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Abstract
We present a study on portfolio investments in financial applications. We describe a
general modeling and simulation framework and study the impact on the use of
different metrics to measure the correlation among assets. In particular, besides the
traditional Pearson’s correlation, we employ the Detrended Cross-Correlation
Analysis (DCCA) and Detrended Partial Cross-Correlation Analysis (DPCCA).
Moreover, a novel portfolio allocation scheme is introduced that treats assets as a
complex network and uses modularity to detect communities of correlated assets.
Weights of the allocation are then distributed among different communities for the
sake of diversification. Simulations compare this novel scheme against Critical Line
Algorithm (CLA), Inverse Variance Portfolio (IVP), the Hierarchical Risk Parity
(HRP). Synthetic times series are generated using the Gaussian model, Geometric
Brownian motion, GARCH, ARFIMA and modified ARFIMA models. Results show
that the proposed scheme outperforms state of the art approaches in many scenarios.
We also validate simulation results via backtesting, whose results confirm the via-
bility of the proposal.

Keywords Portfolio analysis · Simulation · Complex networks · Modularity · Fintech

1 Introduction

Recent advances in financial technologies (fintech) and decentralized finance (DeFi)
are revolutionizing the way we invest and manage our wealth. For instance, the
advent of cryptocurrencies, ICOs and related DeFi contexts, has surely reshaped the
patterns of investments, as well as the audience of people interested in investing their
money. This new and vibrant scenario fosters novel opportunities and offers elements
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that suggest revising and improving the techniques to allocate investments on
different possible assets and stocks (portfolio management), based on data science
and data analysis techniques. This involves three main aspects related to i) the way
data traces are analyzed, ii) how the portfolio allocation is performed, iii) which
techniques are used to assess whether the portfolio allocation schemes can effectively
perform in various scenarios.

As concerns data trace analysis, in the last few years novel metrics have been
introduced, that try to better characterize the correlations among different data series,
which cannot be considered as produced by stationary processes. These approaches
are usually based on detrended fluctuation analyses. In particular, the Detrended
Cross Correlation Analysis (DCCA) and Detrended Partial Cross Correlation
Analysis (DPCCA) seem to be promising metrics (Oh et al. 2011; Wang et al. 2011;
Guedes et al. 2017; Podobnik and Stanley 2007; Ide et al. 2017).

Portfolio allocation is a main research topic, that has been studied in depth in the
last decades, especially by the economic and financial community. However, novel
studies showed that the contribution of techniques based data and computer science
can be quite beneficial. In fact, they promote the design of innovative allocations
schemes based on machine learning and data analysis (Lopez de Prado 2016; Wu
et al. 2021; Mehlawat et al. 2021; Kim et al. 2021; Zhang et al. 2020; Kwak et al.
2021). For instance, Lopez de Prado (2016) presents a portfolio asset allocation
scheme that exploits clustering techniques. Moreover, Kwak et al. (2021), Andersson
and Oosterlee (2021) are examples of papers where a deep learning framework is
proposed to optimize some portfolios management aspects. Needless to say, due to
the novelty of these techniques, there is room for improvement.

In order to foster the design of novel portfolio allocation schemes, there is the
need for a framework that allows to effectively study how these devised schemes
perform in different scenarios. Indeed, one approach to studying different portfolio
allocation strategies is based on backtesting, i.e., taking historical data traces of
different asset and stock prices and trying to simulate how the scheme performs over
these traces. The principal danger of this common approach is that it can generate
statistical overfitting (Cesari and Cremonini 2003). The computational capabilities of
modern computers enable the analysis of thousands of variations of a given strategy,
thus allowing to perfectly tune the hyper-parameters of the schemes over such traces.
To avoid overfitting, a viable solution consists in performing (Monte-Carlo)
simulation analyses. In essence, multiple pseudo-random data trace generation is
exploited to study the devised portfolio allocation schemes. Studying the behavior of
a scheme over hundreds of (randomly generated) simulation scenarios allows
obtaining a wide and general idea about the performance of the scheme in that type of
scenario. Backtesting can be finally used as a final test set, to confirm the viability of
the devised approach.

In this paper, we try to give a contribution in these three dimensions. In particular,
first, we present a Monte Carlo simulation framework, in which different portfolio
allocation strategies are compared. Different typologies of data traces are studied to
widely assess the schemes. Then, as a further test, we provide results of a more
traditional backtest approach. Backtest outcomes confirm the results obtained from
simulations.
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Second, we implement different variants of the considered schemes, that are based
on different metrics used to assess the correlation among data traces, i.e., the
traditional Pearson correlation coefficient, DCCA and DPCCA. In particular, we plug
these metrics into the allocation schemes, to analyze whether different behaviors are
obtained and if some among these metrics perform better than others.

Third, we propose a novel portfolio allocation scheme that resorts to the idea that a
group of assets can be treated as a complex network. Thus, we represent the set of
assets as a graph and use network modularity to find communities of assets, based on
their level of correlation. Weights of the allocation are equally distributed among
these communities. While the approach is very simple and naive, results show that in
most cases this approach outperforms other well-known strategies. This confirms that
the use of complex network theory, and data science techniques in general, are
important tools to consider in portfolio analysis applications.

The remainder of this paper is organized as follows. Section 2 provides a general
background, needed to easily follow the discussion provided in the rest of the paper.
Section 3 introduces the main terminology and notation, as well as the different
portfolio allocation schemes that are evaluated in the subsequent sections. Section 4
describes the simulation framework and the evaluation study based on different types
of simulation employed to generate the different corpuses of data traces. In this
section, we also introduce the metrics employed to evaluate the compared schemes.
Section 5 presents and discusses the results obtained using simulation, while Sect. 6
presents results from a backtest analysis. Section 7 provides a discussion on the
results coming from the simulations and backtest, to provide a final overview on the
performance of the considered approaches in different scenarios. Finally, Sect. 8
provides some concluding remarks.

2 Background

In this section, a general background is introduced. Clearly enough, we cannot cover
all the aspects related to modern portfolio theory. The interested reader can find a
variety of interesting resources on the topic, e.g., (Markowitz 1952; Elton 2014).

2.1 Modern Portfolio Theory

In 1952, Markowitz published a seminal work introducing an investment theory
based on mean-variance optimization (Markowitz 1952). Let’s assume that you have
a certain amount of money to invest; a given set of possible assets, the problem is to
find the optimal asset allocation, i.e., how much you are going to invest in each asset.
Portfolio allocation schemes cope with this issue, trying to identify the best trade-off
between the expected return and risk (measured as the variance of returns). Indeed,
some assets might have a high volatility that can result in higher profits, as well as in
higher associated risks.

Since the goal is to distribute the allocation of investments into variegated assets,
these approaches employ a forecast of the covariance matrix of the expected returns,
in order to understand if different assets are correlated or not. Notable risk-based
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portfolio allocation methods that rely on such covariance forecasts are the minimum
variance (Clarke et al. 2006), maximum diversification (Choueifaty and Coignard
2008), equal risk budget (Leote de Carvalho et al. 2012), equal risk contribution
(Maillard et al. 2010). Usually, the covariance of the expected returns are estimated
using the covariance of a sample of previous returns.

In Sect. 3, we will introduce the main notation and go deeper into some details on
the specific schemes which are considered in this study.

2.2 Detrended Fluctuation Analysis

A main problem here, in the end, is to properly analyze times series related to assets
returns. The difficulty is due to the fact that a financial system is a complex system,
influenced by a multitude of concurrent and usually unknown factors. Not only, as it
happens in many types of other complex systems, e.g., climatology, biology, etc.,
when we look at many time series, we find that their fluctuations may exhibit cross-
correlation characteristics. As a demonstration, in Oh et al. (2011), Stanley
et al. revealed the existence of cross-correlation properties among stocks in the
Korean market. Moreover, in Wang et al. (2011), 48 financial indices were
considered and long-range power-law cross-correlations in their returns have been
identified.

All this reveals a limitation on the typical use of the traditional Pearson’s
correlation coefficient on financial data traces, whose use is justified to represent a
linear correlation between two time series, which are both assumed to be stationary.
To address the drawbacks of Pearson’s correlation, the Detrended Cross-Correlation
Analysis (DCCA) (Guedes et al. 2017; Podobnik and Stanley 2007) and the
Detrended Partial-Cross-Correlation Analysis (DPCCA) have been recently intro-
duced (Ide et al. 2017). These approaches are a generalization of the method of
Detrended Fluctuation Analysis (DFA) for non-stationary time series (Peng et al.
1994).

2.2.1 Detrended Cross-Correlation Analysis (DCCA)

The Detrended Cross-Correlation coefficient qDCCAðnÞ is a measure aimed at
quantifying the level of cross-correlation between non-stationary time series
fxig; fyig. It is defined as the ratio between the detrended covariance function F2

xy

and the detrended variance functions FxxðnÞ, FyyðnÞ of the two series, i.e.

qDCCA;xyðnÞ ¼
F2
xv

FxxðnÞFyyðnÞ : ð1Þ

The value of qDCCAðnÞ1 ranges between �1 and 1. A value of qDCCAðnÞ ¼ 0 means
there is no cross-correlation, while values �1 or 1 reveal a perfect negative or

1 With some abuse of notation, when possible we omit to specify the names of the time series, thus
preferring qDCCAðnÞ to qDCCA;xyðnÞ, for the sake of simplicity.
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positive correlation. Such measure can be obtained through the following algorithm
(Guedes and Zebende 2019):

Step I Given the two times series fxig; fyig; i ¼ 1; . . .; T , we create two integrated
series

Xk ¼
Xk
i¼1

xi � hxi; Yk ¼
Xk
i¼1

yi � hyi;

with hxi; hyi being the mean value of each time series, and k ¼ 1; . . .; T .
Step II Divide fXkg; fYkg into overlapping boxes of equal length n, being n a

parameter to set.
Step III In each box j, a linear fit is performed (by least-squares fit) for each series,

here denoted f ~Xk;jg; f ~Yk;jg. The covariance of the residuals in each box (length n) is

f 2xyðn; jÞ ¼
1

ðnþ 1Þ
Xjþn

k¼j

ðXk � ~Xk;jÞðYk � ~Yk;jÞ:

Step IV The detrended covariance function F2
xyðnÞ is calculated as the mean of the

covariance f 2xy over all the ðT � nÞ boxes

F2
xyðnÞ ¼

1

ðT � nÞ
XT�n

i¼1

f 2xyðn; iÞ:

Step V Having the values of F2
xyðnÞ, and being FxxðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
xxðnÞ

p
, we can compute

qDCCA;xyðnÞ through Eq. (1).
Clearly enough, if we have a set of N time series (representing asset returns, for

instance), we can create a matrix of DCCA coefficients, i.e.,

qDCCAðnÞ ¼ ½qDCCA;ijðnÞ�;
with i; j ¼ 1; . . .;N .

As already mentioned, this metrics has been already studied in a wide range of
different application scenarios where data series are used (Wang et al. 2011;
Podobnik and Stanley 2007; Ide et al. 2017; Zebende et al. 2013; Krištoufek 2014;
Zebende 2011) and even in economic contexts (Guedes et al. 2017; Guedes and
Zebende 2019; Ferreira et al. 2020). Thus, it becomes interesting to understand if this
is a viable metrics to use in portfolio asset allocation.

2.2.2 Detrended Partial Cross-Correlation Analysis (DPCCA)

Detrended Partial Cross-Correlation Analysis (DPCCA) is an extension of DCCA. Its
aim is to combine the advantages of DCCA and partial correlation to further improve
the ability to quantify the relation between non-stationary data series. That is,
similarly to DCCA, DPCCA should remove the effects of non-stationarity and
provide information on the cross-correlation. Moreover, DPCCA should allow
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investigating the correlations of multiple series in a complex system and find their
intrinsic relations (Yuan et al. 2015).

To measure it, given the matrix of DCCA coefficients qDCCAðnÞ, we must invert it,
obtaining CðnÞ ¼ q�1

DCCAðnÞ. Then, the coefficients of the DPCCA are measured as

qDPCCA;xyðnÞ ¼
�CxyðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CxxðnÞCyyðnÞ

p

being CxyðnÞ the (x, y)-th element of the matrix CðnÞ.
In the rest of this work, we will exploit these two correlation metrics as an

alternative to the classic Pearson’s correlation, within the portfolio allocations
schemes. An implementation of DCCA and and DPCCA is available in Ide et al.
(2017), Ide (2018)

3 The compared Schemes

In this section, we overview the portfolio allocation schemes that we use in our study.
Three of them represent the state of the art of modern portfolio theory, i.e., Critical
Line Algorithm (CLA), Inverse Variance Portfolio (IVP) and Hierarchical Risk Parity
(HRP). Furthermore, we propose a novel scheme that exploits complex network
theory and network modularity as the main elements to categorize and cluster
different assets.

All the approaches exploit the standard statistical covariance and correlation as the
means to identify those assets that are similar. While this represents a viable and
reasonable approach, it forces the analyst to make the (strong) assumption that asset
trends are stationary. Moreover, these metrics are tied to the returns time series, not
taking into consideration other possible external information that can be easily
inferred today, thanks for instance to novel data science and machine learning
techniques. Examples go from a simple characterization of assets based on their
typology (e.g., hi-tech companies, banking, healthcare, etc.), to the use of sentiment
analysis techniques based, for instance, on the analysis of social networks
(De Michele et al. 2019; Ferretti et al. 2019). These considerations suggest that
there is room for improvement, in this sense.

Trying to follow this idea, we will consider some variants of the classic
approaches. In particular, we plug into the schemes three different correlation
metrics, i.e., Pearson’s correlation, DCCA and DPCCA, to assess their performance.

3.1 Main Terminology and Notation

We consider a generic portfolio composed of N risky assets a ¼ ða1; . . .; aNÞ. The
return of an asset ai, at time t is denoted as rt;i

2. Weights represent the share of wealth
invested in assets. We denote with w ¼ ðw1; . . .;wNÞ the vector of weights associated
with the set of assets a. Thus, the expected return on the portfolio is wTr.

2 When time is not important, for the sake of legibility we will omit the t subscript.
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The N � N covariance matrix of the returns r ¼ ðr1; . . .; rNÞ is denoted by R.
Given the assets’ time series, the covariance matrix is obtained by taking a window
of the assets’ return time series and by performing the calculation of the covariance in
those time intervals. The standard deviation of returns is reported in the main

diagonal of the covariance matrix, i.e., r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðRÞp

. Pearson’s correlation matrix
can be measured as r�1Rr�1. Conversely, the DCCA and DPCCA correlation
measures are calculated as described in the previous section. Since we are contrasting
different measures of correlation, we will refer to Pearson’s correlation, DCCA or
DPCCA coefficients, depending on the specific variant of the scheme under
investigation. In the experimental evaluation, these variants are referred as “cov”,
“dcca” and “dpcca”, respectively.

3.2 Critical Line Algorithm (CLA)

The Critical Line Algorithm (CLA) is the one introduced by Markowitz in
Markowitz (1952). It solves a quadratic optimization problem with constraints on
each weight (Bailey and López de Prado 2013). The approach focuses on deriving an
efficient portfolio that yields the maximum return for a minimum risk (or volatility).
More specifically, the approach tries to solve the following optimization

minimize wTRw

subject to li �wi � ui

XN
i¼1

wi ¼ 1

XN
i¼1

wiri ¼ rp

where li; ui are lower and upper bounds for the weights wi, a constraint is present to
ensure that the sum of the weights is equal to 1, and since an objective is to minimize
the variance on returns ri, there is an extra constraint with respect to a targeted return
rp.

This problem can be turned into a new, unconstrained problem that uses Lagrange
multipliers k and c,

L½w; k; c� ¼ 1

2
wTRw� cðwT1� 1Þ � kðwTr� rpÞ:

To find a minimum, it is possible to differentiate with respect to all the parameters of
the Lagrange function and set the resulting equations equal to zero. This generates a
system of ðN þ 2Þ linear equations which can be solved to find the resulting w
weight vector of allocations.

While the approach is the seminal solution for portfolio allocation, it is recognized
that it has some problems related to instability, concentration and under-performance
(Elton 2014). An open source implementation of this approach is available in Bailey
and López de Prado (2013).
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3.3 Inverse Variance Portfolio (IVP)

The rationale behind the Inverse Volatility Portfolio (IVP) allocation strategy is, in
essence, simple: investments on assets are weighted in proportion to the inverse of
the assets’ volatilities. Thus, given the standard deviation of returns r, IVP assigns
the following weights to the N assets (Shimizu and Shiohama 2020)

w ¼ r�1

1Tr�1

in matrix form or, alternatively, the weight wi to be assigned to each asset ai is
measured as

wi ¼ 1=riPN
k¼1 1=rk

:

3.4 Hierarchical Risk Parity (HRP)

The Hierarchical risk parity (HRP) is an approach based on the use of graph theory
and machine learning to build a diversified portfolio (Lopez de Prado 2016). An
overview of the approach is reported in Algorithm 1. The algorithm operates in three
stages. The first step uses a hierarchical clustering scheme that clusters similar assets
based on their correlation. To perform the clustering, a notion of distance among
assets is defined, that is based on their correlation level. In particular, the defined

distance between two assets ai; aj is defined as dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð1� qijÞ

q
, where qij is the

correlation between ai and aj. Based on such distance metrics, near assets are
combined into the same clusters.

The second step consists in rearranging rows and columns of the covariance
matrix, so as to obtain a quasi-diagonal covariance matrix. The rationale is to have a
matrix with high correlations placed close to each other. Quasi-diagonalization
ensures that similar investments are grouped together and dissimilar ones are kept
fairly apart.

The third step consists in providing weights to assets, which are distributed using
an inverse-variance allocation scheme. This is accomplished by recursively bisecting
the rearranged covariance matrix. In particular, in the original paper an IVP approach
is applied to assets within a cluster, but alternatives are possible (Lopez de Prado
2016; Lohre et al. 2020). An implementation of this scheme is available in Martin
(2021).
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This approach is a seminal scheme on the use of clustering techniques applied to
portfolio allocation. However, some possible limitations have been discussed in the
literature. In particular, the use of the “single linkage”, as the hierarchical clustering
technique, can create a tree of similar assets which might be very deep and wide. This
might prevent the creation of dense clusters and affect the weight allocations
(Papenbrock 2011). Indeed, large weights can be allocated to few assets, with a
resulting unequal distribution of the portfolio.

3.5 Naive Network Modularity Based Allocation (NetMod)

This approach is based on the idea that a set of assets can be considered as a set of
entities that share some characteristics and trends. Thus, assets form a complex
network where nodes (assets) can be linked together based on their level of similarity.
Complex network theory is an area of scientific research that is based on the idea to
see everything as a network. This idea is largely inspired by empirical findings that
extract meaningful mathematical properties of real-world networks, such as computer
networks, IoT and technological systems, social networks, as well as biological and
climate ones, gossip and epidemic schemes (Blondel et al. 2008; Ferretti 2013, 2017;
Newman 2003).

In this work, we keep a naive approach based on the correlation matrix, i.e., in the
network, nodes are the assets and a link (i, j) exists between nodes i, j if they have a
correlation qij [ a, where a is a parameter (Lohre et al. 2014). Links (i, j) have a
weight Aij equal to Aij ¼ qij.

3

Given the network, what we do next is to try to identify communities of assets that
are similar. To this aim, we apply the Louvain algorithm to measure the network
modularity and extract communities of assets (Newman 2004). Modularity is a
metrics that measures the strength of a division of a network into different clusters
(communities). Modularity is usually comprised between �0:5 and 1, i.e., when
equal to �0:5, it is not possible to find a good partitioning of the net into
communities; when equal to 1, a good partitioning is possible, with dense
connections between the nodes within communities but sparse connections between
nodes in different communities.

The formula to measure modularity is Blondel et al. (2008)

3 Notice that, here, we refer to the weight of the link in the graph, not to the weights of the portfolio
allocation, used to distribute the investments over multiple assets.
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Q ¼ 1

2m

X
ij

�
Aij � kikj

2m

�
dðci; cjÞ

where Aij represents the link weight between nodes i and j; ki is the weighted degree
to node i (same is for j); m is the sum of all of the link weights in the net; ci represents
the community of i; dðx; yÞ is the Kronecker delta function.

The Louvain algorithm operates in a greedy manner, by iteratively repeating two
steps (Blondel et al. 2008). The first step is devoted to find small communities, on a
local basis. Thus, it starts with each node that is assigned to a different community.
Then, for each node i and each of its neighbours j, it is checked if the overall
modularity increases by grouping i and j. In the second step, the identified
communities are grouped into a single node to pass through another iteration. After
each iteration, the number of thus communities reduces, and the iteration continues
until no changes are observed.

In NetMod, once communities of assets have been identified, a simple
asset allocation scheme is employed, where the weight to be allocated is equally
partitioned for each community, and this amount is once again equally distributed
among assets in the community (see Algorithm 2).

Clearly enough, this is a simple approach, which has been devised as a basic
strategy to understand if the notion of modularity brings some interesting outcomes.
We claim that, starting from this proposal, further research might lead to novel
optimized portfolio allocation schemes. An open source implementation of the
described scheme, in python code, is available in Ferretti (2021).

4 An Evaluation Study of Different Portfolio Allocation Strategies

In this section, we discuss the main building blocks used to perform the evaluation
analysis of the compared portfolio allocation schemes. Thus, we present the types of
simulations that allow generating different data traces for assets prices and returns.
Then, we discuss the main metrics of interest to assess how the portfolio allocation
strategies perform with different types of data traces.
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4.1 Monte-Carlo Simulation Framework

To assess all the considered portfolio allocation methods in multiple and heterogeneous
situations, different types of simulations have been implemented, that generate
synthetic return traces with diverse characteristics. Return rt of an asset at time t is
obtained through the price pt of the asset in different moments, i.e. rt ¼ pt�pt�1

pt�1
.

Algorithm 3 shows a simplified sketch of the Monte-Carlo simulation to clarify
how data are generated and used to assess the portfolio simulation scheme. The
parameters that define the simulation environment are the size of the corpus of
simulations (numIters, i.e., how many different simulation runs are performed for the
considered scenario), the length of the data trace (simLength, i.e., the duration of each
simulation run, in terms of number of assets’ prices and related returns observations),
the size of the time interval after which the weights of the portfolio allocation are
tuned and rebalanced based on the return observations (deltaT, i.e., how often the
portfolio is updated), the number of assets to be generated (numAssets), the data trace
generation type (dataType, i.e., which scheme is employed to generate the data trace),
the specific portfolio allocation scheme used to perform the allocation (allocationS-
trategy). Thus, each simulation run corresponds to a randomly generated instance of
occurrences. A data trace is generated using a specific method (see below for those
that have been tested during this evaluation). The data trace corresponds to a series of
returns for each simulated asset. Then, thanks to the specific portfolio allocation
scheme and based on the previous assets’ return observations, the simulation
computes, on a regular basis (i.e., every deltaT timesteps in Algorithm 3), the weights
to be associated with the set of assets. Thus, the weights are used on a period which is
different from the one exploited to optimize the strategy (out-of-sample). Through
the computed weights and the returns of the assets, it is possible to measure the
earned portfolio return. During the simulation, all these results are logged to collect
final statistics at the end of the execution of the whole corpus.
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The implemented types of simulation scenarios are discussed in the following.
Figure 1 shows examples of possible sets of generated traces, when the number of
synthetic generated assets is equal to 8. The figure should clarify that each simulation
type provides a diverse scenario where the portfolio allocation methods are employed
and analyzed. This provides a wider and more general understanding of the
performances of all these methods, rather than using classic stationary data traces,
only.

In the simulation tests discussed in the rest of the paper, the following parameter
setting was used. We repeated an amount of 100 simulation runs for each simulation
corpus (i.e., each type of simulation). The length of the generated data trace was
equal to 520 (equivalent to two years of daily history), while the deltaT parameter
was set equal to 60. The number of simulated assets was equal to 32. The window
period employed to measure the values of DCCA and DPCCA (i.e., the parameter n
in Sect. 2.2.1) was set equal to 60.

4.1.1 Gaussian Returns Simulations

We already mentioned that most studies on portfolio allocation employ the
assumption that stationary data series can be used in their analyses (Cont 2001).
As a matter fact, assets’ price time series are commonly non-stationary (Zebende
et al. 2013). Thus, to perform inferential analyses, researchers usually focus on
returns on prices, assuming that these can be better approximated via stationary
processes. Following this idea, returns are often modeled via Normal distributions
(Lopez de Prado 2016).

This type of simulation follows such an approach, i.e., assets returns are generated
using Gaussian distributions. In particular, x asset returns are generated using
independent Guassian distributions. Then, other y asset returns are generated to be
dependent on the previous ones. Each of these y dependent traces is generated by
randomly taking one of the independent x assets’ returns, and adding some white
noise, i.e., another (steeper) Gaussian distribution. In Sect. 5, we will show results
from a corpus of simulations where the number of assets was equal to 32, with
x ¼ 16; y ¼ 16.

While this represents a standard approach to perform Monte-Carlo simulations in
financial applications, it has been shown that financial asset return distributions are
usually not Normal (Cont 2001). For this reason, other simulation types for the
generation of assets returns are considered in the following.

4.1.2 Geometric Brownian Motion

The Geometric Brownian Motion (GBM) simulation scheme implements a
continuous-time stochastic process, in which the logarithm of the randomly varying
quantity of interest follows a Brownian motion with drift (Redner 1990). GBM is a
popular scheme, that has been used to underlie the dynamics of a diverse set of
natural phenomena, including finance, distribution of incomes, body weights,
weather forecasts, fragment sizes in rock crushing processes (Merton 1976). It is
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quite useful to model non-stationary random processes. This is obtained by
introducing a stochastic drift on the random process.

More in detail, the process is based on a stochastic differential equation

drt ¼ lrtdt þ rrtdWt;

where Wt is a Wiener process, l represents the stochastic drift and r is a measure of
the volatility. A Weiner process Wt is a stochastic process characterized by these
properties: i) W0 ¼ 0; ii) the increments Wtþu �Wt; u� 0, are independent random
variables; put in other words, the increment from Wt to Wtþu does not depend on the
values of the process before t (Ws; s� t); iii) such increments Wtþu �Wt are

Fig. 1 Exemplars of different data traces depending on the employed simulations - 8 assets
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Normally distributed with mean 0 and variance u, i.e., Wtþu �Wt �Nð0; uÞ (Kar-
atzas 1998).

The solution to the differential equation above is

rt ¼ r0e
ðl�ðr2=2ÞÞtþrWt

that is the formula used to generate the data traces in these simulations. Also in this
case, in Sect. 5 we will show results from a corpus of simulations where the number
of assets was equal to 32, with x ¼ 16; y ¼ 16.

4.1.3 GARCH

The Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) model
is a type of Auto Regressive Moving Average (ARMA) model, applied to the
variance of the time series. It is composed of an auto-regressive term and a moving
average term. The rationale around the use of this model in finance is due to the basic
observation that, typically, large asset returns tend to be followed by more large
returns (Campbell et al. 1997). Thus, the volatility of asset returns is usually serially
correlated. The GARCH(p,q) model is characterized by two parameters p, q. The
variance of the time series is characterized as follows

r2t ¼ a0 þ
Xp

i¼1

aie
2
t�i þ

Xq

j¼1

bjr
2
t�j:

In order for r2t [ 0, it is assumed that a0 [ 0 and the other coefficients ai; bj are all
non-negative. Usually, the GARCH(1,1) model is employed to model the volatility of
daily returns, which are in turn calculated based rt values (Campbell et al. 1997),

rt ¼ et ¼ rtzt; zt �Nð0; 1Þ
r2t ¼ a0 þ a1e

2
t�1 þ b1r

2
t�1:

Here, zt is white noise. Moreover, we should keep a1 þ b1\1 to avoid that the
model is unstable.

As per other types of simulation, x traces are created. Then, y traces are generated
by randomly taking one of the independent x ones, and adding some white noise
based on a Gaussian distribution (in the experiments, Sect. 5, the amount of traces
was x ¼ y ¼ 16).

4.1.4 ARFIMA

The AutoRegressive Fractionally Integrated Moving Average (ARFIMA) process
was introduced to generate time series with power-law correlations (Granger and
Joyeux 1980). It has been recognized that ARFIMA models, when applied to
financial time series, sometimes provide significantly better out-of-sample data traces
than AR, MA, ARMA, GARCH, and related models (Bhardwaj and Swanson 2004).

In particular, according to the ARFIMA model each generated variable (asset
return) depends not only on its own past, but also on the past values of the other
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variables. We start by creating pairs of times series r1; r2 with long range cross-
correlations (Zebende et al. 2013),

r1;i ¼ W
X1
n¼1

anðq1Þr1;i�n þ ð1�W Þ
X1
n¼1

anðq2Þr2;i�n þ e1;i;

r2;i ¼ ð1�W Þ
X1
n¼1

anðq1Þr1;i�n þW
X1
n¼1

anðq2Þr2;i�n þ e2;i;

where W is a weight value (W 2 ½0:5; 1�) that controls the strength of the correlations
between the two traces r1 and r2; e1;i and e2;i are independent and identically dis-
tributed Gaussian variables with zero mean and unit variance, i.e. Nð0; 1Þ, repre-
senting white noise; anðqÞ are statistical weights defined as

anðqÞ ¼ Cðn� qÞ=ðCð�qÞCð1þ nÞÞ;
being C the Gamma function; the q parameters range in the interval q 2 ½�0:5; 0:5�.

Following this definition, in this type of simulation, we thus created a set of pairs
of x ARFIMA traces (as before, x ¼ 16 in Sect. 5). Then, an additional set of other
correlated traces was created, similarly to the previous case. Thus, other y traces were
generated by randomly taking one of the independent x ones, and adding some white
noise based on a Gaussian distribution (y ¼ 16, in Section 5).

4.1.5 ARFIMA and Correlation with Shocks

In this case, we created a combination of traces generated through ARFIMA
processes, as described above. After this previous phase, some pairs of asset returns,
say a and b, were stochastically modified, in randomly chosen time intervals, by
changing their values as follows: ra;i ¼ bra;i þ ð1� bÞrb;i, rb;i ¼ brb;i þ ð1� bÞra;i.
This was motivated by the idea of adding correlation to certain assets, during limited
time intervals. The rationale was to try to understand if sporadic higher correlations
are captured by the considered portfolio allocation strategies.

Finally, we added a random amount of shocks to some randomly selected data
traces. In particular, we generate a random amount of shocks. For each shock, a
random asset a was chosen, as well as a random point in time ti, i.e. the time when
the shock started. A random duration of the shock d was generated, comprised in the
range [1, T/10] (being T the length of the data trace). For the randomly computed
time period ½ti; tiþd �, the values of the returns ra;j of asset a at time tj were updated as
follows:

ra;j ¼ ra;j þ a ranð�rmaxa ; rmaxa Þ; j ¼ i; . . .; iþ d

being a a randomly chosen value in [0, 1) set for the whole shock interval, and
ranð�rmaxa ; rmaxa Þ a uniformly random generated value in an interval regulated by the
highest return for asset a, i.e., rmaxa .
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4.2 Backtest

As already mentioned, wide simulation studies are more profitable to study how a
given method can perform in general, rather than focusing on some given historical
data traces. However, as further validation, some backtests have been performed. In
particular, data traces of a two years time interval of a set of assets were collected
from Yahoo finance. Then, a backtest simulation was accomplished over these
historical data traces.

Indeed, in order to verify how these studied schemes might perform in a real
scenario, we took prices of a set of real assets in the period 2019/01/01 - 2020/12/31.
The considered assets were: IT assets, i.e. Tesla (TSLA), Microsoft (MSFT),
Facebook (FB), Twitter (TWTR), Apple (AAPL), Intel (INTC); financial assets, i.
e. Wells Fargo (WFC), Bank of America Corp. (BAC), Citigroup Inc. (C), Moody’s
Corp. (MCO), MetLife Inc. (MET); general assets or stocks, i.e. SPDR Gold Shares
(GLD), PepsiCo, Inc. (PEP); healthcare assets, i.e. Johnson & Johnson (JNJ), Pfizer
Inc. (PFE), Humana Inc. (HUM). The rationale behind the choice of these assets was
to select them from different sectors, assuming that a certain level of correlation may
exist among assets of the same sector. The length of the time series was in line with
those generated in the simulation study. Figure 2 shows the related stock prices.

4.3 Considered Metrics

In this section, we describe the main metrics used to evaluate the performance of
different portfolio allocation schemes. We will report statistical measures related to
the returns obtained by applying the different allocation schemes. Moreover,
compound log returns are measured, which are obtained by summing log returns. It is
a quite commonly exploited measure in finance, since log returns usually show a
reduced variation on the time series, thus making it easier to fit the models, when
needed. Furthermore, the following metrics have been measured.

4.3.1 Portfolio Variance

Portfolio variance of a portfolio allocation, at time t, is measured as

PVtðwt;RtÞ ¼ wT
t Rtwt;

where wt is the vector of weights associated with the set of assets at time t, Rt is the
covariance matrix of returns (at time t), and wT

t is the transpose of wt. Higher
portfolio variance corresponds to higher risks, and thus it is considered as an indi-
cator of bad performance.

4.3.2 Risk Contribution

The risk contribution of a given asset j to the total portfolio can be measured as
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RCjðw;RÞ ¼ wj

ðRwÞjffiffiffiffiffiffiffiffiffiffiffiffiffi
wTRw

p ;

where wj is the weight associated with asset aj and ðRwÞj is the j-th component of

Rw. (Note that for the sake of readability, we removed the time t subscripts.)
Risk contribution is the ratio between a weighted average of asset volatility and

portfolio volatility. Comparing the assets’ risk contribution, obtained through the use
of different allocation methods, provides an estimation of portfolio diversification. It
is thus interesting to measure the distribution of risks associated with assets, based on
their weights.

4.3.3 Diversification Ratio

The Diversification Ratio (DR) of a given portfolio allocation of weights at time t, wt,
is computed through the following equation:

DRðwt;RtÞ ¼ wT
t Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
t Rtwt

p :

The diversification ratio is the ratio of the weighted average of volatilities divided by
the portfolio volatility (square of the portfolio variance) Choueifaty and Coignard
(2008). It is similar to the risk contribution above, but in this case, it is a global
metrics that gives the measure of diversification in the portfolio. A higher diversi-
fication ratio is a better performance indicator.

Fig. 2 Backtest - asset prices
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4.3.4 Normalized HHI

Herfindahl-Hirschman Index (HHI) is a common measure of market concentration
and is used to determine market competitiveness (Capozza and Lee 1996). It is
defined as

HHIðwÞ ¼
XN
i¼1

w2
i ;

where N is the number of considered assets. The Herfindahl Index (H) ranges from 1/
N to one. Actually, we will consider the Normalized HHI (NHHI), which is measured
as

NHHIðwÞ ¼ ðHHIðwÞ � 1Þ=N
1� 1=N

:

The benefit of such normalized version of the index is that it ranges from 0 to 1.
Thus, information about the total number of assets (N) is lost, in favor of a more
general view of such an index as a measure for the equality of distributions.

Indeed, a greater value of the index reflects greater risk concentration, while a
small index indicates a competitive market, with no dominant assets. Thus, in our
scenario, the lower the better.

4.3.5 Sharpe Ratio

The Sharpe Ratio (SR) is a measure of the expected return of an investment, versus
the amount of variability in the return (Sharpe 1994). It is a very popular metrics to
evaluate the performance of a portfolio allocation. The formula is

SR ¼ r̂ � rfree
r

where r̂ is the expected portfolio return, rfree the rate you would get from a risk free
investment, and r is the portfolio’s standard deviation. Quite often, it is commonly
assumed that the risk free rate is zero, thus obtaining SR ¼ r̂

r. Higher values of SR
imply better performance of the portfolio allocation.

The main limitation of this metrics is that the SR value can be accentuated by
investments that do not have a normal distribution of returns. Take for instance the
case of some investment strategy that usually produces small positive returns with
some occasional large negative return. By looking at historical data, one might
estimate a large value of the SR, until a big loss takes place.

4.3.6 Value at Risk and Conditional Value at Risk

Value at Risk (VaR) is a measure of the risk of loss for investments. This measure
provides a probabilistic estimation of how much a portfolio allocation will lose at
worst, given normal market conditions (Gregory and Reeves 2008). There are several
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ways to measure VaR. Here, the calculation of the VaR is performed using historical
data. The idea is to construct a distribution of returns based on the empirical
distribution of historical returns. Thus, there is an assumption that historical returns
represent the distribution of future returns. Then, VaR is measured as the loss value x
(t) such that, during the forecast horizon, it is expected that the portfolio will lose less
than such x(t) value, with probability ð1� aÞ. That is, given the historical return
distribution, VaR is calculated by taking the value that corresponds to the a percentile
of such distribution.

Conditional Value at Risk (CVaR) is derived by taking a weighted average of the
losses in the tail of the distribution of possible returns, beyond the VaR cutoff point.
In practice, the measurement is performed by taking all the historical returns below
the VaR, and calculating the mean value.

Being these metrics estimations of loss, the lower the value the better the
performance of the portfolio allocation scheme.

5 Simulation Results

As already mentioned, we consider four allocation schemes, i.e., CLA, IVP, HRP,
NetMod. Besides CLA (that is naturally applied using Pearson’s correlation), for
other schemes we have three variants depending on the correlation metrics that we
plugged into the scheme. Thus, in the following, all the approaches are referred to by
the identifier of the scheme followed by a label that identifies the correlation metrics,
e.g., “NetMod dcca” refers to the NetMod approach when DCCA correlation is
exploited.

For each considered scenario, we executed a corpus of 100 simulations. Results
are thus average outcomes from these simulation corpuses. We measured the daily
returns from the different simulations and performed statistical tests to understand if
each scheme is significantly different from the selected baseline approach, i.e., “IVP
cov”. In particular, pairwise t-tests were conducted, as well as Tukey HSD multiple
comparison tests, one for each type of simulation, that consider all the schemes
together. While the obtained p-value of the t tests varied, depending on the type of
simulation and exploited approach, we never obtained a statistically significant
difference (p\0:05) on such returns, in general. No statistical differences were
evident also from the Tukey tests. Nevertheless, in the rest of the section we report
the average daily return improvements, as well as the variation of daily returns, since
in specific cases we noticed differences worthy of mention. Given the mean daily

return r̂x of a given scheme x, the improvement was measured as ðr̂x�r̂baselineÞ
jr̂baselinej .

Then, we also report the metrics mentioned in the previous section, i.e.,
Compound Log Returns (CLR), NHHI, Portfolio Variance (PV), Diversification
Ratio (DR), as well as the risk contributions and average weights associated with the
different assets.

As concerns those approaches exploiting DCCA and DPCCA correlations, for the
sake of brevity we omit all the results related to different settings of the box length n,
used in Eq. (1). In particular, the results reported in this section have been obtained
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with a value of n ¼ 60, which seemed to be a good compromise in all these different
simulation scenarios.

5.1 Gaussian Returns Simulations

Table 1 shows the metrics of interest for the Gaussian returns simulations. According
to these simulations, we notice that daily returns (second column of the table) varied
similarly for all schemes, showing equal standard deviations, except for CLA that has
a higher value. As concerns the average daily improvement, the best result is
obtained with “NetMod dcca”. An interesting result is related to the NHHI metrics,
with “IVP cov” that outperforms other approaches (the lower the better), followed by
other IVP, NetMod approaches and “HRP cov”. In general, these NHHI values
demonstrate that all the approaches equally distribute the weights of the allocations,
except for CLA that has a higher value. All the schemes show similar average PVs
(the lower the better) DRs (the higher the better), SRs (the higher the better), VaR and
CVaR (the lower the better), with worse results for CLA and slightly better results for
NetMod approaches.

The outcomes outlined in the previous table are confirmed by the next figures.
Figure 3 shows the risk contribution distribution on different assets, depending on the
employed allocation scheme and correlation metrics. In the chart, assets are ordered
according to the measured risk contribution. For each asset, we show the mean value
(central dot in the bar), the standard deviation (thicker vertical bar), min and max
values (thinner vertical bar). This figure provides a general overview on how each
method distributes the risks to different assets. A general outcome is that CLA has a
wider variance and under-utilizes the available assets. Among the others, HRP
methods tend to have wider variances, followed by NetMod schemes and finally IVP
ones. In general, for each allocation scheme we notice that “dcca” and “dpcca”
variants tend to have slightly wider standard deviation, than “cov” (probably not
visible in the figure). These results are confirmed by Fig. 4, where similar statistics
are shown on the weight distribution (ordered according to higher to lower weights).

Table 1 Gaussian returns simulation - results

Method Daily ret Impr CLR NHHI PV DR SR VaR CVaR

IVP cov 0� 0:03 0 �0.16 0 0.001 0.4 0 0.06 0.07

IVP dcca 0� 0:03 �0.37 �0.17 0.01 0.001 0.37 0 0.07 0.08

IVP dpcca 0� 0:03 �0.37 �0.17 0.01 0.001 0.37 0 0.07 0.08

HRP cov 0� 0:03 1.06 �0.1 0.01 0.001 0.43 0.01 0.06 0.07

HRP dcca 0� 0:03 �0.64 �0.17 0.03 0.001 0.34 0.01 0.08 0.09

HRP dpcca 0� 0:03 �0.63 �0.15 0.02 0.001 0.36 0.01 0.07 0.09

NetMod cov 0� 0:03 1.29 �0.06 0.01 0.001 0.43 0.01 0.06 0.07

NetMod dcca 0� 0:03 0.27 �0.15 0.01 0.001 0.37 0.01 0.07 0.08

NetMod dpcca 0� 0:03 0.49 �0.14 0.01 0.001 0.37 0.01 0.07 0.08

CLA cov 0� 0:06 �2.39 �0.85 0.32 0.003 0.23 0 0.14 0.17
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Also in this case, it is confirmed that CLA has a wider standard deviation and in
general “dcca” and “dpcca” variants have slightly higher values than “cov”.

The mentioned results on the volatility of the allocations are confirmed from the
average values of the PVs obtained according to the different portfolio allocation
methods, which are shown in Fig. 5. In this case, it is possible to observe how CLA is
worse than other approaches.

5.2 Geometric Brownian Motion Simulations

Table 2 shows the metrics obtained for the Geometric Brownian motion simulations,
similarly to what has been done in the previous section. The standard deviation of
daily returns slightly varies for all the schemes. NetMod methods seem to be slightly
more risky (higher standard deviations, VaR and CVaR), yet offering higher daily
returns. Indeed, average PVs are all negligible. While results on the standard
deviation penalize NetMod schemes, however, these approaches show higher (better)
DRs. This result is confirmed from the NHHI measurements, which are lower (better)
for NetMod schemes, especially “NetMod cov”. NetMod outperforms others also in
terms of SR.

An interesting outcome is evident from Figs. 6 and 7, where the risk distributions
and weight distribution allocations are shown for the different assets (ordered in
decreasing order). All the employed methods, except for “NetMod” ones, do not
allocate positive weights (and thus no risk) to half of the assets. As mentioned, the
assets have been generated to be highly correlated i.e., half of the assets are
independent, while others are generated starting with a given randomly chosen asset
and by adding some random noise. Thus, these approaches select one among the
highly correlated assets ad avoid the use of the other ones. Conversely, by design the
“NetMod” schemes identify such correlation, but then equally distribute the portion
of the weights to be allocated to each specific cluster of correlated assets. This results
in a more varied use of the considered assets and in a larger (yet limited in value)
portfolio variance, as shown in Fig. 8.

Fig. 3 Gaussian returns simulations: Risk contribution distribution
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Fig. 4 Gaussian returns simulations: Weight distribution

Fig. 5 Gaussian returns simulations: portfolio variance

Table 2 Geometric Brownian motion simulation - results

Method Daily ret Impr CLR NHHI PV DR SR VaR CVaR

IVP cov 0� 0 0 �0.23 0.03 0 0.03 �0.45 0 0

IVP dcca 0� 0 0.01 �0.23 0.05 0 0.03 �0.4 0 0

IVP dpcca 0� 0 0.01 �0.23 0.05 0 0.03 �0.4 0 0

HRP cov 0� 0 0 �0.23 0.04 0 0.04 �0.44 0 0

HRP dcca 0� 0 0.01 �0.23 0.08 0 0.03 �0.35 0 0

HRP dpcca 0� 0 0.02 �0.22 0.06 0 0.03 �0.37 0 0

NetMod cov 0� 0:01 0.05 �0.23 0 0 0.2 �0.07 0.02 0.02

NetMod dcca 0� 0:01 0.01 �0.24 0.02 0 0.18 �0.06 0.02 0.02

NetMod dpcca 0� 0:01 0.07 �0.23 0.03 0 0.16 �0.05 0.02 0.03

CLA cov 0� 0 0.01 �0.23 0.23 0 0.08 �0.12 0.01 0.01
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5.3 GARCH Simulations

Table 3 shows the performances of different allocation schemes obtained running
the GARCH simulations. NetMod schemes outperform others, since they offer higher
return improvements, lower NHHIs, higher DRs, higher SRs, lower VaR and CVaR
values. Other metrics provide comparable results. Again, worst results are those
obtained for CLA. This is confirmed by looking at Figs. 9, 10 and 11, showing,
respectively the risk contribution distributions, weight distributions and portfolio
variances.

5.4 ARFIMA Simulations

Table 4 shows the metrics obtained during the ARFIMA simulations. In this case, we
have similar results for all the employed methods, except for CLA, that performs
worse than other approaches, i.e., higher NHHI, higher average PV, lower DR, lower
SR, higher VaR and CVaR. IVP and NetMod show better performance if we look at
the NHHI. Positive daily return improvements are obtained for NetMod, especially
“NetMod dpcca”. NetMod provides higher SR values as well, especially the “dcca”
and “dpcca” variants. This happens without an increment on the standard deviations
of the returns or increments of VaR, CVaR, which are instead lower that those of
HRP methods.

Figures 12 and 13 show the distributions of risk contributions and weights
allocations. CLA assigns higher risks and weights to some specific assets, with a
wide standard deviation. Instead, other approaches distribute risks and weights
among multiple (all) assets. In general, a higher distribution is obtained when the
“dcca” variants are used. Such approaches also show wider standard deviations w.r.
t. “cov” variants, as well as maximum and minimum values. Moreover, HRP
methods have higher variances with respect to NetMod and IVP. In any case, the
measured PV is limited for all methods (except for CLA), as shown in Fig. 14.

Fig. 6 Geometric Brownian motion: Risk contribution distribution
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Fig. 7 Geometric Brownian motion: Weight distribution

Fig. 8 Geometric Brownian motion: portfolio variance

Table 3 GARCH simulation - results

Method Daily ret Impr CLR NHHI PV DR SR VaR CVaR

IVP cov 0:09� 0:24 0 26.87 0 0.044 3.14 0.36 0.4 0.45

IVP dcca 0:09� 0:26 −0.01 24.19 0.02 0.052 2.82 0.33 0.44 0.49

IVP dpcca 0:09� 0:26 −0.01 24.19 0.02 0.052 2.82 0.33 0.44 0.49

HRP cov 0:09� 0:23 −0.01 27.13 0.01 0.037 3.31 0.37 0.39 0.44

HRP dcca 0:09� 0:29 −0.02 20.67 0.04 0.062 2.57 0.29 0.49 0.54

HRP dpcca 0:08� 0:28 −0.03 22.0 0.03 0.055 2.72 0.31 0.46 0.52

NetMod cov 0:09� 0:22 0 28.72 0.01 0.045 3.59 0.4 0.36 0.41

NetMod dcca 0:09� 0:26 0.04 26.38 0.01 0.066 3.08 0.35 0.43 0.48

NetMod dpcca 0:09� 0:26 0.05 27.32 0.01 0.064 3.11 0.36 0.41 0.46

CLA cov 0:09� 0:51 0.1 −11.12 0.31 0.187 1.86 0.18 0.82 0.92
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Fig. 9 GARCH: Risk contribution distribution

Fig. 10 GARCH: Weight distribution

Fig. 11 GARCH: portfolio variance
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5.5 ARFIMA and Correlation with Shocks Simulations

Table 5 shows results for the simulations where assets returns were generated through
ARFIMA processes mixed with some temporal adjustments to further increase
correlation, and where some random shocks were introduced. As in other contexts,
CLA is the worst method. Among other approaches, it seems that better results are
obtained when “cov” schemes are employed in this case. As concerns the returns,
NetMod outperforms other approaches.

A comparison between results related to this type of simulation (Table 5) and
those obtained for ARFIMA (Table 4), shows that in this type of simulation “NetMod
dcca” has higher improvements, with respect to others schemes. Moreover, while the
CLR is always negative in ARFIMA, here the NetMod approaches have positive
CLRs. NetMod approaches also increase the measured SR, while VaR and CVaR
remain stable w.r.t. ARFIMA.

Table 4 ARFIMA simulation - results

Method Daily ret Impr CLR NHHI PV DR SR VaR CVaR

IVP cov 0:01� 0:14 0 −1.09 0 0.017 2.33 0.05 0.3 0.34

IVP dcca 0:01� 0:14 −0.34 −2.12 0.01 0.02 2.16 0.04 0.32 0.36

IVP dpcca 0:01� 0:14 −0.34 −2.12 0.01 0.02 2.16 0.04 0.32 0.36

HRP cov 0:01� 0:13 0.3 −1.13 0.01 0.016 2.42 0.05 0.29 0.34

HRP dcca 0� 0:16 0.59 −4.24 0.04 0.025 1.93 0.03 0.36 0.41

HRP dpcca 0:01� 0:15 −0.62 −3.28 0.03 0.022 2.05 0.04 0.34 0.39

NetMod cov 0:01� 0:13 0.59 −0.55 0.01 0.017 2.45 0.06 0.29 0.33

NetMod dcca 0:01� 0:16 1.23 −0.98 0.01 0.025 2.2 0.07 0.34 0.38

NetMod dpcca 0:01� 0:16 0.44 −0.95 0.01 0.024 2.19 0.07 0.34 0.38

CLA cov 0:01� 0:31 −0.3 −20.47 0.28 0.079 1.36 0.02 0.69 0.83

Fig. 12 ARFIMA: Risk contribution distribution

123

994 S. Ferretti



Fig. 13 ARFIMA: Weight distribution

Fig. 14 ARFIMA: porfolio variance

Table 5 ARFIMA and correlation with shocks simulation - results

Method Daily ret Impr CLR NHHI PV DR SR VaR CVaR

IVP cov 0:01� 0:14 0 1.03 0 0.017 2.32 0.09 0.29 0.33

IVP dcca 0:01� 0:15 �0.28 0.23 0.01 0.02 2.14 0.08 0.31 0.35

IVP dpcca 0:01� 0:15 �0.28 0.23 0.01 0.02 2.14 0.08 0.31 0.35

HRP cov 0:01� 0:13 �0.22 1.21 0.01 0.016 2.41 0.09 0.28 0.32

HRP dcca 0:01� 0:17 �0.2 �1.08 0.04 0.025 1.92 0.07 0.36 0.4

HRP dpcca 0:01� 0:16 0.4 −0.64 0.03 0.022 2.04 0.07 0.33 0.37

NetMod cov 0:01� 0:13 0.5 1.83 0.01 0.017 2.45 0.1 0.29 0.32

NetMod dcca 0:01� 0:16 1.8 0.92 0.01 0.025 2.19 0.1 0.34 0.38

NetMod dpcca 0:01� 0:16 0.62 0.78 0.01 0.024 2.19 0.09 0.33 0.37

CLA cov 0:02� 0:32 5.49 �17.15 0.28 0.078 1.35 0.06 0.68 0.82
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Figures 15-17 show the risk contributions, weight allocations and portfolio
variance, as for other types simulations. The general trends are confirmed also in this
case. We can also appreciate a slight increment in the variability of risk contribution
and weight allocations for the “dcca” schemes.

6 Backtest Results

The outcomes obtained with the previous simulation studies are confirmed when
backtests are performed. As shown in Table 6, NetMod schemes perform better than
others, since also in this case they show higher daily return improvements, higher
CLRs, lower (better) NHHIs, higher (better) DRs, higher (better) SRs. As to VaR and
CVar, similar results are obtained for all the schemes, with NetMod slightly worse
than others. In these cases, all the values of PV are smaller than 10�4. By looking at
the improvements on the returns, CLRs and other metrics, it seems that the “dpcca”
variants are the best ones.

Risk contributions and weight allocations are reported in Figs. 18 and 19. It is
interesting to observe that all approaches tend to assign a high weight to GLD, which
is a stable asset. In particular, IVP and HRP assign to GLD a weight significantly

Fig. 16 ARFIMA and correlation with shocks: Weight distribution

Fig. 15 ARFIMA and correlation with shocks: Risk contribution distribution
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Fig. 17 ARFIMA and correlation with shocks: portfolio variance

Table 6 Backtest simulation - results

Method Daily ret Impr CLR NHHI PV DR SR VaR CVaR

IVP cov 0� 0:01 0 0.35 0.06 0 0.03 0.06 0.04 0.07

IVP dcca 0� 0:01 −0.05 0.33 0.07 0 0.03 0.06 0.05 0.07

IVP dpcca 0� 0:01 −0.05 0.33 0.07 0 0.03 0.06 0.05 0.07

HRP cov 0� 0:01 0.11 0.41 0.14 0 0.03 0.09 0.03 0.05

HRP dcca 0� 0:01 0.05 0.39 0.13 0 0.03 0.08 0.04 0.05

HRP dpcca 0� 0:01 −0.17 0.28 0.1 0 0.03 0.05 0.05 0.07

NetMod cov 0� 0:01 0.45 0.53 0.06 0 0.04 0.09 0.04 0.06

NetMod dcca 0� 0:02 0.23 0.41 0.02 0 0.04 0.06 0.05 0.08

NetMod dpcca 0� 0:02 0.43 0.49 0.02 0 0.04 0.07 0.06 0.09

CLA cov 0� 0:02 0.06 0.35 0.93 0 0.02 0.05 0.06 0.08

Fig. 18 Backtest: Risk contribution distribution
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higher than other weights. This results in a corresponding higher risk contribution,
which can be appreciated especially in “HRP cov”. CLA assigns positive weights to
a limited amount of assets. As concerns NetMod schemes, in many cases, the
community detection algorithm often puts GLD as a singleton asset, different than
others. Thus, “NetMod cov” assigns high weight to GLD w.r.t. others, which are
nonetheless not null and higher than in IVP and HRP schemes. In “NetMod cov”,
this results in a limited risk contribution associated with GLD. This aspect is even
more evident in “NetMod dcca”, where the weight associated with other assets is
higher. As a consequence, the risk contribution of GLD in “NetMod dcca” is
minimal. This happens since the “NetMod dcca” variant tends to create smaller
communities than the “NetMod cov” approach. Thus, the weights are more
distributed among different sets of assets. This outcome is confirmed by the NHHI
measures reported in Table 6, where “NetMod dcca” (and “NetMod dpcca”,

Fig. 19 Backtest: Weight distribution

Table 7 Summary of results: best approaches based on specific metrics and simulation typology

Metrics Gaussian GBM GARCH ARFIMA ARFIMA w
shocks

Backtest

Ret NetMod cov NetMod
dpcca

NetMod
dpcca

NetMod dcca NetMod dcca NetMod (cov)

CLR NetMod cov NetMod
cov

NetMod (dcca) NetMod cov NetMod (cov)

NHHI NetMod
(cov)

NetMod (dcca,
dpcca)

DR cov (HRP,
NetMod)

NetMod
(cov)

NetMod
cov

NetMod cov NetMod cov NetMod

SR NetMod, HRP NetMod
(dpcca)

NetMod
cov

NetMod (dcca,
dpcca)

NetMod NetMod, HRP
(cov)

VaR (cov) (IVP, HRP) NetMod
cov

IVP cov cov HRP cov

CVaR (cov) (IVP, HRP) NetMod
cov

cov (NetMod) cov (HRP,
NetMod)

HRP (cov,
dcca)
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similarly) has a way lower value than other schemes, thus resulting in a more shared
allocation and competitive market, with no dominant assets.

7 Discussion

7.1 Summary of Obtained Results

Table 7 provides a summary of the results, discussed in the previous sections, to
facilitate a general overview of the outcomes. In particular, each row of the
table shows results related to specific metrics. Results about the returns, shown in the
previous tables (i.e., daily ret, Impr) have been aggregated into a single one (Ret).
Moreover, PV has been omitted here, since it did not show differences among the
approaches in almost all the scenarios, except for CLA, as already discussed in detail.
Each column of the table focuses on a specific type of simulation or backtest. For
each metrics and each type of simulation (or backtest), the table reports those
approaches that showed the best results. In general, a specific allocation scheme with
the related measure of correlation variant is reported (e.g., NetMod cov) which
means that the specific configuration provided the best results. In other cases, only
the name of an allocation scheme is shown (e.g., NetMod), meaning that the
particular scheme worked better than others regardless of the correlation measure.
Similarly, when only the correlation metrics is reported, it means that the best results
have been obtained with that specific metrics, regardless of the allocation scheme.
Configurations are reported in brackets when some slight, not significant improve-
ments have been noticed. Finally, void cells signify that no particular winner is
available for that metrics in that scenario.

The decision on which allocation scheme performs better than others should be
taken by looking at all the metrics, considered together. All of these metrics focus on
a particular aspect of the allocation, and some of them, while extremely popular in
the financial analysis sector, received critiques in the literature. For example, SR is

Fig. 20 Backtest: portfolio variance
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c1: {GLD}
c2: {all others}

c1: {INTC, WFC, BAC,
MET, PEP, JNJ, PFE}

c2: {TSLA, MSFT,
FB, TWTR}

c3: {GLD}

c1: {MSFT, FB, AAPL,
INTC}

c2: {MCO, PEP, JNJ,
PFE}

c3: {WFC, BAC, C, MET}
Other assets isolated

c1: {all assets}

c1: {TSLA, MSFT, AAPL,
INTC, JNJ}

c2: {FB, TWTR, C, MCO,
MET, WFC,BAC}

c3: {GLD, PEP, PFE,
HUM}

c1: {TSLA, INTC, MCO
PEP, PFE, HUM}

c2: {MSFT, FB, AAPL}
c3: {WFC, BAC, C, MET}
Other assets isolated

c1: {MSFT, PEP}
c2: {FB, TWTR, AAPL}
c3: {TSLA, GLD, JNJ,

PFE}
c4: {INTC, WFC, C}
c5: {BAC, MET, HUM}
c6: {MCO}

c1: {BAC, MET}
Other assets isolated

All assets isolated

Fig. 21 MetMod in backtest: networks formed by links whose edges have weight above the threshold and
obtained communities, based on the used correlation metrics
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one of the most common metrics used to evaluate the performance of investments.
However, it has been recognized that SR values are accentuated by investments that
do not have a normal distribution of returns, and in general, it is subject to estimation
errors that can be substantial in some cases (Lo 2002). Similarly, as a further
example, VaR is by far another leading measure of portfolio allocation analysis and it
is widely used in major banks and financial institutions. But also in this case, this
metrics is not exempt from criticism. In particular, it has been recognized that this
measure can discourage diversification (Artzner et al. 1999). Thus, a wider overview
of the available metrics should give some insights on the performance of the
considered schemes.

The table clearly shows two important results. First, NetMod outperforms other
portfolio allocation strategies in all the considered scenarios. In a few cases, other
schemes provide better VaR (and CVaR in some cases), but differences are not so
important.

Second, it seems that a naive replacement of the classic Pearson’s correlation with
DCCA or DPCCA does not provide significant benefits in many scenarios. The
classic Pearson’s correlation performs better than DCCA and DPCCA in various
situations, while the latter metrics might perform better when data traces are highly
correlated and non stationary (e.g. ARFIMA). Thus, some further investigation might
be needed in this sense.

7.2 NetMod Communities Obtained when Varying Threshold and Correlation
Metrics

Figure 21 shows the networks generated by the NetMod scheme in the backtest, in a
specific window of 64 observations. In particular, each reported network depends on
the threshold a that is used to create links among nodes in the network (as discussed
in Sect. 3.5) and on the specific correlation metrics in use. Below each network, it is
reported the list of communities of assets obtained using the Louvain algorithm to
measure the network modularity. Each row shows three different networks when
varying a, while keeping the same correlation metrics. Each column shows the
networks obtained using the different correlation metrics while keeping fixed the
value of a.

The figure clarifies two main aspects: i) as expected, the higher the threshold, the
less connected the network; ii) the threshold a has a different impact on the
generation of the networks depending on the used correlation metrics. DPCCA is
more threshold sensitive. This suggests that, instead of using a fixed value for a,
equal for all the correlation variants as done in this evaluation study, the
scheme should be accompanied by preliminary test and validation phases to
properly tune the hyper-parameter a. This investigation is left as a future work.
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8 Conclusions

In this work, it has been shown that modeling, simulation and data science
techniques can be extremely useful to evaluate complex scenarios and to design
novel approaches in financial applications, such as portfolio analysis and allocation.
In fact, first, a detailed and variegated simulation framework allows performing what-
if analyses and studying if the devised schemes perform well in different situations.

Second, we have shown the feasibility of using alternative measures to describe
and characterize data series. Here, we used the notions of DCCA and DPCCA as an
alternative to the classic Pearson’s correlation measure. In the portfolio allocation
approaches, we naively replaced the original correlation with these metrics. While
the obtained results do not outperform the classic correlation in many considered
scenarios, we showed that a proper tuning of the hyper-parameters employed in the
allocation schemes can have a strong influence on the final performance. This tuning
should be accomplished through specific data analysis, once a specific correlation
metrics is used. The benefits of DCCA and DPCCA on portfolio allocation thus
remain an open question. This aspect will be future work. Another point worthy of
mention is that a drawback of the Pearson measure is its inability to capture the
directionality of the relationships between asset classes. Looking into directionality
might be helpful for a better analysis of assets’ interdependence and might provide
interesting insights. Further research can be devoted to the study of measures to
capture directionality and see if they can have some impact on asset community
identification.

Third, we described a novel scheme, here called Naive Network Modularity based
allocation (NetMod), that takes all the assets and, based on the employed correlation
metrics, builds a complex network. Communities of assets are identified thanks to
modularity. The approach then distributes investments among such communities.
While simple, the approach outperforms the state of the art approaches in many
situations. Possible improvements can go in the direction of not equally distributing
the weights, but consider, for example, the variance or risk of the communities, with
intra and inter-communities optimizations. Further investigation might be on the
analysis of alternatives to the exploited Louvain method to detect communities.
Examples worth of study are the Walktrap algorithm, Infomap, the Fast-greedy, and
the Leading Eigenvalue (Yang et al. 2016).

All this confirms the benefits of using data science and complex networks theories
in portfolio management and financial applications. The obtained results foster the
claim that there is room for improvement and thus, further research is needed. On the
other hand, such applications can in turn foster novel research in the data and
information science theoretical domains, trying to cope with the need to measure
financial metrics and to design effective modeling and simulation techniques.
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