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Abstract
In recent years, we have seen a very rapid increase in outstanding bank deposits. This

increase has been particularly high since the outbreak of the COVID 19 pandemic, due

to the lockdown that has, among other things, drastically reduced household con-

sumption since the beginning ofMarch 2020. This very sharp increase in outstandings

increases the risk of banks which offer interest on deposits. In this paper, we deal with

the mitigation of the risk contained in interest rate margins of demand deposits. We

introduce and analyze hedging strategies of an asset and liabilitymanager who focuses

on the bank’s net operating income in a given quarter under standard accounting rules.

Demand deposits are assumed to be correlated with market interest rate and to a

commercial risk that cannot be fully hedged on the financial markets. We distinguish

several types of dynamic hedging strategies based on both quadratic and quantile

criteria. We provide explicit formula for all hedging strategies and we discuss their

respective robustness. We show in particular that the quantile hedging criterion leads

to somewhat riskier strategy since its gain may be nil, due to its knockout feature. We

argue that our contribution establishes a stronger basis for the coverage of bank

deposits, which is particularly important in the context of the COVID-19 pandemic

and its economic consequences.

Keywords Risk management · Demand deposits · Interest rate margins · Quadratic

and quantile hedging · COVID-19 pandemic.
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1 Introduction

One of the consequences of the COVID-19 pandemic for the banking system is that

the bank deposits have dramatically increased. This accumulation of extraordinary

savings has been observed from the very first days of lockdown and has continued

month after month. For example, in the US zone, the demand deposits have

increased from about 1600 billions US dollars to 2700 billions of US dollars during

the time period January 2020-October 2020. In the Euro zone, the demand deposits

have increased from about 9000 billions of euros to 11000 billions of euros during

the same time period. As an illustration, the Bank of France has emphasized that,

whereas on average these monthly flows had reached a little over €6 billions before

the health crisis, they had jumped to over €22 billions in March, to nearly €27
billions in April, and then remained at around €20 billions until July.1 The end of

the lockdown in mid-May 2020 has therefore not led households to stop saving to

consume. On the contrary, the Bank of France statistics indicate that households

continue to build up precautionary savings, linked to the uncertainties of the coming

months, after having built up forced savings in March, April and May. Households’

financial savings accumulated since March have thus reached a record amount of

85.6 billions of Euros. These huge demand deposits correspond to ‘‘forced savings’’

linked to the fall in consumption and also partly to precautionary savings.

Bank demand deposits are a major component of their liabilities. A worldwide

study of the Bank for International Settlements (see English, 2002) shows that risk

control of interest rate margins has been a significant concern for banks during the

past years. However, European banks suffered negative rates on the excess liquidity

they leave in the European Central Bank’s (ECB) safe-deposit boxes on a daily

basis. Indeed, as emphasized by Leao and Leao (2007), the current monetary system

can be seen as a standard model of the real economic cycle in which the central bank

applies a repo interest rate to commercial banks, while the latter ones grant loans

and thus create also money. Nevertheless, the economic situation resulting from the

Covid-19 pandemic has prompted the ECB to maintain a refinancing rate close to

0%. It should also be noted that commercial banks have to comply with the Basel III

capital requirements, which has a very significant impact on their business (see Liu

and Moliseb (2019) for an illustration of the impact of rule-based Basel III counter-

cyclical capital requirements). Under IFRS – the current international accounting

standards – Banks account for demand deposits at amortized cost as opposed to fair

value calculations.2. The European Commission enacted in November 2007 the IAS

39 Fair Value Option Amendment allowing hedging strategies that lead to a regular

income associated with demand deposits (Carved-Out Fair Value Hedge)3. The

IASB and the European Banking Federation (EBF) have proposed to replace the

1 This is more than 2.5 times the average monthly amount of bank deposits recorded before the health

crisis, i.e. ? €5.9 billions for the period January 2017/February 2020.
2 According to the IFRS, banks must account demand deposits at a Fair Value equal to their nominal

value. See e.g. IAS 39 – Measurement – Subsequent Measurement of Financial Liabilities – Official

IASB Website https://www.iasb.org/.
3 See European Commission’s (EC) Reference Document IP/04/1385 – Official EC Website https://ec.

europa.eu.
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previous exceptions by a new kind of hedging strategy, namely the Interest Margin

Hedge (IMH).4 The purpose of this later strategy is to control the volatility of

demand deposits’ interest rate margins instead of the volatility of their fair value. In

the United States, the accounting treatment of assets and liabilities in bank books is

not as clear. The approach based on interest paid and received remains for the time

being. On the regulatory front, the US Securities and Exchange Commission (SEC)

requires US banks to disclose in annual (10-K) and quarterly (10-Q) filings

indicators of interest rate spreads and their sensitivity to interest rate shocks. As far

as demand deposits are concerned, they correspond to the approach developed by

Hutchison and Pennacchi (1996), Jarrow and Van Deventer (1998), O’Brien

O’Brien (2000). Additionally, as emphasized in Jarrow and van Deventer Jarrow

and Van Deventer (1998), demand deposits are not only subject to interest rates but

depend on some business risk independent of market risk. The bank’s market

structure and its credit risk exposure may impact also the demand deposit amount

(see Ho and Saunders, 1981; Wong, 1997; Saunders and Schumacher, 2000;

Kalkbrener and Willing, 2004). Note also that banks’ relationships with customers

are important as illustrated by Brown et al. (2020).

In this paper, we rely on Ho and Saunders (1981) in accordance with current

accounting rules, market practice and standard banking theory. We use main results

about option hedging of contingent claims to provide explicit hedging solutions. A

first approach to price and hedge an option is to use superhedging strategies, namely

trading strategies with terminal value always higher than the option payoff.

However, the cost of superhedging may be too high in practice. Another approach is

to control the risk by means of the mean-variance criterion, as introduced by

Föllmer and Sondermann (1986). It consists in minimizing the expectation of the

square of the duplication error. In general, we can provide an explicit and

operational formula. However, a disadvantage of this approach is that we equally

penalize the situation where the value of the hedge portfolio is lower than the option

gain and the situation where the value of the hedge portfolio is higher. Another final

approach that we deal with in this paper is the quantile hedging. The problem of

hedging is seen by another point of view: what should an investor do if he or she is

unwilling to invest all the amount needed for a perfect hedging or a superhedging

strategy since such a strategy reduces drastically the potential profit. Quantile

hedging strategy has been introduced by Föllmer and Leukert (1999) to control the

probability that the value of the hedging portfolio will remain higher than the option

payoff. In this paper, we consider both the quadratic and quantile hedging strategies

of interest rate margins, in the static and dynamic frameworks.5 For the static case,

we analyze how the optimal investment can be based on Forward Rate Agreements

(FRAs) contracted at initial date. For the dynamic case, hedging strategies can take

account of dynamic information about market rates and demand deposits

4 The third pillar of the Basel Committee on Banking Supervision also recommends the publication of

qualitative and quantitative information on interest rate risk in the banking book (IRRBB).
5 Note that the mean-variance hedging of IRM looks like a portfolio optimization in the quadratic utility

framework taking account of the benchmark IRM while the quantile hedging is linked to a kind of

maximisation of a utility function corresponding to a Heaviside step function, namely U Vð Þ ¼ 0 if

V � IRM and U Vð Þ ¼ 1 if V[ IRM.
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fluctuations. In all cases, we provide explicit formula. We illustrate how such

hedging strategies depend on financial parameters and compare their solutions,

which provides us with useful informations to best manage demand deposits and

their remunerations.

This paper is organized as follows. Section 2 presents the modelling framework

and displays the main statistics on market rates and demand deposits in the US and

Euro zones. In Section 3, we examine the quadratic and quantile hedging problems

and derive the optimal strategies to hedge the interest rate margin for a given

quarter6. Finally, Section 4 concludes.

2 Modelling framework

2.1 Market rates

The objective of this section of the paper is to study aspects of risk management

related to monetary deposits within the framework of Asset Liability Management

(ALM). We suppose that market rate follow the BGM model and amount of demand

deposit follow the stochastic equation. The empirical illustrations like Average,

Standard deviation, Skewness and Kurtosis for the monetary aggregate 1 concern

mainly two zones (Euro and the United States). Demand deposits, which are

deposits of funds made by an agent (household, business) in a bank account opened

with a financial institution, include demand deposits remunerated by interest and

unremunerated demand deposits deemed to be stable. We use the linear relation

between deposit rate and market rate for parameters estimation the interest rate

margin. The monetary data of this article are represented as follows. The data for

monetary aggregate 1 for the Euro zone are from January 1980 to October 2020. For

the US zone the data are from January 1980 to December 2020. Then we focus for

monetary deposits on the period from January 1997 to January 2020. And when we

assume a linearity of market rates and deposit rates, the data are represented from

January 2003 to January 2020.

In what follows, we deal with quarterly interest rate margin corresponding to

some year quarter T ; T þ 1
4

� �
. Additionally, the forward market rate at date T for the

time period of the interest rate margin – a quarter – is supposed to follow the market

model (BGM) defined by Brace et al. (1997):

dLt ¼ Lt lL þ rLdWL;t

� �
; ð1Þ

where Lt ¼ L t; T; T þ 1
4

� �
denotes the market rate and WL;t

� �
t
is a standard Brow-

nian motion under some historical probability measure P. To simplify the model

presentation, we suppose that lL and rL are constant.7 In this framework, we can

take account of higher average returns when investing for instance in long term

6 More details about proofs are provided in Cherrat (2019) and are available upon request.
7 Note that these parameters can be re-estimated, for example every month or every quarter to calibrate

the financial model. Such approach allows to take account of new information at each time when the

liability manager determines the deposit rate for the next month or next quarter.
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bonds instead of short-term assets such as the Libor and Euribor rates. (see e.g.

Chapter 11 in Campbell et al, 1997).

2.2 Demand deposit amount

We assume that the demand deposit amount satisfies the following stochastic

differential equation:

dKt ¼ Kt lK þ rKdWK;t

� �
; ð2Þ

where WK;t

� �
t
denotes a standard Brownian motion. To simplify also the model

presentation, we suppose that the trend lK and the volatility rK are constant, though

the results readily extend to the deterministic case, for instance to deal with seasonal

effects. Both the trend and volatility parameters depend upon the kind of demand

deposits that we investigate. The demand deposits model might involve several

different processes Ki;t

� �
i
to better take account of various demand deposit speci-

ficities. For the sake of simplicity, we do not go any further in this direction, but the

development of optimal hedging strategies in the latter case is very similar to that of

a total banking operation. In all cases, the nominal amount remaining at any given

time is the result of cash inflows and outflows from existing customers, including

account cancellations, as usually evaluated by auditors and accountants as a matter

of prudence. Our approach applies to all situations, although the parameters obvi-

ously need to be modified. Therefore, the nominal amount Kt remaining at any given

time may result either from a liquidity risk, arising from concerns about the sol-

vency of the managing bank, or from arbitrage between demand deposits and other

asset classes, or also from a commercial risk, e.g. if a given bank loses market share

due to mismanagement of deposit accounts. The following figures illustrate the

development of the monthly monetary aggregate 1 issued in the the US zone from

January 1980 to December 2020 and Euro zone from January 1980 to October 2020.

For the US zone, we observe that the monetary deposits increases slowly during

the period 1980-2011; then there is a constant and very significant increase in

deposits until the period 2012-2019. But, the amount has increased tremendously

from about 5000 billions of US dollars in January 2020 to 6600 billions of US

dollars in December 2020. (see Fig. 1).

Fig. 1 Representation of outstanding amounts of Monetary Aggregate 1 in the case of US zone
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Fig. 2 Representation of outstanding amounts of Monetary Aggregate 1 in the case of Euro zone

Fig. 3 Evolution of demand deposits in Euro zone (Oct 2019-Oct 2020)

Table 1 Estimation of the Monetary Aggregate 1 parameters for US zone

Table Monetary Aggregate 1 (M1) Log Variation of M1 (monthly)

Mean 1540 (billions Dollars) 0.25%

St-deviation 820 (billions Dollars) 0.43%

Skewness 1.540 −3.13

Kurtosis 2.160 25.09

Table 2 Estimation of the Monetary Aggregate 1 parameters for Euro zone

Table Monetary Aggregate 1 (M1) Log Variation of M1 (monthly)

Mean 2969 (billions €) 0.28%

St-deviation 2074 (billions €) 0.56%

Skewness 1.0195 0.023

Kurtosis 0.0122 3.68
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For the Euro zone, demand deposits are increasing steadily during the time period

1980-2011; then the increase of demand deposits is higher during the period

2012-2019 (see Fig. 2). Again, we note that, from the beginning of year 2020, the

demand deposits have increased even quicker from about 9000 billions of Euros to

11000 billions of Euros (see Fig. 3).

Tables 1 and 2 provide maximum likelihood estimations of lK , rK at an

aggregate level.

Looking at Table 1 which provides the main statistics of demand deposits in US

Zone, we note that that the average of monthly Log variation is about 0:25% and the

standard deviation about 0:43%.

For the statistics of Monetary Aggregate 1 in Euro Zone (see Table 2), we note

that the monthly mean of Log variation is about 0:28% and the standard deviation

about 0:56%.

2.3 Deposit amounts and market rates

In what follows, we suppose that the dynamics of the demand deposit amount is

correlated to interest rates. Therefore, we assume that both WL;t

� �
t
and WK;t

� �
t
are

standard correlated Brownian motions under the same filtration F tð Þt. Introduce a

Brownian motion eWK;t

� �
t
independent from WL;t

� �
t
, and consider a constant

correlation parameter q such that:

dWK;t ¼ qdWL;t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
d eWK;t: ð3Þ

Process eWK corresponds to a component independent of interest rates movements

that takes account of other sources of risk as emphasized by Fraundorfer and

Schurle Frauendorfer and Schurle (2003) and Kalkbrener and Willing Kalkbrener

and Willing (2004). Janosi et al. (1999) consider that the correlation between

demand deposits and market rates is due to money transfers between demand

deposits and other kinds of financial investments. Using bank data coming from the

Federal Reserve Bulletin for various types of accounts – namely Negotiable Orders

of Withdrawal (NOW), passbooks, statement and demand deposit accounts, they

show that the correlation parameter is negative, which means for example that

demand deposit amounts decrease when short rates rise. On the contrary, the

“liquidity trap” can induce a positive correlation (see Hicks, 1937). Indeed, there is

no advantage for clients to invest their money in assets such as bonds or savings

accounts if they are not sufficiently remunerative to compensate for commissions

Table 3 Estimated parameters of deposit rate and market rate in the US and Euro zones (1997-2020)

Market

1997-2020

Demand

Deposits

Market

Rate

lL lK rL rK q

Euro D.Deposits M1 Euribor 3M 4.14% 7.61% 2.28% 9.21% 0.064

US D.Deposits M1 Libor 3M 2.81% 3.87% 0.51% 2.21% -0.221
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and related expenses (see e.g. Krugman, 1998). We estimate the correlation

parameter between the deposit amount and the market rate according to the Engle

and Granger method (see Ericsson and MacKinnon, 1999). The estimation period

for both the US and for the Euro zone lies from 1997 to 2020 (see Table 3).

In the Euro zone, the volatility of deposits is higher than in the US zone, with a

lower absolute value of the correlation between interest rates and deposits. The high

volatility of the amount of demand deposits (9:21%) seems to be largely due to

interest rates fluctuations.

2.4 Deposit rates and market rates

As shown in previous section, the demand deposits are correlated to market rates. In

the same manner, the deposit rates exhibit some dependence with respect to market

rates. Such feature has been highlighted by Hutchison (1995), Hutchison and

Pennacchi (1996) or Jarrow and van Deventer Jarrow and Van Deventer (1998).

Hutchison and Pennacchi (1996) assume the deposit rate to be an affine function of

the market rate. In this framework, it is possible to provide quite explicit formula for

optimal hedging strategies, as shown in Section 3. Therefore, in what follows, we

Fig. 4 The deposit rate and market rate from January 2003 to October 2020 in the Euro and US zones
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suppose that the deposit rate is a deterministic function g of the market rate.

Figure 4 illustrates the deposit rate and market rate in US and Euro zones from

January 2003 to October 2020. It confirms the intuition of some linear dependence

between the deposit rate and the market rate, at least for some given time periods.

Indeed, since we investigate a rather long time period, we can distinguish at least

two distinct point clouds corresponding to high rates and low rates.

As from June 2014, the ECB decided to set a negative interest rate on the money

market. This situation is perceived as an anomaly since it implies that agents agree

to pay for deposits. Figure 4 represents the relationship between the deposit rate and

the market interest rate. In the Europe case, we note that interest rate can be

negative (from August 2015). In such case, the liability manager must change the

benchmark interest rate, for example by using instead a proportion of the reference

rate of the loans they grant to other customers. For simplicity, we consider always

the Euribor as market rate for the Euro zone. As expected, we note that deposit rates

are increasing with respect to market interest rates. As in Hutchison and Pennacchi

(1996), we assume the deposit rate to fulfill some affine relation with the market

rate, at least on given time periods. Therefore, we perform linear regressions of

deposit rates on market rates. Hence, we focus on the following modelling of

deposit rates:

g LTð Þ ¼ aþ bLT ; (US and Euro Zone cases); ð4Þ
Table 4 displays the corresponding numerical values of a and b.

2.5 Interest rate margins within banking regulation

The IASB and the European Banking Federation (EBF) have proposed to introduce

a new kind of hedging strategy, namely the Interest Margin Hedge (IMH), the

purpose of which is to control the volatility level of demand deposits’ interest rate

margins instead of the volatility of their fair value. Additionally, from the regulation

point of view, the US Securities and Exchange Commission (SEC) have required

US banks to disclose in annual (10-K) and quarterly (10-Q) filings indicators of

interest rate spreads and their sensitivity to interest rate shocks. Therefore, we

consider that the interest rate margin (IRM) at date T stands for the cash-flow

generated upon the quarter T ; T þ 1
4

� �
by the investment of the amount of demand

deposits on the market rate LT minus the interests g LTð Þ paid to customers. Thus the

interest rate margin is defined as follows:

Table 4 Estimated relationship

between deposit rate and market

rate in the US and Euro zones

Market Deposit

Rate

Market

Rate

a b

US Deposit rate Libor 3M -0.00022609 0.42267

Euro Deposit rate Euribor 3M 0.011007 0.63326
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IRM KT ; LTð Þ ¼ 1

4
KT LT � g LTð Þð Þ: ð5Þ

In our numerical illustrations, since we consider rather long periods of time for

historical data, we deal as usual with the Libor rate for the US zone and the Euribor

for the Euro zone. However, since the manipulation of these market rates during the

time period 2005-2009 and the 2008 financial and economic crisis, these rates have

proven to be less relevant as they are less used by banks among themselves. The

sustainability of these rates as a benchmark has therefore been questioned and the

regulators have decided to phase out these rates. The idea is to move from declared

rates to actual rates from 2022.8 Contrary to the declared rates, each new rate would

be calculated a posteriori from a panel, based on a broader scope of transactions, in

order to best reflect the actual situation and thus avoid possible manipulation (see

Pinter and Boissel, 2016). Thus any contract based on Libor or Euribor with a

maturity beyond 2022 will have to be modified. This will impact in particular the

computation of the interest rate margin.

3 Hedging of interest rate margin on demand deposits

In this section, we aim at hedging the interest rate margin. For this purpose, In what

follows, we investigate the two main hedging strategies used to hedge financial

options, namely the hedging strategy based on quadratic criterion introduced by

Föllmer and Sondermann (1986) (see also Föllmer and Schweizer, 1991) and the

quantile hedging approach introduced by Föllmer and Leukert (1999). We define

several sets of payoffs corresponding to hedging on the interest rate margin for the

quarter[T,T?((1/4))]. Here we assume that the bank can develop hedging that will

impact the interest rate margin at historical cost, from the accounting viewpoint.

However the recognition of hedging strategies at historical cost is far from being

obvious. Yet, most banking practices tend to design hedging on interest rate

securities to alleviate the volatility of the net interest income at historical cost. Thus,

from an accounting viewpoint, banks tend to invest on securities recognized as

available-for-sale, thus impacting the income statement at historical cost. In the

European case, the IFRS-EU Carved-Out Fair Value Hedge allows banks to design

swap-based hedging for deposit accounts by date of origination. Thus, each new

deposit generation is hedged individually, given the hedging strategy designed for

past generations. The hedging of interest rate margins can be performed using

interest rate swaps or forward rate agreements. Our main constraint relates to the

control of the hedging cost. We consider two frameworks: the first one corresponds

to the static hedging case for which we search for the optimal allocation on Forward

Rate Agreements (FRAs); the second one allows a dynamic hedging strategy to

better take account of market rates flucttuations and of accumulated information

about their future values.

8 Each central bank has already launched discussions to replace the LIBOR, EURIBOR and EONIA

rates. At the European level, EONIA would be replaced by ESTER. For all LIBOR rates, each of the

existing rates would be broken down by currency: SOFR for the Dollar, SONIA for the Sterling, TONAR

for Yen...
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3.1 Quadratic hedging for interest rate margins

The approach by quadratic hedging strategy is to measure the risk by the variance

criterion, first proposed by Föllmer and Sondermann (1986). It consists in

minimizing the expected square of the duplication error between the contingent

claim and the terminal portfolio wealth. Usually, we obtain explicit and

tractable formula. A similar approach, often equivalent to the variance one is the

locally-risk minimizing (see Föllmer and Schweizer, 1991).

In what follows, we consider the static quadratic hedging of interest rate margins.

Such hedging strategy can be based on Forward Rate Agreements (FRAs)

contracted at initial date. Since the financial market is complete, there exists a

risk-neutral probability Q which allows as usual to price any option. Denote by B
(t, T) the value at time t� T of the zero-coupon bond maturing at time T chosen as

numeraire in the GBM framework. We have to solve the following optimization

problem:

MinS2H1
Variance S� IRM KT ; LTð Þ½ �; ð6Þ

where H1;m is a subset of linear payoffs with respect to the market rate, defined by:

H1;m ¼ S S ¼ hLT þ eh��� with EQ S½ � �mBð0; TÞ
n o

;

where h and eh are constant parameters to be determined.

Proposition 1 The solution of Problem (6) is given by:

S� ¼ h� LT þ m� L0ð ÞBð0; TÞð Þ with h� ¼ Covariance LT ;KT �a� b� 1ð ÞLTð Þ½ �
4Variance LT½ � :

ð7Þ
For a zero initial cost (m ¼ 0) and Bð0; TÞ ¼ 1, the optimal hedging corresponds to

S� ¼ h� LT � L0ð Þ, which corresponds exactly to an investment on Forward Rate

Agreements.

Corollary 2 The expectation and the standard deviation of the hedging error are
respectively given by:

EP IRM KT ; LTð Þ � S�½ � ¼

EP IRM KT ; LTð Þ½ � � Covariance LT ;KT �a� b� 1ð ÞLTð Þ½ �
4Variance LT½ � L0e

lLT � L0
� �þ m;

with

EP IRM KT ; LTð Þ½ � ¼ �1=4�
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aK0 exp lKT½ � þ b� 1ð ÞL0K0 exp lL þ lK þ rLrKqð ÞT½ �ð Þ:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var IRM KT ; LTð Þ � S�½ �

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var IRM KT ; LTð Þ½ �Var LT½ � � Covariance LT ; IRM KT ; LTð Þ½ �2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var LT½ �p :

Corollary 3 Under assumptions (1) and (2) on both the processes Ltð Þt and Ktð Þt, we
get:

h� ¼ L0K0�
�a exp lL þ lKð ÞT½ � exp rLrKqt½ � � 1½ �

� b� 1ð ÞL0 exp 2lL þ lK þ rLrKqð ÞT½ � exp r2L þ rLrKq
� �

T
� �� 1

� �� 	
4L20 exp 2lLT½ � exp r2LT½ � � 1ð Þ :

ð8Þ

Corollary 4 We note also that the optimal static hedging strategy h�has the
following form with respect to the forward rate L:

h� ¼ A

L0
þ B; ð9Þ

with

A ¼K0 � a � exp lL þ lKð ÞT½ � exp rLrKqT½ � � 1½ �
4 exp 2lLT½ � exp r2LT½ � � 1ð Þ

� 	
;

B ¼K0 � b� 1ð Þ � exp 2lL þ lK þ rLrKqð ÞT½ � exp r2L þ rLrKq
� �

T
� �� 1

� �
4 exp 2lLT½ � exp r2LT½ � � 1ð Þ

� 	
:

Consequently, if the correlation q is negative, the optimal static quadratic hedging is

decreasing with respect to the forward market rate if and only if the intercept a is

positive. If the correlation q is positive, it is the converse. Finally, note that if

process K is constant, we get h�=K0 ¼ B ¼ 1� bð Þ=4 implying that, on yearly

basis, h�y=K0 ¼ 1� bð Þ. Then , if there is no deposit rate, we recover immediately

that h�y=K0 ¼ 100% as expected.

In what follows, we illustrate numerically the previous results. For this purpose,

we consider the numerical base cases corresponding to our estimates for both Euro

and US zones (for Euribor and Libor, we use estimations of lL and rL on the time

period 1rst January 2009 to 1rst April 2019; for the value of the intercept for the

Euro zone, we take a ¼ 0:011 otherwise we get a negative expectation of the IRM9):

- Euro case:

9 This is due to a too high value of the intercept when being evaluated from 1997 to 2019 with respect to

the Euribor parameters. Indeed, banks must take care of sudden decrease of market rates when fixing a

deposit rate, as illustrated during 2009 for the Euribor.
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lL ¼0:041; lK ¼ 0:0745; k ¼ 0; rL ¼ 0:0289; rK ¼ 0:0980; q ¼ 0:1285; d ¼ 0;

a ¼0:011; b ¼ 0:633;K0 ¼ 1; L0 ¼ 1%; T ¼ 1 year:

- US case:

lL ¼0:0295;lK ¼ 0:0256; k ¼ 0; rL ¼ 0:0578; rK ¼ 0:0249; q ¼ �0:1546; d ¼ 0;

a ¼� 0:000226; b ¼ 0:42267;K0 ¼ 1; L0 ¼ 1%; T ¼ 1 year:

Figure 5 illustrates the hedging strategy as function of both the drifts and both the

volatilities of the market rate and the demand deposit amount. Looking at the

graphic on the left, we note that the optimal quadratic hedging strategy is increasing

w.r.t. the demand deposit trend while slightlty increasing w.r.t. the market rate

trend. This is quite intuitive since the higher the demand deposit, the higher the

amount to be invested on the market rate. Looking at the graphic on the right, we

note that the optimal quadratic hedging strategy is increasing w.r.t. the demand

deposit volatility while decreasing w.r.t. the market rate volatility.

Figure 6 displays the percentage of expectation of the hedging error with respect

to trend and with respect to volatility. From the graphic on the left, we note that the

percentage of expectation of the hedging error is slightlty increasing w.r.t. the

demand deposit trend while increasing w.r.t. the trend of rate market. Looking at the

graphic on the right, we observe that the percentage of expectation of the hedging

error is slightlty decreasing w.r.t. the demand deposit volatility while slightlty

increasing w.r.t. the market rate volatility.

Figure 7 represents the static optimal hedging strategy with respect to intercept a
and to coefficient b. Looking at graphic on the left, we note that the static optimal

hedging strategy is decreasing w.r.t. intercept a while slightlty decreasing w.r.t. b.
The percentage of expectation of the hedging error is increasing w.r.t. intercept a
while slightlty increasing w.r.t. b. It means that the percentage of expectation of the

hedging error is increasing w.r.t. the demand deposit rate.

Figure 8 represents the static optimal hedging with respect to correlation q and

market rate volatility rL . Looking at graphic on the left, we note that the static

Fig. 5 Static optimal hedging with respect to trends (on the left) and with respect to volatilities (on the
right)(Euro)
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optimal hedging strategy is increasing w.r.t. correlation q while the sensitivity to

market rate volatility depends on the sign of the correlation (increasing when q is

negative and decreasing when q is positive). The percentage of expectation of the

hedging error is decreasing w.r.t. correlation q while the sensitivity to market rate

volatility depends on the sign of the correlation (decreasing when q is negative and

increasing when q is positive).

Figure 9 illustrates the hedging strategy as function of both the drifts and both the

volatilities of the market rate and the demand deposit amount. Looking at the

graphic on the left, we note that the optimal quadratic hedging strategy is increasing

w.r.t. the demand deposit trend while slightlty increasing w.r.t. the market rate

trend. This is quite intuitive since the higher the demand deposit, the higher the

amount to be invested on the market rate. Looking at the graphic on the right, we

note that the optimal quadratic hedging strategy is increasing w.r.t. the market rate

volatility while decreasing w.r.t. demand deposit volatility.

Figure 10 displays the percentage of expectation of the hedging error with respect

to trends and with respect to volatilities. From the graphic on the left, we note that

the percentage of expectation of the hedging error is slightlty increasing w.r.t. the

Fig. 7 Static optimal hedging with respect to intercept and beta (on the left) and its percentage of hedging
error (on the right)(Euro)

Fig. 6 Percentage of expectation of the hedging error with respect to trends (on the left) and with respect
to volatilities (on the right)(Euro)
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Fig. 8 Static optimal hedging with respect to rho and market rate volatility (on the left) and its percentage
of hedging error (on the right)(Euro)

Fig. 9 Static optimal hedging with respect to trends (on the left) and with respect to volatilities (on the
right)(US)

Fig. 10 Percentage of expectation of the hedging error with respect to trends (on the left) and with respect
to volatilities (on the right)(US)
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demand deposit trend while increasing w.r.t. the trend of market rate. Looking at the

graphic on the right, we note that the percentage of expectation of the hedging error

is slightlty increasing w.r.t. the demand deposit trend while slightlty decreasing w.r.

t. the trend of market rate.

Figure 11 represents the static optimal hedging strategy with respect to intercept

a and to coefficient b. Looking at graphic on the left, we note that the static optimal

hedging strategy is increasing w.r.t. intercept a while decreasing w.r.t. b. The

percentage of expectation of the hedging error is decreasing w.r.t. intercept a and

slightlty decreasing w.r.t. b. It means that the percentage of expectation of the

hedging error is decreasing w.r.t. the demand deposit rate. Compared to the Euro

case, the sensitivity to intercept a is the converse. Indeed, for the Euro case the

correlation q is positive while for the US case it is negative. Consequently, the signs

of the coefficient a are the opposite (see Relation 8).

Figure 12 represents the static optimal hedging with respect to correlation q and

market rate volatility rL . Looking at graphic on the left, we note that the static

optimal hedging strategy is increasing w.r.t. correlation q while the sensitivity to

Fig. 11 Static optimal hedging with respect to intercept and beta (on the left) and its percentage of
hedging error (on the right)(US)

Fig. 12 Static optimal hedging with respect to rho and market rate volatility (on the left) and its
percentage of hedging error (on the right)(US)
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market rate volatility depends on the sign of the correlation (increasing when q is

negative and decreasing when q is positive). The percentage of expectation of the

hedging error is decreasing w.r.t. correlation q while the sensitivity to market rate

volatility depends on the sign of the correlation (decreasing when q is negative and

increasing when q is positive).

We are now looking for the optimal quadratic hedging strategy in a dynamic

framework. Indeed, we can extend previous problem by examining a more general

form of the quadratic hedging strategy. Unlike the framework of quadratic hedging

considered in Adam et al. (2020), we allow the manager to trade on the demand

deposit amount itself. For example, he or she may decide not to invest part of this

amount at market rates during some time periods. It means that the risk management

of interest rate margins is in particular based on the observation of the demand

deposit amount.10. We are facing now the following optimization problem:

MinSVarianceP S� IRM KT ; LTð Þ½ � under EQ S½ � ¼ mBð0; TÞ:
Recall that Q denotes the risk-neutral probability. Consider H2 the set of payoffs S
with an integrable square that are perfectly replicated by a self-financing trading

strategy ht ¼ hK;t; hL;t
� �� �

t
adapted to the filtation generated by WK;t;WL;t

� �
t
(i.e.

information delivered by the market rate and the demand deposit)11 such that:

S ¼
Z T

0

hK;tdKt þ
Z T

0

hL;tdLt:

The set H2 contains the zero cost European options on the market rate.12

Introduce the subset H2;m of H2 taking account of the budget constraint, namely:

H2;m ¼ S ¼
Z T

0

hK;tdKt þ
Z T

0

hL;tdLt with EQ S2
� �

\1 and EQ S½ � ¼ mBð0; TÞ��
 �
:

We are facing now the following optimization problem:

MinS2H2;m
VarianceP S� IRM KT ; LTð Þ½ �: ð10Þ

Let us introduce the Radon-Nikodym derivative gT ¼ dQ

dP
of the risk-neutral

probability Q with respect to the objective probability P. Note that, under model

assumptions, gT is a function of the market rate at maturity LT and of the path of the

demand deposit amount13.

Proposition 5 The solution of Problem (10) with the constraint is given by:

S��m ¼ IRM KT ; LTð Þ þ mBð0; TÞ � EQ IRM KT ; LTð Þ½ �ð Þ: ð11Þ

10 Such information is easily available to any asset and liability manager.
11 Due to the completeness of the market, such replicating strategy exists for any S in H2.
12 By construction, we have H1;m � H2;m, both being closed subspaces of L2ðPÞ.
13 See “Appendix 1”.
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As can be seen in previous Relation (11), the hedging error S��m � IRM KT ; LTð Þ is
simply a constant w.r.t. S. Note that it is increasing w.r.t. m since the higher the

initial value, the higher the payoff S. Note also that the variance is nil when we take

m ¼ EQ IRM KT ; LTð Þ=Bð0; TÞ½ � which corresponds to the exact replication of the

interest rate margin IRM.

3.2 Quantile hedging for interest rate margins

Another final approach that we deal with in this paper is the quantile hedging. The

problem of hedging is seen by another point of view: what should an investor do if

he or she is unwilling to invest all the amount needed for a perfect hedging or a

superhedging strategy? Equivalently, which is the maximal probability of a

successful hedge given a smaller initial amount invested? This type of problem

seems to be more interesting in practice than the superhedging. Two seminal papers

of Föllmer and Leukert (1999, 2000) deal with quantile hedging. We consider the

quantile hedging strategies of interest rate margins in both the static and dynamic

cases where the amounts of interest rate derivatives are dynamically managed

according to the information set related to market rates and to the fluctuations of the

deposit amount. This typically leads to replicating interest rate derivatives. In our

framework, this allows to derive explicit dynamic strategies to hedge the interest

rate margin for a given quarter.

In what follows, we first consider the static quantile hedging of interest rate

margins. For this purpose, we have to solve the following optimization problem:

MaxS2H1ðmÞ P S� IRM KT ; LTð Þ½ �; ð12Þ
with the same subset H1;m of linear payoffs with respect to the market rate defined

previously, namely:

H1;m ¼ S S ¼ hLT þ eh��� with EQ S½ � ¼ mBð0; TÞ
n o

;

where h is a constant. Recall that the budget constraint corresponds to where Denote

Fig. 13 Probability of super hedging as function of theta
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by B(t, T) the value of the zero-coupon bond maturing at time T chosen as numeraire

in the GBM framework.

We have hL0 þ eh=Bð0; TÞ ¼ m which implies that eh ¼ m� hL0ð ÞBð0; TÞ.
Introduce now the following processes:

eKT ¼K0 exp lK � 1

2
r2K

� 	
T þ rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p eWK;T

� 

;

f LTð Þ ¼ L
� q

rK
rL

� �
0 exp � q

rK
rL

� 	
lL �

1

2
r2L

� 	
T

� 
0@ 1AL
q
rK
rL

� �
T � LT � g LTð Þð Þ

4
:

Then the interest rate margin has the form:

Fig. 14 Probability of super hedging as function of theta and demand deposit trend

Fig. 15 Probability of super hedging as function of theta and demand deposit volatility
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IRM KT ; LTð Þ ¼ KT LT � g LTð Þð Þ ¼ eKTf LTð Þ:
Therefore, we face the following optimization problem:

Maxh P h LT � L0Bð0; TÞ½ � þ mBð0; TÞ� eKTf LTð Þ� �
:

Proposition 6 With previous notations, Problem (12) is equivalent to the

maximization of the following expectation EP FeKT

h LT�L0Bð0;TÞ½ �þmBð0;TÞ
f LTð Þ

h ih i
, where

FeKT

denotes the cumulative distribution function of random variable eKT .

We have to examine the function

h �! P h LT � L0Bð0; TÞ½ � þ mBð0; TÞ� eKTf LTð Þ� �
.14 Figures and illustrate numer-

ically for the two cases, namely the US and the Euro zones (Fig. 13).

If we restrict the search to payoff S ¼ hLT , we can prove that the probability of

superhedging the interest margin is reached at the maximum possible value of

parameter h.

Proposition 7 The solution of Problem (12) with condition S ¼ hLT (i.e. eh ¼ 0Þ is
given by

S� ¼ h�LT with h� ¼ m

L0
: ð13Þ

Corollary 8 The probability of success (i.e. the hedging portfolio h�LT is higher than
the interest rate margin on demands deposit) is given by:

FIRM KT ;LTð Þ=LT
m

L0

� 

;

where the ratio IRM KT ; LTð Þ=LT is a linear combination of two Lognormal

processes.

In the following, we illustrate numerically the previous results. For this purpose,

we consider the numerical base cases corresponding to our estimates for both Euro

and US zones (for Euribor and Libor, we use estimations of lL and rL on the time

period 1rst January 2009 to 1rst April 2019; for the value of the intercept for the

Euro zone, we take a ¼ 0:001 instead a ¼ 0:011 otherwise we get a negative

expectation of the IRM15):

- Euro case:

14 See “Appendix 2” existence of an inner maximum.
15 This is due to a too high value of the intercept when being evaluated from 1997 to 2019 with respect to

the Euribor parameters. Indeed, banks must take care of sudden decrease of market rates when fixing a

deposit rate, as illustrated during 2009 for the Euribor.
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lL ¼0:041; lK ¼ 0:0745; k ¼ 0; rL ¼ 0:0289; rK ¼ 0:0980; q ¼ 0:1285; d ¼ 0;

a ¼0:011; b ¼ 0:633;K0 ¼ 1; L0 ¼ 1%; T ¼ 1 year:

- US case:

lL ¼0:0295;lK ¼ 0:0256; k ¼ 0; rL ¼ 0:0578; rK ¼ 0:0249; q ¼ �0:1546; d ¼ 0;

a ¼� 0:00026; b ¼ 0:42267;K0 ¼ 1; L0 ¼ 1%; T ¼ 1 year:

Figure 14 shows that the probability of superhedging is decreasing w.r.t. the

demand deposit trend for any given theta. This is due to the quantile condition

P hLT � IRM KT ; LTð Þ½ � itself since the term on the right does not depend on KT

while IRM KT ; LTð Þ ¼ 1
4
KT LT � gðKTÞð Þ is increasing w.r.t. KT .

Figure 15 shows that the probability of superhedging is decreasing w.r.t. the

demand deposit volatility for any given theta. This is due to the quantile condition

P hLT � IRM KT ; LTð Þ½ � which has the form E F LogðhmðLTÞ½ �½ � where FðxÞ ¼
Nðx=rKÞ thus decreasing w.r.t. rK (see below decomposition of KT using eKT .

Previous result can be extended by searching for a more general payoff S inH2;m.

We are facing now the following optimization problem:

MaxS2H2;m
P S� IRM KT ; LTð Þ½ �: ð14Þ

Previous hedging strategy is based on static hedging with involves only European

options. Therefore, we propose to extend the previous market above to a larger set

of dynamic self-financed investment strategies, enabling the manager to adapt his

FRA-based hedging strategy to the evolution of the demand deposit amount. We

consider now the dynamic quantile strategy problem: The value of the hedging

portfolio at time t is given by the process
R t
0
hK;sdKs þ

R t
0
hL;sdLs. It is right-con-

tinuous and with an integrable square. As in Föllmer and Leukert (1999, 2000), let

us consider m which is smaller than the initial value of the interest rate margin,

namely EQ IRM KT ; LTð Þ=Bð0; TÞ½ �. We can now ask for the strategy which maxi-

mizes the probability of a successful hedge under the constraint that the initial

capital is not larger than m. Thus, we examine the problem:

MaxS2H2;m
P S ¼

Z T

0

hK;tdKt þ
Z T

0

hL;tdLt � IRM KT ; LTð Þ
� 


: ð15Þ

Using the theory of Neyman-Pearson, consider a randomized test (“success ratio”),
i.e, an F T -measurable function u such that 0�u� 1.

Consider the measure eP defined by:

d eP
dQ

¼ IRM KT ; LTð Þ
EQ IRM KT ; LTð Þ½ � :

Let R be the class of all these functions and let us consider the problem of

optimization:
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EP eu½ � ¼ max
u2R

EP u½ �; ð16Þ

under the constraintZ
ud eP� a ¼ m

EQ IRM KT ; LTð Þ==Bð0; TÞ½ � : ð17Þ

Define the level

ea ¼ inf a : eP dP

dQ
[ a IRM KT ; LTð Þ

� 

� a


 �
; ð18Þ

Then, the Neyman-Pearson lemma gives the solution as being:

eu ¼ I
dP

deP [ea:IRM KT ;LTð Þ

 �; ð19Þ

where ea is given by (18). Therefore, by applying results of Föllmer and Leukert

(1999), we get the following result.

Proposition 9 The solution of Problem is a knock-out option defined by:

V�
T ¼ IRM KT ; LTð ÞI dP

dQ[ea:IRM KT ;LTð Þf g: ð20Þ

Remark 10 We note that condition dP
dQ [ ea:IRM KT ; LTð Þ is equivalent to condition

gT\1= ea:IRM KT ; LTð Þð Þ. Therefore, as soon as this latter condition is not satisfied,

the value of the knock-out option is null, meaning that this kind of strategy can yield

actually to no hedge.

4 Concluding remarks and discussion

In recent years, outstanding bank deposits have increased very significantly, in

particular since the outbreak of the COVID 19 pandemic. In this paper, we deal with

the mitigation of the risk contained in interest rate margins of demand deposits. We

assume the demand deposit amount to carry some source of risk called ‘‘business

risk’’, independent of market risk. We deal with both the main hedging strategies of

the interest margins, namely the quadratic strategy and for the first time the quantile

hedging strategy, in particular when the manager wants to control the hedging cost.

We examine both the static and dynamic cases for which we provide explicit

hedging strategies. For this purpose, we perform linear regressions of deposit rates

on market rates. We find that the optimal static quadratic hedging is inversely

proportional to the market rate. One of the main features is that the quantile hedging

leads to a portfolio which corresponds to a knockout option. Thus, the solution for

the quantile hedging criterion is somewhat riskier since its gain may be nil, due to

its knockout feature. Further extensions could consider more complex dynamics in
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particular of the demand deposit rate by introducing stochastic volatility and jumps

as well. This will allow us to take account of potential asymmetric effects and fat

tails. Other particular hedging strategies such as a risk management strategy based

on minimax to take account of a worst case scenario could be also examined as

proposed by Howe et al. (1994). New benchmark market interest rates could also be

considered since Libor and Euribor rates will be replaced as they are no longer

considered as representative of real banking transactions. It should also be noted

that the presence of negative rates in Europe has already led banks to rely on other

rates for deposit remuneration. However, the war in Ukraine is contributing to a

sharp rise in inflation rates, leading central banks to increase their key rates. As a

result, short term rates should become positive again. As emphasized by Jawadi and

Sousa (2013), we could also take account of nonlinear dynamics associated with the

money demand functions and of their elasticities with respect to inflation rate,

interest rate, GDP...In any case, we believe that our results have important

implications for the hedging of bank deposits, particularly in the context of the

global pandemic and the Ukraine crisis.

Appendix 1. Quadratic hedging strategies

Appendix 1.1. Determination of the risk-neutral probability Q

In order to determine the risk-neutral probabilityQ (here the forward measure of the

market rate for the maturity T), we have to compute its Radon-Nikodym derivative

process g with respect to the objective probability P defined by:

gt ¼ EP
dQ

dP
F tj

� 

:

Recall that the market rate Lt ¼ L t; T; T þ 1
4

� �
with duration equal to a quarter is

assumed to follow the following dynamics:

dLt ¼ Lt lL þ rLdWL;t

� �
; ð21Þ

where WL;t

� �
t
is a standard Brownian motion under the historical probability

measure P.

The demand deposit amount is assumed to satisfy:

dKt ¼ Kt lK þ rKdWK;t

� �
; ð22Þ

where WK;t

� �
t
is a standard Brownian motion. The dynamics of the demand deposit

is correlated with interest rates since we suppose that both WL;t

� �
t
and WK;t

� �
t
are

standard Brownian motions under the same filtration F tð Þt. and that there exists a

Brownian motion eWK;t

� �
t
independent from WL;t

� �
t
, and a q constant correlation

parameter such that we have:

123

On the Hedging of Interest Rate Margins on Bank Demand Deposits 957



dWK;t ¼ qdWL;t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
d eWK;t:

To compute the Radon-Nikodym g, we recall that, since it must be equal to an

exponential martingale under the filtration F tð Þt generated by both standard

Brownian motions WL;t

� �
t
and eWK;t

� �
t
, it has the following form:

gt ¼ exp � 1

2

Z t

0

b2L;s þ b2K;s

� �
ds�

Z t

0

bL;sdWL;s �
Z t

0

bK;sd eWK;s

� 

;

where both processes bL;t
� �

t
and bK;t

� �
t
are predictable with integrable squares.

They correspond to factor loadings with respect to the sources of risk. To determine

these factors, we use the following characterizations: both gtLtð Þt and

gtKt=Bðt; TÞð Þt are martingales under P, where B(t, T) denotes the value of the zero-
coupon bond maturing at time T chosen as numeraire in the GBM framework:

dBðt; TÞ ¼ Bðt; TÞ lB;tdt þ rB;tdWL;t

� �
:

Using the fact that both drifts of gtLtð Þt and gtKt=Bðt; TÞð Þt must be equal to 0, we

get the following system:

bL ¼ lL
rL

;

bK;t ¼
lK � lB;t þ r2B;t � rKq

lL
rL

þ rB;t

� 	
þ lL

rL
rB;t

� 	
rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p :

8>>>><>>>>:
from which we deduce that gT is a function of the market rate at maturity LT and of

the path of the demand deposit amount given by:

gT ¼ vTL
� lL

r
L2

� �
T exp � 1

2

Z T

0

b2K;tdt �
Z T

0

bK;td eWK;t

� 

;

with vT ¼ exp � 1

2
lL �

lL
rL

� 	2
" #

T

" #
L

lL
r
L2

� �
0 :

Appendix 1.2. Proof of Proposition 1

We have:
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Variance IRM KT ; LTð Þ � S½ � ¼

Variance hLT þ eh � 1

4
KT LT � a� bLTð Þ

� 

¼ h2Variance LT½ � þ 1

16
Variance KT aþ b� 1ð ÞLTð Þ½ �

þ h
2
Covariance LT ;KT aþ b� 1ð ÞLTð Þ½ �:

Previous term is a polynomial function of order 2 with respect to h . Its minimum is

reached on:

h� ¼ Covariance LT ;KT �a� b� 1ð ÞLTð Þ½ �
4Variance LT½ � :

Finally, since hL0 þ eh=Bð0; TÞ ¼ m, we deduce the result.

Appendix 1.3. Proof of Proposition 5

We have to solve:

MinS2H2;m
Variance S� IRM KT ; LTð Þ½ �:

which is equivalent here to:

MinS2H2
Variance S� 1

4
KT LT � a� bLTð Þ

� 

;

under

EQ S=Bð0; TÞ½ � ¼ m:

We introduce the following auxiliary conditions:

EP IRM KT ; LTð Þ � S½ � ¼ k:

Due to its convexity, we can apply results based on Lagrangian conditions.16. Let us

introduce:

L S; f; nð Þ ¼
Variance S� IRM KT ;LTð Þ½ � þ 2f mBð0;TÞ � EP SgT½ �ð Þ þ 2n EP IRM KT ;LTð Þ � S½ � � kð Þ;

where gT corresponds to the previous Radon-Nikodym derivative
dQ

dP
of the risk

neutral probability Q with respect to the objective probability P and under the

filtration generated by WL;WKð Þ.
Then, the optimization problem with the previous additional condition is

equivalent to MinL S; f; nð Þ. The first order conditions correspond to:

16 See e.g. Ekeland and Turnbull (1983) for such property.
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o
oS

Variance S� IRM KT ; LTð Þ½ � þ 2f mBð0; TÞ � EP SgT½ �ð Þ
þ 2n EP IRM KT ; LTð Þ � S½ � � kð Þ ¼ 0:

We deduce that:

S��m;k ¼ IRM KT ; LTð Þ þ fgT þ n;

with:

�f� n ¼ k

fEP g2T
� �þ n ¼ mBð0;TÞ � EQ IRM KT ; LTð Þ½ �



:

We get:

f ¼ kþ mBð0; TÞ � EQ IRM KT ; LTð Þ½ �
EP g2T½ � � 1

;

n ¼ EQ IRM KT ; LTð Þ½ � � mBð0; TÞ � kEP g2T
� �

EP g2T½ � � 1
:

Now we deduce that:

Variance S��m;k � IRM KT ; LTð Þ
h i

¼Variance fgT þ n½ �
¼f2Variance gT½ �
¼f2 EP g2T

� �� 1
� �

:

Now, for fixed m, we search the mininimum with respect to k. We get:

k� mð Þ ¼ EQ IRM KT ; LTð Þ½ � � mBð0; TÞ;
f� mð Þ ¼ 0;

and

n� mð Þ ¼ �f� mð Þ � k� mð Þ ¼ mBð0; TÞ � EQ IRM KT ; LTð Þ½ �ð Þ:
The optimal solution is then given by:

S��m;k ¼ IRM KT ; LTð Þ þ mBð0; TÞ � EQ IRM KT ; LTð Þ½ �ð Þ:
We note that the variance is obviously minimal for m� ¼ EQ IRM KT ; LTð Þ=Bð0; TÞ½ �.

Appendix 2. Quantile hedging strategies

Appendix 2.1. Proof of Proposition 6

Note that, using standard calculus, the demand deposit process K can be

decomposed as follows:
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KT ¼ eKT � L
� qrKrL

� �
0 exp � q

rK
rL

� 	
lL �

1

2
r2L

� 	
T

� 
0@ 1AL
qrKrL

� �
T ;

with

eKT ¼ K0 exp lK � 1

2
r2K

� 	
T þ rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p eWK;T

� 

:

Recall that :

IRM KT ; LTð Þ ¼ KT LT � g LTð Þð Þ:
Therefore, we face the following optimization problem:

Maxh P S� eKTf LTð Þ� �
under EP Sg LTð Þ=Bð0; TÞ½ � �m;

where:

f LTð Þ ¼ L
� q

rK
rL

� �
0 exp � q

rK
rL

� 	
lL �

1

2
r2L

� 	
T

� 
0@ 1AL
q
rK
rL

� �
T � LT � g LTð Þð Þ

4
[ 0:

We have:

P S� eKTf LTð Þ� � ¼ P
h LT � L0Bð0; TÞ½ � þ mBð0; TÞ

f LTð Þ � eKT

� 

Since the random variables LT and eKT are independent, we deduce:

P
h LT � L0Bð0; TÞ½ � þ mBð0; TÞ

f LTð Þ � eKT

� 

¼ EP FeKT

h LT � L0Bð0; TÞ½ � þ mBð0; TÞ
f LTð Þ

� 
� 

;

where FeKT

denotes the cumulative distribution function of random variable eKT .

Condition for an existence of an inner maximum: The search for an interior

maximum yields to the first order condition:

o
oh

E FeKT

h LT � L0Bð0; TÞ½ � þ m=Bð0; TÞ
f LTð Þ

� 
� 

¼ 0;

which is equivalent to:

E feKT

h LT � L0Bð0; TÞð Þ þ mBð0; TÞ
f LTð Þ

� 

LT � L0Bð0; TÞð Þ

f LTð Þ
� 


¼ 0;

where feKT

denotes the pdf of process eKT .
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Appendix 2.2. Proof of Proposition 7

For S ¼ hLT , We have to solve:

Maxh�m=EQ LT½ �P hLT � IRM KT ; LTð Þ½ �:
This is equivalent to:

Maxh�m=EQ LT½ �FIRM KT ;LTð Þ=LT h½ �;
where FIRM KT ;LTð Þ=LT is the cumulated distribution function (cdf) of the ratio

IRM KT ; LTð Þ=LT . Clearly, since any cdf is increasing, the maximum is reached on:

h� ¼ m

EQ LT½ � :

Finally, since under the risk neutral probability Q, we have EQ LT½ � ¼ L0, we deduce
the result.

Appendix 2.3. Proof of Corollary

Under assumptions (1) and (2) on both the processes Ltð Þt and Ktð Þt, we can

compute the cdf FIRM KT ;LTð Þ=LT . Indeed, we have:

IRM KT ; LTð Þ
LT

¼ 1

4
KTð1� bÞ � a

4

KT

LT
:

Recall that the processes L and K satisfy:

dLt ¼ Lt lLdt þ rLdWL;t

� �
where WL;t

� �
t
is a standard Brownian motion under the historical probability

measure P and where lL and rL are assumed to be constant. The demand deposit

amount follows:

dKt ¼ Kt lKdt þ rKdWK;t

� �
;

where WK;t

� �
t
is a standard Brownian motion. The trend lK and the volatility rK are

assumed to be constant. We have also:

dWK;t ¼ qdWL;t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
d eWK;t;

where eWK;t

� �
t
is a Brownian motion independent of WL;t

� �
t
, while WL;t and WK;t

have a correlation parameter qt.
Consequently, we get:
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KT ¼K0 exp lK � 1

2
r2K

� 	
T þ rKqWL;T þ rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p eWK;T

� 

KT

LT
¼K0

L0
exp lK � lL �

1

2
r2K þ 1

2
r2L

� 	
T þ rKq� rLð ÞWL;T þ rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p eWK;T

� 

Therefore, the ratio IRM KT ; LTð Þ=LT is a linear combination of two Lognormal

processes.

Appendix 2.4. Quantile hedging strategies: the complete case

This section recalls results about quantile hedging strategies in complete financial

markets. We refer to Föllmer and Leukert (1999). In particular, we search for a

strategy which maximizes the probability of a successful hedge under the objective

probability P, given a constraint on the initial cost. This concept on quantile

hedging can be considered as the dynamic version of the “Value-at-Risk” concept.

The problem of quantile hedging is formulated in the context of general

semimartingale processes. In what follows, to simplify the notations, the riskless

rate is supposed to be equal to 0. We assume that the price process of the underlying

is a semimartingale X ¼ ðXtÞt2 0;T½ � on a probability space X;F ;Pð Þ with the

filtration F tð Þt2 0;T½ �: For simplicity, we assume that F 0 is trivial. Let Q denote the

set of all equivalent martingale measures. We assume absence of arbitrage in the

sense that Q 6¼ £.

A self-financing strategy is defined by an initial capital V0 � 0 and by a

predictable process h. Such a strategy V0; hð Þ is called admissible if the process

defined by

Vt ¼ V0 þ
Z t

0

hsdXs; 8t 2 0; T½ �; P� a:s: ð23Þ

satisfies

Vt � 0; 8t 2 0; T½ �; P� a:s: ð24Þ
In complete markets, there exists an unique equivalent martingale measure Q 	 P:
Consider a contingent claim given by an F t�measurable, nonnegative random

variable H such that H 2 L1ðQÞ: Completeness implies the existence of a pre-

dictable process nH ; providing a perfect hedge for H

EQ H=F t½ � ¼ H0 þ
Z t

0

nHs dLs; 8t 2 0; T½ �; P� a:s:; ð25Þ

where EQ denotes expectation with respect to Q. Thus, the claim can be duplicated

by the self-financing trading strategy H0; n
H

� �
: This assumes that we allocate the

required initial cost
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H0 ¼ EQ H=Bð0; TÞ½ �: ð26Þ
But if the investor is unwilling to invest the initial capital H0; he must choose the

best strategy that he can achieve with an initial capital fV0 �H0: given our opti-

mality criterion, founded on the maximization of the probability of success, we must

look for a strategy V0; hð Þ such that

P V0 þ
Z T

0

hsdLs �H

� 

¼ max; ð27Þ

under the constraint

V0 �fV0 : ð28Þ

In a first step, a set of a maximal probability eA is determined under the constraint

that the cost of hedging the given claim on that set, i.e, hedging HIeA ; satisfies a

given bound eV0. The set is constructed using the Neyman-Pearson lemma. In a

second step, the knockout option HIeA is replicated (since the market is complete).

This strategy maximizes the probability of a successful hedge. More precisely, let us

call the set VT �Hf g the success set corresponding to the admissible strategy

V0; hð Þ where VT is given by (23).

Let eA 2 F T be a solution of the problem.

P A½ � ¼ max; ð29Þ
under the constraint

EQ H=Bð0; TÞIA½ � � eV0; ð30Þ

where Q is the unique equivalent martingale measure. Let en denote the perfect

hedge for the knockout option eH ¼ HIeA 2 L1ðQÞ; i.e.,

EQ H=Bð0; TÞIeA=F t

h i
¼ EQ H=Bð0; TÞIeAh i

þ
Z t

0

ensdLs; 8t 2 0; T½ �; P� a:s:

ð31Þ

Then eV0; en� �
solves the optimization problem defined by (27) and (28), and the

corresponding success set coincides almost surely with eA .

The problem of constructing a maximal success set is now solved by applying the

Neyman-Pearson lemma. To this end, consider the measure eP defined by

deP
dQ

¼ H

EQ½H=Bð0; TÞ� ¼
H

H0

:

The constraint (30) can be written as:
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eP½A� � a,
eV0

H0

: ð32Þ

Define the level

ea ¼ inf a : eP½dP
dQ

[ a H� � a ¼
eV0

H0

( )
; ð33Þ

and the corresponding set

eA, dP

dQ
[ ea H


 �
: ð34Þ

Let us assume that the set eA; defined by the two preceeding equations, satisfies

eP eAh i
¼ a: ð35Þ

Then the optimal strategy solving (27) and (28) is given by eV0; en� �
where en is the

perfect hedging of the knockout option HIeA :
Therefore, the problem of quantile hedging is reduced to a more simple problem:

to hedge a knockout option. As mentioned in Föllmer and Leukert (1999), Condition

(35) is satisfied as soon as

P½dP
dQ

¼ c H� ¼ 0: ð36Þ

Usually, it is not easy to find any set A 2 FT which assumes the constraint in (32) (i.

e. is bounded). In this case, the theory of Neyman-Pearson suggests to replace the

critical region A 2 FT by a randomized test, i.e. by a FT -measurable function u
such that 0�u� 1: Let R be the class of all these functions and let us consider the

problem of optimization:

E eu½ � ¼ max
u2R

E u½ �; ð37Þ

under the constraint Z
ud eP� a ¼

eV0

H0

: ð38Þ

The Neyman-Pearson lemma gives the solution as being equal to:

eu ¼ I dP
dQ[ea:Hf g þ cI dP

dQ¼ea:Hf g; ð39Þ

where ea is given by (33) and where c is defined by
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c ¼ a� eP dP
dQ [ ea:H� �

eP dP
dQ ¼ ea:H� � ; ð40Þ

in the case where the condition (35) is not verified. Note that, in our framework, the

contingent claim H corresponds to the interest rate margin IRM KT ; LTð Þ. Thus
condition dP

dQ ¼ ea:IRM KT ; LTð Þ is equivalent to condition g LTð Þ�1¼ ea:IRM
KT ; LTð Þ: Applying our previous results, we have:

P g LTð Þ�1¼ ea:IRM KT ; LTð Þ
h i

¼ 0:

Therefore, c ¼ 0. These results lead to the solution given in Proposition 9.
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