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Abstract
This study explores the multi-step ahead forecasting performance of a so-called
hybrid conditional quantile method, which combines relevant conditional quantile
forecasts from parametric and semiparametric methods. The focus is on lower (left)
and upper (right) tail quantiles of the conditional distribution of the response vari-
able. First, we evaluate and compare out-of-sample conditional quantile forecasts
obtained from a hybrid method and from five non-hybrid methods, employing a large
data set of exogenous predictors generated by various GARCH model specifications.
Second, we compare the accuracy of these methods by calculating conditional
quantile forecasts for the risk premium of the monthly S&P 500 index, using a data
set of macroeconomic predictors. Monte Carlo and empirical application results
indicate that the hybrid forecasting provides more accurate quantile forecasts than
non-hybrid methods. The success of the hybrid method is most prominent when
compared with results obtained by a simple equal-weighted combination of quantile
forecasts.
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1 Introduction

Combining forecasts obtained by a hybrid approach has long been known to improve
forecast accuracy. Because each model whose forecasts are to be combined may
consider different predictors and make different assumptions about the underlying
data generating process (DGP) and distributions, averaging the individual forecasts
broadens the information embedded and may offset individual model biases as well;
see, e.g., Zhang (2003) for additional reasons. In a one-dimensional (univariate)
setting the hybridization of forecasts obtained from time series models/methods has
been well researched; see, e.g., Aijaz and Agarwal (2020), Aydin and Isci Güneri
(2015), Pai and Lin (2005), and Valenzuela et al. (2008) among others.

Recently, however, the enhanced availability of large databases with many time
series variables as potential predictors has stimulated interest in high-dimensional
forecasting. Excellent reviews of the state-of-the-art in economics and finance are
given by Fan et al. (2011) and Lee (2011). Furthermore, the introductory section of
the paper by Uematsu and Tanaka (2019) provides an extensive survey of the current
literature on high-dimensional forecasting and variable selection. Along this
direction, conditional quantile averaging procedures in conjunction with dimension
reduction methods have been considered. Examples include quantile forecasting the
S&P 500 equity risk premium (see, e.g., Konzen and Ziegelmann, 2016; Lima and
Meng,2017; Meligkotsidou et al.,2014; De Gooijer and Zerom, 2020) inflation
forecasting (Garcia et al., 2017; De Gooijer and Zerom, 2019), quantile forecasting of
macroeconomic time series (Manzan, 2015; Jiang et al., 2018), and realized volatility
forecasting (Meligkotsidou et al., 2019).

Most of these studies are limited by the assumption that the high-dimensional data
set comes from a linear DGP, and forecasts are obtained from finite-dimensional
parametric models. One exception is the study by De Gooijer and Zerom (2020).
Using a large data set of predictors, involving both macroeconomic predictors and
technical indicators, these authors showed that combining quantile forecasts from
parametric and semiparametric methods (called hybrid quantile averaging) can be
useful in practice. Semiparametric models are infinite-dimensional. As a result, the
quantile forecasts are less prone to model misspecification as may happen with
forecasts obtained from parametric models. In terms of quantile forecast performance
the hybrid method works well in identifying relevant predictors, and more
importantly results in improved combined one-step ahead forecasts over alternative
(no hybridization) conditional quantile methods.

While the empirical findings by De Gooijer and Zerom (2020) are interesting, they
are sample-specific which makes it difficult to generalize the results to novel
situations. In addition, the focus on one-step ahead out-of-sample prediction is
somewhat restrictive. Multi-step ahead out-of-sample quantile forecasting results can
provide more insight in the relative performance of the hybrid quantile averaging
method over a longer time period. Unfortunately, a general theoretical comparison of
quantile forecasts obtained from hybrid and non-hybrid methods is not feasible due
to complicated interactions of nonlinear parameter estimation methods, sparse
modelling, and correlated forecasts. Indeed, further insights regarding the
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performance of the hybrid quantile averaging method can only be obtained via a
Monte Carlo simulation study. In the first half of this paper, we provide such a study.

In the second half of the paper, we evaluate the out-of-sample multi-step ahead
forecasting performance of the hybrid conditional quantile method and five
alternative, non-hybrid, forecasting methods via an empirical application. More
specifically, we report out-of-sample conditional quantile forecasts for the risk
premium of the monthly S&P 500 index using a large data set of macroeconomic
predictors. A simple equal-weighted combination of parametric and semiparametric
conditional quantile forecasts is adopted as a benchmark. Our main finding is that
that hybridization can be an effective way to improve quantile forecasts as compared
to non-hybrid methods.

The rest of this paper unfolds as follows. First, for ease of reference, Sect. 2
summarizes the main features of the semiparametric and hybrid conditional quantile
averaging methods. Section 3 describes six quantile forecasting methods used in the
Monte Carlo experiment. Section 4 introduces the large data set of exogenous
predictors via semiparametric and parametric GARCH model specifications. This
section also discusses the evaluation of quantile forecasts. Section 5 contains the
simulation results, while Sect. 6 presents the empirical results. Finally, Sect. 7
contains some concluding remarks.

2 Conditional Quantile Averaging

2.1 Some Notation

To simplify presentation, we only discuss the case of making h ¼ 1 step ahead
quantile forecasts, where h denotes the forecast horizon. The extension to multi-
horizon ðh[ 1Þ conditional forecasting is straightforward. Let fYtgnt¼1 be a set of
observations obtained from a strictly stationary time series process fYt; t 2 Zg that

depends on qy � 1 past values of Yt, and on a qz-dimensional vector Zt ¼
ðZ1;t; . . .; Zqz;tÞT that consists of exogenous, possibly lagged, stationary time series.

Let Xt ¼ ðYT
t�1;Z

T
t ÞT 2 Rq where Yt�1 ¼ ðYt�1; . . .; Yt�qyÞT, and q ¼ qy þ qz. Given

the observed data set fðXt; YtÞgnt¼1, the one-step ahead out-of-sample sth ð0\s\1Þ
conditional quantile of the unobserved random variable Ynþ1 given Xt ¼ Xn will be
denoted by QYnþ1ðsjXnÞ.

For convenience of later analysis, we define the associated process fðXt; Y �
t Þg 2

Rq � R where the components of the predictor vector Xt ¼ ðX1;t; . . .;Xq;tÞT are given
by

Xj;t ¼
Zj;t; j ¼ 1; . . .; qz;

Ytþðj�qz�1Þ; j ¼ qz þ 1; . . .; q;

(
and
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Y �
t ¼ Ytþqy ; t ¼ 1; . . .;N ; ðN � n� qyÞ:

Hence, we obtain QYnþ1ðsjXnÞ directly via
QY �

t
ðsXn�qyþ1Þ ¼ inffy : FY �

t
ðyjXn�qyþ1Þ� sg, where FY �

t
ð�jxÞ is the conditional

distribution of Y �
t given Xt ¼ x. Furthermore, for a given quantile level s, we define

Ms ¼ fj : QY �
t
ðsjxÞ functionally depends on xjg ð1Þ

as the set of relevant predictors that truly influence QY �
t
ðsjxÞ. We assume that sparsity

of the predictors exists, i.e., jMsj � q which means that only a small subset of
predictors influences QY �

t
ðsjxÞ.

2.2 Semiparametric (SP) Conditional Quantile Averaging

For q large (many predictors), the semiparametric (SP) quantile prediction averaging
method consists of the following three steps.

1. Using gradient boosting, obtain bh0;jðsjxjÞ as a nonparametric estimate of a
marginal conditional quantile, defined as

hjðsjxjÞ ¼ inffy : FY �
t
ðyjXj;t ¼ xjÞ� sg; ðj ¼ 1; . . .; qÞ:

Next, approximate QY �
t
ðsjxÞ by a linear combination of bh0;jðsjxjÞ’s. That iseQY �

t
ðsjxÞ ¼ c0ðsÞ þ

Xq
j¼1

c0;jðsÞbh0;jðsjxjÞ; ð2Þ
where c0;jðsÞ are weights depending on the quantile level s.

2. Using bh0;jðsjXj;tÞ as regressors and applying penalized quantile regression, obtain

the set
cfM s ¼ fj : bc0;jðsÞ 6¼ 0g. This is an estimate of the set of relevant one-step

ahead predictors fMs ¼ fj : cjðsÞ 6¼ 0g identified by the averaging model in (2).

Then, compute an estimate bcðsÞ ¼ ðbc1ðsÞ; . . .;bcqðsÞÞT of the q� 1 parameter

vector of optimal weights cðsÞ ¼ ðc1ðsÞ; . . .; cqðsÞÞT by considering the follow-
ing weighted L1-penalized quantile estimator

bcðsÞ ¼ argmin
cðsÞ

nXN
t¼1

�
qsðY �

t � c0ðsÞ � bhT0;tcðsÞ�þ k
Xq
j¼1

wjjcjðsÞj
o
; ð3Þ

whereqsðzÞ ¼ fs� Iðz\0Þgz is the quantile ‘tick’ loss function, Ið�Þ the
indicator function, k[ 0 is a tuning (or penalization) parameter, wj ¼ jbc�j j�c,

c[ 0, and bc�j is an initial parameter estimate. Observe that for wj ¼ 1, 8j, (3)
becomes the usual LASSO (L) penalty. For the adaptive LASSO (aL) penalty

function used in this paper, the typical choice is given by wj ¼ ðbcðLÞj þ 1=NÞ�1.

3. Finally, using all the ingredients given above, compute the one-step ahead
penalized averaged (PA) and aL-based quantile forecast of Ynþ1, i.e.,
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beQ ðPA�aLÞ
Y �
t

ðsjXn�qyþ1Þ ¼ bc0ðsÞ þ X
u2ceMðaLÞ

k;s

bcðaLÞu ðsÞbhðaLÞu ðsjXu;n�qyþ1Þ; ð4Þ

where
cfMðaLÞ

k;s is an estimate of the set of nonzero quantile predictors fMðaLÞ
k;s ¼

fu : huðsjXu;n�qyþ1Þ 6¼ 0g associated with beQ ðaLÞ
Y �
t
ðsjXn�qyþ1Þ, and where bcðaLÞu ðsÞ

is the uth aL-based quantile regression estimate, or weight.

We adopt a prediction-based criterion for the selection of k. For a given k, letbckðsÞ ¼ �bc1;kðsÞ; . . .;bcq;kðsÞ�T be the penalized estimates and jcfMk;sj be the
corresponding number of non-zero estimates. We choose k by minimizing the
following high-dimensional criterion

QBICsðkÞ ¼ log
�XN

t¼1

qs
�
Y �
t � bc0;kðsÞ � bh00;tbckðsÞ��þ jcfMk;sj logN2N

CN ; ð5Þ

where CN ¼ logðqÞ logðlogðNÞÞ= logðNÞ.

2.3 Hybrid (H) Conditional Quantile Averaging

In addition to the forecasting approach of Section 2.2, there are also situations were a
marginal conditional quantile forecast of Ytþ1 can be computed from a fully specified
parametric DGP. Combining such a parametric quantile with the marginal

semiparametric conditional quantile eQY �
t
ðsjxÞ in (2) is the first step in a so-called

hybrid (H) quantile averaging method. To formalize, we assume that a parametric
model is available with the corresponding estimated marginal quantile functions

fbh1ðsjx1;tÞ; . . .; bhq� ðsjxq�;tÞg ðq� � 1Þ. Then, we define a hybrid extension ofeQY �
t
ðsjxÞ by

eQðHÞ
Y �
t
ðsjxÞ ¼ c0ðsÞ þ

Xq
j¼1

c0;jðsÞbh0;jðsjxjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
semiparametric

þ
Xq�
j¼1

cjðsÞbhjðsjxjÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
parametric

;
ð6Þ

where fc0;jðsÞgqj¼1 and fcjðsÞgq
�

j¼1 are sets of weights depending on the quantile level

s, which we summarize by the set fcðHÞu ðsÞgqþq�
u¼1 with qþ q� � qy þ qz þ q�. The

design matrix Xt consists of the set of potential predictors:

fbh0;1ðsjX1;tÞ; . . .; bh0;qðsjXq;tÞ; bh1ðsjX1;tÞ; . . .; bhq� ðsjXq�;tÞg; ð7Þ

its uth component will be denoted by bhðHÞu ðsjXu;tÞ ðu ¼ 1; . . .; ðqþ q�ÞÞ.
Similar to (3), let fbcðH�aLÞ

u ðsÞgqþq�
u¼1 denote the set of hybrid quantile regression

estimates of fcðHÞu ðsÞgqþq�
u¼1 . Here, we select the tuning parameter k by minimizing the
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hybrid version of (5), and for the weights wu we use the aL regularization technique.

Let
cfMðH�aLÞ

s denote an estimate of the resulting set of selected nonzero quantile

predictors fMðHÞ
s ¼ fu : huðsÞ 6¼ 0g associated with eQðHÞ

Y �
t
ðsjXn�qyþ1Þ. Then, similar

to (4) the one-step ahead hybrid and aL-based quantile forecast of Ynþ1 is given bybeQ ðH�aLÞ
Y �
t

ðsjXn�qyþ1Þ ¼ bc0ðsÞ þ X
u2ceMðH�aLÞ

s

bcðH�aLÞ
u ðsÞbhðHÞu ðsjXu;n�qyþ1Þ: ð8Þ

3 Forecasting Procedures

In Sect. 5, we report recursive prediction results for the following six forecasting
methods.

(1) Equal Weighting (EW): bQðEWÞ
s;t ¼ ð1=qÞPq

j¼1
bhj;tðsjxj;tÞ, where bhj;tðsjxj;tÞ is the

conditional quantile estimates of hjðsjxjÞ, and q ¼ qy þ qz.
1 So, the final EW

estimator does not discard irrelevant predictors.
(2) Penalized Quantile Averaging with L-based penalty (PA-L): Forecasts are

based on weighted averaging similar to the EW method, but the weights are
data driven. Thus, PA-L only considers the second component of (6) with q�

marginal conditional quantiles.
(3) Penalized Averaging of nonparametric quantiles with aL-based penalty (PA-

aL): The conditional quantile forecast is defined by (4), and the set of relevant
predictors consists of q marginal conditional quantiles. Thus, PA-aL only
considers the first component of (6).

(4) Penalized Linear Quantile Regression (P-Lin-QR) with L-based penalty: This
is the well-known quantile estimation method of Koenker (2005). It does not
allow for nonlinearities in the predictors. In this case the forecast results are
based on a set of q marginal conditional quantiles.

(5) Additive QR (Ad-QR): This method is a generalization of method (3) where
each additively entered predictor has a non-parametric (possibly nonlinear)
effect. Unlike methods (2)–(4), we do not conduct predictor selection for Ad-
QR. Instead, we use the predictor selection results of method (3) and
implement a low dimensional additive model.

(6) Hybrid with aL-based penalty (H-aL): The conditional quantile forecast is
defined by (8). In this case the forecasting results are based on a set with
ðqþ q�Þ marginal conditional quantiles. In Sect. 4, we extend the set of
potential predictors with another set of marginal conditional quantiles
representing a parametric approximation for the GARCH-type model under
study.

Note, methods (1) – (3) and (6) are logically connected in the sense that they are
based on the concept of averaging forecasts, assigning weights (equal or varying) to

1 For conditional mean forecasts, the simple average of multiple forecasts is often used as an effective way
of improving forecast accuracy of a certain target variable.
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all predictors. Forecasting methods (4) and (5) are popular approaches used in the
quantile regression literature. Unlike methods (4) and (5), penalized averaging does
not assume that QYnþhðsjXnÞ has an additive structure.

4 Simulation Design

In Sect. 5, we evaluate/compare the multi-step out-of-sample forecasting perfor-
mance of the quantile prediction methods using a recursive forecasting strategy with
an increasing window size for parameter re-estimation. More concretely, the h ¼ 1
conditional quantile forecast is based on a method with parameter estimates using

fYtg300t¼1 observations, the second one on a parameter vector using fYtg301t¼1

observations, and so on. The last one is based on a parameter vector using fYtg399t¼1

observations. Thus, in total there are N � ¼ 100 one-step ahead out-of-sample
conditional quantile forecasts, and where at each step of the recursive forecasting
strategy the available in-sample size N is updated with one observations, starting
from N ¼ 300 till N ¼ 399. No lagged values of Yt are included in the set of
predictors, i.e., qy ¼ 0. This implies that at each step of the recursive strategy n � N
and q � qz. For h[ 1, the recursive scheme starts at observation number N � hþ 1
and ends at N � hþ N�.

4.1 GARCH Specifications

Semiparametric: For the SP design, we consider an absolute value GARCH
(avGARCH) model (Taylor 1986; Schwert 1990) of order (1, q) with exogenous
variables fZj;tgqj¼1, i.e.

Ytþ1 ¼ rtþ1F
�1
m ðVtþ1Þ; ð9Þ

rtþ1 ¼ a0 þ
Xq
j¼1

gjðZj;tÞ þ a1jYtj þ brt; ð10Þ

where gjð�Þ is an unknown real-valued function. In (9), we assume that fVtþ1g are i.i.
d. random variables from U(0, 1) and F�1

m ð�Þ is the inverse of the cumulative dis-
tribution function (CDF) of the Student tm distribution with m ¼ 4 degrees of freedom.
So, the model has heavier tails than a traditional GARCH model with Gaussian
innovations.

Assuming that the root of 1� bz ¼ 0 lies outside the unit circle, rtþ1 can be
written in an infinite-dimensional ARCH(1) representation. Under some regularity
conditions (Xiao and Koenker, 2009) the coefficients of this model decrease
geometrically. Let p ðp � n� hÞ denote a truncation parameter which depends on
the number of in-sample observations. Then, the finite-order approximation of the
ARCHð1Þ model is given by
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rtþ1 	 a0 þ
Xq
j¼1

fjðZj;tÞ þ
Xp
u¼1

aujYtþ1�uj; ð11Þ

where a0 ¼ a0=ð1� bÞ, fjð�Þ ¼ gjð�Þ=ð1� bÞ ðj ¼ 1; . . .; qÞ, and au ¼ a1b
u�1

ðu ¼ 1; . . .; pÞ. To ensure the identifiability of rtþ1, we normalize (11) so that a0 ¼ 1.
The truncation parameter p is small relative to the sample size n, but large enough

to avoid bias of the parameter estimates. Xiao and Koenker (2009) use p ¼ 3n1=4 in
their study of conditional quantile estimators for GARCH models, which in our case
gives p ¼ 12 or 13 with sample sizes n ¼ 300; . . .; 399. However, being conserva-
tive, we set p ¼ 15 and q ¼ 28 throughout the simulation study. Thus, the design
matrix Xt for the SP approach of Sect. 2.2 consists of d ¼ pþ q ¼ 43 predictors.
Moreover, we consider the following set of parameter values: a0 ¼ 0:1, a1 ¼ 0:3 and
b ¼ 0:5.

Using (11), the sth conditional quantile of Ytþ1 given Xt ¼ xt is obtained by

hðSPÞðsjXtÞ 	 a0ðsÞ þ
Xq
j¼1

fj;sðZj;tÞ þ
Xp
u¼1

auðsÞjYtþ1�uj; ð12Þ

where auðsÞ ¼ auF�1
m ðsÞ ðu ¼ 0; 1; . . .; pÞ, and fj;sðZj;tÞ ¼ fjðZj;tÞF�1

m ðsÞ
ðj ¼ 1; . . .; qÞ. For the additive functions, we set fjðzjÞ ¼ 0:05z2j ðj ¼ 1; 2Þ and

f3ðz3Þ ¼ � � � ¼ f28ðz28Þ � 0. The exogenous predictors Zj;t ðj ¼ 1; 2Þ are generated by
the following AR(1) process

Zj;t ¼ 0:5þ 0:3Zj;t�1 þ et; et 
i:i:d:Nð0; 1Þ: ð13Þ
The remaining 26 exogenous predictors will be considered as noncontributory to the
conditional quantile. These predictors are generated to have a compound symmetry
covariance structure: Zu;t ¼ ðVu;t þ sWu;tÞ=ð1þ sÞ ðu ¼ 3; . . .; 28Þ, where Vu;t and
Wu;t are i.i.d. random variables from U(0, 1), and s� 0. When s ¼ 0 the predictors
Zu;t are independent, whereas when s 6¼ 0 they are dependent with correlation
coefficient r � Corr ðZu;t; Zu0;tÞ ¼ s2=ð1þ s2Þ ðu 6¼ u0 ¼ 3; . . .; 28Þ. We report
quantile evaluation results for the case r ¼ 0 ðs ¼ 0Þ and r ¼ 0:8 ðs ¼ 2Þ.

In each step of the recursive forecast strategy, the one-step ahead quantile forecast
is given by

bQðSPÞ
Y �
t
ðsjXN�pþ1Þ ¼ bb0ðsÞ þ

X
j2ceM s

bbjðsÞbhðSPÞj ðsjXj;N�pþ1Þ; ð14Þ

where bhðSPÞj ðsjXj;N�pþ1Þ are estimates of the recursively obtained marginal condi-

tional quantiles hðSPÞj ðsjXj;N�pþ1Þ.
Parametric: For the parametric (P) model, we adopt the following avGARCH

(1, 1) process
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Ytþ1 ¼ rj;tþ1etþ1; etþ1 
i:i:d:Nð0; 1Þ; ð15Þ

rj;tþ1 ¼ n0 þ /jZj;t þ n1jYtj þ n2rj;t; ðj ¼ 1; . . .; qÞ; ð16Þ
where Z1;t and Z2;t are generated as in (13), and where the remaining Zj;t’s are again i.
i.d. U(0, 1) random variables.

Using the apARCH model specification in the R-rugarch package, we estimate
the parameters in (15)–(16) for j ¼ 1; . . .; q. The conditional quantiles are given by

bhðPÞj ðsjZj;tÞ ¼ brj;tþ1U
�1ðsÞ; ð17Þ

where U�1ðsÞ is the sth quantile of the CDF of et, and brj;tþ1 is an estimate of rj;tþ1.
These marginal parametric quantile estimates and the marginal semiparametric

conditional quantiles bhðSPÞðsjZj;tÞ serve as “pilots” of the H-aL conditional quantile
estimates. Note that in the case of the hybrid forecasting method, the design matrix
Xt consists of qþ d ¼ 28þ 43 ¼ 71 potential regressors, i.e.

fbhðPÞ1 ðsjZ1;tÞ; . . .; bhðPÞq ðsjZq;tÞ; bhðSPÞ1 ðsjX1;tÞ; . . .; bhðSPÞd ðsjXd;tÞg: ð18Þ

For instance, with bhðHÞu ðsj�Þ ðu ¼ 1; . . .; qþ dÞ denoting the uth component of the set
(18), the recursively obtained one-step ahead H-aL quantile forecasts of
Y301; . . .; Y400 follow from (8) with n � N ¼ 300; . . .; 399, respectively.

4.2 Evaluating Predicted Quantiles

4.2.1 Expected loss

Recall that qy ¼ 0. Then, let feð�Þt;h ¼ Ynþh � bQð�Þ
Y �
t
ðsjXnþhÞgN

�
t¼1 be the set of h-step

ahead out-of-sample quantile prediction errors (QPEs) obtained by the recursive
forecasting strategy, where the superscript ð�Þ refers to one of the six methods
discussed in Sect. 3, Y �

t ¼ Ytþhþp�1, and N� ¼ 100 for all values of h. As a measure
of performance, we calculate an average of the tick loss function qsð�Þ of QPE values,
i.e.

bLð�Þ
s;h ¼

1

N�
XN�

t¼1

qs
�
eð�Þt;h

�
: ð19Þ

This average is an estimate of the expected loss Lð�Þs;h ¼ E½qs
�
Ynþh �

Qð�Þ
Y �
t
ðsjXnþhÞ

�jF t� where F t is the sigma-algebra generated by the available infor-

mation up to time t. For each recursively obtained quantile forecast, bLð�Þ
s;h weights the

difference between the observed value Ynþh and the forecasted quantile bQð�Þ
Y �
t
ðsjXnþhÞ
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by ð1� sÞ when Ynþh is lower than the sth quantile, and by s when Ynþh exceeds the
quantile. In this sense, (19) is a natural way to evaluate quantile forecasts.

4.2.2 Equal forecast accuracy

We assess the difference between two conditional quantile methods A and B via a

Diebold–Mariano (DM) type test statistic. To this end, let eðAÞt;h and eðBÞt;h be the

associated h-step ahead QPEs. For a fixed quantile level s and fixed forecast horizon
h, the corresponding loss differential is defined as

DðA;BÞ
t;s;h ¼ qsðeðAÞt;h Þ � qsðeðBÞt;h Þ: ð20Þ

The null hypothesis that method A produces as accurate conditional quantile fore-
casts as method B can be tested using the test statistic

DMðA;BÞ
s;h � D

ðA;BÞ
s;h =f Var ðDðA;BÞ

s;h Þg1=2 
Nð0; 1Þ, where DðA;BÞ
s;h is the average over t

of DðA;BÞ
t;s;h at forecast horizon h. Under the alternative hypothesis, we specify a one-

sided test, so that rejection of the null indicates that method B is more accurate than

method A. For h ¼ 1, a consistent estimator of Var ðDðA;BÞ
s;h Þ is given by the sample

variance of DðA;BÞ
t;s;h . For h[ 1, we use the modified DM test proposed by Harvey et al.

(1989).2

4.2.3 Encompassing

The topic of combining conditional quantile forecasts can also be investigated via the
principle of “encompassing” (ENC). To this end, consider the set of h-step ahead

quantile forecasts fbQt;hðsÞ � ð1; bQðAÞ
t;h ðsÞ; bQðBÞ

t;h ðsÞÞTgn�h
t¼1 , a ð3� 1Þ vector, wherebQðAÞ

t;h ðsÞ and bQðBÞ
t;h ðsÞ are two alternative conditional h-step ahead quantile forecasts,

such that Corr
�bQðAÞ

t;h ðsÞ; bQðBÞ
t;h ðsÞ

� 6¼ �1. Suppose there exists a class W of weights.

Let bQðcÞ
t;h ðsÞ¼xT

h
bQt;hðsÞ with xh¼ðxð0Þ

h ;xð1Þ
h ;xð2Þ

h ÞT 2 W, denoting a linear quantile

forecast combination (c). Then, for fixed values of s and h, forecast bQðAÞ
t;h ðsÞ is said to

encompass forecast bQðBÞ
t;h ðsÞ conditionally at time t with respect to the quantile tick

loss function qsð�Þ if and only if E½qsðYtþh � bQðAÞ
t;h ðsÞÞjF t�  E½qtðYtþh �bQðcÞ

t;h ðsÞÞjF t� for all xh 2 X � R3 being a compact set. Testing this inequality for

all x 2 X is, however, infeasible. Instead, let ex ¼ ðexð0Þ; exð1Þ; exð2ÞÞT 2 X be the h-
step ahead optimal forecast combination parameters which, conditionally at time t,
minimizes the expected loss

2 By allotting only a relatively small fraction of the set of observations to the forecast period, we are able
to side-step issues related to the effects of in-sample parameter estimation uncertainty on the distribution of
the DM test statistic.
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eQhðsÞ ¼ argmin
h2H

E½qs
�
Ytþh � bQðcÞ

t;h ðsÞ
�jF t�: ð21Þ

We consider conducting two separate tests: H1;0 : ex ¼ ð0; 1; 0ÞT versus

H1;a : ex 6¼ ð0; 1; 0ÞT, and H2;0 : ex ¼ ð0; 0; 1ÞT versus H2;a : ex 6¼ ð0; 0; 1ÞT, where
for ease of notation we dropped the dependence on h. This testing framework cor-

responds, respectively, to testing whether bQðAÞ
t;h ðsÞ encompasses bQðBÞ

t;h ðsÞ, and whetherbQðBÞ
t;h ðsÞ encompasses bQðAÞ

t;h ðsÞ, conditionally.
A root-n-consistent estimator of (21) is given by

eQT
n;hðsÞ �

�eQð0Þ
n;hðsÞ; eQð1Þ

n;hðsÞ; eQð2Þ
n;hðsÞ

�
¼ argmin

h2H
1

n� h

Xn�h

t¼1

qs
�ðYtþh � ðx0 þ x1

bQð1Þ
t ðsÞ þ x2

bQð2Þ
t ðsÞÞ�: ð22Þ

Under a sufficient weak dependence condition (and additional regularity conditions),
it can be shown (Koenker, 2005) that within the context of conditional quantile

autoregression and for fixed values of s and h,
ffiffiffi
n

p �eQn;hðsÞ � eQhðsÞ
��!d Nð0;RhÞ,

with Rh ¼ sð1� sÞR�1
1;hR0;hR

�1
1;h where R0;h ¼ E½eQt;hðsÞeQT

t;hðsÞjF t�,
R1;h ¼ E½ft;hðexT eQt;hðsÞjF tÞeQt;hðsÞeQT

t;hðsÞ�, and ft;hð�jF tÞ is the conditional density

of Ytþh evaluated at ex.
Following Fuertes and Olmo (2013), we propose the following two Wald-type test

statistics for testing H1;0 and H2;0:

ENCð1Þ
s;h ¼n

�exT
n�ð0; 1; 0Þ�bR�1

n;h

�exn�ð0; 1; 0ÞT�; ð23Þ

andENCð2Þ
s;h ¼n

�exT
n�ð0; 0; 1Þ�bR�1

h

�exn�ð0; 0; 1ÞT�; ð24Þ

where bRh � sð1� sÞbR�1
1;h

bR0;h
bR�1
1;h is a consistent estimator of the 3� 3 covariance

matrix Rh with

bR0;h¼ 1

n� h

Xn�h

t¼1

eQt;hðsÞeQT
t;hðsÞ; bR1;h¼ 1

2ðn� hÞhn
Xn�h

t¼1

IðjYtþh � bQðcÞ
t;h ðsÞj  hnÞeQt;hðsÞeQT

t;hðsÞ:

The kernel-type matrix bR1;h builds upon a method proposed by Powell (1991), with

hn ¼ mn�1=3 ðm[ 0Þ a bandwidth parameter satisfying hn ! 0 and nh2n ! 1 as
n ! 1.3 For a fixed value of the forecast horizon h, it follows from (White, 2001,

Thm. 4.3) that underHi;0, and as n ! 1, ENCðiÞ
s;h�!

d
v23 ði ¼ 1; 2Þ. UnderHi;a, and as

n ! 1, ENCðiÞ
s;h ! þ1 ði ¼ 1; 2Þ.

3 Following Koenker (2005), we set m ¼ 1; the results presented in Sect. 5 hardly vary for alternative
values of m.
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5 Monte Carlo Results

QPE Loss Values
Table 1 presents the sample mean and the sample median values of the ratiobLðMethodÞ
s;h =bLððEWÞ

s;h in the left tail ðs ¼ 0:05 and s ¼ 0:1) and the right tail ðs ¼ 0:9 and

s ¼ 0:95) of the h-step ahead distribution of the QPE values (h ¼ 1 and h ¼ 6) for
independent (r ¼ 0) and dependent (r ¼ 0:8) exogenous predictors. The main
findings are summarized as follows.

1. When r ¼ 0 and r ¼ 0:8, the estimated QPE loss ratios are virtually the same for
h ¼ 1 and h ¼ 6.

2. Relative to the EW method, the H-aL method beats all other methods in terms of
the lowest QPE loss ratios, irrespective of the level of dependence r between the
predictors. Compared to all other methods, the reduction in loss is less
pronounced for the Ad-QR method.

3. As revealed by their lower loss ratios, there are differences between the h ¼ 1
forecasting performance of all methods in the right tail and the left tail of the
distribution of the QPE values. The differences are no longer present for h ¼ 6.

4. For all methods the QPE loss ratios are much smaller at the boundaries s ¼ 0:05
and s ¼ 0:95 than at, respectively, s ¼ 0:1 and s ¼ 0:9. With the exception of H-
aL, the differences in QPE loss ratios are small for all other quantile forecasting
methods at s ¼ 0:5 (not shown here). In this case the set of exogenous predictors
fZj;tg consists of 28 i.i.d. U(0,1) random variables.

Equal Forecast Accuracy
Table 2 shows averages (based on 50 replications) of computed p-values of the

DMðEW;MethodÞ
s;h test statistic for r ¼ 0, with h ¼ 1 and h ¼ 6. Except for the PA-L

method at s ¼ 0:9 and h ¼ 6, all null hypotheses are rejected at a 5% nominal
significance level, implying that the use of a particular nonparametric conditional
quantile method yields statistically more accurate quantile forecasts than using the
EW method. Again, we note that the dependencies between the exogenous predictors
have hardly any impact on the reported p-values. Overall, the PA-aL method has the
lowest average p-value but the differences with the P-Lin-QR, Ad-QR, and H-aL

methods are minimal. The DMðEW;MethodÞ
s;h test results are generally the same for

r ¼ 0:8 (not shown here).

Encompassing

Table 3 shows the average p-values of the ENCðiÞ
s;h ði ¼ 1; 2Þ test statistics for h ¼ 1

and h ¼ 6. Here we make pairwise comparisons between quantile forecasts obtained
by methods 1)–5) relative to quantile forecasts obtained by the H-aL method. Two
general results are evident from the table.

1. In the left tail of the quantile forecast distribution neither H1;0 and H2;0 are
rejected at a 1% nominal significance level for h ¼ 1 and h ¼ 6. This indicates
that quantile forecasts of the H-aL method encompasses those of methods 1)–5).
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Overall, the largest evidence for not rejecting Hi;0 ði ¼ 1; 2Þ seems to occur for
quantile forecasts obtained by the PA-L method.

2. Very different conclusions emerge for the right tail of the quantile forecast

distribution. In particular, at a 5% nominal significance level both ENCðiÞ
s;h tests

plainly reject Hi;0 ði ¼ 1; 2Þ for h ¼ 1 and h ¼ 6, indicating that quantile

Table 1 Sample mean and sample median (in parentheses) of the ratios of tick loss functionsbLðMethodÞ
s;h =bLðEWÞ

s;h for forecast horizons h ¼ 1 and h ¼ 6, and averaged over 50 predictions

r Method h ¼ 1 h ¼ 6

s ¼ 0:05 s ¼ 0:1 s ¼ 0:9 s ¼ 0:95 s ¼ 0:05 s ¼ 0:1 s ¼ 0:9 s ¼ 0:95

0 PA-L 0:672
ð0:650Þ

0:832
ð0:825Þ

0:829
ð0:828Þ

0:652
ð0:637Þ

0:665
ð0:671Þ

0:837
ð0:857Þ

0:856
ð0:880Þ

0:695
ð0:699Þ

PA-aL 0:701
ð0:667Þ

0:885
ð0:869Þ

0:882
ð0:864Þ

0:690
ð0:650Þ

0:716
ð0:716Þ

0:896
ð0:884Þ

0:894
ð0:893Þ

0:715
ð0:727Þ

P-Lin-QR 0:687
ð0:658Þ

0:879
ð0:874Þ

0:874
ð0:869Þ

0:667
ð0:653Þ

0:702
ð0:713Þ

0:895
ð0:873Þ

0:886
ð0:882Þ

0:696
ð0:713Þ

Ad-QR 0:743
ð0:700Þ

0:890
ð0:872Þ

0:890
ð0:882Þ

0:712
ð0:682Þ

0:745
ð0:758Þ

0:906
ð0:904Þ

0:907
ð0:914Þ

0:746
ð0:746Þ

H-aL 0:641
ð0:606Þ

0:810
ð0:803Þ

0:802
ð0:792Þ

0:621
ð0:602Þ

0:649
ð0:639Þ

0:823
ð0:827Þ

0:811
ð0:820Þ

0:662
ð0:672Þ

0.8 PA-L 0:670
ð0:650Þ

0:832
ð0:825Þ

0:829
ð0:828Þ

0:652
ð0:637Þ

0:665
ð0:672Þ

0:837
ð0:858Þ

0:856
ð0:880Þ

0:695
ð0:699Þ

PA-aL 0:706
ð0:681Þ

0:885
ð0:869Þ

0:882
ð0:864Þ

0:690
ð0:650Þ

0:726
ð0:719Þ

0:896
ð0:888Þ

0:894
ð0:893Þ

0:714
ð0:722Þ

P-Lin-QR 0:690
ð0:656Þ

0:879
ð0:874Þ

0:874
ð0:869Þ

0:667
ð0:653Þ

0:706
ð0:703Þ

0:887
ð0:875Þ

0:885
ð0:894Þ

0:696
ð0:714Þ

Ad-QR 0:743
ð0:710Þ

0:890
ð0:872Þ

0:890
ð0:882Þ

0:712
ð0:682Þ

0:749
ð0:745Þ

0:909
ð0:907Þ

0:909
ð0:916Þ

0:737
ð0:758Þ

H-aL 0:638
ð0:609Þ

0:810
ð0:803Þ

0:802
ð0:792Þ

0:621
ð0:602Þ

0:662
ð0:666Þ

0:830
ð0:831Þ

0:808
ð0:833Þ

0:659
ð0:668Þ

EW, Equal weighting; PA-L, Penalized averaging with LASSO penalty; PA-aL, Penalized averaging with
adaptive LASSO penalty; P-Lin-QR, Penalized linear model with quantile regression; Ad-QR, Additive
quantile regression; and H-aL, Hybrid method with adaptive LASSO penalty

Table 2 Averages of computed p-values of the DMðEW;MethodÞ
s;h test statistic; r ¼ 0

Method h ¼ 1 h ¼ 6

s ¼ 0:05 s ¼ 0:1 s ¼ 0:9 s ¼ 0:95 s ¼ 0:05 s ¼ 0:1 s ¼ 0:9 s ¼ 0:95

PA-L 0.030 0.043 0.033 0.029 0.033 0.040 0.050 0.037

PA-aL 0.027 0.024 0.016 0.023 0.028 0.025 0.022 0.027

P-Lin-QR 0.026 0.024 0.016 0.023 0.028 0.028 0.023 0.028

Ad-QR 0.028 0.028 0.021 0.025 0.030 0.030 0.025 0.028

H-aL 0.024 0.033 0.028 0.026 0.032 0.041 0.030 0.033

See the note to Table 1
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forecasts obtained by the H-aL method do not encompass quantile forecasts
obtained from methods 1)–5).

6 Empirical Application

6.1 Data and Forecast Procedure

In this section we make pairwise comparisons between quantile forecasts obtained by
methods 2)–6) relative to quantile forecasts obtained by the EW method. The time
series of interest is the risk premium of the monthly S&P 500 index, denoted by Rt.
The set of potential exogenous predictors consists of qz ¼ 14 macroeconomic
variables covering the time period 1951:01–2016:12 (792 observations).4 Specifi-
cally, we consider the following predictors: dividend-price ratio (DP); dividend yield
(DY); earnings-price ratio (EP); dividend-payout ratio (DE); equity risk premium
volatility (RVOL); book-to-market ratio (BM); net equity expansion (NTIS); treasury
bill rate (TBL); long-term yield (LTY); long-term return (LTR); term spread TMS);
default yield spread (DFY); default return spread (DFR); and inflation (NFL). These
series have been the subject of conditional quantile prediction studies by Lima and
Meng, (2017), Meligkotsidou et al. (2014, 2019), and De Gooijer and Zerom (2020)
among others.

Table 3 Averages of computed p-values of the ENCðiÞ
s;h test statistics ði ¼ 1; 2Þ; r ¼ 0

Test Method h ¼ 1 h ¼ 6

s ¼ 0:05 s ¼ 0:1 s ¼ 0:9 s ¼ 0:95 s ¼ 0:05 s ¼ 0:1 s ¼ 0:9 s ¼ 0:95

ENCð1Þ
s;h

EW 0.014 0.021 0.000 0.018 0.017 0.009 0.000 0.000

PA-L 0.081 0.075 0.000 0.000 0.127 0.071 0.000 0.000

PA-aL 0.054 0.081 0.000 0.020 0.057 0.071 0.000 0.000

P-Lin-
QR

0.046 0.106 0.020 0.000 0.080 0.077 0.000 0.000

Ad-QR 0.093 0.136 0.000 0.000 0.047 0.060 0.000 0.000

ENCð2Þ
s;h

EW 0.071 0.071 0.000 0.018 0.043 0.124 0.000 0.000

PA-L 0.097 0.107 0.000 0.000 0.101 0.080 0.000 0.000

PA-aL 0.054 0.095 0.000 0.020 0.055 0.068 0.000 0.000

P-Lin-
QR

0.071 0.107 0.020 0.000 0.050 0.079 0.000 0.000

Ad-QR 0.068 0.083 0.000 0.000 0.063 0.073 0.000 0.000

H1;0 : bQðMethodÞ
t;h ðsÞ encompasses bQðH�aLÞ

t;h ðsÞ; H2;0 : bQðH�aLÞ
t;h ðsÞ encompasses bQðMethodÞ

t;h ðsÞ. The entries

0.000 denote an average p-value \10�3

4 The data set was downloaded from http://www.hec.unil.ch/agoyal/.
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To obtain estimates of the marginal parametric conditional quantiles of the Rt

series, we adopt a so-called time-varying mean model with exponential GARCH-Z
volatility, i.e.,

Rtþ1 ¼ b0;j þ b1;jZj;t þ ej;tþ1; ej;tþ1 
i:i:d:Nð0; r2j;tþ1Þ;
logðr2j;tþ1Þ ¼ d0;j þ d1;jZj;t þ d2;j logðr2j;tÞ þ d3;j

��� ej;t
rj;t

���þ d4;j
ej;t
rj;t

; ðj ¼ 1; . . .; qzÞ:

8><>:
ð25Þ

This is a very wide model specification from the literature on the predictability of
the S&P 500 risk premium; see, e.g., Cenesizoglu and Timmermann (2012). Thus,
with the 14 semiparametric marginal quantiles, the complete portfolio of predictors
for the hybrid quantile averaging method consists of 28 potential variables.

We use a recursive forecasting strategy similar to the one discussed in Sect. 4. For
h ¼ 1, the first forecast origin is 1965:12 and hence the first in-sample (estimation)
period is from 1951:01 to 1964:12 ðN ¼ 168Þ: The second in-sample covers the
period 1951:01–1965:01 ðN ¼ 169Þ. The last in-sample covers the period 1951:01–
2016:11 ðN ¼ 791Þ. Thus, in total there are N� ¼ 624 one-step ahead out-of-sample
conditional quantile forecasts. For h ¼ 6, the first forecast origin is 1964:07, and the
last forecast origin is at 2016:06.

6.2 Empirical Results

Table 4, top panel, presents sample means (taken over N� ¼ 624 values) of the ratios

of the tick loss functions bLðMethodÞ
s;h =bLððEWÞ

s;h for s ¼ 0:05; 0:1; 0:9, and 0.95, and h ¼ 1

and h ¼ 6. With the exception of Ad-QR, the values of the estimated QPE loss ratios
are all below one, irrespective of the forecast horizon h. This indicates that there are
improvements in conditional quantile forecasts over out-of-sample quantile forecasts
obtained by the EW method. Overall, the best forecast performance seems to occur
for P-Lin-QR and H-aL. Interestingly, for s ¼ 0:05 and s ¼ 0:95 the P-Lin-QR
method has slightly lower QPE loss ratios than the H-aL method irrespective of the
value of h. In this respect, recall that conditional quantiles based on the P-Lin-QR
method are best for linear functionals of predictors. So the choice of s can affect the
ranking of P-Lin-QR and H-aL.

The bottom panel of Table 4 shows p-values of the DMðEW;MethodÞ
s;h test statistic.

Note, that the null hypothesis of equal forecast accuracy is not rejected for PA-aL and

Ad-QR for all values of s and h. We also see that the p-values of DMðEW;PA�LÞ
s;h for

h ¼ 1; 6, and s ¼ 0:9 are close to one, indicating that there is no significant
difference between the forecast performance of EW and PA-L. Overall, the top and
bottom panels confirm the good performance of the H-aL method as opposed to the
EW method of combining quantile forecasts.

Table 5 shows that the gain in forecasting performance of the H-aL method mainly
comes from including the predictor variables DFR and RVOL in the parametric
component. By contrast, the semiparametric component includes a variety of
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predictor variables with significant weights on the set of potential predictors. Finally,
as revealed by their selection frequencies less than 5%, there is evidence that the
variables DE, BM, and LTY hardly contribute to the predictability of Rt.

Table 4 Pairwise comparison of quantile forecasting methods for the risk premium of the monthly S&P
500 index

Method h ¼ 1 h ¼ 6

s ¼ 0:05 s ¼ 0:1 s ¼ 0:9 s ¼ 0:95 s ¼ 0:05 s ¼ 0:1 s ¼ 0:9 s ¼ 0:95

QPE loss ratios (bLðMethodÞ
s;h =bLðEWÞ

s;h )

PA-L 0.878 0.891 0.856 0.808 0.875 0.885 0.853 0.811

PA-aL 0.942 0.967 0.914 0.891 0.946 0.973 0.910 0.892

P-Lin-QR 0.760 0.824 0.818 0.719 0.759 0.821 0.815 0.715

Ad-QR 0.924 1.025 0.947 0.967 0.919 0.969 1.101 0.911

H-aL 0.772 0.817 0.813 0.746 0.771 0.817 0.806 0.742

Equal forecast accuracy (p-values of DMðEW;MethodÞ
s;h )

PA-L 0.001 0.001 0.955 0.019 0.001 0.000 0.905 0.016

PA-aL 0.922 0.987 1.000 0.999 0.992 0.993 1.000 1.000

P-Lin-QR 0.000 0.000 0.011 0.000 0.000 0.000 0.008 0.000

Ad-QR 0.377 0.501 0.997 1.000 0.309 0.137 1.000 0.988

H-aL 0.000 0.000 0.008 0.001 0.000 0.000 0.003 0.001

See the note to Table 1. Embolded entries show the lowest QPE ratios for each s. The entries 0.000 denote
a p-value\10�3

Table 5 Frequency of predictors which are selected in at least 5% of the times by each component (Comp)
of the H-aL method for forecast horizon h ¼ 1

Predictors

s Comp DP DY EP RVOL NTIS TBL LTR TMS DFY DFR INFL

0.05 P 6.7 6.3

SP 6.5 9.1 8.1

0.1 P 7.0 7.1

SP 5.8 7.2 5.4 8.0 5.0

0.9 P 15.3 13.1

SP 6.6 11.2 10.1 8.7

0.95 P 14.9

SP 8.4 10.9 11.1 6.7

SP, Semiparametric; and P, Parametric component of H-aL method
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7 Conclusion

In the fist half of the paper, we have explored the multi-step ahead quantile
forecasting performance of a hybrid method versus quantile forecast results obtained
by five alternative, non-hybrid methods, via a Monte Carlo study. The study yields
two main findings. First, relative to quantile forecasts obtained from simple
averaging quantile forecasts (i.e., the EW method), the hybrid H-aL method is more
accurate in terms of the lowest QPE loss ratios, irrespective of the level of
dependence between the predictors. This evidence is strongest in the tails of the
forecast distribution of the response variable, and most likely due to the benefits of
including information from multiple predictor variables. Second, quantile forecasts
obtained by the H-aL method do not encompass quantile forecasts from five
competitors in the right tail of the quantile forecast distribution.

The second half of the paper provided an empirical application to forecast the risk
premium of the monthly S&P 500 index. Very similar results are obtained as in the
Monte Carlo simulation study. In particular, our findings strongly suggest that it is
possible to use pre-selected macroeconomic predictors to produce better out-of-
sample quantile forecasts than the EW combination approach which uses fixed, time-
invariant, weights of conditional quantile forecasts. The H-aL method on the other
hand uses stochastic rather than fixed weights. As such, we showed that variable
selection and random weights jointly can achieve forecast efficiency gains in the tails
of the quantile return distribution. We also provided some insight as to where the
gains of the hybrid method come from.
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