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Abstract
Despite the upgrading of the attention and investment of new energy in Chinese public,
its market efficiency and associations with other assets are relatively rarely explored.
This paper, firstly, explores the multifractal feature and market efficiency of Chinese
new energy market (NEI) by the multifractal detrended fluctuation analysis. Secondly,
the multifractal cross-correlation analysis is performed to discuss the multifractality
of cross-correlations between NEI and crude oil, external new energy indices (Global
(SPGCE), United States (ECO) and Europe (ERIX)) and safe-haven asset (GOLD)
respectively. The results show that Chinese new energy market has obvious multifrac-
talitywith lowmarket efficiency, which ismainly sourced from long-range correlation.
It has the strongest linkages with external new energy markets and most insignifi-
cant association with gold. The heterogeneous sources contribute to their multifractal
cross-correlations. It provides useful enlightenment for decision-makers to implement
energy policy and reform, and for investors to make investment decisions.

Keywords New energy market · Multifractality · Cross-correlation · Market
efficiency · Multifractal sources

1 Introduction

China’s demand for energy is huge and will continue to grow for some time to come.
However, traditional energy is non-renewable and harmful to the environment. As an
alternative for traditional energy, new energy1 has risen to an important field related to
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national security. At the end of 2020, a total of 44 countries in the world have officially
announced their carbon neutrality targets. PresidentXi Jinping clearly stated thatChina
will peak carbon emissions by 2030 and strive to achieve carbon neutrality by 2060 at
the 75th United Nations General Assembly. The financial market has set off a “new
energy fever” again and again. In academia, new energy has also received a lot of
attention, such that it is worthwhile to study the efficiency, statistical characteristics
and risk features of the new energy market.

Many scholars have carried out researches around new energy and studied the
correlations between newenergy and other assets.What has received themost attention
is the relevance of new energy and crude oil. However, the conclusions of literatures
are not completely consistent. Most scholars consider that new energy and crude oil
fluctuate in the same direction (Managi & Okimoto, 2013), and some believe that the
relationship between the two is rather time-varying than invariable (Reboredo et al.,
2017). But recent years, the opinion that crude oil had little effect on the new energy
company share price has also emerged (Sun et al., 2019). In addition, the associations
between new energy and technology stocks have also been concerned about (Kassouri
et al., 2021). There are also some literatures exploring the linkages between new
energy and other assets, including carbon market, gold, thermal coal and green bonds,
etc. (Dutta et al., 2018; Elie et al., 2019; Gu et al., 2020; Hammoudeh et al., 2020). It
is noted that most of the existing literatures focus on the S&P Global Clean Energy
Index (SPGCE), Wilder Hill Clean Energy Index (ECO) and European Renewable
Energy Index (ERIX), but few works study Chinese new energy market. For example,
based on Chinese market, Wen et al. (2014) explored the dynamic linkage of new
energy index and the price of fossil fuel companies. Zhang and Du (2017) took the
high-technology companies into account and concluded that the associations between
new energy company stock prices and high-tech stock prices is bigger than that of
fossil fuel stocks. Discussion on the linkages of Chinese new energy market to other
assets is very limited, especially the associations with crude oil price, gold price and
external new energy markets have not been studied yet.

In the academic field, the financial market is always regarded as a complex system
(Niu & Wang, 2014). More and more scholars discovered the limitations of the Effi-
cient Market Hypothesis and utilized nonlinear methods to study financial markets
(Abbaszadeh et al., 2020; Amman & Kendrick, 1995; Fisher & Hughes Hallett, 1992;
Kendrick et al., 2014; Ola et al., 2014; Rounaghi & Zadeh, 2016). As a representative
nonlinear approach, multifractal methods have been widely applied. Among them,
multifractal detrended fluctuation analysis (MF-DFA) (Kantelhardt et al., 2002) is the
most prevalent, which has been extensively used to analyze the market patterns and
efficiencies of stock, fund, foreign exchange, cryptocurrencies, futures and commodi-
ties markets (Yan et al., 2021; Kristjanpoller et al., 2020; Zou & Zhang, 2020; etc.).
Particularly, Shahzad et al. (2020) utilized MF-DFA to explore the features of ERIX,
ECO and SPGCE. They concluded that the multifractal properties of ERIX and ECO
are only sourced from the fat-tail distribution,while not only long-range correlation but
fat-tail distribution contributed to themultifractal features of SPGCE. Developed from
MF-DFA,multifractal detrended cross-correlation analysis (MF-DCCA) (Zhou, 2008)
has become well-known for exploring cross-correlation and multifractality between
variables. For instance, Wang et al. (2021) investigated the association between new

123



Market Efficiency and Cross-Correlations of Chinese… 1289

energy sector and Shanghai Composite Index usingMFCCA. They found that the per-
sistence of cross-correlation of SSEC/new energy is weaker than SSEC/finance, but
stronger than the SSEC/consumption and SSEC/medicine. Though they showed the
multifractality of cross-correlation, they didn’t explore the source further. Besides, the
market efficiency and its source of China’s new energy has not been studied usingmul-
tifractal method, let alone its cross-correlation with other more assets from different
markets.

Therefore, there are two main purposes to write this article: firstly, to explore the
shape of Chinese new energy market and analyze its market efficiency by MF-DFA;
secondly to analyze the linkages between the China’s new energy index and three
sorts of assets, namely crude oil (domestic Daqing crude oil and international WTI
crude oil), external new energy indices (SPGCE, ECO, ERIX) and safe-haven asset
(GOLD) respectively. To have an in-depth exploration, we further dissect the sources
of multifractality. Briefly speaking, it is found that there exists multifractal feature
in Chinese new energy market, and its efficiency is low. The long-range correlation
is the most important factor for the multifractality, which is different from that of
SPGCE, ECO and ERIX (Shahzad et al., 2020). Then, the heterogeneous strengths
and sources of the cross-correlation between Chinese new energy market and other
six assets are discovered by cross-correlation analysis and MF-DCCA. As far as we
know, this paper is the first comprehensive discussion on the multifractal property and
efficiency of Chinese new energy market and its association with other assets, both in
terms of methodology and data coverage.

The resultswill, on onehand, helpChinese government recognize the characteristics
of the clean energymarket. The government can fully understand the linkages between
new energy and traditional energy, so as to formulate relevant policies combing the
current situation of the country, and provide the basis for the smooth realization of
the energy revolution. On the other hand, investors can understand the efficiency of
the new energy market and clarify the extent to which the price of the new energy
index reflects market information. At the same time, the study of cross-correlation
relationship provides investors with risk aversion information of new energy index,
and helps investors to better carry out the portfolio and risk management. Besides, the
study of this work can also have some enlightenment for the new energy firms.

The remaining work is arranged like this: Sect. 2 summarizes the relevant literature.
Section 3 briefly introduces the method. Section 4 shows the data. In Sect. 5, the
empirical findings and related discussions are given. Section 6 concludes.

2 Literature Review

This part reviews and summarizes the existing literature from two perspectives. The
first is about the relationships between new energy and other assets, and the second is
on the multifractality studies in the financial field.
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2.1 Relationships Between New Energy and Other Assets

The researches on the relationships between new energy and other assets are sum-
marized in three categories, namely traditional energy, technology stocks and other
variables. As for the associations between new energy and traditional ones, crude
oil occupies the vast majority, and the conclusions in the literature are not always
consistent. Some scholars consider that they have a positive correlation. For instance,
Managi and Okimoto (2013) appliedMarkov-switching VAR approach and found that
after 2007, oil prices and clean energy prices were positively related. Based on the
perspective of volatility, Dutta (2017) found that the influence of oil volatility shock
on clean energy was positive, indicating that the higher the oil volatility, the greater
the volatility of clean energy. But some scholars have proposed that the impact is not
as high as expected. For example, Reboredo (2015) found that 30% of both the upside
and downside risks of renewable energy companies could be attributed to oil price
dynamics. Sun et al. (2019) drew the conclusion that the price of fossil energy (oil,
coal and natural gas) had little impact on the stock price fluctuations of new energy
companies. Besides, some works showed that the correlation is time-varying (Dawar
et al., 2021; Reboredo et al., 2017). Moreover, several studies are performed about
the correlation between new energy and other energy sources except crude oil. For
instance, Gu et al. (2020) showed that there is a substitution effect between clean
energy and thermal coal.

Many literatures have focused on the linkages between new energy and technology
corporations. Henriques and Sadorsky (2008) andKumar et al. (2012) proposed earlier
that clean energy is developed and rationally used based on specific technologies, so
the prices would be positively correlated to the technology ones. Afterwards, many
academics have extended the view from different perspectives. For example, Bondia
et al. (2016) confirmed the one-way short-term causality from prices of technology
share to clean energy stock. Niu (2021) used the time-dependent intrinsic correlation
method to analyze the correlation and concluded that renewable energy and technology
companies had positive relationship. Further, the relationshipwas strongest in the long-
term, and then short-term, medium-term followed. However, Kassouri et al. (2021)
found that during 2004–2017, investors’ expectations for clean energy returns were
unaffected by technology stocks on any time scales.

In addition, relationships between new energy and other assets have been investi-
gated. For instance, from the perspective of behavioral finance, it was demonstrated
that the Twitter sentiment had no significant impact on new energy stock returns
(Reboredo & Ugolini, 2018). The correlation between new energy and carbon dioxide
emissions had obvious regional differences (Dutta et al., 2018). Besides, in the case of
clean energy index volatility, especially for SPGCE, holding gold can achieve the goal
of safety (Elie et al., 2019). The causality between new energy and green bonds was
time-varying, and came to be obvious until 2019 (Hammoudeh et al., 2020). Yahya
et al. (2020) found that new energy and non-ferrous metal had a stronger dependence
during turbulent times, but weaker during economic prosperity. The financial pressure
showed a negative impact on new energy stocks in European bull market as well as
the bull and bear markets in the United States (He et al., 2021).
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It is noted that global, U.S. andEuropean new energymarkets are themost discussed
renewable energymarkets and there is still much room for exploration on Chinese new
energy market. For the literatures on Chinese new energy market, as we know, there is
no discussion of the impact of domestic crude oil and gold prices on it. In addition, the
relationship between China’s new energy and ECO, ERIX and SPGCE is also worth
studying.

2.2 Multifractality Study in the Financial Field

Fractal theory was first proposed by Mandelbrot (1963). After that, Peters (1991) cre-
atively combined chaos and fractal theory and applied them to the study of financial
markets. The fractal market hypothesis (FMH) does not ignore the anomalies in the
financial market, reducesmany assumptions in the efficient market hypothesis (EMH),
and uses a nonlinear paradigm to reflect the operating conditions of the real financial
market (Moradi et al., 2019). Fractal theory has experienced the evolution from single-
fractal to multifractal. The single-fractal describes the time series fluctuations from a
macro level, while the multifractal method explores the local partial fractal structure
of the sequence in more details. Since the proposal of multifractality, scholars have
proposed a variety of methods, such as MF-DFA, MF-DCCA, MF-X-DMA (Jiang &
Zhou, 2011),MF-ADCCA (Cao et al., 2014),MF-CCA (Oswiecimka et al., 2014) etc.,
to expand their understanding of the financial market or issues from a new perspective.
MF-DFA has been applied to investigate the market patterns and efficiency of stock
markets (Wang et al., 2009), gold market (Mali & Mukhopadhyay, 2014), foreign
exchange markets (Norouzzadeh & Rahmani, 2006), cryptocurrencies (Al-Yahyaee
et al., 2020; Mnif et al., 2020), and futures markets (Wang et al., 2019). It has also
been utilized to test the impact of important events, such as COVID-19, on the mar-
kets (Aslam et al., 2020; Mensi et al., 2021a, b). Though some nonlinear models, like
stochastic unit root process, component and fractionally integrated GARCH-RVmod-
els, etc., can also test the market efficiency, they are limited to illustrate the efficiency
from the same type of local fluctuations. (Wang et al., 2009). Compared to the wavelet
transformmodulus maxima (WTMM), an improved multifractal formalism, MF-DFA
is simpler to determine the multifractal scaling performance of the data series. Further,
the MF-DFA might have slight advantages especially in the case of short series and
negative q values (Kantelhardt et al., 2002). In addition, many works exploited the
MF-DCCA approach to study the relationships among financial assets in the light of
the fractal market hypothesis (Wang et al., 2020; Yao et al., 2020, etc.). As the finan-
cial market is becoming more and more complete, the multifractal characteristics and
associations of a variety of assets have been studied. More details can refer to Li et al.
(2020), and we will not list them here.

To mention, the multifractal features and sources of SPGCE, ECO and ERIX have
been considered (Shahzad et al., 2020). However, as far as we know, there is no
literature to discuss Chinese new energymarket from amultifractal perspective, and its
market pattern and efficiency have not been discussed yet. Hence, it is greatly valuable
to have a comprehensive investigation of the multifractal feature and efficiency of
Chinese newenergymarket, aswell as the cross-correlations betweenNEI anddifferent
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assets (like crude oil, other new energy markets and safe-haven asset), which is also
the main target in this paper.

3 Methodology

3.1 MF-DFA

The detrended fluctuation analysis (DFA), proposed by Peng et al. (1994), originally
is devoted to exploring the fractal structure of DNA molecular chains. Thereafter,
Kantelhardt et al. (2002) proposed multifractal DFA (MF-DFA), a more practical
model, to explore themultifractality in nonstationary time series,which is implemented
through the following steps:

(1) Suppose a time series {Xt , t � 1, 2, 3 . . . N } with length N . Calculate the profile
as

Yi �
i∑

t�1

[
Xt − X

]
(1)

where

X � 1

N

N∑

k�1

Xt (2)

(2) Partition the profile {Yi }i�1,...,N into Ns ≡ int
( N
s

)
non-overlapping segments

with equal length s. Since the lengthN is always not divisible by s, a little portion
in the tail of the series may remain. To take the whole profile into account, we
repeat the same segmentation process starting from the other end. Hence, 2Ns

segments are gotten in total.
(3) Determine the local trend for every segment through the least-square fitting. And

for v � 1, ..., Ns , calculate the variance

F2
v (s) � 1

s

s∑

i�1

{Y [(v − 1)s + i] − yv(i)}2 (3)

while for v � Ns + 1, ..., 2Ns

F2
v (s) � 1

s

s∑

i�1

{Y [N − (v − 1)s + i] − yv(i)}2 (4)

where yv(i) is the local trend of segment v obtained by second order polynomial.
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(4) Take themean value of all the segments to have the q th order fluctuation function,

Fq(s) �
{

1

2Ns

2Ns∑

v�1

[
F2

v (s)
]q/2

}1/q

(5)

F0(s) � exp

{
1

4Ns

2Ns∑

v�1

lnF2
v (s)

}
(6)

where the order q goes to any real value.
(5) Make analysis of log–log plots Fq(s) versus s for every q value to measure the

scaling behavior of the fluctuation functions. Fq(s) raises for large values as a
power-law of s in the case that the data Xt has a long-range power-law correlation,
that is to say

Fq(s) ∼ sh(q) (7)

Generally speaking, the exponent h(q) may count on q. If h(q) is constant for all
q, the data series is mono-fractal. Otherwise, the series is multifractal. Note that
when q � 2, this approach simplifies to the initial DFA technique (Kantelhardt
et al., 2002). At this moment, h(2) > 0.5 denotes the persistence of the types
of fluctuations. Otherwise, h(2) < 0.5 suggests the anti-persitent of this kind
of fluctuations. When h(2) � 0.5, the types of fluctuations reveal random walk
behavior.

(6) The multifractal scaling exponent τ(q) is related to h(q) through

τ(q) � qh(q) − D f (8)

where D f is the measurement of geometric objects’ fractal dimension, and we
set it as D f � 1 in this case. Thus, τ (q) displays the scale-dependency of both
smaller fluctuations for negative q values and larger fluctuations for positive q
values. The τ(q) exponent ofmultifractal series increases nonlinearlywith q. Then
calculate the multifractal spectrum f (α) by the Legendre transform of τ (q):

α � dτ(q)

dq
� h(q) + qh′(q) (9)

f (α) � αq − τ(q) � q[α − h(q)] + 1 (10)

where f (α) is the measurement of the time series’ dimension. f (α) is a delta func-
tion and for the mono-fractal time series, there is only one value of α; otherwise,
there is a distribution of α values. �h and �α, calculated as

{
max(hq ) − min(hq )

}

and {max(α) − min(α)} respectively, can be considered as two measurements of the
multifractal degree (Mnif et al., 2020).
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3.2 MF-DCCA

Toquantify cross-correlation between non-stationary time series, an extendedmodel of
DFA, detrended cross-correlation analysis (DCCA) was put forward by Podobnik and
Stanley (2008). Combining the thinking of MF-DFA and DCCA methodology, Zhou
(2008) put forward multifractal detrended cross-correlation analysis (MF-DCCA) to
reveal the multifractal properties of two non-stationary time series. In this paper, we
utilize MF-DCCA to investigate the linkages between Chinese new energy markets
and other six markets. This method can be demonstrated briefly as follows:

(1) Suppose two data series {xt } and {yt } with N elements. The profiles of two time
series can be calculated as, for i � 1, . . . , N

X(i) �
N∑

t�1

(xt − x) (11)

Y (i) �
N∑

t�1

(yt − y) (12)

where x and y respectively denote the means over the two whole time series
respectively.

(2) Make division of the two profiles {Xi }i�1,...,N and {Yi }i�1,...,N into Ns ≡ non-
overlapping subseries of equal length s. Like the MF-DFA method, to fully
investigate the information contained in the whole time series, we finally obtain
2Ns non-overlapping segments.

(3) Determine the detrended covariance for each segment v of the profile. For v �
1, ..., Ns ,

F2
v (s) � 1

s

s∑

i�1

|[X(v − 1)s + i] − xv(i)| × |[Y (v − 1)s + i] − yv(i)| (13)

and for v � Ns + 1, ..., 2Ns ,

F2
v (s) � 1

s

s∑

i�1

|X [N − (v − 1)s + i] − xv(i)| × |Y [N − (v − 1)s + i] − yv(i)|
(14)

where the xv(i) and yv(i) are fitted by second order polynomial respectively.
(4) Average the local fluctuation function for all the subseries:

Fxy(q, s) �
{

1

2Ns

2Ns∑

v�1

[
F2

v (s)
]q/2

}1/q

(15)
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Fxy(0, s) � exp

{
1

4Ns

2Ns∑

v�1

lnF2
v (s)

}
(16)

(5) Calculate the slope of the log–log plot of Fq(s) versus s. This directly determines
the scaling exponent hxy(q), which reflects the power-law relationship between
two related time series as

Fxy(q, s) ∼ shxy(q) (17)

Especially, if {xt } and {yt } are two identical sequences, MF-DCCA amounts to
MF-DFA. And when q � 2, it turns out to become DCCA.

According to Zou and Zhang (2020), the Renyi exponent τxy(q) � qhxy(q) − 1
can be used to reveal the multifractal properties. If τxy(q) is nonlinearly varying with
q, the cross-correlation of x(t) and y(t) is considered to be multifractal; otherwise,
it is mono-fractal. After Legendre transform, the singularity strength αxy(q) and the
singularity spectrum fxy(α) are calculated to describe the cross-correlation,

αxy � hxy(q) + qh′
xy(q) (18)

fxy(α) � qαxy − τxy(q) � q
(
αxy − hxy(q)

)
+ 1 (19)

Similarly, the width of the spectrum �αxy , equivalent to
{
max

(
αxy

) − min
(
αxy

)}
,

as well as �hxy � {
max

(
hxy

) − min
(
hxy

)}
describes the strength of multifractal

cross-correlation.

3.3 The generation of transformed series

It is noted that long memory, fat-tail distribution and extreme events may contribute to
the fractal characteristic (He & Wang, 2017). To test the source of multifractality, we
transform the original return series into the shuffled, staggered and EVremoved series,
to eliminate the three sources respectively through shuffling processing, phase random
processing and extreme values removing processing in the following way (Wang et al.,
2019; Mali & Mukhopadhyay, 2014; He & Wang, 2017):

Firstly, the shuffled series is to eliminate long memory effect, which is determined
by shuffling and reordering the original sequence:

(1) Randomly select a pair of random natural numbers (p, q), where p < N ,q < N ;
(2) Exchange the data at position p and position q in the original series;
(3) Repeat the first two steps 20 ∗ N times to ensure that the order of the original

sequence is sufficiently disrupted.

Secondly, the influence of fat-tail distribution is removed by staggered series
through the phase random processing to weaken the non-Gaussianness and gener-
ate sequence with normal distribution:

(1) Discrete Fourier transform of the original sequence;
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(2) Rotate the sequence obtained in the first step by a random phase angle;
(3) Perform an inverse Fourier transform on the sequence.

Lastly, given that violent fluctuations have an impact on the series’ property, EVre-
moved series occurs:

(1) Make location and sort the original sequence from small to large, and remove the
data points at the front end T /2 and the last end T /2, where T is the total amount
of extreme data removed, and define T � 5% ∗ N ;

(2) Randomly select data from the remaining N − T data to replace the T vacancy.
At this time the length of the series is restored to N again;

(3) Rearrange the obtained N data to make them the same position as the data in the
original series.

4 Data

4.1 Index Selection

In this paper, the CSI CN Mainland New Energy Index (000,941.CSI), short for CN
New Energy (NEI), released by China Securities Index Co., Ltd is selected to analyze
the multifractal characteristics and market efficiency of Chinese new energy market.
This indicator selects 50 samples from the securities of listed companies involved in
new energy production, new energy storage, new energy vehicles and other businesses
in the Shanghai and Shenzhen stock markets, which are relatively larger in size and
more profitable in the new energy sector. It can accurately and comprehensively report
the overall performance of Chinese new energy market.

Besides, this work will explore the cross-correlation relationship between Chinese
new energy market and its domestic traditional crude oil market, safe-haven asset,
international crude oil and international renewable energy markets. There are two
types of Daqing crude oil and Shengli crude oil in China and the Daqing crude oil
price (DAQ) is selected to represent China’s crude oil market. Daqing Oilfield is the
largest oil production base inChina, therefore,Daqing crude oil spot is themain trading
object and it determines the price mechanism of China’s crude oil market (Lin et al.,
2020). Shanghai Gold Exchange gold spot price (GOLD) is selected as the indictor of
goldmarket inChina (Pho et al., 2021).WTI crude oil, S&PGlobalCleanEnergy Index
(SPGCE), Wilder Hill Clean Energy Index (ECO) and European Renewable Energy
Index (ERIX) are selected as indicators respectively on behalf of the international
crude oil, global clean energy, U.S. clean energy and European clean energy markets.
As is known, WTI crude oil expresses the market supply and demand conditions
of the largest oil trading in the world, and is the benchmark price in the international
energymarket. SPGCE is a diverse portfolio involving in clean energy business, which
provides liquid and tradable exposure to 30 companies worldwide. These companies
are closely related to clean energy equipment, technology companies and clean energy
production. ECO is comprised of clean and renewable energy companies in the United
States, such as biofuels, hydrogen, solar energy, etc. (Dutta, 2017; Yahya et al., 2020).
ERIX represents the share price of European companies related with new energy
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businesses like water, marine, solar, biofuels, wind and geothermal (Shahzad et al.,
2020).

All the datasets fromOctober 28, 2009 toMarch 31, 2021 are selected, the beginning
of which is determined by NEI’s officially release date. Each sample covers 2619 daily
data points (the data of the mismatched trading days are removed). Three indicators
for Chinese market (NEI, DAQ and GOLD) and SPGCE are obtained from Wind
database. ECO is collected from Yahoo Finance, while ERIX from Bloomberg and
WTI from U.S. Energy Information Administration.

4.2 Descriptive statistics

Figure 1 shows the price fluctuations of China’s new energy index and other six assets.
Since its releasing, NEI has experienced two periods of relatively obvious rise. The
first period is experienced of intense volatility under the influence of China’s bull
stock market and the Paris Agreement adopted at the 2015 Paris Climate Conference.
The second segment is influenced by China’s 14th 5-Year Plan after 2020, which
emphasizes the importance of green growth and clearly proposes to accelerate the
development of new energy industry. The DAQ andWTI prices moved roughly in line
and they both decreased sharply under the influence of COVID-19 in 2020. The trends
of SPGCE, ECO and ERIX indexes were not exactly the same in the first 3 years, but
they become basically similar after 2012. NEI have also showed the same tendency
with them since 2020. When crude oil fell sharply due to COVID-19, the price of gold
rose, and even achieved the highest price during the sample period, reflecting that gold
had a hedging effect on crude oil (Mensi et al., 2021a, b).

Fig. 1 Daily prices of NEI (including log return) and other six indicators from 2009.10.28 to 2021.03.31
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For the purpose of eliminating the influence of absolute price fluctuations, the
logarithmic return of the index is adopted, calculated as rt � ln(Pt )− ln(Pt−1), where
Pt represents the price of the index at time t. Table 1 lists the descriptive statistics of
the logarithmic returns for the seven analyzed variables. The NEI is in line with the
GOLD’s average return, but the standard deviation of the former is about twice that of
the latter, showing a higher volatility. Compared with crude oil of both DAQ andWTI,
NEI has smaller fluctuations. Among four new energy indicators, except SPGCE,
the average returns of the other three are all positive, indicating that the new energy
market of China, America and Europe has a good development during the observation
period, which is higher than the global level. ECO has the largest standard deviation,
followed byNEI and ERIX, while SPGCE is themost stable with the smallest standard
deviation. The skewness of each variable is significantly non-zero, and each kurtosis
is greater than 3, showing an obvious “sharp peak and fat-tail” feature. In addition,
through J-B statistics, it is further proved that their returns do not obey the standard
normal distribution, which rejects Efficient Market Hypothesis.

5 Results and Discussions

5.1 Multifractal Analysis of NEI Returns

5.1.1 Multifractal Property by MF-DFA

For the sake of studying the multifractal property of Chinese new energy market,
we exploit MF-DFA technic to NEI return series. The range of time scale is set as
20 < s < N/10, where N is the length of the data. Figure 2a shows the log–log
plot of the fluctuation functions Fq (s) versus time scale s, with the value of q from
− 10 to 10. Whatever value q takes, almost every line fitting the fluctuation func-
tions curve well, illustrating that there is a power law relationship between Fq (s)
and s. The generalized Hurst exponent of NEI returns in Fig. 2b shows an obvious
smoothly-decreasing tendency (not a constant) with the value of q, indicating signifi-
cantmultifractal property. For q� 2, the classical Hurst exponent is 0.5338, suggesting
a relatively positive persistent fluctuations, which also means a slightly strong positive
long-range correlation. In other words, the NEI’s return can be positively influenced
by the former returns. When the returns increased (decreased) in the past, the returns
will very likely increase (decrease) afterwards. For q > 4, h(q) falls below 0.5, indi-
cating anti-persistent fluctuations. It can be concluded that the return sequence exists
persistent properties for smaller-scale fluctuations, while displays anti-persistent fea-
tures for larger-scale fluctuations. NEI’s multifractal feature can be further indicated
through the multifractal scaling exponent τ (q) in Fig. 2c, where τ (q) is increasing
nonlinearly with q. Observing the concavity and convexity of the τ (q) curve, it can be
roughly concluded that the NEI sequence has a relatively strong multifractal property.
Figure 2d exhibits the multifractal spectrum f (α). The spectrum displays a single
peak function not a point, also declaring that NEI series has no mono-fractality, but a
multifractal feature.
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(a) (b)

(c) (d)

Fig. 2 Multifractal characteristic of NEI

Furthermore, �h and �α, are calculated for the efficiency intensity of Chinese
new energy market quantitatively. The greater �h and �α means the higher degree
of multifractality and the lower market efficiency. The �h and �α of NEI are 0.4471
and 0.6014 respectively, which are far from 0, showing that the Chinese new energy
market has obvious multifractal characteristics, and the market efficiency is low.

5.1.2 Source of Multifractal Characteristics

It is generally believed that long memory, fat-tail distribution and extreme values are
threemain reasons formultifractalities (He&Wang, 2017). To explore themultifractal
source of NEI, the return series is transformed to series that eliminates the above three
sources by shuffling processing (Wang et al., 2019), phase random processing (Mali &
Mukhopadhyay, 2014) and extreme values removing processing (He & Wang, 2017)
respectively. The transformed series are named as shuffled, staggered and EVremoved
series. If any of them has a significantly lower multifractal degree, indicating that this
source is the main source of multifractality of NEI returns.

As shown in Fig. 3a, the generalized Hurst exponents of shuffled, staggered and
EVremoved series are all related to q, showing that they hold multifractal properties.
But the structural characteristics are different. Apparently, the changes of h(q) for
the shuffled series become gentler. The �h in Table 2, which is the degree of multi-
fractality, displays that �hShu f f led < �hStaggered < �hEVremoved < �hOriginal .
The result indicates that three main factors all contribute to the multifractality of the
NEI return series, while long memory has the greatest impact with �h reducing from
0.4471 to 0.1411. Besides, to mention, the classic Hurst exponents of three deformed
sequences are smaller than the original series. Especially, the h(2) of EVremoved
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(a) (b)

Fig. 3 The generalized Hurst exponents and multifractal spectra of the original, shuffled, staggered and
Evremoved series

Table 2 The multifractal features of the original, shuffled, staggered and Evremoved series

Original series Shuffled series Staggered series EVremoved series

h(2) 0.5338 0.5182 0.4999 0.4620

�h 0.4471 0.1411 0.3856 0.4100

�α 0.6014 0.2420 0.5169 0.4832

series is 0.4620, showing anti-persistent fluctuations. It can be interpreted that the
following value will be inversely influenced by the present value. While for staggered
series, h(2) is very close to 0.5, indicating the sequence is randomwalk and the present
returns will not have an impact of the future returns.

The multifractal spectrum in Fig. 3b shows and confirms the similar results. In
comparison, its shuffled series has the smaller width of the multifractal spectrum
than that of any other test series, showing that the multifractal degree of reordering
series is the lowest. Compared with the original sequence, the multifractal degree of
staggered series and EVremoved series is also lowered, but the degree of reduction is
comparatively slight. In other words, the long-term memory contributes most to the
multifractal characteristics of the NEI return series. In addition, it is observed that the
�α of EVremoved series is the second smallest, indicating that the local fluctuations
in NEI return series become more even after removing the extreme values, followed
by staggered series.

5.2 Multifractal Cross-Correlations Between NEI and Other Assets

5.2.1 Cross-Correlation Analysis

Firstly, we exploit the cross-correlation statistic Qcc(m) (Podobnik et al., 2009) to
qualitatively test whether there is cross-correlation between the NEI returns and other
assets, that is, Daqing crude oil (DAQ), China’s gold (GOLD),WTI crude oil and three
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Fig. 4 The cross-correlation statistics for the six pairs of variables

new energy indexes (SPGCE, ECO and ERIX). For two time series, {xt , t � 1, 2, ...N }
and {yt , t � 1, 2, ...N }, the Qcc(m) statistic is defined by the following formula:

Qcc(m) � N 2
m∑

i�1

c2i
N − i

(20)

where ci is the coefficient of cross correlation. Qcc(m) statistic roughly obeys the Chi-
square distribution with m degrees of freedomχ2m. Qcc(m) exceeds χ2m at the 5%
significance level represents the null hypothesis that the inexistent cross-correlation
between the two sequences is rejected with 95% confidence. Under this circumstance,
{xt } and {yt } is considered to be cross-correlated, and vice versa.

Figure 4 calculates the cross-correlation statistics Qcc(m) of six pairs of variables,
in which the degree of freedom is m ∈ [0, 600]. It can be found that the Qcc(m)
of NEI-SPGCE, NEI-ECO and NEI-ERIX are always greater than the critical value,
indicating that Chinese new energy market has significant cross-correlation with the
global, U.S. and European new energy markets. The cross-correlation statistics of
NEI-GOLD fluctuate around the critical value, showing that their cross-correlation is
insignificant. It implies that gold can play a role in diversifying risks in the investment
portfolio of new energy industry. In addition, it is noted that when the degree of
freedom is less than 390, the cross-correlation statistics of NEI-DAQ is higher than the
critical value, demonstrating a significant cross-correlation, while there is no cross-
correlation between NEI and DAQ when the freedom degree higher than 390. For
NEI-WTI, in the case of m ∈ (0, 160)

⋃
(300, 600), there is no cross-correlation and

form ∈ (160, 300), the cross-correlation relationship significantly exists. Besides, the
cross correlation of NEI-DAQ has a larger range of significance than NEI-WTI. In
other words, as a representative of the internal crude oil market, Daqing crude oil has
a stronger association with NEI than the external market of WTI.
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Fig. 5 DCCA coefficients of six pairs of assets for different scale s

Secondly, the DCCA coefficient (Zebende, 2011) is utilized to quantify the cross-
correlation. It is decribed as a fraction, whose numerator is the fluctuation function
of detrended covariance F2

DCCA (q � 2 in MF-DCCA) and the denominator is the
product of two detrended variance F2

DFA.

ρDCCA � F2
DCCA

FDFA1(s)FDFA2(s)
(21)

The value range of ρDCCA is [−1, 1]. There exists anti cross-correlation when
−1 < ρDCCA < 0. And for 0 < ρDCCA < 1, there is cross-correlation. For particular,
when ρDCCA � −1, that represents two series are anti cross-correlated perfectly;
ρDCCA � 0 reveals there exists no cross-correlation; and ρDCCA � 1 represents
perfect cross-correlation.

Figure 5 depicts the DCCA coefficients for the six pairs of assets under different
window size s. All the coefficients are above zero, showing positive cross-correlations
(except one point for NEI-WTI). Then, China’s new energy index holds an obviously
stronger association with other new energy indices, among which NEI-SPGCE has
the strongest performance, closely followed by NEI-ECO. European new energy has
the weakest linkage with NEI. Besides, it is seen that at large scale s, their corre-
lations are strengthened. Daqing crude oil is more related with NEI than WTI. The
DCCA coefficient of NEI-GOLD is the smallest on the whole, demonstrating a weak
correlation.

5.2.2 MF-DCCA Analysis

In this subsection, we furthermore explore the multifractal property of the cross-
correlations between NEI and other six assets by MF-DCCA. Figure 6 obtains the
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Fig. 6 The log–log plots of Fxy (q, s) versus s for NEI and other six assets

log–log graphs of fluctuation function Fxy(q, s) versus time scale s, which apparently
shows that each pair of assets has power-law relationships. Figure 7a–c depict the gen-
eralized Hurst exponent hxy(q), multifractal scaling exponent τxy(q) and multifractal
spectrum fxy(α) respectively. Obviously, for each return pair, hxy(q) and τxy(q) is
nonlinearly changing with the change of q, which suggests the multifractal character-
istics of every cross-correlation. The difference between the hxy(q) and τxy(q) curves

(a) (b)

(c)

Fig. 7 Multifractal characteristic of cross-correlation for NEI and other six assets
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Table 3 The multifractal degree of cross-correlation for NEI and other six assets

NEI-DAQ NEI-GOLD NEI-WTI NEI-SPGCE NEI-ECO NEI-ERIX

�hxy 0.1813 0.1639 0.2737 0.1760 0.0396 0.2755

�αxy 0.3104 0.2579 0.4516 0.2785 0.0743 0.4188

is that the former is quite different for each pair correlation, while the τxy(q) of six
pairs of correlations are basically the same. For instance, when q < – 3, the NEI-DAQ
and NEI-WTI, as well as NEI-SPGCE and NEI-ERIX almost have the equal values.
It is difficult to compare the strength difference of multifractal features by simply
observing each line’s convexity.

But the strength of multifractality is noticed to be very different. Table 3 exhibits
the degree of multifractality �hxy and the width of multifractal spectrum �αxy . It is
observable that the multifractality of NEI-ERIX is the most obvious in the new energy
category. NEI-SPGCE has a weaker multifractal property. The multifractality of the
cross-correlation of NEI-ECO is the least obvious with �hxy . only 0.0396. The �αxy

of NEI-ECO is 0.0743, which is close to 0, again indicating that the cross-correlation
hardly processesmultifractal feature. The�hxy ofNEI-WTI andNEI-ERIXare almost
the same, while�αxy of NEI-WTI is a bit bigger (�αxy� 0.4516), verifying the most
significantmultifractal property. In regard to the cross correlation betweenChina’s new
energy market and crude oil markets, there is a stronger multifractality of international
market than domestic one, for the�αxy of NEI-WTI (0.4516) is higher thanNEI-DAQ
(0.3104). In terms of the two pairs of domestic assets, NEI-GOLD has a relatively
weaker multifractal feature than NEI-DAQ.

5.2.3 Sources of Multifractal Cross-Correlation Characteristics

Similar to investigating the source of NEI multifractal features, we obtain shuffled
series, staggered series and EVremoved series of NEI, DAQ, GOLD, WTI, SPGCE,
ECO, ERIX respectively and performMF-DCCAon each pair of NEI and other assets.
Table 4 illustrates a comparison of strength of multifractality for the original return
pairs and deformed sequences. As for NEI-DAQ, �hxy and �αxy of the EVremoved
series are both significantly decreased in comparison with that of the original return
pair, where �hxy changes from 0.1813 to 0.0462 and �αxy from 0.3104 to 0.1168. It
indicates that extreme value is the primary source of NEI-DAQ multifractal property.
Extreme value is secondary source of multifractal NEI-WTI, and the distribution of
fat-tail is the principal source for NEI-WTI’s multifractal property. In terms of NEI-
GOLD, the�hxy and�αxy of EVremoved series has amaximumchange, implying the
extremevalue is the biggest contribution to themultifractal characteristic of their cross-
correlation. With regard to NEI-SPGCE and NEI-ERIX, the shuffled series process
the lowest multifractality, implying that the long-termmemory contributes most to the
multifractal relevance of them. The staggered series of NEI-ECO exhibits a relatively
much lower degree of multifractality, declaring that fat-tailed distribution contributes
more to the multifractal cross-correlation relationship of NEI and ECO.

123



1306 Z. Fu et al.

Ta
bl
e
4
T
he

so
ur
ce

an
al
ys
is
of

m
ul
tif
ra
ct
al
ity

of
si
x
pa
ir
s
of

cr
os
s-
co
rr
el
at
io
n

O
ri
gi
na
l

Sh
uf
fle
d

St
ag
ge
re
d

E
V
re
m
ov
ed

O
ri
gi
na
l

Sh
uf
fle
d

St
ag
ge
re
d

E
V
re
m
ov
ed

N
E
I-
D
A
Q

N
E
I-
G
O
L
D

�
h
x
y

0.
18

13
0.
08

00
0.
04

77
0.
04

62
0.
16

38
0.
14

71
0.
10

37
0.
09

40

�
α
x
y

0.
31

04
0.
17

47
0.
14

00
0.
11

68
0.
25

79
0.
24

73
0.
17

90
0.
16

08

N
E
I-
W
T
I

N
E
I-
SP

G
C
E

�
h
x
y

0.
27

37
0.
20

02
0.
04

25
0.
11

63
0.
17

61
0.
11

63
0.
12

19
0.
16

65

�
α
x
y

0.
45

16
0.
33

94
0.
11

52
0.
19

15
0.
27

86
0.
20

42
0.
22

39
0.
27

64

N
E
I-
E
C
O

N
E
I-
E
R
IX

�
h
x
y

0.
03

96
0.
14

56
0.
02

64
0.
05

49
0.
27

56
0.
04

89
0.
20

34
0.
23

18

�
α
x
y

0.
07

43
0.
23

65
0.
04

43
0.
10

84
0.
41

89
0.
10

10
0.
34

62
0.
41

99

123



Market Efficiency and Cross-Correlations of Chinese… 1307

6 Conclusions

With the increase of public awareness of environmental protection and sustainable
development, new energy is becoming more and more popular. This paper focuses
on the efficiency of China’s new energy market (NEI) and cross-correlation with
other assets. The MF-DFA is first exploited to verify the multifractal characteristics of
Chinese new energymarket. The results suggest that it is indeedmultifractal, implying
that it is not efficient enough. Further, we explore the source of its multifractality
and conclude that long-range correlation contributes most. Then, the association and
multifractality between Chinese new energy market and six assets are explored by
cross-correlation analysis and MF-DCCA, including domestic crude oil, domestic
gold, international crude oil, global new energy market (SPGCE), U.S. new energy
market (ECO), and European new energy market (ERIX). The heterogeneous strength
of the cross-correlations is revealed. In terms of associations with other new energy
markets, NEI displays the strongest association with SPGCE, followed by ECO, and
the European market shows the weakest association. Further, the long memory leads
to the multifractalities of NEI-SPGCE and NEI-ERIX, while what contributes more
to the multifractality of NEI-ECO is fat-tail distribution. With regard to the crude oil,
internal market has a greater linkage with NEI than external market. Extreme values
mainly lead to the multifractal NEI-DAQ, and fat-tail distribution is the major source
for NEI-WTI. Besides, extreme values also lead to the multifractality of NEI-GOLD,
and that may also make some contributions to the insignificant influence of the gold
market on the new energy market.

The findings of this paper will have certain reference significance for the Chinese
government, new energy companies and investors. Firstly, the authorities can have
a comprehensive understanding of the associations between new energy market and
other markets so as to make policies that are more suitable for the current situation in
China. For example, Chinese new energy market has strong linkages with the inter-
national new energy markets, so the government should pay full attention to relevant
policies formulated by foreign governments. Besides, China’s new energy market is
proved to be more significantly affected by domestic oil prices than international ones.
Therefore, when formulating policies related to energy reform, the government should
not only focus on the factors that affect international crude oil, but also pay special
attention to changes in domestic oil prices to avoid shocks in the new energy business.
Secondly, based on the research conclusions of other studies and this work, the new
energy estate is affected bymany factors to varying degrees. However, it all boils down
to the degree of development of the new energy industry itself. Thus, for companies,
they need to increase R&D investment or publicity, gradually reduce the cost of new
energy production and increase the public’s awareness of employing new energy, and
finally realize the dominance of the new energy share in the energy field. Thirdly,
investors can find out the pattern of new energy market in China and make the correct
investment decisions. The low-efficiency market gives investors chance to gain excess
income. In turn, the herding effect of investors creates a higher autocorrelation, which
is exact the source of the multifractality of Chinese new energy market. Thus, consid-
ering the connection between new energy markets, investors should notice the price
trends of the foreign new energy markets to avoid linkage risks. Lastly, investing in
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gold and new energy markets at the same time is regarded as a wise decision, because
a certain degree of risk diversification can be achieved. It is worth mentioning that
we have discovered the multifractality of Chinese new energy market, indicating that
it is not suitable to study the characteristics of China’s new energy market under the
framework of the Efficient Markets Hypothesis.

In the future, our work can be extended in the following directions. Firstly, the
correlation relationship does not mean the causality. Therefore, the causality between
China’s new energy stockmarket with other new energy indices and traditional fossil is
worth exploring.Besides, based on amicroscopic perspective, the relationship between
the stock price of individual firms in the new energy field can also be considered to
analyze. For investors, constructing energy-themed portfolios from individual stocks
may be more useful and easier to implement than indices.
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