completely by the shape parameter 
( � ). In addition to the heavy tails, the skewed Student’s t distribution allows mod-
eling the asymmetry in financial stocks. This distribution is described by the shape 
( � ) and skewness ( � ) parameter. For more details, see Fernández and Steel (1998). 
To see the probability density function of three distributions, we suggest Ghalanos 
(2020). To choose the lags of the AR-GARCH model, we compare the Akaike Infor-
mation Criteria (AIC) values. Our results suggest that the most suitable model to 

(3)

Xi,t = �0 +

p∑

l=1

�lXi,t−l + �i,t = �i,t + �i,t,

�i,t = �i,tzi,t, zi,t ∼ i.i.d.F(zi,t;�),

�
2

i,t
= a0 +

q∑

j=1

aj�
2

i,t−j
+

s∑

k=1

bk�
2

i,t−k
,

8 Ljung-Box test values are omitted for brevity but are available on request.
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adjust the log-returns is the AR(1)-GARCH(1,1). We obtain the standardized residu-
als after forecasting the mean and standard deviation values based on the adjusted 
AR(1)-GARCH(1,1) model, considering normal, Student’s t and skewed Student’s 
t distribution for zi,t . Then, we transform them into pseudo-observations u ∈ [0, 1] 
by inverting the fitted distribution of each series. This procedure is necessary to pre-
dict risk measures using copulas. Given the marginal distribution and the estimated 
parameters, we use the following algorithm to predict VaR with copulas (Aas and & 
Berg, 2010; Righi & Ceretta, 2013): 

 (i) For each stock, we forecast the mean �i,t+1 and the conditional standard devia-
tion �i,t+1 using the AR(1)-GARCH(1,1) model.

 (ii) We simulate N samples ui,T with size T, being that each i represents a stock of 
our sample, using Vine copulas.

 (iii) Given ui,T , we generated N zi,T through the inversion of marginal probability, 
as zi,T = F−1(ui,T ).

 (iv) For each stock i, we obtain the returns by ri,T = �i,t+1 + �i,t+1zi,T.
 (v) Based ri,T  of each i, we calculate the portfolio returns WrT  , where 

W =
{
w1,w2,⋯ ,wN

}
 is a vector with the weights and rT =

{
r1,T , r2,T ,⋯ , rN,T

}
 

are the log-returns of stocks.
 (vi) Then, we quantified the VaR forecast for t + 1 (VaR�

t+1
 ) of portfolio returns 

using the Historical Simulation, i.e., the empirical data distribution.

The Vine copulas are constructed from a cascade of bivariate copulas. See Sect. 2.3. 
In this study, we choice of bivariate copulas utilizing AIC. The bivariate copulas con-
sidered were: Gaussian, Student’s t, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, 
BB8, as well as the rotated copulas Clayton (180 degrees), Gumbel (180 degrees), 
Joe (180 degrees), BB1 (180 degrees), BB6 (180 degrees), BB7 (180 degrees), 
BB8 (180 degrees), Clayton (90 degrees), Gumbel (90 degrees), Joe (90 degrees), 
BB1 (90 degrees), BB6 (90 degrees), BB7 (90 degrees), BB8 (90 degrees), Clayton 
(270 degrees), Gumbel (270 degrees), Joe (270 degrees), BB1 (270 degrees), BB6 
(270 degrees), BB7 (270 degrees) and BB8 (270 degrees). We consider portfolios 
formed with 6 and 12 stocks, i.e., K = 6 and 12; for T, we use the same value of the 
rolling estimation window, which was 500 and 1000 observations. Thus, we have 
a total of 1,559 out-of-sample observations, that is, predictions. The out-of-sample 
period coincides with both rolling estimation windows. For the rolling estimation 
window of 1000 observations, our first out-of-sample prediction was obtained con-
sidering data from January 2, 2012, to January 20, 2016. For the rolling estima-
tion window of 500 observations, our first out-of-sample prediction was obtained 
considering data from January 13, 2014, to January 20, 2016. We exclude the first 
500 observations for this rolling window so that the out-of-sample period matches. 
Thus, we can compare the performance of the models for both rolling estimation 
windows. Furthermore, the period used for the first out-of-sample risk forecast was 
the one used to obtain the weights of the different portfolios. As significance levels, 
we use 1%, 2.5% and 5% because they are the most common values in the literature, 
and regulatory agencies recommend 1% for VaR estimation (Basel Committee on 
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Banking Supervision, 2013; Righi & Ceretta, 2015). For W, we use the vector of 
weights given by formulation (2). We also consider the equally weighted weights for 
the stocks selected in the optimization problem, i.e., 1

N
 . In the case of multivariate 

GARCH models, the difference is that zi,T is obtained by employing these models 
instead of the copula method. For the GO-GARCH model, we performed the esti-
mation of the W matrix through independent component analysis (ICA). Regarding 
the HS approach, the returns ri,T of each stock i is the empirical data distribution.

To describe the risk forecasts, we quantified the mean and standard deviation. 
The quality of the forecasts was assessed using the VaR score function, which is 
given by (Gneiting, 2011):

where xt+1 ∈ X are the observations for the out-of-sample period and yt+1 ∈ Y  are 
the risk forecasts for this period. According to this criterion, the model with the low-
est value is the most accurate in predicting VaR. The results of this function are 
called realized loss.

Besides that, we quantified realized cost, which is obtained in the following way:

where xt+1 ∈ X and yt+1 ∈ Y  . Besides, gt+1 ∈ G represents costs from risk overes-
timation and lt+1 ∈ L costs from risk underestimation. G and L are positive random 
variables. The formulation (4) is based on the robust risk measurement approach 
proposed by Righi et  al. (2020) and model risk measure discussed in Müller and 
Righi (2020). The realized cost identifies the model with the best trade-off between 
the sum of the costs from risk overestimation and underestimation. We use over-
estimation and underestimation cost Selic interest rate (Selic) and average interest 
rates for credit operations in Brazil (C.rate), respectively.9 These rates represent, 
respectively, a risk-free investment with high liquidity where the surplus over capital 
requirement could be safely applied and an average interest rate of resources can be 
obtained when the capital requirement is not enough to cover losses. We convert 
both yield rates to daily frequency. Details of both series are available under request. 
The results for the out-of-sample period are presented considering a complete out-
of-sample sample (Full sample). The out-of-sample period comprises from January 
21, 2016, to April 28, 2022. Furthermore, we divided the out-of-sample period into 
two intervals to analyze the results: 2016 to 2019 and 2020 to April 2022. From 
2016 to 2019, we have an interval that is free from the influence of the COVID-19 
outbreak. This period also includes a relatively stable period in the Brazilian market. 
From 2020 to April 2022 reflects the influence of the COVID-19 pandemic from the 

LVaR(X, Y) ∶=
1

n

n∑

i=1

[
�

(
xt+1 − yt+1

)+
+ (1 − �)

(
xi − yi

)−]
,

(4)

Cost(X, Y) ∶= CostG,L(X, Y) =
1

T

T∑

t=1

[(
xt+1 − yt+1

)+
gt+1 + (xt+1 − yt+1)

−lt+1

]

9 Both rates were collected in the Central Bank of Brazil’s Time Series Management System, which 
can be found at the following link: https:// www3. bcb. gov. br/ sgspub/ local izars eries/ local izarS eries. do? 
method= prepa rarTe laLoc aliza rSeri es.

https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries
https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries
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beginning of the pandemic until the end of the sample. In this way, we can verify 
whether the performance of risk prediction models has changed during the COVID-
19 outbreak.

4  Results

This section presents and discusses the results obtained. First, we describe the 
descriptive analysis of the stock data and portfolio returns considering the sample 
period. We omitted these descriptive results for out-of-sample period intervals for 
brevity, but the results are available under request. We then analyzed the perfor-
mance of the competing forecasting models using realized loss and cost. In Table 1, 
we describe the descriptive statistics, which include mean, minimum, maximum, 
standard deviation, skewness, and excess kurtosis (E. kurtosis), of stocks that belong 
to the Brazilian market index and are considered in our investigation. In general, it 
can be seen that the average of the stocks is close to zero. We note that around 70% 
of the stocks show negative asymmetry, which indicates a fatter tail on the left side 
of the distribution. In contrast, the positive skewness of other stocks represents a 
long tail on the right side. We note that the average asymmetry of the stocks that 
make up the sample is negative. Excess kurtosis values greater than zero indicate 
that the data distribution is leptokurtic, that is, the stock returns distribution has 
heavy tails. The stock’s average excess kurtosis during the sample period is 10.4129. 
However, we found that BRAP410 and SULA1111 have the highest excess kurtosis 
values (72.8797 and 33.5521, respectively). PRIO312 is the stock with the highest 
standard deviation (4.8952), possibly indicating that this stock is the riskiest among 
those considered. This stock is a common stock, which is usually riskier com-
pared to preferred stocks. The characteristics observed by stocks are stylized facts 
observed in financial returns (Cont, 2001).

In Table 2, we describe the mean and standard deviation values of portfolios 
of minimum risk and equally weighted with 6 and 12 stocks,13 considering 500 
and 1000 observations for weights estimation. Portfolio returns, as well as stock 
returns, have an average close to zero. The portfolios built with 12 stocks are less 
volatile than portfolios with 6 stocks, i.e., they have a lower standard deviation. 
This result indicates that portfolios with 12 stocks are less risky than those with 
6. Portfolios with more stocks, that is, more diversified, tend to reduce investment 
risk. For the portfolios with 6 stocks, we verify that the minimum risk portfolio 
has a higher standard deviation, indicating that they tend to be more volatile than 

10 BRAP4 refers to an Bradespar SA Preference Shares common stock. Bradespar is an investment com-
pany controlled by Bradesco Bank.
11 SULA11 is referring to common stock of Sul Amárica, which is a company that operates in the health 
and dental insurance sector.
12 PRIO3 is a common stock of PetroRio. This company is a publicly-traded company focused on oil and 
gas production.
13 We present the mean and standard deviation of portfolio returns for brevity. Other descriptive statis-
tics of the portfolios are available on request.
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Table 1  Descriptive statistics of the log-returns of the sixty-three (63) stocks belonging to the Ibovespa 
index

Stocks Mean Minimum Maximum SD Skewness E. Kurtosis

ABEV3 0.0258 −17.1759 10.6991 1.6984 −0.2857 8.8885
ALPA4 0.0492 −23.3993 25.4025 2.4153 −0.0578 13.3310
AMER3 0.0414 −18.5997 34.7927 3.8403 0.6564 5.1329
BBAS3 0.0381 −23.7891 15.8081 2.7099 −0.4287 8.2798
BBDC3 0.0352 −15.4898 15.1240 2.1641 −0.0560 5.1941
BBDC4 0.0366 −15.4019 15.5865 2.2061 −0.0805 5.7417
BEEF3 0.0453 −20.5485 16.7054 2.4403 −0.1634 6.3744
BPAN4 0.0211 −41.0084 38.0464 3.3337 0.3994 20.3695
BRAP4 0.0287 −61.7822 16.7644 2.9897 −3.4495 72.8797
BRFS3 −0.0342 −21.9987 15.0814 2.3405 −0.4928 11.5499
BRKM5 0.0660 − −28.0681 27.5769 2.9988 0.0886 16.5872
BRML3 −0.0049 −27.2886 14.2900 2.4863 −0.5486 9.1939
CCRO3 0.0165 −19.7610 20.0134 2.4182 −0.1013 9.1036
CIEL3 −0.0246 −23.7959 21.0721 2.5930 0.3946 9.3436
CMIG4 0.0232 −26.4318 16.3848 2.7708 −1.1068 11.8986
CPFE3 0.0330 −18.5968 8.4257 1.8123 −0.6836 9.2368
CPLE6 0.0526 −16.8471 15.7509 2.3689 −0.3581 5.0373
CSAN3 0.0607 −20.3794 13.3300 2.2175 −0.3339 5.4177
CSNA3 0.0339 −29.1590 18.9137 3.6820 0.0409 4.4788
CYRE3 0.0125 −28.3029 16.5985 2.7366 −0.7864 10.9875
DXCO3 0.0376 −28.0260 17.1492 2.5833 −0.9101 13.2340
ECOR3 −0.0100 −20.5378 19.6280 2.5964 −0.2072 6.8493
EGIE3 0.0472 −10.1242 9.4605 1.5465 −0.0491 3.1296
ELET3 0.0572 −23.5340 40.0759 3.4369 0.6556 12.1566
ELET6 0.0457 −22.4163 27.8243 3.0791 0.1486 8.7808
EMBR3 0.0101 −30.7091 20.2929 2.6750 −0.3938 14.0867
ENBR3 0.0409 −13.6602 14.4581 1.9341 −0.0279 4.4860
ENEV3 −0.1001 −44.1833 28.7682 3.6737 −1.0344 21.5019
EQTL3 0.0974 −11.4750 8.0581 1.7199 −0.2179 3.7226
EZTC3 0.0290 −21.4783 22.6030 2.6186 −0.1631 7.6248
FLRY3 0.0278 −16.5515 10.5318 1.9840 −0.3523 5.5190
GGBR4 0.0364 −19.7922 16.0867 2.8380 −0.1093 3.7065
GOAU4 −0.0037 −23.9185 18.7627 3.1081 −0.3718 5.7305
GOLL4 0.0072 −45.0890 40.7641 4.4539 0.1369 13.3129
HYPE3 0.0645 −16.4988 19.1800 2.0304 0.1901 9.4921
ITSA4 0.0384 −11.5022 9.7758 1.9344 −0.1239 2.7936
ITUB4 0.0334 −19.8015 11.1275 2.0579 −0.3235 5.9729
JBSS3 0.0834 −37.6051 21.9915 3.0345 −0.3624 14.3154
JHSF3 0.0176 −19.8070 25.4234 3.1146 0.3873 5.0387
LREN3 0.0485 −23.7244 13.9762 2.2988 −0.3972 8.8997
MGLU3 0.1143 −23.6698 31.6925 3.7588 0.5310 8.4714
MRFG3 0.0381 −27.2989 22.4777 2.9648 −0.2807 8.5806
MRVE3 0.0206 −22.5046 19.1808 2.8122 −0.3303 6.2884
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Table 1  (continued)

Stocks Mean Minimum Maximum SD Skewness E. Kurtosis

MULT3 0.0325 −25.3473 15.9602 2.1983 −0.4430 12.2198
PETR3 0.0305 −35.2054 20.5024 3.1270 −0.8480 12.0073
PETR4 0.0317 −35.2367 20.0671 3.1163 −0.9180 11.7969
POSI3 0.0165 −42.4211 31.3483 3.6357 0.0555 13.7895
PRIO3 0.0326 −45.4770 60.7989 4.8952 0.5106 19.2333
QUAL3 0.0075 −34.7700 31.2153 2.7210 −0.7889 20.7942
RADL3 0.0848 −13.7365 8.8455 1.9539 −0.0872 2.1917
RENT3 0.0867 −26.6857 23.7608 2.5196 −0.1284 12.0071
SANB11 0.0541 −14.4726 14.6496 2.2565 0.0518 4.3794
SBSP3 0.0501 −19.6380 16.0930 2.3733 −0.2470 5.7825
SLCE3 0.0989 −10.4702 14.2797 2.2785 0.3172 2.0585
SULA11 0.0515 −19.2765 39.4467 2.3823 1.5193 33.5521
TIMS3 0.0234 −15.9900 14.2587 2.1295 −0.0416 4.2140
TOTS3 0.0482 −16.6569 18.0650 2.2711 −0.2115 5.8467
UGPA3 −0.0020 −24.0265 21.0112 2.3183 −0.5707 16.1585
USIM5 0.0096 −23.8675 30.0892 3.6949 0.3484 5.2156
VALE3 0.0500 −28.1822 19.3574 2.7521 −0.2735 7.9994
VIVT3 0.0338 −13.1920 11.6196 1.8311 0.0440 4.9830
WEGE3 0.1013 −23.0921 13.0102 2.0307 −0.4848 11.1561
YDUQ3 0.0509 −29.0010 21.2984 3.0514 −0.1852 7.9072
Average 0.0339 −24.1571 20.4973 2.6668 −0.2117 10.4129

The sample comprises daily data from January 2012 to April 2022. The log-returns are multiplied by 100
Note This table shows the mean, minimum, maximum, SD (standard deviation), skewness, and E. kurto-
sis (excess kurtosis) of log-returns. ABEV3 refers to Ambev, ALPA4 is Alpargatas, AMER3 is Ameri-
canas, ASAI3 is Sendas Distribuidora, AZUL4 is Azul, BBAS3 is Bank of Brazil, BBDC3 and BBDC4 
are stocks from Bradesco, BBSE3 Bank of Brazil Seguridade Participaçães, BEEF3 refers to Minerva, 
BIDI11 is Inter Bank, BPAC11 is BTG Pactual Bank, BPAN4 is Pan Bank, BRAP4 is Bradespar, BRFS3 
is Brazil Foods, BRKM5 is Braskem, BRML3 is BR Malls Participaçães, CASH3 is Máliuz, CCRO3 
refers to Companhia de Concessões Rodoviárias, CIEL3 is Cielo, CMIG4 is Companhia Energática 
de Minas Gerais, CMIN3 is CSN Mineração, COGN3 is Cogna Educação, CPFE3 is CPFL Ener-
gia, CPLE6 is Companhia Paranaense de Energia, CRFB3 is Atacadão, CSAN3 is Cosan, CSNA3 is 
Companhia Siderúrgica Nacional, CVCB3 is CVC Brazil Operadora e Agência de Viagens, CYRE3 is 
Cyrela Brazil Realty, DXCO3 is Dexco, ECOR3 is EcoRodovias Infraestrutura e Logística, EGIE3 is 
Engie Brazil Energy, ELET3 and ELET6 are stocks from Eletrobras, EMBR3 is Embraer, ENBR3 is 
Energias do Brasil, ENEV3 is Eneva, ENGI11 is Energisa, EQTL3 is Equatorial Energia, EZTC3 is 
Eztec Empreendimentos e Participaçães, FLRY3 is Fleury, GGBR4 is Gerdau, GOAU4 refers to Gerdau, 
GOLL4 is Gol, HAPV3 is Hapvida Participaçães e Investimentos, HYPE3 is Hypera Farma, IGTI11 is 
Iguatemi, IRBR3 is Brazil Resseguros, ITSA4 is Itaúsa, ITUB4 is Itaú, JBSS3 is JBS, JHSF3 is JHSF, 
KLBN11 is Klabin, LCAM3 is Companhia de Locação das Amáricas, LREN3 is Renner, LWSA3 is 
Locaweb, MGLU3 is Magazine Luiza, MRFG3 is Marfrig Global Foods, MRVE3 is MRV Engenharia 
e Participaçães, MULT3 is Multiplan Empreendimentos Imobiliários, NTCO3 is Natura & Co Holding, 
PCAR3 is Companhia Brasileira de Distribuição, PETR3 and PETR4 are stocks from Petrobras, PETZ3 
is Pet Center Comárcio e Participaçães, POSI3 is Positivo, PRIO3 is Petro Rio, QUAL3 is Qualicorp, 
RADL3 is Raia Drogasil, RAIL3 is Rumo, RDOR3 is Rede D’Or São Luiz, RENT3 is Localiza, RRRP3 
is 3R Petroleum Óleo E Gás, SANB11 is Santander Bank, SBSP3 is Companhia de Saneamento Básico 
do Estado de São Paulo, SLCE3 is SLC Agrícola, SOMA3 is Moda Soma, SULA11 is Sul Amárica, 
SUZB3 is Suzano, TAEE11 is Transmissora Aliança de Energia Elátrica, TIMS3 is TIM, TOTS3 is 
TOTVS, UGPA3 is Ultrapar, USIM5 is Usinas Siderúrgicas de Minas Gerais, VALE3 is Vale, VBBR3 
is Vibra Energia, VIIA3 is Via, VIVT3 is Telefônica Brasil, WEGE3 is WEG, and YDUQ3 is Yduqs
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equally weighted portfolios. We also point out that the composition of the port-
folios changes when we consider different numbers of stocks and observations to 
estimate the weights, which justifies the differences in the descriptive statistics 
of the portfolios. For visual analysis of the differences among portfolio returns, 
we present in Fig.  1 a graphic evolution of the different portfolios. We present 
portfolio returns for the full period (January 2012 to April 2022). Note that for 
the risk estimation considering 500 observations, we do not consider the first 500 
observations. We did that with the intent that the out-of-sample period coincides 
with portfolios where we use 500 and 1000 observations for risk prediction. This 
way, we can compare the results obtained for both rolling estimation windows. 
The illustration confirms the greater variability and possibly greater risk of the 
portfolio with 6 stocks compared to the 12 stocks. For all portfolios, we have 
noticed an increase in volatility around March 2020. The COVID-19 outbreak 
can explain the increase in variability. Ashraf (2020) and Vasileiou et al. (2021) 
point out that the decline in returns in financial markets occurred primarily when 

Table 2  Descriptive statistics 
[Mean and standard deviation 
(SD)] of portfolios with 6 and 
12 stocks

For both portfolios, the weights were determined using 500 and 
1000 observations to estimate the weights. The sample comprises 
daily data from January 2012 to April 2022. The portfolio returns 
are multiplied by 100
Note BPAN4, ENEV3, GOAU4, GOLL4, JHSF3, and USIM5 are 
the stocks in the portfolio with 6 stocks and 500 observations for 
weight estimation, with their respective weights equal to 0.4108, 
0.0551, 0.0012, 0.1974, 0.1249, and 0.2106. BRAP4, ENEV3, 
GOAU4, GOLL4, MGLU3, and PRIO3 are the stocks in the portfo-
lio with 6 stocks and 1000 observations for weight estimation, with 
their respective weights equal to 0.4066, 0.0948, 0.0030, 0.3709, 
0.0086, and 0.1161. BPAN4, ECOR3, ENEV3, GOAU4, GOLL4, 
JHSF3, MGLU3, PRIO3, POSI3, TIMS3, USIM5, and YDUQ3 are 
the stocks in the portfolio with 12 stocks and 500 observations for 
weight estimation, with their respective weights equal to 0.0757, 
0.0954, 0.0507, 0.1686, 0.0382, 0.0026, 0.0048, 0.0503,0.1979, 
0.1839, 0.0007, and 0.1313. BPAN4, BRAP4, ECOR3, ENEV3, 
FLRY3, GOAU4, GOLL4, JHSF3, MGLU3, PRIO3, POSI3, and 
VIVT3 are the stocks in the portfolio with 12 stocks and 1000 obser-
vations for weight estimation, with their respective weights equal 
to 0.1485, 0.0573, 0.1777, 0.0001, 0.2332, 0.1390, 0.0018, 0.0192, 
0.0023, 0.0011, 0.1341, and 0.0859

Minimum risk Equally weighted

Mean SD Mean SD

Portfolio 6–500 observations 0.0088 2.5210 −0.0080 2.3118
Portfolio 6–1000 observations 0.0096 2.6486 0.0132 2.3370
Portfolio 12–500 observations 0.0117 1.9041 0.0150 2.0020
Portfolio 12–1000 observations 0.0147 1.7089 0.0155 1.8564
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Comparison of Value at Risk (VaR) Multivariate Forecast Models  
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the increase in confirmed COVID-19 cases occurred, an event that also coincided 
with the period when the World Health Organization (WHO) officially declared 
the COVID-19 outbreak as a global pandemic. Furthermore, we observe the simi-
larity of returns obtained through the two portfolio construction strategies: mini-
mum risk and equally weighted.

In Tables 3, 4, 5, 6we describe the mean, standard deviation (SD), realized loss 
( LVaR ), and realized cost (Cost) for portfolio risk forecasts with 6 and 12 stocks, 
respectively, considering � = 1% and 5%. The results obtained for � = 2.5% are 
described in the Appendix. We note, as expected, that the mean value and standard 
deviation of risk forecasts are higher in portfolios formed with 6 stocks. In a portfo-
lio with 12 stocks, there is a greater reduction in diversifiable (non-systemic) risks 
than in a portfolio with 6 stocks. We also verified that the significance level equal 
to 1% presents higher risk estimates when compared to � = 5% . Furthermore, the 
values of the risk forecasts for the significance level equal to 2.5% are between the 
forecasts obtained for � 1% and 5%. This result is expected because more extreme 
levels are associated with higher losses, implying higher risk forecasts.

For the same significance level, we found that, in general, for a smaller rolling estima-
tion window (500), risk predictions tend to be higher. This result does not hold when we 
evaluate portfolios with 6 stocks and weights obtained from risk minimization. Some 
studies, such as Kuester et al. (2006); Alexander and Sheedy (2008), and Righi and Cer-
etta (2015) argue that larger estimation windows tend to improve the accuracy of risk 
predictions. Smaller sample sizes are usually associated with estimation problems, such 
as the bias of the estimators of the parameters of the models used to predict risk. To 
compare the impact of different estimation windows for risk prediction, we recommend 
Righi and Ceretta (2016). Moreover, we notice that the risk statistics of the minimum 
risk and equally weighted portfolios differ, which is in line with the descriptive statis-
tics of the portfolio returns. The equally weighted portfolio tends to be less risky when 
evaluating out-of-sample forecasts for the same rolling window and significance level. 
However, it should be noted that our intention here is not to compare the results of the 
portfolios built using both strategies to determine the weights but to evaluate the impact 
of different weights in selecting the most accurate model to predict risk.

Furthermore, we noticed that the average risk forecasts for the sub-sample from 
2020 to April 2022 tend to be higher than the period from 2016 to 2019. This result 
was expected because the sample from 2020 to April 2022 includes the period of 
the COVID-19 outbreak. For this period, we also observed an increase in the stand-
ard deviation of the risk forecasts. The higher standard deviation in the forecasts for 
2020–2022 can be explained by the period of heavy losses around March 2020 and 
the market recovery after the shock, as can be seen in Fig. 1. Literature exposes some 
reasons for market recovery, including the low-interest rates and expansive actions 
taken by central banks (Cantú et al., 2021). Khalfaoui et al. (2021) and Rouatbi et al. 
(2021) identify that vaccination was also responsible for stabilizing stock markets. 
The implementation and acceleration of the vaccination program increased market 
confidence, spurring the stock market recovery (Khalfaoui et al., 2021).

We notice that in general, Vine models have the best result, with the main empha-
sis on the case in which the marginal distribution is skewed Student′ s t. For example, 
considering the portfolio with 6 stocks and weights obtained from risk minimization 
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with a sample of 500 observations, we observe R-Vinesstd as the model with the lower 
realized loss for the full sample and the sub-sample 2016-2019, when we use VaR1% 
and VaR2.5% . Vine copulas describe the multivariate relationship between stocks con-
sidering a cascade of pair-copulas and the marginal densities (Kurowicka & Cooke, 
2006). The variety of bivariate copulas that can be considered allows us to construct 
a rich multivariate distribution class, which models complex and asymmetric depend-
ency structures (Geidosch & Fischer, 2016). Each of the Vine copulas considered 
provides a way of arranging the pair-copulas in a tree structure (hierarchical), facili-
tating the analysis of multiple dependencies. Good performance of Vine copulas to 
forecast risk measures was also observed in the Monte Carlo simulation performed 
by Müller and Righi (2020), and empirical analyses of Righi and Ceretta (2015), and 
Trucíos et  al. (2020). The superiority of copula models over GARCH approaches, 
such as GO-GARCH, can be explained by the greater flexibility of the copulas to 
model the dependence between variables (Kole et al., 2007). Also, it is observed that 
the results of the realized loss for the Vine copulas tend to be similar for the same 
marginal distribution. Regarding the marginal distribution, the skewed Student′ s 
t tends to do better results because it considers two important stylized facts in the 
returns: asymmetry and excess kurtosis.

Although we perceive the superiority of copulas, we observed that the performance 
of the models tends to change as we consider different significance levels, rolling estima-
tion windows, and analysis periods (full sample, 2006-2019, 2020-2022). Regarding dif-
ferent significance levels, we have that lower significance levels are associated with more 
extreme observations. For this reason, different models may more accurately accommo-
date the data characteristics for each level. The different performance results for both 
rolling estimation windows can be explained because the smaller sample size in general, 
they are affected by the bias of the estimators of the model parameters employed for risk 
forecasting. A similar result is found by Wong et al. (2012). Furthermore, when consider-
ing a rolling window of 1000 observations, we have more information about the dynam-
ics of returns, which can influence the performance of risk prediction models. When 
analyzing the out-of-sample samples used to present the results, we noticed in many 
scenarios that the model with the lowest realized loss for the full sample tends to be the 
same as for the 2016-2019 period. By an illustration, for portfolios with 6 stocks and a 
rolling estimation window of 1000 observations, considering minimum risk and equally 
weighted portfolio, and � = 2.5% , the lowest realized loss is presented by D-Vinesstd . 
However, some exceptions are found. For example, for a portfolio of minimum risk, con-
sidering a portfolio of 6 stocks, a rolling estimation window of 1000 observations, and 
� = 1% , the DCC model presents the best result for three out-of-sample periods, that 
is, the lowest realized loss. We also observe that the model’s performance is not gener-
ally maintained for the results obtained for the two weighting strategies used to build 
the portfolios. However, we note that when we consider portfolios with 6 stocks and a 
rolling estimation window of 1000 observations, the performance of the models tends 
to coincide for both strategies of determining the weights (this result holds for the full 
sample and 2016-2019). From a practical point of view, it is clear that when the manager 
performs the portfolio rebalancing, he does need to worry about choosing a new risk 
prediction model.
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In Fig. 2, we display the evolution of risk estimations considering minimum risk port-
folio with 6 stocks and � = 1% and rolling estimation window of 500 observations. The 
VaR plotted had its signal converted so that the plot of VaR can be compared to the neg-
ative portfolio returns. For brevity, we omit the illustrations from the other risk estimates. 
However, they are available under request. Visually, we can verify that the risk estimates 
obtained via the DCC and copula approach, considering the normal and skewed Stu-
dent’s t distribution, tend to follow better the behavior of the portfolio returns, which cor-
roborates the good results of both forecasting approaches according to the realized loss. 
We visually verify that the predictions obtained by the copula approach using Student’s 
t distribution as marginal distribution results in predictions that do not follow the evolu-
tion of the series and are visually volatile, which is confirmed by checking the standard 
deviation of the predictions obtained by these models. A similar evolution is displayed 
by the GO-GARCH model forecasts, mainly between 2016 and 2017. For the full sam-
ple and 2016-2019 results, we identified that the GO-GARCH model is among the mod-
els with the highest realized loss (worst result). This result does not corroborate the find-
ings of Tiwari et al. (2020), which identify consistent results between GO-GARCH and 
DCC for risk analysis. Regarding HS, we observe that this approach does not follow the 
evolution of portfolio returns. Thus, as observed by Müller and Righi (2020), we note 
that the HS tends to overestimate the risk in calm periods and underestimate the risk in 
turbulent periods. One of the reasons for this is that HS responds slowly to volatility and 
price movement changes (Pritsker, 2006). For a discussion of the use of HS in risk fore-
casting, we recommend Christoffersen and Gonçalves (2005) and Pritsker (2006).

Regarding the results of the cost realized, we verified that the results differ from the loss 
realized. For a significance level equal to 1%, the DCC model shows the lower realized cost. 
This model also performs well for � = 2.5% and an equally weighted portfolio. Corrobo-
rating, Weiß (2013) identifies that DCC models are not outperformed by the copula mod-
els, in the bivariate sense, for estimating VaR and ES. In the other scenarios, R-Vinesstd and 
D-Vinesstd present the best results (lower realized cost). Thus, DCC, R-Vinesstd and D-Vinesstd 
present the best trade-off between the sum of the costs from underestimation and overestima-
tion. The highest values for the realized cost are identified copulas models with Student’s t 
distribution. The differences in the results identified by both criteria can be explained by the 
fact that the VaR loss function penalizes more aggressively those observations for which we 
observe returns showing risk estimates exceedance and consider only forecasting errors rather 
than the costs associated with such errors (Righi et al., 2020). However, it is worth noting 
that the results of the realized cost are conditioned to the costs from risk overestimation and 
underestimation paid by the manager. A thorough analysis of the costs incurred by incorrect 
risk forecasting is essential because it reduces profitability (risk overestimation) and increases 
costs from unexpected and uncovered losses (risk underestimation).

5  Concluding Remarks

This study analyzed the performance of multivariate models to predict VaR. The 
models considered were HS, GARCH-DCC with multivariate normal and Student’s t 
distribution, GO-GARCH, C-Vine, D-Vine, and R-Vine. For copula models, we con-
sider normal, Student’s t and skewed Student’s t distribution as marginal distribution. 
To evaluate the performance of the models, we considered portfolios of minimum ES 
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1 3

Comparison of Value at Risk (VaR) Multivariate Forecast Models  

with cardinality restriction and equally weighted obtained from the stocks belonging to 
the Ibovespa index considering 500 and 1000 observations to quantify the weights. We 
form portfolios with 6 and 12 stocks. The risk forecasts are obtained using two rolling 
estimation windows (500 and 1000) and significance levels equal to 1%, 2.5%, and 5%. 
To assess VaR forecasting, we consider realized loss and cost. We quantify the VaR 
forecasts from January 2012 to April 2022.

In general, we observe that risk estimates are sensitive to the choice of significance 
level, strategy to determine the weights, and estimation window. We observed that, 
according to the realized loss, the copulas considering skewed Student’s t distribution tend 
to present better performance. Another interesting result is that the model indicated by the 
realized loss, obtained via the score function, does not coincide with the model’s best per-
formance according to the realized cost. According to realized cost, DCC, R-Vinesstd , and 
D-Vinesstd present the best performance, i.e., these models have the best trade-off between 
the sum of the costs of overestimation and underestimation. Knowing the performance of 
risk estimates and their behavior under different scenarios is important for both regulators 
and investors since the risk is one of the most important variables, along with return, in 
financial decision-making. For future research, we recommend further investigating the 
impact of the weight on stocks that make up the portfolio on the performance of risk fore-
casting models. In addition, it is suggested that other models be included and portfolios 
with more stocks investigated than those considered in this study. Finally, we recommend 
that future work considers data from other markets and different data frequencies, includ-
ing weekly and intraday data.

Fig. 1  Returns on portfolios built with 6 and 12 stocks, considering the minimum risk and equally 
weighted strategies. For portfolios with 6 and 12 stocks, the weights were computed using 500 and 1000 
observations to estimate portfolio weights. The sampling period comprises daily data from January 2012 
to April 2022. The portfolio returns are multiplied by 100
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Appendix

See Tables 7, 8, 9, 10

Fig. 2  Returns and risk forecasts on portfolios built with 6, considering the minimum risk portfolio, 
� = 1% and a rolling estimation window equal to 500 observations. The out-of-sample period comprises 
data from January 2016 to April 2022. The risk forecasts are obtained by: R-Vine, C-Vine, and D-Vine, 
considering normal, Student’s t and skewed Student’s t distribution for marginal distribution, DCC model 
using normal and Student’s t distribution, HS, and GO-GARCH model. Note The solid line refers to the 
portfolio returns with 6 stocks. We obtain the portfolio weight considering a minimum risk portfolio (see 
Eq. (2)). The dashed lines refer to the risk forecasts. We illustrate the VaR predictions obtained by the 
different models we use, considering � = 1% and a rolling estimation window equal to 500 observations
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Table 7  Descriptive statistics [Mean and standard deviation (SD)], loss ( L
VaR

 ), and realized cost (Cost) 
of VaR forecasts, considering portfolios with 6 stocks, considering 500 observations to estimate the 
weights and � = 2.5%

Models Mean SD L
VaR

Cost Mean SD L
VaR

Cost

Minimum risk Equally weighted

Full sample

R-Vinenorm 6.4296 2.4389 0.2037 19.8252 4.6691 1.6370 0.1675 14.5228

R-Vine
std

8.9005 3.3544 0.2475 26.9255 6.7671 2.4236 0.2021 20.4981

R-Vine
sstd

5.7510 2.2639 0.1898 18.0063 4.3150 1.6993 0.1649 13.7126
C-Vinenorm 6.3804 2.4835 0.2004 19.7858 4.6058 1.6726 0.1669 14.4331

C-Vine
std

8.8348 3.2499 0.2475 26.7081 6.6692 2.3774 0.1997 20.2374

C-Vine
sstd

5.9302 2.4040 0.1949 18.4588 4.4077 1.7071 0.1697 13.9000

D-Vinenorm 6.4200 2.4758 0.2031 19.8122 4.6654 1.7534 0.1691 14.5801

D-Vine
std

8.9146 3.4620 0.2517 26.9479 6.7406 2.4236 0.2010 20.4735

D-Vine
sstd

5.8043 2.3427 0.1984 18.2920 4.3055 1.7001 0.1660 13.7008

HS 6.1341 1.2124 0.2257 18.9902 4.7412 0.8964 0.2024 14.7294

DCC 6.0154 2.3064 0.1945 18.7884 4.2664 1.5834 0.1667 13.7135

DCC
std

6.2739 2.3028 0.1984 19.4618 4.3974 1.5749 0.1671 14.0314

GO-GARCH 6.7697 3.9022 0.2073 21.9164 4.8720 2.8620 0.1774 16.1685

2016–2019

R-Vinenorm 6.1881 1.9412 0.1732 24.0155 4.4022 1.1991 0.1361 17.3148

R-Vine
std

8.6936 2.7112 0.2305 33.2739 6.5211 1.8204 0.1809 25.0975

R-Vine
sstd

5.5024 1.9388 0.1579 21.7494 4.0319 1.2685 0.1346 16.2965
C-Vinenorm 6.1952 2.0259 0.1754 24.1187 4.3829 1.2346 0.1372 17.2872

C-Vine
std

8.6061 2.6296 0.2267 32.8965 6.4314 1.7950 0.1774 24.7540

C-Vine
sstd

5.6214 1.9595 0.1613 22.1724 4.0787 1.2360 0.1364 16.3854

D-Vinenorm 6.2016 1.9512 0.1754 24.0666 4.4217 1.2249 0.1378 17.4151

D-Vine
std

8.6828 2.7125 0.2294 33.2100 6.5363 1.8450 0.1782 25.1313

D-Vine
sstd

5.5693 1.9299 0.1661 22.0752 4.0356 1.2644 0.1371 16.3128

HS 5.8928 1.2280 0.1691 22.4225 4.3665 0.7190 0.1417 16.9090

DCC 5.8585 1.9318 0.1670 22.9304 4.1097 1.2404 0.1345 16.5006

DCC
std

6.1147 1.9232 0.1716 23.7825 4.2396 1.2308 0.1355 16.9095

GO-GARCH 6.5385 4.3542 0.1864 27.1957 4.6792 3.1899 0.1539 19.9369

2020–2022

R-Vinenorm 6.8421 3.0683 0.2559 12.6668 5.1251 2.1160 0.2210 9.7532

R-Vine
std

9.2541 4.2123 0.2765 16.0803 7.1874 3.1590 0.2385 12.6406

R-Vine
sstd

6.1758 2.6801 0.2442 11.6118 4.7987 2.1695 0.2168 9.2984

C-Vinenorm 6.6966 3.0899 0.2433 12.3838 4.9866 2.1793 0.2176 9.5573

C-Vine
std

9.2255 4.0710 0.2830 16.1363 7.0754 3.0910 0.2378 12.5215

C-Vine
sstd

6.4578 2.9432 0.2522 12.1146 4.9698 2.1881 0.2267 9.6541

D-Vinenorm 6.7931 3.1446 0.2506 12.5444 5.0816 2.3442 0.2225 9.7369

D-Vine
std

9.3107 4.4350 0.2898 16.2502 7.0895 3.1485 0.2400 12.5164

D-Vine
sstd

6.2056 2.8736 0.2535 11.8290 4.7667 2.1830 0.2154 9.2386

HS 6.5463 1.0664 0.3223 13.1266 5.3812 0.8025 0.3062 11.0059

DCC 6.2835 2.8157 0.2414 11.7125 4.5342 2.0133 0.2218 8.9523
DCC

std
6.5460 2.8173 0.2441 12.0806 4.6669 2.0051 0.2212 9.1146

GO-GARCH 7.1646 2.9369 0.2430 12.8977 5.2012 2.1543 0.2175 9.7307

The statistics were applied under the percentage log-returns
Note Values in bold indicate the models with the best result according to realized loss and realized cost
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Table 8  Descriptive statistics [Mean and standard deviation (SD)], loss ( L
VaR

 ), and realized cost (Cost) 
of VaR forecasts, considering portfolios with 12 stocks, considering 500 observations to estimate the 
weights and � = 2.5%

Models Mean SD L
VaR

Cost Mean SD L
VaR

Cost
Minimum risk Equally weighted

Full sample
R-Vinenorm 5.7820 2.2538 0.1738 17.3533 3.9968 1.4809 0.1544 12.4320
R-Vine

std
7.6047 2.6981 0.2062 22.3199 5.6513 1.9543 0.1728 16.8857

R-Vine
sstd

5.1901 2.0531 0.1614 15.7544 3.7474 1.4332 0.1541 11.8116
C-Vinenorm 5.6626 2.1165 0.1698 17.0786 3.9328 1.4609 0.1549 12.3474
C-Vine

std
7.5265 2.7087 0.2019 22.0444 5.5573 1.9114 0.1718 16.5671

C-Vine
sstd

5.2784 2.1275 0.1624 15.9520 3.8027 1.4738 0.1543 11.9377
D-Vinenorm 5.7072 2.1668 0.1676 17.0942 3.9492 1.4627 0.1541 12.3471
D-Vine

std
7.4946 2.7996 0.2056 22.0055 5.5895 1.9911 0.1775 16.7713

D-Vine
sstd

5.1302 1.9673 0.1607 15.6078 3.6897 1.4079 0.1551 11.7381
HS 5.3514 1.0492 0.1912 16.3167 3.8925 0.7600 0.1832 12.2101
DCC 5.3529 2.0860 0.1617 16.1315 3.5831 1.3519 0.1551 11.5128
DCC

std
5.5634 2.0825 0.1663 16.6723 3.6864 1.3490 0.1552 11.7487

GO-GARCH 6.4774 4.1010 0.1906 19.8070 4.4544 2.9230 0.1769 14.2302
2016–2019
R-Vinenorm 5.2849 1.4294 0.1483 20.3536 3.6101 0.8282 0.1193 14.3852
R-Vine

std
7.0236 1.8391 0.1855 26.4820 5.2281 1.1761 0.1474 20.0252

R-Vine
sstd

4.7738 1.3564 0.1351 18.5018 3.3702 0.8098 0.1151 13.5649
C-Vinenorm 5.2372 1.3988 0.1456 20.1549 3.5775 0.8261 0.1187 14.2864
C-Vine

std
6.9556 1.7394 0.1827 26.1629 5.1038 1.1389 0.1448 19.5394

C-Vine
sstd

4.8306 1.4015 0.1388 18.7135 3.3913 0.8473 0.1191 13.6893
D-Vinenorm 5.2370 1.3748 0.1458 20.1213 3.5726 0.8274 0.1186 14.2782
D-Vine

std
6.9099 1.7413 0.1855 26.0731 5.1392 1.1923 0.1467 19.7663

D-Vine
sstd

4.7226 1.3400 0.1351 18.3560 3.3241 0.8543 0.1185 13.5163
HS 4.9790 0.8650 0.1409 18.8003 3.4485 0.3966 0.1234 13.5824
DCC 4.9228 1.3392 0.1384 18.9824 3.2800 0.8072 0.1163 13.3354
DCC

std
5.1045 1.3284 0.1423 19.5928 3.3692 0.7993 0.1165 13.6086

GO-GARCH 5.6999 3.3696 0.1606 23.4610 3.8856 2.2757 0.1339 16.6319
2020–2022
R-Vinenorm 6.6310 3.0223 0.2173 12.2279 4.6573 2.0201 0.2143 9.0953
R-Vine

std
8.5973 3.5201 0.2415 15.2096 6.3743 2.6760 0.2162 11.5223

R-Vine
sstd

5.9013 2.7350 0.2064 11.0608 4.3919 1.9464 0.2206 8.8163
C-Vinenorm 6.3894 2.8216 0.2112 11.8233 4.5398 2.0086 0.2168 9.0350
C-Vine

std
8.5017 3.6345 0.2348 15.0086 6.3322 2.5951 0.2178 11.4894

C-Vine
sstd

6.0433 2.8257 0.2026 11.2346 4.5055 1.9692 0.2145 8.9453
D-Vinenorm 6.5104 2.9110 0.2049 11.9230 4.5926 1.9933 0.2149 9.0481
D-Vine

std
8.4935 3.8056 0.2398 15.0569 6.3588 2.7164 0.2300 11.6548

D-Vine
sstd

5.8267 2.5794 0.2044 10.9128 4.3144 1.8726 0.2174 8.7005
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Table 9  Descriptive statistics [Mean and standard deviation (SD)], loss ( L
VaR

 ), and realized cost (Cost) 
of VaR forecasts, considering portfolios with 6 stocks, considering 1000 observations to estimate the 
weights and � = 2.5%

Models Mean SD L
VaR

Cost Mean SD L
VaR

Cost
Minimum risk Equally weighted

Full sample
R-Vinenorm 7.1717 2.9862 0.2152 22.9395 4.3188 1.7142 0.1634 14.2485
R-Vine

std
9.1915 3.5916 0.2518 28.3726 5.9798 2.2785 0.1788 18.6221

R-Vine
sstd

6.5331 2.7164 0.2057 20.9714 4.1407 1.6346 0.1631 13.7185
C-Vinenorm 7.2699 3.0040 0.2185 23.1889 4.3187 1.7103 0.1627 14.2482
C-Vine

std
9.2195 3.6329 0.2531 28.5284 5.9424 2.2897 0.1798 18.5694

C-Vine
sstd

6.5674 2.6244 0.2058 21.0486 4.1510 1.6118 0.1634 13.7741
D-Vinenorm 7.1512 2.8759 0.2147 22.9489 4.3228 1.6926 0.1634 14.3229
D-Vine

std
9.2107 3.5903 0.2499 28.4313 6.0633 2.3264 0.1796 18.8413

D-Vine
sstd

6.5338 2.6931 0.2050 21.0358 4.1624 1.6396 0.1609 13.7773
HS 6.9380 0.8026 0.2454 21.7799 4.4696 0.4273 0.1995 14.7650
DCC 6.7653 2.8081 0.2106 21.7462 4.0143 1.6109 0.1634 13.5544
DCC

std
6.9898 2.7867 0.2144 22.3449 4.1105 1.6013 0.1633 13.7892

GO-GARCH 8.5903 4.3661 0.2469 27.7773 5.3666 2.9782 0.1759 17.5909
2016–2019
R-Vinenorm 7.2512 2.5010 0.1954 28.4447 4.2584 1.3525 0.1318 17.3247
R-Vine

std
9.2470 2.8700 0.2425 35.4801 5.9029 1.6819 0.1624 23.0226

R-Vine
sstd

6.6092 2.2957 0.1824 26.0800 4.0889 1.2896 0.1310 16.7199
C-Vinenorm 7.3251 2.4829 0.1974 28.6649 4.2487 1.3511 0.1321 17.3056
C-Vine

std
9.2768 2.9282 0.2422 35.6242 5.8509 1.6827 0.1618 22.8939

C-Vine
sstd

6.6462 2.2891 0.1822 26.1463 4.0883 1.3038 0.1306 16.7626
D-Vinenorm 7.2891 2.5219 0.1968 28.5866 4.3050 1.3574 0.1329 17.4859
D-Vine

std
9.2583 2.8588 0.2412 35.5123 5.9742 1.6808 0.1650 23.2960

D-Vine
sstd

6.6384 2.3152 0.1810 26.2019 4.1165 1.3143 0.1287 16.8166
HS 7.4548 0.4826 0.2050 27.2997 4.7611 0.2166 0.1499 18.1798
DCC 6.8389 2.3881 0.1866 26.9850 4.0219 1.3459 0.1295 16.5904
DCC

std
7.0651 2.3754 0.1914 27.7355 4.1186 1.3400 0.1303 16.8946

GO-GARCH 9.4314 4.2260 0.2451 36.1454 5.8712 2.7912 0.1614 22.7211

Table 8  (continued)

The statistics were applied under the percentage log-returns
Note Values in bold indicate the models with the best result according to realized loss and realized cost

Models Mean SD L
VaR

Cost Mean SD L
VaR

Cost
Minimum risk Equally weighted

HS 5.9876 1.0309 0.2772 12.0740 4.6510 0.6192 0.2854 9.8657
DCC 6.0877 2.8061 0.2016 11.2612 4.1010 1.8481 0.2216 8.3991
DCC

std
6.3473 2.7868 0.2074 11.6829 4.2282 1.8373 0.2213 8.5714

GO-GARCH 7.8056 4.8359 0.2420 13.5647 5.4261 3.5795 0.2503 10.1272
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Table 10  Descriptive statistics [Mean and standard deviation (SD)], loss ( L
VaR

 ), and realized cost (Cost) 
of VaR forecasts, considering portfolios with 12 stocks, considering 1000 observations to estimate the 
weights and � = 2.5%

Models Mean SD L
VaR

Cost Mean SD L
VaR

Cost
Minimum risk Equally weighted

Full sample
R-Vinenorm 5.4771 1.8164 0.1586 16.4626 3.5239 1.1708 0.1388 11.1267
R-Vine

std
7.2409 2.3003 0.1923 21.0665 4.9132 1.6099 0.1534 14.5774

R-Vine
sstd

4.9654 1.7448 0.1484 15.0429 3.3267 1.1458 0.1388 10.6607
C-Vinenorm 5.4095 1.8793 0.1573 16.2294 3.4981 1.2205 0.1377 11.0752
C-Vine

std
7.1847 2.3938 0.1924 20.9749 4.8518 1.6297 0.1524 14.4667

C-Vine
sstd

4.9878 1.7109 0.1504 15.0796 3.3469 1.1031 0.1387 10.6927
D-Vinenorm 5.4328 1.8623 0.1572 16.3168 3.5136 1.1809 0.1403 11.1524
D-Vine

std
7.1985 2.4035 0.1939 21.0106 4.9232 1.6989 0.1551 14.6707

D-Vine
sstd

4.9489 1.7527 0.1487 14.9915 3.3147 1.1356 0.1416 10.6779
HS 5.0107 0.4226 0.1727 15.1394 3.4047 0.1956 0.1661 10.9870
DCC 5.0629 1.7331 0.1498 15.2823 3.1952 1.0887 0.1418 10.4118
DCC

std
5.2285 1.7278 0.1532 15.6954 3.2738 1.0823 0.1414 10.5813

GO-GARCH 5.9837 2.6602 0.1717 18.2467 3.9069 2.2825 0.1504 12.4720
2016–2019
R-Vinenorm 5.1752 1.2317 0.1402 19.6715 3.2649 0.7084 0.1049 12.9878
R-Vine

std
6.8612 1.4347 0.1800 25.3506 4.5327 0.8346 0.1283 17.1850

Table 9  (continued)

The statistics were applied under the percentage log-returns
Note Values in bold indicate the models with the best result according to realized loss and realized cost

Models Mean SD L
VaR

Cost Mean SD L
VaR

Cost
Minimum risk Equally weighted

2020–2022
R-Vinenorm 7.0356 3.6692 0.2491 13.5185 4.4220 2.1968 0.2175 8.9841
R-Vine

std
9.0965 4.5709 0.2677 16.2094 6.1113 3.0363 0.2067 11.0917

R-Vine
sstd

6.4030 3.3131 0.2456 12.2291 4.2294 2.0957 0.2179 8.5821
C-Vinenorm 7.1755 3.7311 0.2545 13.8179 4.4385 2.1886 0.2149 9.0160
C-Vine

std
9.1214 4.5960 0.2718 16.3853 6.0989 3.0565 0.2107 11.1690

C-Vine
sstd

6.4326 3.1133 0.2462 12.3249 4.2584 2.0302 0.2196 8.6598
D-Vinenorm 6.9152 3.3866 0.2454 13.3012 4.3532 2.1492 0.2156 8.9100
D-Vine

std
9.1294 4.5805 0.2647 16.3135 6.2157 3.1330 0.2046 11.2179

D-Vine
sstd

6.3548 3.2337 0.2460 12.1950 4.2410 2.0805 0.2162 8.5762
HS 6.0536 0.3287 0.3145 12.3339 3.9709 0.1428 0.2843 8.9213
DCC 6.6393 3.4075 0.2516 12.7810 4.0013 1.9853 0.2215 8.3590
DCC

std
6.8608 3.3748 0.2538 13.1201 4.0966 1.9708 0.2197 8.4749

GO-GARCH 7.1510 4.2272 0.2498 13.4570 4.5031 3.0902 0.2008 8.8115
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