
A Dynamic Baseline Calibration Procedure for CGE models

Johannes Ziesmer1 • Ding Jin2 • Sneha D Thube3 • Christian Henning2

Accepted: 24 February 2022 / Published online: 31 March 2022
� The Author(s) 2022

Abstract
Baseline assumptions play a crucial role in conducting consistent quantitative policy

assessments for dynamic Computable General Equilibrium (CGE) models. Two

essential factors that influence the determination of the baselines are the data

sources of projections and the applied calibration methods. We propose a general,

Bayesian approach that can be employed to build a baseline for any recursive-

dynamic CGE model. We use metamodeling techniques to transform the calibration

problem into a tractable optimization problem while simultaneously reducing the

computational costs. This transformation allows us to derive the exogenous model

parameters that are needed to match the projections. We demonstrate how to apply

the approach using a simple CGE and supply the full code. Additionally, we apply

our method to a multi-region, multi-sector model and show that calibrated param-

eters matter as policy implications derived from simulations differ significantly

between them.
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1 Introduction

Nowadays, Computable General Equilibrium (CGE) models are considered the

workhorse models of policy analysis focusing on economy-wide effects induced by

exogenous economic shocks or policy interventions (de Melo 1988; Shoven and

Whalley 1984; Dixon and Jorgenson 2013). For example, CGE models have been

widely used to assess the impacts of policies in the area of international trade

(Hertel 1997; Hertel et al. 2007; Caliendo and Parro 2014), migration (Stifel and

Thorbecke 2003; Fan et al. 2018), agricultural policies (Milczarek-Andrzejewska

et al. 2018; Taylor et al. 1999), and energy(Burniaux and Chateau 2014) or climate

policies (Böhringer et al. 2014; Fujimori et al. 2016; Böhringer et al. 2021).

However, longstanding criticisms of CGE models include that these models have

weak econometric foundations (McKitrick 1998; Jorgenson 1984). This criticism

arises from the fact that CGE models are complex, and the available empirical data

is limited, implying that it is often impossible to estimate all model parameters

econometrically (McKitrick 1998; Jorgenson 1984; Hansen and Heckman 1996).

Thus, typically model parameters are either assumed ad hoc or weakly derived from

empirical data to calibrate CGE models.

In static CGE models, a classical baseline calibration corresponds to calculating

model exogenous variables, such that model output in the equilibrium replicates the

economic structure defined by a given social accounting matrix (SAM) empirically

observed in a specific base year. This approach can be problematic because

generally, an infinite number of parameter set-ups can be generated such that all of

them can perfectly replicate the SAM. A good case in point is the often-used

practice of assuming ad hoc values for relevant elasticities of substitution or

transformation to determine remaining parameters of corresponding Constant

Elasticity of Substitution (CES)- and Constant Elasticity of Transformation (CET)-

functions. Thus, calibration of static CGE models corresponds to a more or less

arbitrary parameter specification. In response to this criticism, Systematic Sensi-

tivity Analysis (SSA) is being increasingly used in CGE model applications. With

this approach endogenous CGE output variables are simulated based on sampled

CGE model parameters that are derived from estimated or assumed distributions

(Olekseyuk and Schürenberg-Frosch (2016)).

However, though SSA is a good method to reveal induced uncertainty of model

outputs explicitly as it derives the means and variances of all relevant endogenous

variables based on an assumed distribution of parameters, it does not provide a way

to use external information to ‘‘update’’ the assumed distribution. Hence, it is not an

appropriate procedure to reduce model uncertainty. Furthermore, SSA does not

provide a method to integrate observed model uncertainty into the derivation of

optimal policy choices.

For dynamic CGE models, in addition to the base year calibration, modellers also

need to calibrate the long-term behaviour (Sánchez 2004). Typically, while

constructing the baseline of a dynamic model, modellers use historical data and

forecasts to specify relevant model parameters minimizing forecasts errors

comparing simulated model output with observed or forecasted data over the entire
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forecast period from the base year to the end year. Calibration of a dynamic baseline

has the advantage of focusing on the long-term behaviour of the model, i.e.,

delivering information about the key parameters that drive the model response to an

exogenous shock. Understanding the response of the economy to exogenous shocks

is not only crucial to predict correctly future economic development, such as

sectoral growth, employment, capital stock, trade or Greenhouse Gas (GHG)

emissions in the baseline but also to assess counterfactual economic developments

implied by different policy scenarios (Nong and Simshauser (2020); Pothen and

Hübler (2021), see also Sect. 5.3). Moreover, the different approaches applied to

derive model baselines and calibrating model parameters are far from being

innocuous but rather crucially impact on corresponding policy analyses. Accord-

ingly, parameter calibration and baseline derivation has received wide-attention for

several types of numerical models that are used for policy analysis (e.g., Dynamic

Stochastic General Equilibrium (DSGE) models in Gomme and Lkhagvasuren

(2013), New Quantitative Trade (NQT) models in Pothen and Hübler (2021) and

spatial trade models in Paris et al. (2011)).

Technically, baseline calibration of dynamic equilibrium models corresponds to a

high dimensional optimization problem, i.e., a set of model parameters must be

identified such that the equilibrium values of the variables of interest should match

the forecasts from external sources of data. Additionally, a set of theoretical

restrictions like closure rules also need to hold valid on the model parameters. Given

the high dimensionality of parameters and output variables, solving this problem is

very challenging. Moreover, beyond the theoretical parameter restrictions, a priori

expert information regarding the empirical range of model parameters is generally

available, and prior parameter distributions can formally represent this. Hence,

given all these constraints, a Bayesian estimation approach appears to be an

appropriate methodological framework for baseline calibration of dynamic

equilibrium CGE models. Moreover, Bayesian estimation techniques are applied

to estimate parameters of DSGE models (Smets and Wouters 2003; Hashimzade and

Thornton 2013). In particular, like CGEs also DSGE models correspond to sound

micro-founded and theoretically consistent model structures, where applying

Bayesian estimation techniques DSGE models combine these theoretical properties

with good forecasting performance. For example, Smets and Wouters (2003) have

demonstrated that the estimated DSGE models perform quite well in forecasting

compared to standard and Bayesian vector autoregressions. Not only does the

system-wide estimation procedure deliver a more efficient estimate of the structural

model parameters, but it also provides a consistent estimate of the structural shock

processes driving recent economic developments. Understanding the contribution of

the various structural shocks to recent economic developments is an important input

in the monetary policy decision process. Accordingly, they conclude especially that

applying Bayesian estimation techniques to calibrate DSGE models the latter can

become a useful tool for projection and policy analysis in central banking. However,

compared to CGE models DSGEs are still highly aggregated models, which assume

highly aggregated economic agents, e.g., do not include heterogenous sectoral

structures. Therefore, in contrast to DSGE models applying Bayesian estimation
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techniques to estimate parameters of a CGE model is still challenging due to the

much more complex structure and much high number of parameters of the latter.

Some researchers have used an informal Bayesian estimation procedure by which

they run a model forward over a historical period and compare model results with

historical data (Gehlhar 1994; Kehoe et al. 1995; Dixon et al. 1997). Though such

approaches can be helpful to revise parameter estimates and recalibrate the model

(Tarp et al. 2002), they are nevertheless ad hoc and do not yet offer a systematic

Bayesian procedure that can be applied baseline calibration of a dynamic model.

Alternatively, Arndt et al. (2002) and more recently Go et al. (2016) propose a

maximum entropy approach for parameter estimation of CGE models by using

information theory to estimate CGE parameters based on a sequence of observed

SAMs. Their approach can be interpreted as a special case of the Bayesian approach

and hence, already provides several advantages as compared to the standard

calibration methods. However, the approach still has limitations that can be

addressed in a general Bayesian framework. First, it is based on specific

assumptions regarding a priori parameter distributions, which can be significantly

relaxed in a general Bayesian framework (Heckelei and Mittelhammer 2008).

Second, this approach is focused on an ex-post analysis, and thus, it requires

empirical observations of corresponding SAMs. Furthermore, so far, the Cross

Entropy (CE)-method has only been applied to single country and static CGE

models, and this approach cannot be easily extended to baseline calibration of

dynamic CGE models.

Our paper proposes a Bayesian estimation approach that generalizes the CE-

method of Arndt et al. (2002); Go et al. (2016) thereby allowing a more direct and

straightforward formulation of available prior information (see Sect. 2). An

important innovative step in our approach is that we complement the Bayesian

estimation with metamodeling techniques (Kleijnen and Sargent 2000) to replace

the CGE model with a simplified surrogate model to reduce complexity and thereby,

significantly reduce the computational effort (Sect. 2.1). Our Bayesian approach

also enables us to simulate endogenous CGE outputs based on sampled model

parameters that are derived from the corresponding posterior distribution, where

technically metamodeling also facilitates Metropolis-Hasting sampling from this

posterior distribution. We show how to apply the approach with a toy model and

provide the complete code for this demonstration (Sect. 3). Since our proposed

approach can also be applied to calibrate complex multi-region and multi-sector

CGEs subsequently in (Sect. 4) we demonstrate our approach by calibrating the

dynamic baseline of the Dynamic Applied Regional Trade (DART-CLIM) model.

Lastly, we also show that the chosen calibration approach has a noticeable impact

on policy assessments by using our method to construct two baselines for DART-

CLIM albeit with differences in the extent of calibration (Sect. 5).

2 Methods

Simplified, the application of CGE models in policy analysis follows three main

steps in general (Fig. 1).
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The first step is collecting statistical data, like SAMs or Input/Output (I/O)-

tables besides information about exogenous parameters (like elasticities) and

forecasts for key outputs from other studies. The second step is model calibration,

where the parameters of the CGE are derived to replicate observed data and

forecasts to a certain degree. When the calibration gives a satisfying specification,

the model is applied in policy analysis by implementing policy shocks, and the

policy impact is measured by comparing outputs from the policy scenario to the

baseline scenario. In the rest of this section, we present the foundations of

calibration and derive a consistent and comprehensive approach to the calibration

step.

Formally, let F denote a CGE model, which implicitly determines outputs, y as a
function of a set of model parameters, h:

Fðy; hÞ � 0. ð1Þ

F is an I-dimensional vector valued function, y an I-dimensional vector of

endogenous output variables and h a K-dimensional vector of exogenous model

parameters. Model parameters can be further disaggregated into different subsets,

e.g. behavioural parameters or exogenous variables. The latter also includes policy

variables that are controlled by the government, e.g. taxes or tariffs, etc. Further,

exogenous variables include demographic or economic variables uncontrolled by

the government, e.g. world market prices, population growth, etc.... Changes in the

values of exogenous variables correspond to exogenous shocks, which induce

changes in the endogenous variables. The latter corresponds to the response of the

economic system to exogenous shocks. Behavioural parameters define the response

of the economic system to exogenous shocks. Hence, assuming behavioural

parameters correspond to their true values implies that the model replicates the true

response of the economy to exogenous shocks. In this context, we define a dynamic

model as a model for which variables and parameters are defined for different

periods, while a static model corresponds to a model for which variables and

parameters are only defined for one specific time (base) period. Further, we define

baseline by a complete parameter specification which corresponds to a clearly

defined base run scenario. Obviously, since the model Fðy; hÞ determines for any

complete parameter specification (h) the corresponding endogenous output variables

a baseline also delivers specific values for all endogenous variables (y).
An advantage of CGE models is that one can simulate counterfactual scenarios,

i.e. one can calculate the values of the endogenous variables that result from

assuming parameter values that differ from their corresponding baseline values.

Hence, one can simulate the impact of different policies by changing the subset of

policy variables compared to their baseline values, or one can simulate the impact of

different framework conditions on policy impacts by changing the subset of

Fig. 1 Step-wise CGE-modeling approach. (adapted and simplified from Shoven and Whalley (1992))
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exogenous variables uncontrolled by the government. Finally, one can also simulate

the impact of characteristic properties of the economic system on the impact of

specific policies via simulating policy impacts, assuming different values for the

subset of behavioural variables and comparing these to policy impacts derived for

the baseline values. However, important for any model-based policy analysis is that

the baseline parameters can be empirically validated. In particular, this implies that

the subset of behavioural parameters corresponds to the true structural properties of

the economic system.

Given the fact that in contrast to endogenous and exogenous variables,

behavioural parameters can generally not be directly observed, empirical model

validation is based on a comparison of observed values of the endogenous model

variables with corresponding values derived from model simulations. Accordingly,

all model validation methods basically correspond to the identification of

behavioural model parameters that maximize the likelihood of the model

specification. Given enough observed data, yo, of sufficient quality, h can be

estimated econometrically. In the context of CGEs, data is usually scarce, and

therefore, the identification of h becomes a calibration problem. A standard

calibration method for CGEs is based on given empirical observations of

endogenous and exogenous variables in a given base year, where behavioural

parameters are determined in a way that the observed variables are replicated in this

base year. Since for this procedure, data is only observed in a single (base) year, we

call this a static baseline calibration method. In contrast, assuming parameters are

determined based on variable values observed for a sequence of time periods, we

use the term dynamic baseline calibration method.

However, as we already explained above, a problem of a static baseline

calibration corresponds to the fact that there exists an infinite set of different

behavioural parameter specifications that imply that simulated outputs perfectly

replicate a given set of observed variables, while simulated responses of the

economic system to given exogenous shocks differ in contrast significantly for

different behavioural parameter values. Therefore, model-based policy analysis

becomes arbitrary. We suggest a Bayesian framework for an advanced parameter

calibration method to avoid this arbitrariness. The latter can be applied as a static as

well as a dynamic baseline calibration method.

In the general Bayesian framework, observed variables are noisy, i.e., data yo ¼
fYo

1; . . .; Yo
Ng correspond to true variable values, y ¼ fY1; . . .; Yng and noises

� ¼ f�1; . . .; �N ; g. Assuming �n is iid normally distributed, �n / Nð0; IÞ implies that

the posterior results as:

hðh j yoÞ / pðhÞ
QN

n¼1

pð�nÞ

withðh; �Þ 2 W :¼ ðh; �Þ j � ¼ yo � y and Fðy; hÞ � 0f g
ð2Þ

Building upon this general Bayesian framework, we develop a calibration procedure

for quasi-dynamic CGE models. To this end we define different subsets of

parameters, i.e., h ¼ ðh0; htÞ. h0 denotes parameter values in the base year while ht

denotes parameter values in a period t ¼ 1; . . .; T different to the base year. Given a
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forecast for a subset of output variables, zo 2 y, and yo
0 2 y empirical observations

of a subset of CGE-variables in the base year t0, we define �0 ¼ yo
0 � y0 and

�z ¼ zo � z, and � ¼ ð�0; �zÞ. Additionally, assuming normal distributions for � /
Nð0;R�Þ and h / Nð�h;RhÞ with the co-variance matrices R�, Rh ¼ ðR0;RTÞ as

diagonal matrices with elements r2� , r
2
h, we can derive the following optimization

problem for the Highest Posterior Density (HPD) -estimator:

h� ¼ argmin
h

ðh� �hÞ0R�1ðh� �hÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/pðhÞ

þ �0R�1
� �

|fflfflffl{zfflfflffl}
/LðyojhÞ

�0 ¼ yo
0 � y0

�z ¼ zo � z

0 � Fðy0; z; y n ðy0; zÞ; h0; hTÞ
0 � Hðh0; hTÞ.

ð3Þ

Hðh0; hTÞ takes additional parameter constraints into account that are induced by

economic theory or apriori expert information. In general, given observations yo
0

and forecasts zo, HPD estimation follows an optimization problem described by the

system 3. It is also possible to choose other distributions, i.e., other extremum

metrics, while keeping the general idea the same. Moreover, please note that in

general, the approach 3 includes the option that some variables or parameters are

known with certainty, e.g. governmental policies like taxes or tariffs are normally

known with certainty. In this case, these variables or parameters are fixed to their

prior values and excluded from the prior density function.

However, outputs z are only defined as an implicit function by theCGE, and

therefore, the solution of the optimization problem is very tedious. Hence, complex

methods of simulation optimization (SO) have to be applied to solve (3). We apply

metamodeling techniques to reduce complexity and computational effort (see 2.1

for a short introduction). The advantage of using metamodels is that they may result

in more efficient SO methods. As a result, F is substituted with a metamodel M,

which approximates the mapping between model parameters and a subset of output

variables, ðy0; zÞ, derived from the original model F.

h� ¼ argmin
h
ðh� �hÞ0R�1ðh� �hÞ þ �0R�1

� �

�0 ¼ yo
0 � y0

�z ¼ zo � z

ðy0; zÞ ¼ Mðh0; hTÞ
0 � Hðh0; hTÞ

ð4Þ

The formulation in (3 and 4) allows a straightforward interpretation of the assumed

variances r2� and r2h. In particular, we can interpret r2� as weights that indicate the

importance of matching the corresponding forecast Zo relative to the other variables.

A lower value of r2� suggests higher importance relative to r2�0 . The variance r2h
captures the information we know about a parameter h with a lower value for r2h

123

A Dynamic Baseline Calibration ... 1337



compared to r2h0 implying more certainty or higher knowledge about h than h0.

2.1 Metamodeling

Metamodeling techniques are widely used in a variety of research fields such as

design evaluation and optimization in many engineering applications (Simpson

et al. 1997; Barthelemy and Haftka 1993; Sobieszczanski-Sobieski and Haftka

1997), as well as in natural science (Razavi et al. 2012; Gong et al. 2015; Mareš

et al. 2016). In recent years, metamodeling is increasingly being applied to

economic research. For example, Ruben and van Ruijven (2001) have applied the

approach to bio-economic farm household models to analyze the potential impact of

agricultural policies on changes in land use, sustainable resource management, and

farmers’ welfare; Villa-Vialaneix et al. (2012) have compared eight metamodels for

the simulation of N2O fluxes and N leaching from corn crops; Yildizoglu et al.

(2012) have applied the technique to two well-known economic models, Nelson and

Winter’s industrial dynamics model and Cournot oligopoly with learning firms, to

conduct sensitivity analysis and optimization respectively. Regardless of the

research fields, the metamodeling technique simplifies the underlying simulation

model, leading to a more in-depth understanding. The technique also brings the

possibility of embedding simulation models into other analysis environments to

solve more complex problems, such as the previously described calibration process.

The use of metamodeling entails three steps: selection of metamodel types,

Design of Experiments (DOE), and model validation (Kleijnen and Sargent 2000).

2.1.1 Metamodel Types

Metamodels are classified into parametric and non-parametric models (Rango et al.

2013). Parametric models, such as polynomial models (Forrester et al. 2008; Myers

et al. 2016), have explicit structure and specification. On the other hand, non-

parametric models do not depend on assumptions of model specification and

determine the (I/O) relationship of the underlying simulation model using

experimental data. Examples of non-parametric models consist of Kriging models

(Cressie 1993; Yildizoglu et al. 2012; Kleijnen 2015), support vector regression

models (Vapnik 2013), random forest regression models (Breiman 2001), artificial

neural networks (Smith 1993), and multivariate adaptive regression splines

(Friedman et al. 1991).

In this paper, we focus on the polynomial models that are defined by their order.

For example, a second-order polynomial model is given as follows:

Y ¼ b0 þ
Xk

h¼1

bhhh þ
Xk

h¼1

Xk

g� h

bh;ghhhg þ g; ð5Þ

where h1; ::::; hk are the k independent variables, Y is the dependent variable and g is
the error term. The corresponding coefficients b are usually estimated through a

linear regression based on least squares estimation (Chen et al. 2006). Polynomial

metamodels generally provide only local approximations. Theoretically, certain
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types of metamodels like Kriging models (Kleijnen 2015) can also provide a global

fit. Additionally, different metamodels may also be combined into an ensemble

(Bartz-Beielstein and Zaefferer 2017; Friese et al. 2016). Some of the advantages of

the polynomial models are:

– They have simple forms that are easy to understand and manipulate.

– They require low computational efforts.

– They can be easily integrated into other research frameworks.

For a more thorough introduction to other types of metamodels, see for example

Dey et al. (2017); Simpson et al. (2001).

2.1.2 Design of Experiments

To utilize the metamodels, we need to estimate the corresponding coefficients. We

generate the simulation sample by DOE, which is a statistical method of drawing

samples in computer experiments (Dey et al. 2017) and perform the estimation by

entering the simulation sample into the simulation model. DOE could be set-up in

two ways: the classical experimental design and the space-filling experimental

design (see Fig. 2). The former places the sample points at the boundaries and the

centre of the parameter space to minimize the influence of the random errors from

the stochastic simulation models. However, Sacks et al. (1989) have argued that this

is not the case for deterministic simulation models where systematic errors prevail.

Therefore, the space-filling experimental designs should be employed to replace the

classical ones. Among popular space-filling designs, Latin Hypercube design enjoys

great popularity due to its ability to generate uniformly distributed sample points

with ideal coverage of the parameter space as well as the flexibility with the number

of the sample points (Sacks et al. 1989).

2.1.3 Model Validation

Validation refers to assessing whether the prediction performances of the

metamodels hold an acceptable level of quality (Kleijnen 2015; Villa-Vialaneix

(a) (b)

Fig. 2 Classical and space-filling design. (adapted from Simpson et al. (2001))
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et al. 2012; Dey et al. 2017). Normally, two samples are needed to assess the quality

of a derived metamodel: the training sample and the test sample. The training

sample is used to fit the parameters of the metamodel, whereas the test sample is

used to validate the trained metamodel, and the test sample must include data points

that are not part of the training sample. It is important that the metamodels have

good predictions while maintaining generality. For this reason, a test sample is

essential because it helps us evaluate if the metamodels can be generalized and

whether the simulation model can be replaced with them.

The following textbook statistics are often considered to assess the validation

results.

R2 ¼ 1�
Pn

i¼1ðYi � Yo
iÞ2

Pn
i¼1ðYi � YoÞ2

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðYi � Yo
iÞ2

s ð6Þ

where Yi and Yo
i are the predicted values and true values for the test sample at

sample point i, and Yo is the mean of Yo in the test sample. In regression analysis, R2

is a statistical measure of how close the data are to the fitted regression line. The

root mean squared error (RMSE) is the square root of the variance of the residuals.

It indicates the absolute fit of the model to the data i.e., how close the model’s

predicted values are to the true values.

To compare the prediction performances for dependent variables that have

different scales, we introduce the absolute error ratio (AER), which is calculated by

taking the absolute value of RMSE divided by the corresponding mean:

AER ¼ RMSE

Yo

�
�
�
�

�
�
�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðYi � Yo

iÞ2
q

Yo

�
�
�
�
�
�

�
�
�
�
�
�
: ð7Þ

The AER metric gives us an idea of how large the prediction errors are in com-

parison to the true simulated values on average, i.e., the lower the AER values, the

better the prediction performances.

3 Demonstration

In this section, we first demonstrate how the theoretically derived approach (see

Sect. 2) can be applied using a simple toy model (Hosoe et al. 2010, 2016). We use

the toy model to provide technical insights to the reader on how our approach can be

applied. Therefore, we also refer explicitly to the corresponding programming code

of our calibration procedure, giving pointers on where each step is implemented.

The complete implementation code can be found as a supplement to this paper1. The

DART-CLIM application in Sect. 4 is used to demonstrate that our approach can

1 https://github.com/universal/cgecalibration/.
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also handle the calibration of huge complex models with a very large number of

parameters (� 1000).

The toy model we use is from the General Algebraic Modeling System (GAMS)

model library (GAMS Development Corporation 2020), and is a simple four sectors,

two factors, one household recursive dynamic CGE model (Hosoe et al.

2010, 2016).

In order to apply our dynamic calibration procedure, five main steps are

necessary, which are summarized in Algorithm 1. We implemented the individual

steps in a mix of R (R Core Team 2020) and GAMS (GAMS Development

Corporation 2020), where the GAMS part only requires a free demo license2. The R

code drives the full example, where two scripts have to be run to replicate the steps

and results described in the following (first R/sample_generation.R and

second R/metamodels.R). The computation should be done in about five

minutes on a current system.

Following the standard calibration procedure of CGE models, an observed SAM

is used to calibrate behavioural model parameters. However, based on an observed

SAM using equilibrium conditions of the CGE the behavioural parameters are

underdetermined, i.e. for any observed SAM there exists infinite parameter values

for which equilibrium conditions are fulfilled. Accordingly, a subset of parameters

is usually exogenously fixed, and the remaining parameters are calculated using

equilibrium conditions based on an observed complete SAM.

Similar to Hosoe et al. (2010, 2016) we exogenously determine the parameters

listed in Table 1, i.e. the four elasticities of substitution for each of the Armington

function, sigma, the four elasticity of transformation for each of the CET-function,

psi, as well as the exogenous variables population growth, pop, rate of return for

capital, ror, depreciation rate, dep. Further, exogenously determined parameters

include a parameter determining sectoral investments, i.e. the elasticity of

investment, zeta3.

2 https://www.gams.com/try_gams/.
3 The complete model of Hosoe et al. (2010, 2016) comprises of 62 behavioral parameters, 4� 5 ¼ 20

input coefficients for the upper Leontief nest of the sectoral production functions, 4� 2 ¼ 8 parameters

for the four lower Cobb-Douglas (CD) production functions, 4� 3 ¼ 12 parameters for the four

Armington functions aggregating domestic supply and imports to domestic supply as well as 4� 3 ¼ 12

parameters for the four CET-functions transforming domestic production into domestic supply and

exports for each commodity and finally 4 parameters for the CD-demand systems determining domestic

demand of the representative domestic household. Finally, we have 6 parameters determining sectoral

investments (iota; zeta, and lambdaðiÞ). At this point we neglect exogenous variables, e.g. world market

prices, tax rates and tariffs, etc...
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While the standard calibration procedure implicitly assumes that the true SAM

can be completely and perfectly observed, empirically observed SAM data is often

noisy or incomplete. Hence, like the behavioural parameters, also the observed

SAM data correspond to stochastic variables. In general, a Bayesian approach can

deal with partly noisy and incomplete SAM data (see also Go et al. (2016)). For

example, forward and backward linkages of a sector or detailed data on specific

factor inputs might be missing, or (I/O) relations might be noisy, i.e. they do not

perfectly match with the true SAM. Dealing with this kind of incomplete SAM data

CGE-modellers normally apply a data imputation procedure like, for example, the

entropy approach suggested by Robinson et al. (2001). Following the latter missing

data is estimated based on a prior SAM. The latter is constructed using available

statistical data taken from SAMs available for prior periods, or data available from

other countries with a similar economic structure like the country to be analyzed or

data taken from expert estimations. However, imputed SAMs crucially depend on

the constructed prior SAM where generally different options exist to construct this

prior. Hence, constructed SAM data is noisy. As a way to deal with this, we suggest

the following: We assume that based on available data one can construct a finite set

of different ideal-typical SAMs, fSAMrg, where the true SAM follows as a convex

combination of these ideal-typical SAMs. Let xtrue denote the vector of weights of

the ideal-typical SAMs, i.e. it holds: SAMtrue ¼
P

r xrSAMr. Thus, once the set of

ideal-typical SAMs have been constructed, we simply include the weights x into h.

For the following demonstration, we constructed two SAMs, where each

corresponds to a specific economic structure characterized by specific forward and

backward linkages of the agricultural sector as well as by a specific labour intensity

of agricultural production (see gams/sam.gms#L*). The true SAM corresponds

to a linear combination of these two SAMs, where the SAM combination parameter

x is a priori unknown and hence randomly drawn between zero and one.

Table 1 Parameters and targets

used in demonstration of

approach using the toy model of

Hosoe et al. (2010, 2016)

Label Description Dimension

ror Rate of return for capital 1

dep Depreciation rate of capital 1

pop Population growth rate 1

sigma Elasticity of substitution (Armington) 4x1

psi Elasticity of transformation (CET) 4x1

zeta Elasticity of investment 1

x Weight of ideal-typical SAM 1

Z1 Sectoral output 4x1

Z2 Total sectoral output 1

Z3 Sectoral exports 4x1

Z4 Total exports 1

Z5 Exchange rate 1

Z6 Sectoral imports 4x1

Z7 Total imports 1
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Further, to be able to evaluate the goodness of fit of our calibration procedure we

generate a benchmark parameter specification htrue (see R/sample_genera-
tion.R#L32-33. Based on this benchmark specification, we run the model for

T ¼ 30 time periods generating a time path for all endogenous variables. However,

given the fact that in a true empirical application of our approach, exogenous

forecasts will be available only for a limited subset of endogenous variables let

zt ¼ fZk;tg denote a matrix of selected endogenous variables of the CGE, where Zk;t

denotes the forecasted equilibrium path of the endogenous variable k observed for

time periods t.

3.1 Design of Experiments

The first step in the process is the generation of a suitable sample to estimate and

validate the metamodels.

After having decided on the parameters to be used for the calibration, the allowed

range for the parameters is defined based on prior experience, expert opinions, and

literature review. For ror, dep, pop, zeta we picked a small range around the original

values (	0:01 or 	0:02). For the two elasticity parameters sigma and psi we picked
a large range of [1, 18] (see R/sample_generation.R#L9- 17). This

information is then transformed into a suitable format for the Latin Hypercube

Sample (LHS) generation function, and a larger estimation sample and a validation

sample is generated.

The number of necessary simulations depends on the kind and form of the

metamodel to be estimated. A rule of thumb for the required simulations is the

number of coefficients times ten for polynomial models. As we will apply a second-

order polynomial model, this is 
 jhj2 � 10 ¼ 132 � 10 ¼ 1690. For the validation

sample, which is separate to the estimation sample, we generate jhj2 � 2 ¼ 338

parameter settings (R/sample_generation.R#L28-31).
The R code exports the sample to a GDX-file(see #L46) and calls the code for the

next step (see #L41-60).

3.2 Simulations

Following the sample generation, one needs to calculate the individual simulations

and collect the results. We abstain from calculating it in a cluster environment given

the simple structure and, therefore, nearly instantaneous solves of the toy model. In

order to calculate the results for the samples, minimal changes are necessary to the

model: The parameter values need to be loaded from a GDX-file (as is often the case

for non-toy models) and unload the simulation results in the end. In our case, we

also replaced the SAM, that was entered in text-form into the model (see gams/
cge/model.gms#L44-45,208). A second part needed is some wrapping code that

loops over the individual parameter settings and collects the results, which we also

implemented in GAMS (see gams/mm_simulations.gms#L*). This code

defines the necessary parameters(see #L4-69), loops over all parameter settings(see

123

A Dynamic Baseline Calibration ... 1343



#L71-90), scales results for numerical stability(see #L92-97) and finally unloads the

aggregated results for further consumption.

The loop in lines #71� 90 also provides the basis for splitting the work across

multiple machines. Instead of looping over the full set of specifications, only loop

over a subset of those, save the partial results and aggregate those together in a final

step. This is possible since the individual specifications do not depend on each other.

3.3 Metamodels

Using the results from the previous two steps, we can now estimate the metamodels,

that replace the original CGE Fðy; hÞ � 0 with a set of metamodels z ¼ MðhÞ (see
R/metamodels.R#L*). In our simple toy application we assume y ¼ ðy0; zÞ,
where z corresponds to the outputs being matched in the calibration procedure (see

Table 1), and y0 ¼ y n z to other endogenous model outputs including SAM entries

in the base year. To keep our demonstration example simple, we estimate

metamodels for each target Zj 2 z only for the base year t0 and the end year t30
4.

Given the relatively simple structure of the underlying CGE and the relatively

small number of parameters, we can fit a second-order polynomial model that

captures the relationships quite well. In a more realistic setting with a larger model

that requires much more computational effort, it will become expensive to run the

required number of simulations (see Sect. 4 for a way to deal with this). The

required number of simulations roughly scales quadratically with the number of

calibration parameters. We use linear regression to estimate the coefficients of the

metamodels. With the help of some loops and data wrangling of the estimation and

validation samples, we can estimate the metamodels and calculate the validation

measures (see R/steps/estimate_models.R#L*). The estimations and

validations use helper functions from the R packages DiceDesign / DiceEval

(Dupuy et al. 2015).

As evidenced by the low AER, we achieve a nearly perfect fit for all of the

selected endogenous output variables, z, in the final year t30. For comparison we also

show the mean, the RMSE and R2 values in Table 2. For brevity, we skip the results

for the base year t0, where the achieved goodness of fit for base year variables is

similar to the presented results.

3.4 Bayesian Calibration

With the help of the estimated metamodels, we can now solve the calibration

problem (see Equation 4). We implemented the calibration procedure in GAMS, but

R (or any other language with the possibility to solve NLPs problems) would also be

fine (see gams/calibration.gms#L*). The model for the optimization

problem is implemented in GAMS (see gams/calibra-
tion/model.gms#L*), which consists of the objective function ((see #L90-

4 Please note that generally, we could estimate metamodels for each time period or we could assume a

specific growth function for every forecasted variable, Y , and estimate relevant growth rates as a

metamodel.
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118) and the metamodels (see #L120-160)5. The required data, metamodel

coefficients, parameter bounds, variances and priors, and forecasts are exported in

the metamodel estimation code (see R/metamodels.R#L15-16.) As shown in

Table 5 we assumed large values for the variances, with their values being set

directly in the code (see gams/calibration.gms#L23-31). Please note that we
include only a subset of time periods (only the base year and the end year) into the

Bayesian estimation to account for the fact that often forecasts for relevant variables

are only available for selected time periods. The GAMS code for the calibration is

called automatically from R (see R/metamodels.R#L18-40).
Please note further that in our simple toy model application, we generally assume

that behavioural parameters are constant over time, i.e. ht ¼ h0
6. Second, please

note that while �z ¼ zo � MðhÞ, it holds �0 ¼ SAMo �
P

r
x�

r SAMr. Hence, in

general observed values, SAMo
i;j may differ from the estimated true SAM-values,

P

r
x�

r SAMr;i;j.

Overall, the Bayesian approach allows to combine multiple sources of

information: (1) empirical observation of SAM-values in the base run, SAM0
ij, (2)

dynamic forecasts of endogenous variables, z as well as expert information on

Table 2 Validation results:

metamodels for t30
Target AER Mean RMSE R2

Z1AGR 0.0102 1.2575 0.0128 0.9969

Z1HMN 0.0023 34.4134 0.0787 0.9997

Z1LMN 0.0054 6.0468 0.0327 0.9985

Z1SRV 0.0007 85.6500 0.0560 1.0000

Z2 0.0007 127.3677 0.0844 1.0000

Z3AGR 0.0754 0.0030 0.0002 0.9835

Z3HMN 0.0069 7.6843 0.0530 0.9978

Z3LMN 0.0137 0.1195 0.0016 0.9943

Z3SRV 0.0112 1.8367 0.0205 0.9966

Z4 0.0045 9.6435 0.0438 0.9989

Z5 0.0006 0.9850 0.0006 0.9901

Z6AGR 0.0317 0.5118 0.0162 0.9870

Z6HMN 0.0065 3.7753 0.0244 0.9981

Z6LMN 0.0081 3.5032 0.0284 0.9970

Z6SRV 0.0136 1.8532 0.0252 0.9950

Z7 0.0045 9.6435 0.0438 0.9989

Metamodels are able to replicate the CGE nearly perfectly, as

evidenced by the low AER

5 Please note that to directly match variables in the GAMS and R-code we kept the variable notation used

in R also in GAMS, i.e. instead of defining in GAMS one variable r2ðJÞ where the set J includes all four

production sectors, we defined four variables, r2j ; J ¼ fAGR;LMN;HMN; SRVg.
6 This follows by construction as we generated the true forecast via simulation of the CGE based on the

fixed true parameters, htrue.
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economic structures, captured in derived ideal-typical SAMs SAMr and their

corresponding prior weights, xr. Finally, please note that beyond dealing with noisy

SAM data, the Bayesian approach can easily deal with missing SAM-data, whereP

r
x�

r SAMr;i;j correspond to the Bayesian estimation of missing SAM-values.

3.5 Evaluation

Using the found parameter values h� and given that we know the ‘‘truth’’ in this

example, we can evaluate the model predictions in three aspects: (1) The first one is

using a (gof) measure, which is proportional to the (negative) likelihood part

(Lðyo j hÞ) of our target function (see Equation 3). This captures how modelers view

the importance of the different targets in the calibration procedure, which is

reflected by the relative value of r2Zj
to r2Zj0

, but also r2Zj
to Zj. A lower value for

goodness-of-fit gof means a higher likelihood and hence a better fit, with a value of

zero indicating a perfect fit. (2) We can compare model outputs of the metamodel

with simulation outputs of the true model. (3) We can compare estimated

parameters h� with their corresponding true parameter values htruth. In the Tables 3,

4 and 5 we report different gof measures. These Tables are created as the final step

in the R code (see R/metamodels.R#L43).
As evidenced by the results in Table 3 comparing predicted outcomes of the

metamodel and the calibrated CGE with the true outcomes for the forecasted

variables we achieve an excellent fit7 for the calculated gof measure presented in

Table 3. Further, we note a difference between the gof from the calibration step

(calculated comparing the true and the predicted outcomes of the metamodel), and

the gof calculated for the prediction of the calibrated CGE (h�).

Table 3 Goodness-of-fit (gof) of predicted values of metamodels and of calibrated CGE

Target r2 True Metamodel Simulation ðZM
j �Ztrue

j Þ2

r2
ðZF;�

j �Ztrue
j Þ2

r2

Fðytrue; htrueÞ � 0 zM ¼ Mðh�Þ FðyF;�; h�Þ � 0

Z1AGR;0 0.1000 1.2652 1.2636 1.2636 0.00 0.00

Z1AGR;30 0.0100 1.0569 1.0766 1.0475 0.04 0.01

Z230 0.1000 143.5337 143.5164 143.6120 0.00 0.06

Z3LMN;30 0.0100 0.1393 0.1130 0.1122 0.07 0.07

Z430 0.0001 10.9218 10.9221 10.9548 0.00 10.88

Z530 0.0100 0.9812 0.9781 0.9774 0.00 0.00

Z6AGR;30 0.0100 0.7807 0.7807 0.8098 0.00 0.09

Z730 0.0100 10.9218 10.9221 10.9548 0.00 0.11

Tot – – – – 0.11 11.22

The calibration procedure is able to match the different targets across time periods as evidenced by the

small differences

7 Please note that assuming a 1% deviation on all target variables implies a value of 
 141.
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So far, we only looked at the targets that were active in the previous step. Next,

we look at the percentage differences for all targets reported in Table 4 and we

notice only small differences between the values predicted by the metamodels (M)

and the values calculated using the true simulation model (F). The differences are

below one per cent, with few exceptions and a maximum difference of 3.6 per cent.

For the comparison between the true specification (ytrue, with Fðytrue; htrueÞ � 0 and

the values from the simulation model (yF;� with FðyF;�; h�Þ � 0 we see few larger

Table 4 Model output comparison

Target True Metamodel Simulation %
ZM

j �Z true
j

Z true
j

%
ZF;�

j �Z true
j

Ztrue
j

Fðytrue; htrueÞ � 0 zM ¼ Mðh�Þ FðyF;�; h�Þ � 0

Z1AGR;0 1.2652 1.2636 1.2636 0.00 �0:13

Z1AGR;30 1.0569 1.0766 1.0475 2.78 �0:89

Z230 143.5337 143.5164 143.6120 �0:07 0.05

Z3LMN;30 0.1393 0.1130 0.1122 0.64 �19:45

Z430 10.9218 10.9221 10.9548 �0:30 0.30

Z530 0.9812 0.9781 0.9774 0.07 �0:39

Z6AGR;30 0.7807 0.7807 0.8098 �3:60 3.74

Z730 10.9218 10.9221 10.9548 �0:30 0.30

Z1HMN;0 24.3287 24.3298 24.3298 0.00 0.00

Z1HMN;30 39.6825 39.3790 39.5151 �0:34 �0:42

Z1LMN;0 4.9905 4.9909 4.9909 0.00 0.01

Z1LMN;30 6.2138 6.3873 6.3696 0.28 2.51

Z1SRV;0 63.2146 63.2148 63.2148 0.00 0.00

Z1SRV;30 96.5805 96.6736 96.6799 �0:01 0.10

Z20 93.7990 93.7990 93.7990 0.00 0.00

Z3AGR;30 0.0009 0.0013 0.0013 2.75 40.78

Z3HMN;30 8.9388 9.0068 9.0797 �0:80 1.58

Z3SRV;30 1.8428 1.8010 1.7617 2.23 �4:40

Z40 6.7709 6.7709 6.7709 0.00 0.00

Z50 1.0000 1.0000 1.0000 0.00 0.00

Z6AGR;0 0.2158 0.2174 0.2174 0.00 0.73

Z6HMN;0 3.0769 3.0758 3.0758 0.00 �0:04

Z6HMN;30 3.6622 3.8645 3.8543 0.26 5.24

Z6LMN;0 2.3922 2.3919 2.3919 0.00 �0:01

Z6LMN;30 4.2514 4.0416 4.0638 �0:55 �4:41

Z6SRV;0 1.0860 1.0858 1.0858 0.00 �0:01

Z6SRV;30 2.2276 2.2353 2.2269 0.38 �0:03

Z70 6.7709 6.7709 6.7709 0.00 0.00

Given the relative simple structure of the applied CGE, not only the targets used in the calibration are

matched well, but also other endogenous outputs are mostly matched well
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differences (Z3LMN;30, Z3AGR;30), but overall we see a very good match of values,

even for those targets, that were not active in the calibration step.

Beyond prediction errors, it is interesting to analyze the goodness of fit regarding

the estimation of the CGE parameters. As can be seen from Table 5 for most

parameters, the true value could be nearly identified, with over 60% of the

parameters having only a deviation below 15%. The largest deviations can be found

for the elasticity of substitution and elasticity of transformation for the sector LMN,
with estimation errors of �40% and 258%. Especially the latter corresponds to the

high forecast error found for exports of the LMN sector. Interestingly, based on our

approach, we can identify the true underlying economic structure, i.e. the Bayesian

estimation delivers a posterior value for x of 0.41, which moves the uninformative

prior value of 0.5 significantly towards the true value of 0.38, implying only an

estimation error of slightly over 8%.

Overall, based on achieved gof we can conclude that our dynamic calibration

procedure is an efficient approach to estimate relevant CGE-parameters, which

corresponds to a superior method when compared to standard CGE-calibration. The

latter follows especially given the fact that our suggested procedure allows an

explicit evaluation of the goodness of fit of derived parameter estimations.

4 DART Application

In a second step, we will apply our approach to calibrate the DART-CLIM model to

demonstrate that our approach is suitable to calibrate large multi-regions-multi-

sector recursive-dynamic CGE models.

Table 5 Parameter (h) comparison

Coefficients .lo .up r2 Prior True (htrue) Calibration (h�) % h��htrue

htrue

dep 0.03 0.05 0.02 0.0400 0.0490 0.0500 2.04

pop 0.01 0.03 0.02 0.0200 0.0292 0.0300 2.74

psiAGR 1.00 18.00 17.00 9.5000 12.7386 9.4850 �25:54

psiHMN 1.00 18.00 17.00 9.5000 5.2547 6.8734 30.80

psiLMN 1.00 18.00 17.00 9.5000 2.6228 9.3955 258.22

psiSRV 1.00 18.00 17.00 9.5000 10.3935 10.3813 �0:12

ror 0.04 0.06 0.02 0.0500 0.0537 0.0530 �1:39

sigmaAGR 1.00 18.00 17.00 9.5000 10.6068 10.1165 �4:62

sigmaHMN 1.00 18.00 17.00 9.5000 12.5040 10.6556 �14:78

sigmaLMN 1.00 18.00 17.00 9.5000 14.2158 8.4732 �40:40

sigmaSRV 1.00 18.00 17.00 9.5000 9.0117 7.8304 �13:11

zeta 0.98 1.02 0.04 1.0000 1.0158 1.0167 0.09

x 0.00 1.00 1.00 0.5000 0.3804 0.4125 8.43

The table shows the used parameter values and the comparison between true and calibrated parameters.

The calibration procedure is generally able to re-identify the true parameter values
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4.1 Dynamic Applied Regional Trade Model

DART-CLIM is a recursive multi-region, multi-sector CGE model that is developed

at the Kiel Institute for the World Economy and is being used to assess the effects of

climate policies on the global economy (Winkler et al. 2021; Thube et al. 2022) The

model is based on the Global Trade Analysis Project (GTAP)-9 database (Aguiar

et al. 2016), with an aggregation to 20 regions and 24 sectors. Detailed definitions

on regional and sector aggregation are shown in Tables 9 and 10, respectively.

For the application of our calibration method, as shown in Table 6, we selected

six region-specific endogenous variables z (total of 120 output variables) that need

to be matched to their forecasts. The data for the projection of Gross Domestic

Product (GDP) is taken from the OECD macroeconomic forecasts (OECD 2019)

Table 6 Description of DART-CLIM parameters and output variables used in calibration

Outputs Description Data Source

gdp Real regional Gross Domestic Product OECD (2019)

esolar Regional electricity production from solar

PV

World Energy Outlook (International Energy

Agency 2018): Current Policies Scenario

ewind Regional electricity production from wind

ffu Total electricity production from fossil

sources (coal, oil and natural gas)

eother Rest of electricity technologies excluding

nuclear and hydroelectric sources

semis Regional CO2 emissions from burning

fossil fuels

Inputs Description Dimension

TFP Factor productivity parameter for labor and capital 24 x 20

EEI Autonomous energy efficiency 18 x 20

ESUB Elasticity of substitution parameter needed to

calculate elasticity of fuel supply

3 x 1

dep Depreciation 20 x 1

eagg_ele Elasticity of substitution between the eight electricity technologies 20 x 1

preleexp Exponent for increase of fixed resource for solar PV, wind,

and other renewable electricity

3 x 20

esub_res Elasticity of substitution between fixed resource and

capital-labor-energy aggregate

3 x 20

esub_kle Elasticity of substitution between capital-labor and energy aggregate 24 x 20

armel Armington elasticity of substitution between imported goods 24 x 1
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and the data for the electricity production and CO2 emissions comes from the World

Energy Outlook (International Energy Agency 2018). Specifically, we will match

the Compound Annual Growth Rate (CAGR) of the model outputs to those

calculated from the forecasts for better numerical stability, assuming an exponential

growth path.

Table 6 also shows the nine input parameters of DART-CLIM that we will use to

replicate the forecasts of the above said endogenous variables in the baseline

scenario. All model parameters are either region-specific and/or sector-specific and

thus, account for a total of about 1500 input variables. These nine input parameters

correspond to the typical set of model parameters chosen by modellers to calibrate

the dynamics of macroeconomic variables, energy sector outputs, and GHG

emissions, especially in models that focus on the analysis of energy and climate

policies (Foure et al. 2020; Faehn et al. 2020). They affect the development of

different electricity technologies and impact their production pathways, portfolio of

regional electricity technologies, and total CO2 emissions. Lastly, since results from

CGE models are very sensitive to assumed values for trade elasticities as well as for

elasticities of substitution (Mc Daniel and Balistreri 2003; Turner 2009, 2008), we

also include two sets of elasticity parameters, namely, armel and esub_kle.
Additional details of the DART-CLIM model are provided in the ‘‘Appendix’’.

4.2 Iterative Approach

The main idea is to follow the same approach as in Sect. 3, using equation 3 to

calibrate the selected DART-CLIM parameters. In general, Bayesian estimation

could be performed using the original DART-CLIM model. However, since DART-

CLIM is a recursive dynamic model, the optimization problem (3) is tedious to

solve numerically even when powerful solvers are applied. Given that we want to

calibrate over 1500 parameters in this application, the corresponding optimization

problem requires a relatively large number of simulation runs, making it costly.

Therefore, the efficiency gained by metamodel-based SO is important8.

The required number of simulations for a polynomial metamodel with interaction

effects would also need a large number of simulations, and therefore, we only use

local main effects. First-order polynomial metamodels are efficient and effective,

provided they are ‘‘adequate’’ approximations (Kleijnen 2020). However, polyno-

mial metamodels generally provide only local approximations, so a series of

metamodels are estimated iteratively, optimizing goodness of fit. The developed

iterative procedure follows the hill-climbing technique and wraps the steps from

Algorithm 1 in a loop. Algorithm 2 gives an overview of the individual steps.

8 Note that in the metamodeling literature, metamodels dealing with more than ten parameters are

considered as high dimensional (For example, Shan and Wang (2010); Wang et al. (2011); Sanchez

(2006)).
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First, we draw a sample of parameters following a specific DOE. In particular, at

each step k, we sample each parameter from an interval ½hlo
i;k; h

up
i;k�, with the bounds

being iteration specific9. Given that we are looking for local first-order main effects,

we generate a metamodel sample HM where each parameter hi is sampled

individually within its range, and all other parameters remain unchanged. The

sampling strategy is based on the ‘‘one factor at a time’’ sampling method (Kleijnen

2015). In particular, we sample four points for each parameter hi with two points

close to the current value and two points further away since some parameter values

might result in infeasible simulations. The sample points HM
k , a jhj � 4xjhj matrix,

are calculated as follows:

k ¼ ½0:05; 0:45; 0:55; 0:95�
hk;i ¼ hlo

i þ kðhup
i � hlo

i Þ

HM
k ¼

hk;1 h�k�1;2 h�k�1;3 � � � h�k�1;jhj

h�k�1;1 hk;2 h�k�1;3 . . . h�k�1;jhj

..

. ..
. ..

. . .
. ..

.

h�k�1;1 h�k�1;2 h�k�1;3 � � � hk;jhj

2

6
6
6
6
6
4

3

7
7
7
7
7
5

.

ð8Þ

In addition, a smaller validation sample HV
k (500 parameter specifications) is

generated using LHS (Sacks et al. 1989), where parameters hk are sampled simul-

taneously in the same ranges to test the predictive ability of the estimated meta-

models. Computation of the individual runs of the metamodel and validation
samples can easily be split into multiple parallel computations (Herlihy et al. 2020).

The parallel computation is time-saving because a single simulation run with

DART-CLIM takes from 15 to 60 minutes of computation time and we need to

compute 
 4 � 1500þ 500 ¼ 6500 different runs.

In the second step, we conduct simulation with the DART-CLIM model for each

sampled parameter vector.

Next, we estimate and validate relevant metamodels Mk (see Sect. 2). In

particular, we estimate a metamodel Mk;j for each output Zj and perform the

validation.

9 For notational convenience we now denote hT with h, as we keep all other parameters fixed.
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In the fourth step, we conduct the Bayesian estimation of the model parameters

h�k based on the metamodels Mk. Using these metamodels we can solve the slightly

adapted problem 9 resulting in h�k :

h�k ¼ argmin
h
ðh� hk�1Þ0R�1

h ðh� hk�1Þ þ �0zR
�1
�z
�z

s:t:

�z ¼ zo � z

z ¼ MkðhÞ
0 � HðhÞ,

ð9Þ

where 0 � HðhÞ includes theoretical and empirical restrictions on the parameters

including the iteration specific bounds (hlo
k ; h

up
k ).

In the fifth step, we use estimated parameter values h�k to derive trend predictions

of relevant output variables, zF
k , from simulation runs of the original DART-CLIM

model. If the prediction error (zo to zF
k ) is below a critical threshold, then the

algorithm stops, and the estimated parameters, h�k , are taken to calibrate DART-

CLIM10. Otherwise, the process starts again at step 1, while we sample from the

interval ½hlo
kþ1; h

up
k � defined around the estimated parameters h�k .

We repeatedly search for a local optimum in a restricted parameter space in this

process. The subsequent parameter space for each parameter is set around the best

solution found in the previous iteration. This iterative approach builds upon our

described methodology (see Sect. 2), though it does not guarantee a global optimum

since the iterative process might converge to a local optimum. However, the

iterative process guarantees that goodness of fit predicting exogenous forecast

variables is improved moving from one iteration to the next11.

The above-described process is implemented in a combination of R (R Core

Team 2020), GAMS (GAMS Development Corporation 2020) and Ansible scripts

(Red Hat Software 2020). The Ansible scripts are used to automate the parallel

computation in the cluster environment. The cluster environment uses the Slurm

workload manager (Yoo et al. 2003). The DART-CLIM model and the Bayesian

calibration are implemented in GAMS, while the sampling procedure and analysis

are implemented in R (Wickham et al. 2019; Wickham 2016; Dupuy et al. 2015;

Dirkse et al. 2020).

5 Results

In Sect. 5.1, we briefly evaluate the validation results by assessing the prediction

performances of the metamodels. Subsequently, we assess the calibration results

using a gof measure and compare the simulated trends with their forecast trends.

10 We set the critical threshold corresponding to an average prediction error of 5%. Approximatively, this

critical threshold reflects the relative information value of the forecasts vis-a-vis information encapsulated

in the prior distribution of the calibrated DART-CLIM parameters.
11 It should be further noted that as long as the data on exogenous forecasts is itself noisy, parameter

estimates implying perfect predictions are generally not desirable.
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Finally, we conclude the section with a short demonstration of the importance of

baseline calibration on policy implications by simulating the impacts of fulfilling

the emission reduction targets as committed under the Paris Agreement in the

DART-CLIM model.

5.1 Validation

We use the metamodel sample to derive metamodels which are then used to make

predictions of the validation sample. The iterative approach moves the model

parameter space recurrently towards a parameter space, where the simulated trends

are close to the forecast trends. We check whether the local first-order polynomial

metamodels for each iteration can approximate the underlying (I/O) relationships

sufficiently well by assessing the prediction performance by means of the AER (see

Equation 7):

AERk;j ¼
RMSEk;j

�Z
F
k;j

�
�
�
�
�

�
�
�
�
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
v

Pv

u¼1

ZF
k;j;u � ZM

k;j;u

� �2
s

1
v

Pv

u¼1

ZF
k;j;u

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

; ð10Þ

where ZF
k;j;u and ZM

k;j;u denote the uth simulated and predicted value for the jth output

variable in the kth iteration. Moreover, we can see the evolution of the prediction

performances across the iterations.

The results are shown in Fig. 3 for each output variable in each region and each

iteration, which is denoted by the different colors (see Table 11 for detailed results).

The different scales on the y-axes provide a rough indication of the difficulty of

using local first-order polynomial metamodels to approximate the underlying (I/O)

relationships of the DART-CLIM model, particularly in earlier iterations. Specif-

ically, from Fig. 3 we observe that the (I/O) relationships for gdp, esolar and ewind

are relatively easier to approximate than those for ffu, eother and semis as is evident

from the lower AER values of the former three outputs relative to the latter three,

especially in earlier iterations. A possible explanation for this could be that for ffu,

eother and semis the underlying relationships are more complex than what the

metamodels can capture, particularly when the model parameter space is large.

Within each of these three variables, we also see regional differences in the

magnitude of the prediction errors. For instance, the linear metamodels perform

better at capturing the (I/O) relationships in eother in India than in eother in USA.
This regional variation can be partly attributed to the linearity of the metamodels

and, thus, their limitation in capturing the underlying relationship driven by factors

like interaction effects across regions and sectors.

However, in the majority of the cases, the first-order polynomials give

satisfactory prediction performance and therefore, we still consider this assumption

robust. Overall, from Fig. 3 it can be seen that for each output variable and across

regions, the AER values tend to decrease with a higher number of iterations and
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finally reach relatively low values, thereby indicating fine prediction performances

of the metamodels.

5.2 Baseline Calibration

The primary goal of our approach is to calibrate the baseline of dynamic models

wherein the simulated trends from model outputs in the baseline scenario are close

to their forecast trends. To this end, we use two measures to assess the calibration

results. The first measure is again (gof) which is proportional to the (negative)

likelihood part (Lðyo j hÞ) of the target function (see Equations 3 and 9). The

second measure j follows a more intuitive idea. We compare the simulated values

zF
k (with Fðy; h�kÞ � 0) with the corresponding forecasts zo and define an indicator

function to count the number of output variables that fall in the pre-defined range:

jk;jðZj; Zo
jÞ ¼

1 if 0:9 � f ðZo
jÞ � f ðZF

k;jÞ � 1:1 � f ðZo
jÞ

0 otherwise;

�

ð11Þ

with f a transformation function. In the simplest case f is just the identity function

but it can also transform the CAGR into real values like GDP in US$.

Fig. 3 The prediction performance (AER) for each output variable in each region and each iteration.
Lower AER values indicate better prediction performance of metamodels. Performance of metamodels
improves with more iterations
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To assess the results from our application, we first take a look at the gof measure.

The results are given in Table 7 where ‘‘predicted’’ represents the gof computed by

using zM
k ¼ Mkðz; h�kÞ while ‘‘simulated’’ represents the gof computed by using zF

k .

The ‘‘predicted’’ gof values in the tot column measure the overall deviations of

zM
k from zo. The ‘‘predicted’’ gof values decreases with each iteration reflecting

improvements in the prediction performance of metamodels. This pattern is also

similar to the results seen in Sect. 5.1. Moreover, we can discern differences

between the gof values for ‘‘predicted’’ and ‘‘simulated’’. The differences are large

in earlier iterations but subsequently reduce. Thus, the prediction performance of

metamodels has a significant influence on the calibration process, and the

improvement of the prediction performance leads to the refinement of the

calibration point. After five iterations, we achieve an average prediction error

below 5% of the calibrated baseline compared to the forecast trends.

Second, in order to have a more straightforward understanding of the results in

the calibrated baseline scenario, we take a look at the results of the j measure in

Table 7. We transform the CAGR into real values for the year 2030 for each output

variable in each region. This is important since small differences in CAGRs can lead

to large differences in real values after accumulation over the years. From the last

column in Table 7 we see that in the fifth iteration, 108 out of 120 simulated trends

fall into the corresponding 	10% ranges around the forecast trends, while in the first

iteration, only 67 satisfy this criterion. Again, this demonstrates the advantages of

the iterative approach and the improvement gains with additional iterations.

These results show that the iterative calibration method is capable of calibrating

the baseline scenario of dynamic CGE model DART-CLIM in a structured and

systematic way. The approach provides satisfactory calibration results that can be

quantified, and it can be easily applied to a variety of simulation models. It should

be noted that since the goal here is to illustrate the application of our method, we

only performed five rounds of iteration. However, the error margins of the baseline

calibration can be further reduced with further iterations.

5.3 Implications of an Improved Calibration Procedure on Policy Analysis

The main aim of parameter calibration is to use all available data that is informative

regarding the specification of relevant model parameters. Our explanations

demonstrate that using existing exogenous forecast data for parameter calibration

is a rather complex and laborious process. Thus, one could finally ask whether it is

worth the additional effort. This is an empirical question since parameters resulting

from different calibration processes (ad-hoc static versus Bayesian dynamic

methods) can imply significantly different economic responses to given policy

shocks derived from the same CGE model.

An important response of economic systems to simulated climate policies is

encapsulated in the induced change of marginal abatement costs. Hence, we use this

variable to assess whether our dynamic calibration method induces significantly

different economic responses than a standard calibration procedure. To this end, we

impose in a simulated climate policy scenario regional unilateral CO2 reduction
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targets on all of the regions represented in DART-CLIM. The regional targets

correspond to the conditional Nationally Determined Contributions (NDC)12 that

countries have pledged within the proceedings of the Paris Agreement under

conditional emission reduction pledges. The emission reduction targets are defined

as percentage reductions relative to the baseline.

We simulate the Paris Agreement policy scenario with DART-CLIM applying

three different calibration methods implying three different parameter specifications

of the model. First, we specify parameters applying our dynamic calibration

method, labelled as full. Next, we use the standard static calibration method based

on observed national SAMs in the base year with ad hoc assumed values for

parameters driving future response. We refer to this specification method as static.
Finally, we applied our dynamic calibration method again. However, in this case,

we only matched three trends, namely regional GDP, total fossil-fueled electricity,

and CO2 emissions, and stopped the iterations after two rounds. In this case, we

matched 48 out of 60 targets in a 	10% range and 54 in a 	20% range. This

specification is labeled as subset.
As can be seen from Table 8 estimated carbon prices (marginal abatement costs)

differ significantly across parameter specifications. Since the CO2 reduction targets

are defined as percentage reductions relative to the baseline, the absolute emission

reductions that need to be undertaken by regions differ across the three scenarios.

Owing to the differences across baselines, the inherent economic trade-offs for

regions and sectors differ under the policy scenario. This difference gives to

different estimates of abatement costs across regions. On average, percentage

differences in national carbon prices equals 
 21% comparing standard parameter

calibration (static) with our advanced dynamic calibration method (full), while on

average, this difference amounts to 
 16% for the subset specification. Moreover, in

some regions like PAS or BRA simulated carbon prices vary by 
 50% depending

on the applied calibration procedures. We refrain from diving into further details

about the results since the goal of this exercise is only to showcase that choices

made in baseline calibration of CGE models are of crucial importance for further

policy analysis.

6 Conclusion

Nowadays, evidence-based policies correspond to a standard approach of good

governance. However, policy analysis is plagued by model uncertainty (Manski

2018). This holds especially true for CGE-applications as these models usually have

weak econometric foundations. Accordingly, given that available data allowing a

sophisticated econometric parameter specification remain rather limited, this paper

develops an innovative, dynamic calibration method applying a Bayesian estimation

framework. Bayesian estimation techniques are already successfully applied to

estimate parameters of DSGE models. Like CGEs DSGE models correspond to

sound micro-founded and theoretically consistent model structures. Applying

12 The method for calculating the emission reduction targets is based on Böhringer et al. (2021).
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Bayesian estimation techniques DSGE combine these theoretical properties with

good forecasting performance and hence have become an additional useful tool in

the forecasting kit of central banks (Smets and Wouters 2003; Hashimzade and

Thornton 2013). However, compared to CGE models DSGEs are still highly

aggregated models, which assume highly aggregated economic agents, e.g., do not

include heterogenous sectoral structures. Therefore, in contrast to DSGE models,

Bayesian estimation techniques have rarely been applied to estimate parameters of a

CGE model and even nowadays are still challenging. Technically, the Bayesian

framework corresponds to an optimization problem. Given the complexity of most

CGE models solution of the latter optimization problem cannot be solved with

standard numerical solution algorithms. For example, the calibration of the DART-

CLIM model includes over 1500 parameters to be specified.

In this context, this paper develops a metamodel-based simulation optimization

(SO) approach. Given the fact that SO approaches generally require many

simulation runs, and each run is quite expensive, the advantage of using metamodels

is that they significantly reduce computation time, implying more efficient SO

methods.

Table 8 Carbon price by region

derived from different

calibration approaches

r Full Subset Static

AFR 10.59 12.65 11.95

BLX 195.14 172.90 158.31

BRA 125.10 82.49 65.11

CAN 38.40 35.56 33.49

CPA 12.10 15.31 14.67

DEU 47.37 51.14 51.40

EEU 27.01 25.20 27.25

FRA 122.71 113.14 103.67

FSU 51.44 51.19 45.00

GBR 41.42 44.73 39.76

IND 16.28 17.43 15.33

LAM 27.72 26.41 22.86

MEA 33.10 30.70 26.76

MED 67.78 85.26 98.18

PAS 53.61 85.46 80.51

RAXB 35.93 41.12 36.42

REU 365.74 272.76 258.10

RUS 11.88 8.44 8.01

SCA 55.32 59.78 47.37

USA 19.99 20.49 28.75

Differences in baseline calibration choices impact characteristics of

the baseline. Consequently, implementation of the same policy with

different baselines leads to different economic trade-offs in the

model and thus, different abatement cost estimates
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In particular, we first demonstrate how our approach can be applied using a toy

model. Then, to make our approach accessible, especially to CGE-modellers, we

explicitly supply all necessary code for replication. Second, we show the

effectiveness of our approach by applying it to perform the calibration of a

dynamic baseline of the DART-CLIM model based on forecasts of six central

outputs. Our iterative calibration approach delivers convincing results. For example,

for fitting values for about 1500 parameters using a total of 120 outputs, the

prediction errors could be significantly reduced from iteration to iteration until the

average prediction error led below an acceptable range of 5%. Based on derived

metamodels, Bayesian estimation of model parameters can be done quite

effectively, requiring significant lower computational effort when compared to

estimation procedures using the original CGE, i.e. it takes less than a minute. The

derivation of the metamodels requires a significant computational effort, though, but

that can be easily split across multiple computers or can be computed in a cluster

environment.

Nevertheless, it is fair to conclude that compared to simple static calibration

methods typically used in the literature, our advanced approach is definitely

technically more demanding. Thus, the question arises: Is it worth the additional

effort? In this regard, we demonstrate in this paper that economic response to

climate policies encapsulated in regional emission prices derived from DART-

CLIM differ by up to 21% depending on the applied calibration method. Hence, we

conclude that investing additional resources into comprehensive parameter calibra-

tion is definitely worth the effort.

Furthermore, we illustrate that applying our Bayesian framework, the posterior

distribution of the model can be used to calculate the complete distribution of the

forecast and various risk measures proposed in the literature. In particular, the

structural nature of the model allows computing the posterior distribution forecast

conditional on a policy path. Moreover, it also allows examining the structural

sources of the forecast errors and their policy implications. Technically, metamod-

eling also facilitates Metropolis-Hasting sampling from the posterior distribution.

Thus, our method is not only a good method to explicitly reveal induced uncertainty

of model like SSA, but also an appropriate procedure to reduce model uncertainty.

Finally, it also allows for better reproducibility of policy research, as it replaces the

ad-hoc (often trial and error) approaches with a theoretically founded and

algorithmic approach.

Of course, many challenges still lie ahead. Here we particularly like to highlight

three of those challenges that we consider interesting topics of future research. First,

as Manski (2018) highlighted in his seminal paper, integrating fundamental model

uncertainty is crucial for conducting comprehensive model-based policy analysis.

We certainly consider our Bayesian approach as a promising methodological

starting point in this context. However, much more work is needed to both deepen

and broaden the scope of existing CGE-based policy analysis. For example, when

forecasting in a policy context, realistic assumptions about how practical politicians

form their beliefs on how alternative policies impact relevant policy outcomes are

crucial. In particular, political reality constraints on information processing,

pervasive model uncertainty and the associated need for perpetual learning
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highlight the limits of the rational expectations assumption. Another topic for future

research is to extend our calibration method to other complex models like

interlinked ecological-economic model frameworks. Furthermore, at a methodolog-

ical level, it will be interesting to investigate other metamodeling techniques in the

context of this approach, especially regarding computational intensity and

prediction accuracy. In the iterative procedure used for large models, it appears

worthwhile to investigate how to reuse information from previous iterations, like

samples or even the estimated metamodels. The latter might be done by building a

metamodel ensemble (Bartz-Beielstein and Zaefferer 2017; Friese et al. 2016),

investigating if weighted linear combinations of metamodels improve the calibra-

tion procedure. The weights might be determined by a distance measure to the

sample space of the respective metamodel. Given the advances in machine learning

and automatic differentiation, in particular, it will also be interesting to investigate if

those techniques can be used in our approach (Baydin et al. 2018).

Appendix

A Dart

DART-CLIM is a recurisve multi-region, multi-sector CGE model. The model

version used in the application is based on the GTAP9 database. The primary goal

of this model version is analysis of climate and energy policies. Representation of

sectoral details affects the policy impact anaylsis in CGE model(Fischer and

Morgenstern 2006; Kuik et al. 2009). Therefore, in order to have a rich

representation of the energy sectors, data about electricity production by technology

is additionally included from the GTAP - Power database (Peters 2016). In the

GTAP9 - Power database the supply of some of these technologies is differentiated

by base-load and peak-load. However, in DART-CLIM we have aggregated the

base-load and peak-load sectors to a single homogeneous sector.

Overall DART-CLIM has eight different technologies that produce electricity:

solar PV, wind, nuclear, hydro, coal, gas, oil, and other renewable technologies. We

assume that the development of nuclear and hydroelectric technologies is

significantly determined by political will-power and/or geographical framework

conditions, and less by price effects in electricity markets. Accordingly, the

production pathways of these two technologies is defined exogenously in the model

based on data from International Energy Agency (2018). The production activites

are defined as CES functions in the model. The details about the nesting structures

for different sectors are available in (Thube et al. 2022).

See Tables 9 and 10.
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Table 9 Regions disaggregation in DART-CLIM

r Full name

AFR Sub Saharan Africa

BLX Belgium, Netherlands and Luxembourg

BRA Brazil

CAN Canada

CPA China and Hong Kong

DEU Germany

EEU Czech Republic, Slovakia, Slovenia, Hungary, Estonia, Latvia, Lithuania,

Bulgaria, Romania, Croatia, Austria, Poland

FRA France

FSU Kazakhstan, Kyrgyzstan, Ukraine, Albania, Belarus, Armenia, Azerbaijan,

Tajikistan, Turkmenistan, Uzbekistan, Georgia, Rest of Europe

GBR United Kingdom, Ireland

IND India

LAM Central- and South America

MEA Middle East, Northern Africa and Turkey

MED Mediterranean Europe: Italy, Spain, Portugal, Malta, Greece, Cyprus

PAS Pacific Asia

ANJ Australia, New Zealand and Japan

REU EFTA and rest of the World: Norway, Iceland, Liechtenstein, Switzerland,

Overseas Territories and Antarctica

RUS Russia

SCA Sweden, Denmark and Finland

USA United States of America
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B Results

See Table 11.

Table 10 Sectoral

disaggregation in DART-CLIM
i Full name

Non-Energy Products (12)

CRP Chemical Products (rubber, plastic)

ETS Energy-intensive production

MOB Mobility

OLI Other light industries

OHI Other heavy industries

SVCS Services

TND Transmission and distribution

ANI Animal Products

GRN grains

OSD oilseeds

CRO rest of crops

RAGR Rest agriculture and other processed food

Energy Products (12)

ENuclear Nuclear electricity

ESolar Solar PV electricity

EWind Wind electricity

EHydro Hydro-electricity

ECoal Coal electricity

EGas Gas for electricity

EOil Petroleum and coal products for electricity

EOther Biofuels, waste, geothermal and tidal technologies

COL Coal

OIL Petroleum and coal products

GAS Gas

CRU Oil
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Table 11 AER by target and iteration

Target i AFR BLX BRA CAN CPA DEU EEU FRA FSU GBR

gdp 1 0.02 0.03 0.02 0.03 0.02 0.04 0.05 0.06 0.04 0.02

2 0.04 0.06 0.08 0.07 0.01 0.07 0.06 0.13 0.06 0.04

3 0.02 0.06 0.04 0.03 0.01 0.09 0.06 0.09 0.04 0.05

4 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01

5 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.03 0.03 0.01

Esolar 1 0.03 0.22 0.21 0.08 0.01 0.25 0.19 0.17 0.27 0.19

2 0.20 0.45 0.20 0.37 0.28 0.44 0.23 0.43 0.21 0.28

3 0.31 0.47 0.22 0.50 0.26 0.61 0.25 0.50 0.20 0.25

4 0.06 0.11 0.08 0.25 0.04 0.14 0.07 0.11 0.08 0.17

5 0.06 0.11 0.08 0.24 0.04 0.14 0.07 0.11 0.06 0.14

Ewind 1 0.02 0.31 0.19 0.11 0.00 0.24 0.27 0.16 0.24 0.33

2 0.25 0.76 0.27 0.57 0.13 0.63 0.23 0.55 0.48 0.88

3 0.59 0.85 0.40 1.25 0.09 0.58 0.19 1.22 0.28 0.96

4 0.11 0.20 0.12 0.33 0.02 0.12 0.07 0.19 0.18 0.38

5 0.11 0.19 0.13 0.32 0.02 0.11 0.06 0.19 0.15 0.33

ffu 1 0.10 0.72 0.58 1.56 0.12 0.55 1.81 2.18 0.40 0.57

2 6.78 0.93 0.84 1.24 1.07 0.87 0.40 1.09 0.65 0.62

3 0.31 1.46 1.76 1.79 1.64 1.21 0.62 2.84 0.66 0.50

4 0.08 0.73 0.15 7.13 0.54 0.49 0.33 1.00 0.45 0.36

5 0.08 0.57 0.16 2.64 0.34 0.44 0.41 0.83 2.29 0.34

Eother 1 0.06 2.87 0.34 1.22 0.00 2.64 42.20 0.33 1.22 27.85

2 0.21 17.30 1.94 1.24 0.26 0.79 0.29 0.37 0.54 0.50

3 0.11 1.07 2.61 1.35 0.75 0.66 0.13 0.26 0.29 0.27

4 0.07 0.40 1.07 0.49 0.05 0.18 0.02 0.08 0.11 0.03

5 0.08 0.55 1.15 0.51 0.05 0.19 0.02 0.07 0.15 0.03

Emis 1 0.04 0.58 0.13 0.42 0.05 0.28 0.90 0.30 1.60 0.81

2 0.24 1.41 0.47 5.54 1.64 0.55 0.34 0.38 3.02 0.86

3 0.14 1.07 0.94 11.96 1.20 0.37 0.28 0.47 3.76 0.42

4 0.04 1.56 0.08 1.03 0.10 0.16 0.27 0.07 0.19 0.22

5 0.04 0.14 0.08 2.19 0.08 0.15 0.22 0.07 0.23 0.20

Target i IND LAM MEA MED PAS RAXB REU RUS SCA USA

gdp 1 0.01 0.03 0.02 0.09 0.02 0.06 0.03 0.08 0.03 0.05

2 0.03 0.06 0.04 0.12 0.03 0.05 0.05 0.28 0.07 0.10

3 0.02 0.03 0.04 0.22 0.03 0.02 0.04 0.73 0.07 0.04

4 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.04 0.03 0.01

5 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.04 0.03 0.01

Esolar 1 0.01 0.08 0.02 0.49 0.06 0.32 0.06 0.36 0.22 0.14

2 0.10 0.17 0.31 0.68 0.22 0.36 0.41 0.23 0.28 0.20

3 0.12 0.22 0.27 0.82 0.50 0.31 0.37 0.29 0.37 0.23

4 0.02 0.04 0.10 0.31 0.05 0.12 0.08 0.07 0.11 0.20

5 0.03 0.05 0.10 0.24 0.05 0.11 0.08 0.08 0.11 0.16
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Table 11 continued

Target i IND LAM MEA MED PAS RAXB REU RUS SCA USA

Ewind 1 0.00 0.08 0.04 0.90 0.07 0.36 0.08 0.33 0.26 0.31

2 0.10 0.22 0.35 1.92 0.36 0.41 0.83 0.20 0.71 0.90

3 0.07 0.27 0.47 1.49 0.68 0.43 0.88 0.29 1.12 0.97

4 0.03 0.08 0.07 0.36 0.08 0.11 0.35 0.05 0.20 0.34

5 0.03 0.09 0.08 0.30 0.09 0.10 0.36 0.04 0.20 0.30

ffu 1 0.02 1.85 0.05 0.32 0.50 0.21 3.19 10.64 0.51 2.57

2 1.58 2.13 0.20 0.69 0.66 1.64 0.45 0.71 0.58 1.35

3 1.20 6.15 0.15 0.98 0.67 1.41 0.59 0.60 0.60 1.06

4 1.90 0.24 0.04 0.68 0.15 0.15 0.64 0.14 0.26 1.20

5 2.30 0.25 0.04 0.50 0.13 0.14 0.61 0.18 0.24 0.72

Eother 1 0.00 0.15 0.04 2.36 0.03 4.16 0.26 0.49 1.79 1.79

2 0.43 0.41 0.07 21.78 0.13 0.99 0.36 1.80 1.50 3.97

3 0.26 0.56 0.06 0.49 0.19 0.26 0.53 0.97 0.62 12.45

4 0.08 0.19 0.03 0.25 0.08 0.04 0.33 0.16 0.27 3.02

5 0.07 0.17 0.03 0.23 0.10 0.06 0.30 0.14 0.22 5.37

Emis 1 0.02 0.32 0.03 0.21 0.23 0.18 1.05 4.21 0.83 2.94

2 0.76 0.56 0.09 0.50 0.09 2.48 0.40 0.41 0.59 0.61

3 0.60 0.54 0.13 0.43 0.12 34.08 1.60 0.35 0.40 0.72

4 0.09 0.11 0.03 0.24 0.06 0.59 0.12 0.11 0.14 0.33

5 0.11 0.13 0.03 0.18 0.06 1.79 0.10 0.15 0.14 0.31
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