Skip to main content
Log in

Global Optimal Consumption–Portfolio Rules with Myopic Preferences and Loss Aversion

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, we construct a continuous-time market where the investor’s preferences take the form of myopic preferences used in Basak et al. (Rev Financ Stud 32:4905–4946, 2019) and the utility is assigned to the investor’s gains and losses with loss aversion. Myopic preferences make our financial model flexible and generally applicable in continuous-time markets, and loss aversion poses limitation to the investor’s consumption and investment. Then we derive the global optimal solutions to the related optimization problems through different regions, thereby obtaining global optimal consumption–portfolio rules for the investor. Candidates in different regions for global optimal consumption–portfolio rules could indicate how the investor reacts to consumption and investment with myopic preferences and loss aversion. The theoretical and numerical analysis shows that myopic preferences and loss aversion enable the investor to comply with optimal consumption–portfolio rules by balancing consumption against investment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altarovici, A., Reppen, M., & Soner, H. M. (2017). Optimal consumption and investment with fixed and proportional transaction costs. SIAM Journal on Control and Optimization, 55, 1673–1710.

    Article  Google Scholar 

  • Arkes, H. R., Hirshleifer, D., Jiang, D., & Lim, S. (2008). Reference point adaptation: Tests in the domain of security trading. Organizational Behavior and Human Decision Processes, 105, 67–81.

    Article  Google Scholar 

  • Barberis, N., Huang, M., & Santos, T. (2001). Prospect theory and asset prices. The Quarterly Journal of Economics, 116, 1–53.

    Article  Google Scholar 

  • Barberis, N., & Xiong, W. (2012). Realization utility. Journal of Financial Economics, 104, 251–271.

    Article  Google Scholar 

  • Basak, S., Chabakauri, G., & Yavuz, M. D. (2019). Investor protection and asset prices. The Review of Financial Studies, 32, 4905–4946.

    Article  Google Scholar 

  • Baucells, M., Weber, M., & Welfens, F. (2011). Reference-point formation and updating. Management Science, 57, 506–519.

    Article  Google Scholar 

  • Benartzi, S., & Thaler, R. H. (1995). Myopic loss aversion and the equity premium puzzle. The Quarterly Journal of Economics, 110, 73–92.

    Article  Google Scholar 

  • Berkovitz, L. D. (2002). Convexity and optimization in Rn. New York: Wiley.

    Book  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81, 637–654.

    Article  Google Scholar 

  • Borwein, J. M., & Lewis, A. S. (2000). Convex analysis and nonlinear optimization: Theory and examples (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Busch, M., Korn, R., & Seifried, F. T. (2013). Optimal consumption and investment for a large investor: An intensity-based control framework. Mathematical Finance, 23, 687–717.

    Article  Google Scholar 

  • Chabakauri, G. (2015). Asset pricing with heterogeneous preferences, beliefs, and portfolio constraints. Journal of Monetary Economics, 45, 21–34.

    Article  Google Scholar 

  • Chen, K., Chiu, M. C., Shin, Y. H., & Wong, H. Y. (2019). Stochastic volatility asymptotics for optimal subsistence consumption and investment with bankruptcy. SIAM Journal on Financial Mathematics, 10, 977–1005.

    Article  Google Scholar 

  • Ciarlet, P. G. (2013). Linear and nonlinear functional analysis with applications. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Cocco, J. F., Gomes, F. J., & Maenhout, P. J. (2005). Consumption and portfolio choice over the life cycle. The Review of Financial Studies, 18, 491–533.

    Article  Google Scholar 

  • Collin-Dufresne, P., Daniel, K., & Saǧlam, M. (2020). Liquidity regimes and optimal dynamic asset allocation. Journal of Financial Economics, 136, 379–406.

    Article  Google Scholar 

  • Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53, 385–407.

    Article  Google Scholar 

  • Dong, Y., & Zheng, H. (2020). Optimal investment with \(S\)-shaped utility and trading and value at risk constraints: An application to defined contribution pension plan. European Journal of Operational Research, 281, 341–356.

    Article  Google Scholar 

  • Ehrlich, I., & Hamlen, W. A. (1995). Optimal portfolio and consumption decisions in a stochastic environment with precommitment. Journal of Economic Dynamics and Control, 19, 457–480.

    Article  Google Scholar 

  • Fleming, W. H., & Soner, H. M. (2006). Controlled Markov processes and viscosity solutions (2nd ed.). New York: Springer.

    Google Scholar 

  • Grüne, L., & Semmler, W. (2008). Asset pricing with loss aversion. Journal of Economic Dynamics and Control, 32, 3253–3274.

    Article  Google Scholar 

  • Guo, W. (2014). Optimal portfolio choice for an insurer with loss aversion. Insurance: Mathematics and Economics, 58, 217–222.

    Google Scholar 

  • He, X., & Yang, L. (2019). Realization utility with adaptive reference points. Mathematical Finance, 29, 409–447.

    Article  Google Scholar 

  • Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6, 327–343.

    Article  Google Scholar 

  • Hlouskova, J., Fortin, I., & Tsigaris, P. (2019). The consumption-investment decision of a prospect theory household: A two-period model with an endogenous second period reference level. Journal of Mathematical Economics, 85, 93–108.

    Article  Google Scholar 

  • Hobson, D., Tse, A. S. L., & Zhu, Y. (2019). Optimal consumption and investment under transaction costs. Mathematical Finance, 29, 483–506.

    Article  Google Scholar 

  • Ingersoll, J. E., & Jin, L. J. (2013). Realization utility with reference-dependent preferences. The Review of Financial Studies, 26, 723–767.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.

    Article  Google Scholar 

  • Kallsen, J., & Muhlekarbe, J. (2017). The general structure of optimal investment and consumption with small transaction costs. Mathematical Finance, 27, 659–703.

    Article  Google Scholar 

  • Kraft, H., & Weiss, F. (2019). Consumption-portfolio choice with preferences for cash. Journal of Economic Dynamics and Control, 98, 40–59.

    Article  Google Scholar 

  • Lewis, K. K. (2000). Why do stocks and consumption imply such different gains from international risk sharing? Journal of International Economics, 52, 1–35.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7, 77–91.

    Google Scholar 

  • Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. The Review of Economics and Statistics, 51, 247–257.

    Article  Google Scholar 

  • Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3, 373–413.

    Article  Google Scholar 

  • Mostovyi, O. (2017). Optimal investment with intermediate consumption and random endowment. Mathematical Finance, 27, 96–114.

    Article  Google Scholar 

  • Pastor, L. (2000). Portfolio selection and asset pricing models. The Journal of Finance, 55, 179–223.

    Article  Google Scholar 

  • Pham, H. (2009). Continuous-time stochastic control and optimization with financial applications. Berlin, Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Polkovnichenko, V. (2005). Household portfolio diversification: A case for rank dependent preferences. The Review of Financial Studies, 18, 1467–1502.

    Article  Google Scholar 

  • Song, J., Bi, X., Li, R., & Zhang, S. (2017). Optimal consumption and portfolio selection problems under loss aversion with downside consumption constraints. Applied Mathematics and Computation, 299, 80–94.

    Article  Google Scholar 

  • Stojanovic, S. D. (2003). Computational financial mathematics using MATHEMATICA: optimal trading in stocks and options. New York: Springer-Verlag.

    Book  Google Scholar 

  • Stojanovic, S. D. (2004). Optimal momentum hedging via hypoelliptic reduced Monge–Ampère PDEs. SIAM Journal on Control and Optimization, 43, 1151–1173.

    Article  Google Scholar 

  • Strub, M. S., & Li, D. (2020). Failing to foresee the updating of the reference point leads to time-inconsistent investment. Operations Research, 68, 199–213.

    Article  Google Scholar 

  • van Bilsen, S., & Laeven, R. J. A. (2020). Dynamic consumption and portfolio choice under prospect theory. Insurance: Mathematics and Economics, 91, 224–237.

    Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton, New York: Princeton University Press.

    Google Scholar 

  • Wang, J., Liu, L., & Neilson, W. S. (2020). The participation puzzle with reference-dependent expected utility preferences. Insurance: Mathematics and Economics, 93, 278–287.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express deep gratitude to the reviewers and the editor for their very helpful suggestions and comments, which have helped us to substantially improve the presentation and quality of this manuscript.

Funding

This study was funded by the National Natural Science Foundation of China (Grant Numbers 12171339, 11671282, 11801462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Jing Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

Proof of Lemma 3.1

The proof is mainly based on Karush–Kuhn–Tucker conditions. Since problem (3.2) is the same as (3.5) in mathematics and so it suffices to prove the case of the condition (a).

Firstly, we prove the unique existence of the solution to equation \(h_1(n)=0\). Indeed, no matter what the term \(A-r\) equals, we always have

$$\begin{aligned}&h_1'(n)=-\rho \vartheta _0 W(A-r)^2 e^{-\vartheta _0 W((A-r)n+r)}e^{\vartheta _1 W} -\vartheta _1 W\nu <0;\\&h_1(-\infty )=\lim \limits _{n\rightarrow -\infty }h_1(n)=+\infty ,\,h_1(+\infty )= \lim \limits _{n\rightarrow +\infty }h_1(n)=-\infty . \end{aligned}$$

Then by the strict monotonicity and the zero point theorem, there exists a unique \(\hat{n}_1\in {\mathbb {R}}\) such that \(h_1(\hat{n}_1)=0\).

Secondly, the function \(-J_a^+\) is strictly convex (see, for example, Berkovitz 2002) and differentiable with respect to \((c,n)\in {\mathbb {R}}^2\), and the functions \(f_i\, (i=1,2,\ldots ,4)\) are all convex and differentiable with respect to \((c,n)\in {\mathbb {R}}^2\) and satisfy the Slater constraint qualification:

$$\begin{aligned} {\text {There exists}}\, (c_0,n_0)\in {\mathbb {R}}^2 \,\,{\text {with}}\,\, f_i<0\, (i=1,2,\ldots ,4). \end{aligned}$$
(6.1)

Actually, since \(f_i\, (i=1,2,\ldots ,4)\) are all linear with respect to \((c,n)\in {\mathbb {R}}^2\), it is obvious that they are convex and differentiable. Following Theorem 3.3 of Chapter III in Berkovitz (2002), the statement that \(-J_a^+\) is strictly convex and differentiable could be proved by verifying that its related Hesse matrix is positive definite for each \((c,n)\in {\mathbb {R}}^2\). And this can be proved by computing the related Hesse matrix directly, i.e.,

$$\begin{aligned} \bigtriangledown ^2 (-J_a^+(c,n))=\left( \begin{aligned}&\rho \vartheta _0e^{-\vartheta _0c}&\qquad 0\\&\quad 0&\vartheta _1W^2\nu e^{-\vartheta _1W} \end{aligned} \right) . \end{aligned}$$

Now, if \(A\ge r\) holds, then set \(c_0=\frac{Wr}{2},n_0=\frac{\overline{n}}{2}\) in \(f_i\, (i=1,2,\ldots ,4)\); and if \(A<r\) holds, then set \(c_0=\frac{Wr}{2},n_0=\frac{\overline{n}k_0}{2}\) with \(k_0=\min \{1,\frac{r}{2(r-A)\overline{n}}\}\) in \(f_i\, (i=1,2,\ldots ,4)\). So it is seen that (6.1) always holds.

Thirdly, since the function \(-J_a^+\) is continuous on the compact set \(R_1=\{(c,n):f_i(c,n)\le 0,i=1,2,3,4\}\), the global optimal solution \((c_1^*,n_1^*)\) to (3.2) exists. And making use of Theorem 3.1 of Chapter IV in Berkovitz (2002), strict convexity of \(-J_a^+\) implies that there exists at most one global optimal solution to (3.2). Thus, the global optimal solution \((c_1^*,n_1^*)\) to (3.2) uniquely exists.

Finally, in order to derive the global optimal solution \((c_1^*,n_1^*)\), we define the associated Lagrangian function \(L_1:{\mathbb {R}}^6\rightarrow [-\infty ,+\infty )\) as

$$ L_{1} (c,n,\lambda ) = \left\{ \begin{aligned} \begin{array}{*{20}l} { - J_{a}^{ + } (c,n) + \sum\limits_{{i = 1}}^{4} {\lambda _{i} } f_{i} (c,n),} \hfill & {\lambda _{i} \ge 0,i = 1,2,3,4;} \hfill \\ { - \infty ,} \hfill & {otherwise,} \hfill \\ \end{array} \end{aligned}\right. $$

where \(\lambda =(\lambda _1,\lambda _2,\lambda _3,\lambda _4)\). Through convexity and the Slater constraint qualification (6.1) and Karush–Kuhn–Tucker conditions (see, for example, Proposition 3.2.3 and Theorem 3.2.8 in Borwein and Lewis (2000)), the vector \((c_1^*,n_1^*)\) is the global optimal solution to (3.2) if and only if there is a Lagrange multiplier vector \(\lambda ^*\) such that \((c_1^*,n_1^*,\lambda ^*)\) satisfies

$$\begin{aligned} \left\{ \begin{array}{ll}&\frac{\partial }{\partial c}L_1(c_1^*,n_1^*,\lambda ^*)=0,\,\frac{\partial }{\partial n}L_1(c_1^*,n_1^*,\lambda ^*)=0;\\&\lambda _i^*\ge 0,\,f_i(c_1^*,n_1^*)\le 0,\,\lambda _i^*f_i(c_1^*,n_1^*)=0,\, i=1,2,3,4. \end{array}\right. \end{aligned}$$
(6.2)

In fact, whether \(\lambda _1^*,\lambda _2^*,\lambda _3^*,\lambda _4^*\) are equal to zero divides the possible solutions to (6.2) into various cases, and then the necessary and sufficient conditions on which there exists a solution \((c_1^*,n_1^*,\lambda ^*)\) to (6.2) are obtained as follows:

  1. RG-1:

    \(\lambda _1^*=0,\,\lambda _2^*=0,\,\lambda _3^*=0,\,\lambda _4^*=0, c_1^*=\Gamma _1,\,n_1^*=\kappa _1,\,\underline{n}\le \kappa _1\le \overline{n},\, 0\le \Gamma _1\le W((A-r)\kappa _1+r)\);

  2. RG-2:

    \(\lambda _1^*=-\rho +e^{-\vartheta _1 W}>0,\,\lambda _2^*=0,\,\lambda _3^*=0,\,\lambda _4^*=0, \,c_1^*=0\le W((A-r)\kappa _1+r) ,\,n_1^*=\kappa _1,\,\underline{n}\le \kappa _1\le \overline{n};\)

  3. RG-3:

    \(\lambda _1^*=0,\,\lambda _2^*=e^{-\vartheta _1 W}\vartheta _1W^2\nu (\underline{n}-\kappa _1)>0, \,\lambda _3^*=0,\,\lambda _4^*=0,\,c_1^*=\Gamma _1,\,n_1^*=\underline{n},\, 0\le \Gamma _1\le W((A-r)\underline{n}+r)\);

  4. RG-4:

    \(\lambda _1^*=0,\,\lambda _2^*=0, \,\lambda _3^*=e^{-\vartheta _1 W}\vartheta _1W^2\nu (\kappa _1-\overline{n})>0,\,\lambda _4^*=0, \,c_1^*=\Gamma _1,\,n_1^*=\overline{n},\, 0\le \Gamma _1\le W((A-r)\overline{n}+r)\);

  5. RG-5:

    \(\lambda _1^*=0,\,\lambda _2^*=0,\,\lambda _3^*=0,\,\lambda _4^*=\rho e^{-\vartheta _0 c_1^*}-e^{-\vartheta _1 W}>0, c_1^*=W((A-r)n^*_1+r),\,h_1(n_1^*)=0,\,\underline{n}\le n_1^*\le \overline{n}\);

  6. RG-6:

    \(\lambda _1^*=-\rho +e^{-\vartheta _1 W}>0, \,\lambda _2^*=e^{-\vartheta _1 W}\vartheta _1 W^2\nu (\underline{n}-\kappa _1)>0,\,\lambda _3^*=0, \,\lambda _4^*=0, \,c_1^*=0,\,n_1^*=\underline{n},\,0\le W((A-r)\underline{n}+r);\)

  7. RG-7:

    \(\lambda _1^*=-\rho +e^{-\vartheta _1 W}>0, \,\lambda _2^*=0,\,\lambda _3^*=e^{-\vartheta _1 W}\vartheta _1W^2\nu (\kappa _1-\overline{n})>0, \,\lambda _4^*=0, \,c_1^*=0,\,n_1^*=\overline{n},\,0\le W((A-r)\overline{n}+r);\)

  8. RG-8:

    \(\lambda _1^*=0,\,\lambda _2^*=-e^{-\vartheta _1 W}Wh_1(\underline{n})>0,\,\lambda _3^*=0,\,\lambda _4^* =\rho e^{-\vartheta _0c_1^*}-e^{-\vartheta _1 W}>0,\, c_1^*=W((A-r)\underline{n}+r),\,n_1^*=\underline{n},\,0\le W((A-r)\underline{n}+r);\)

  9. RG-9:

    \(\lambda _1^*=0,\,\lambda _2^*=0,\,\lambda _3^*=e^{-\vartheta _1W}Wh_1(\overline{n})>0,\,\lambda _4^* =\rho e^{-\vartheta _0c_1^*}-e^{-\vartheta _1W}>0,\, c_1^*=W((A-r)\overline{n}+r),\,n_1^*=\overline{n},\,0\le W((A-r)\overline{n}+r).\)

If we assume the region is given (i.e., whether \(\lambda _1^*,\lambda _2^*,\lambda _3^*,\lambda _4^*\) are equal to zero is determined), then necessity and sufficiency of conditions in Regions (RG-i) (\(i=1,2,\ldots ,9\)) are easy to verify. To complete the proof, it remains to exclude other cases of \(\lambda ^*\). If \(\lambda _1^*>0,\,\lambda _2^*=0,\,\lambda _3^*=0,\,\lambda _4^*>0\) hold, then (6.2) implies

$$\begin{aligned} A\ne r,\,\lambda _4^*=-e^{-\vartheta _1W}\left( 1+\frac{\vartheta _1 W\nu r}{(A-r)^2}\right) <0, \end{aligned}$$

which is a contradiction. If \(\lambda _2^*>0,\,\lambda _3^*>0\) hold, then (6.2) gives \(n_1^*=\underline{n},\,n_1^*=\overline{n}\), which is also a contradiction and excludes the following cases: (1) \(\lambda _1^*=0,\lambda _2^*>0,\lambda _3^*>0,\lambda _4^*=0\); (2) \(\lambda _1^*>0,\lambda _2^*>0,\lambda _3^*>0,\lambda _4^*=0\); (3) \(\lambda _1^*=0,\lambda _2^*>0,\lambda _3^*>0,\lambda _4^*>0\), (4) \(\lambda _1^*>0,\lambda _2^*>0,\lambda _3^*>0,\lambda _4^*>0\). If \(\lambda _1^*>0,\,\lambda _2^*>0,\,\lambda _3^*=0,\,\lambda _4^*>0\) hold, then (6.2) gives \(c_1^*=0,n_1^*=\underline{n}\) and \(c_1^*=W((A-r)n_1^*+r)\). And it follows \(A-r\ne 0,\,n_1^*=\underline{n}=-\frac{r}{A-r}\) and \(A>r\) from \(\underline{n}\le 0\). On the other hand, by using \(A>r\) and \(\frac{\partial }{\partial n}L_1(c_1^*,n_1^*,\lambda ^*)=0\), we have

$$\begin{aligned} \lambda _2^*+W(A-r)\lambda _4^*=-W(A-r)e^{-\vartheta _1 W}\left( 1+\frac{\vartheta _1 W\nu r}{(A-r)^2}\right) <0, \end{aligned}$$

which contradicts \(\lambda _2^*>0,\lambda _4^*>0\). Thus, the case of \(\lambda _1^*>0,\,\lambda _2^*>0,\,\lambda _3^*=0,\,\lambda _4^*>0\) is excluded, and similarly the case of \(\lambda _1^*>0,\,\lambda _2^*=0,\,\lambda _3^*>0,\,\lambda _4^*>0\) can be also excluded. Now we have excluded all other cases. Summarizing, there exists a solution \((c_1^*,n_1^*,\lambda ^*)\) to (6.2) if and only if one of conditions in Regions \(\mathrm {RG}-i\) (\(i=1,2,\ldots ,9\)) is satisfied, and we have completed the proof. \(\square \)

Proof of Lemma 3.2

Notice that the function \(-J_a^-\) is coercive on \(R_2=\{(c,n):g_i(c,n)\le 0,i=1,2,3,4\}\), i.e.,

$$\begin{aligned} (c,n)\in R_2, c^2+n^2\rightarrow +\infty \Rightarrow -J_a^-(c,n)\rightarrow +\infty , \end{aligned}$$

and then by Theorem 9.3-1 in Ciarlet (2013), this guarantees the existence of the solutions to (3.3). On the other hand, the function \(-J_a^-\) is not convex with respect to \((c,n)\in \mathbb {R}^2\) and hence the solutions may not be unique. However, Karush–Kuhn–Tucker conditions can be still applied to obtain the optimal solution.

Firstly, by verifying the Slater constraint qualification of \(g_i\) via \(c_0=2Wr+\max \{W(A-r)n_0,0\},n_0=\frac{\underline{n}+\overline{n}}{2}\), we can apply Karush–Kuhn–Tucker conditions to (3.3). Define the associated Lagrangian function \(L_2:{\mathbb {R}}^6\rightarrow [-\infty ,+\infty )\) as

$$\begin{aligned} L_2(c,n,\lambda )=\left\{ \begin{array}{lll}&-J_a^-(c,n)+\sum _{i=1}^4\lambda _i g_i(c,n),&\lambda _i \ge 0,i=1,2,3,4;\\&-\infty ,&otherwise. \end{array} \right. \end{aligned}$$

Then we can obtain all candidates (local optimal solutions) for the global optimal solutions to (3.2) by solving

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\partial }{\partial c}L_1(c_2^*,n_2^*,\lambda ^*)=0,\,\frac{\partial }{\partial n}L_1(c_1^*,n_1^*,\lambda ^*)=0;\\&\lambda _i^*\ge 0,\,g_i(c_1^*,n_1^*)\le 0,\,\lambda _i^*g_i(c_1^*,n_1^*)=0,\, i=1,2,3,4. \end{aligned}\right. \end{aligned}$$

With an analogous method in proof of Lemma 3.1, such candidates are obtained as those in Regions (RL-1)–(RL-12) of Lemma 3.2. Finally, we determine the global optimal solution (or solutions) by direct search over points \((c_{2,i}^*,n_{2,i}^*)\) (\(i=1,2,\ldots ,12\)) to find the point at which the function \(-J_a^-\) achieves global minimum, which gives rise to (3.7). \(\square \)

Proof of Lemma 3.3

The existence of the solution to (3.6) can be guaranteed by making use of Theorem 9.3-1 in Ciarlet (2013) and the fact that the function \(-J_b^-\) is coercive on \(R_3=\{(c,n):g_i(c,n)\le 0,i=1,2,3,4\}\). Then the rest of the proof is analogous with that of Lemma 3.1, and so we omit it here. \(\square \)

Proof of Proposition 3.1

Under the condition (a), whether the investor expects to gain or lose wealth separates (3.1) into two cases. Then \((c_1^*,n_1^*)\) in Lemma 3.1 and \((c_2^*,n_2^*)\) in Lemma 3.2 are candidates for the global optimal solution to (3.1). Searching over above vectors, we can determine the global optimal solution (or solutions), which gives (3.8). \(\square \)

Proof of Proposition 3.2

Under the condition (b), whether the investor expects to gain or lose wealth separates (3.4) into two cases again. Then \((c_1^*,n_1^*)\) in Lemma 3.1 and \((c_3^*,n_3^*)\) in Lemma 3.2 are candidates for the global optimal solution to (3.4). Searching over above vectors, we can determine the global optimal solution (or solutions), which gives (3.18). \(\square \)

Proof of Proposition 3.3

The proof is analogous with that of Proposition 3.2, and we can prove it in a similar way. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, J., Wang, MH. & Huang, NJ. Global Optimal Consumption–Portfolio Rules with Myopic Preferences and Loss Aversion. Comput Econ 60, 1427–1455 (2022). https://doi.org/10.1007/s10614-021-10187-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-021-10187-6

Keywords

Mathematics Subject Classifications

Navigation