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Abstract
In this study, we nowcast quarter-over-quarter US GDP growth rates between

2000Q2 and 2018Q4 using tree-based ensemble machine learning models, namely,

bagged decision trees, random forests, and stochastic gradient tree boosting. To

solve the ragged edge problem and reduce the dimension of the data set, we adopt a

dynamic factor model. Dynamic factors extracted from 10 groups of financial and

macroeconomic variables are fed to machine learning models for nowcasting US

GDP. Our results show that tree-based ensemble models usually outperform linear

dynamic factor models. Factors obtained from real variables appear to be more

influential in machine learning models. The impact of factors derived from financial

and price variables can only become important in predicting GDP after the great

financial crisis of 2008–9, reflecting the effect extra loose monetary policies

implemented in the period following the crisis.

Keywords Bagging � Boosting � Dynamic Factor Model � Machine

Learning � Nowcasting � Random forests

1 Introduction

When there is no problem in measuring the present state of variables of interest,

forecasting concentrates only on predicting the future. For example, in weather

forecasting, where we know exactly what the weather is today, we only need to

forecast the future. However, in other fields, such as economics, we have missing

information about the economy’s current state, as important macroeconomic

aggregates can only be measured with a considerable time delay. Hence, for these
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variables, forecasting tasks should also be focused on predicting the present as well

as the future and the recent past.1

The publication delays of key economic macro indicators pose serious problems

for policymakers and all who need to monitor the economy in real time and form

their decisions based on timely information. For example, US GDP, which is the key

variable describing the overall state of the economy as a whole, is published

quarterly. Its first (or advance) estimate is released with almost a month’s delay after

the end of the corresponding quarter.2 This delay may be extended up to six months

in other countries. Even a delay of just one month constitutes a significant lag in

information flow for those who need timely information for their decision-making

process. In the absence of timely availability of GDP figures, decision-makers

interested in monitoring the overall state of the economy in real time must rely on

other indicators that are related to GDP but published with a shorter delay or with no

delay at all. These variables can be used to extract information on the current state

of economic activity well before the advance estimate of GDP is released. Giannone

et al. (2008) developed a joint multivariate nowcasting model to perform this task.

By putting an emphasis on forecasting to the present, they call it ‘‘nowcasting’’. This

nowcasting model is a particular case of a large class of dynamic factor models

(DFMs) estimated by principal components, first introduced by Stock and Watson

(2002a), Stock and Watson (2002b), and using the Kalman filter to update

predictions, and it is designed to handle the irregularities of real-time data, such as

mixed frequencies and non-synchronicity of data releases. The model estimates the

unobserved factors that drive the data and produces a forecast of each economic and

financial series that it incorporates. Whenever the actual release for a series departs

from the model’s forecast, this is considered as ‘‘news’’ and affects the nowcast of

GDP growth. The DFM proposed by Giannone et al. (2008) and its successors have

been used to produce successful nowcasts for a variety of countries ranging from

developed economies to emerging markets (for a review of the literature, see Bok

et al. 2018; Banbura et al. 2013).

After deriving dynamic factors from a data set that contains high-frequency

variables, most studies in the literature link these dynamic factors with quarterly

GDP using a linear model. An obvious alternative to linear models is machine

learning models. These have recently grown in popularity for macroeconomic

forecasting but have rarely been used in the context of nowcasting. To the best of

our knowledge, there have been only a handful of studies utilizing machine learning

algorithms for nowcasting. In one of the early studies to adopt this approach, Cornec

and Mikol (2011) used linear/quadratic discriminant analysis, decision trees, and

support vector machines to nowcast the direction of French GDP by utilizing a

quarterly data set including business surveys. They showed that linear discriminant

analysis outperformed other machine learning and benchmark models in their

exercise. In another study, Biau (2010) utilized a quarterly data set that contained

only soft data to nowcast Euro Area GDP with a random forest. Their results

1 The need for forecasting the near past is also due to time delay in data releases.
2 The publication of this first advanced print is complemented by subsequent revisions, namely, the

second and third estimates for the quarter in question, in the following months.
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indicated that the predictive performance of random forests is not very satisfactory.

However, selecting variables according to the importance metric of random forests

and then using these variables in a linear model provided good nowcasting

accuracy. In a similar study, Richardson et al. (2018) adopted a large-scale quarterly

data set, including 500 domestic and international variables. They nowcast New

Zealand GDP with various machine learning algorithms such as K-nearest-neighbor
regressions, boosted trees, elastic nets, lasso regression, ridge regression, support

vector machines, and neural network models. According to their results, the

majority of machine learning models outperformed autoregressive models, factor

models, and Bayesian vector autoregressive models. Among machine learning

models, support vector machines and neural networks had the best performance. By

adopting quarterly data sets, Cornec and Mikol (2011), Biau (2010), and Richardson

et al. (2018) seemed to ignore the nonsynchronicity of data releases that causes

missing values at the end of the data set. However, this is an important issue in

nowcasting that should also be taken into account. In contrast to previous studies,

Loermann and Maas (2019) used the large-scale monthly data set of McCracken and

Ng (2016) (FRED-MD) to nowcast US GDP with a feedforward artificial neural

network model. They adopted autoregressive moving average models to fill in

missing values at the end of the sample. Even though they used a monthly data set,

they conducted one prediction in each quarter. According to their results, their

machine learning approach outperformed DFMs and performed as well as a survey

by professional forecasters. In a similar line of study, Soybilgen (2020) also used the

monthly FRED-MD data set to nowcast US business cycle states with a neural

network model. Instead of feeding the data set directly into the machine learning

model, Soybilgen (2020) first used a DFM to reduce the dimension of the data set

and deal with the nonsynchronicity of the data releases. He then fed these dynamic

factors into the machine learning model. His results also indicated that machine

learning models provide improvements over regular linear models. In the present

paper, we also adopt a similar two-step approach for nowcasting US GDP.

In this study, we nowcast US GDP between 2000Q2 and 2018Q4 using decision-

tree-based ensemble machine learning models, namely, bagged decision trees,

random forests, and stochastic gradient tree boosting. We also use the large-scale

data set of FRED-MD, including more than 100 financial and macro variables.

Instead of feeding these variables directly into our machine learning models, we

reduce the dimension of the data set using the DFM proposed by Giannone et al.

(2008). This helps us both to fill in missing monthly data at the end of the sample in

a straightforward manner and to reduce the dimension of the data set.3 However

unlike previous nowcasting studies such as those by Bańbura and Rünstler (2011),

Barhoumi et al. (2010), D’Agostino et al. (2012), Matheson (2010), and many

others, we do not derive dynamic factors using the whole data set. Instead, we first

divide the data set into 10 groups of variables and then derive factors from each

group of variables.

3 In a comprehensive study, Coulombe et al. (2019) further showed that combining machine learning

models with factors improves the forecasting performance of the models significantly in a data-rich

environment.
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In our real-time nowcasting exercise that takes account of both historical data

availability and data revisions, our tree-based ensemble machine learning models

mostly outperform linear DFMs. In the first GDP predictions for the reference

quarter, the performance difference between machine learning models and linear

models is small. However, when additional data for the reference quarter become

available, the prediction performance of tree-based models improves significantly

compared to that of linear models. We estimate all models using both a rolling

window and an expanding window. Our results indicate that machine learning

models estimated using a rolling window have better prediction performance

compared to models estimated recursively. We also compare predictions of our

models against those of GDPNow, which is a well-known nowcasting model. We

show that machine learning models outperform GDPNow slightly when nowcasting

at the start of the reference quarter, but GDPNow performs better than machine

learning models when nowcasting at the end of the reference quarter. We also

analyze which factors are more important when predicting US GDP. Our results

show that factors obtained from real variables have much more impact than factors

obtained from financial and price variables. However, for random forests and

bagged decision trees, the influence of factors derived from financial and price

variables increases only after the great financial crisis of 2008-9.

The remainder of this paper is organized as follows: Sect. 2 introduces the data

set; Sect. 3 describes the methodology; Sect. 4 presents the empirical results, and

Sect. 5 concludes the paper.

2 The data Set

The large-scale data set used in this paper to obtain dynamic factors is based on the

FRED-MD monthly database provided by McCracken and Ng (2016). FRED-MD

consists of 10 groups of variables: (1) output and income; (2) labor market; (3)

housing; (4) consumption, orders, and inventories; (5) money and credit; (6) interest

rate; (7) prices; (8) stock market; (9) yield spread; and (10) exchange rate. We use

vintage data starting from January 2000 until December 2018.4 Owing to

discontinuities in some old series, the introduction of some newly updated series,

and some other data collection problems, FRED-MD vintage data do not have the

same number of variables for each period. Variables and their period of use are

listed in Appendix 1. Furthermore, all variables are transformed appropriately to

ensure stationarity. Their applied transformations are also shown in Appendix 1. For

vintage GDP data, we use the data set obtained from the Archival Federal Reserve

Economic Data (ALFRED) system.

4 In total, we use 228 different vintage data sets to carry out our nowcasting exercise, and each data set

starts from July 1960.
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3 Methodology

In this study, we use tree-based ensemble machine learning algorithms that

incorporate dynamic factors as explanatory variables. Our reason for adopting

dynamic factors instead of using the full data set is that a large number of irrelevant

and noisy variables can reduce the prediction performance of models. Using a DFM

allows us to reduce the dimension of the data set by eliminating most of the noise

that it contains. Furthermore, the DFM of Giannone et al. (2008) can solve the

ragged/jagged edge data problem5 by utilizing a Kalman smoother.

3.1 Dynamic Factor Model

Let us define xtm ¼ ðx1;tm ; x2;tm ; . . .; xn;tmÞ
0; tm ¼ 1; 2; . . .; Tm as n monthly standard-

ized series transformed via the Mariano and Murasawa (2003) approximation with

tm being the monthly time index and Tm representing the final month in the monthly

data set. Our factor model has the following representation:

xtm ¼ Kftm þ �tm ; �tm �Nð0;R�tm Þ; ð1Þ

where K is an n� r matrix of factor loadings for standardized and filtered monthly

variables, �t is the idiosyncratic component, and ftm ¼ ðf1;tm ; f2;tm ; . . .; fr;tmÞ
0
repre-

sents the unobserved common factors following a vector autoregression process

(VAR) as follows:

ftm ¼
Xp

i¼1

Aiftm�i þ Bgt; gtm �Nð0; IqÞ; ð2Þ

where B is an r � q matrix of full rank q with q 6 r, A1;A2; . . .;Ap are r � r
matrices of autoregressive coefficients, and gt is the q-dimensional vector of

common shocks, which follows a white-noise process.

In this study, we use the two-step estimation approach which, as shown by Doz

et al. (2011), is able to extract common factors in case of missing values at the end

of the sample. In the first step, initial factors and consistent estimates of the

parameters are obtained. In the second step, updated estimates of the common

factors are obtained with Kalman filtering techniques using the consistent estimates

of the parameters. The two-step estimation procedure can be summarized as

follows:

1. We extract the first r principal components from the balanced part of the data set

where all observations are present6 and obtain the initial factor estimates, ~ftm .

2. Using the initial factor estimates, we estimate factor loadings, K̂, and the

covariance matrix of the idiosyncratic component, R̂�tm , in Eq. (1).

5 The missing data at the end of the sample period due to the publication lag is called the ‘‘ragged/jagged

edge’’ problem in the literature. To predict GDP, we first need to forecast the missing values of monthly

variables at the end of the sample.
6 In other words, we ignore the ragged/jagged part of the data set.
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3. Similarly, we obtain estimated matrices of autoregressive coefficients,

Â1; Â2; :::; Âp, and estimated B̂ from Eq. 2.

4. The ragged edge part of the data set are incorporated into the procedure by

assigning an extremely large value to the variance of the idiosyncratic

component where there is missing observations and replacing missing values in

xtm with arbitrary values. In this way, Kalman filter puts no weight on missing

observations while computing the factors (Giannone et al. 2008).

5. As Eqs. 1 and 2 can be cast in state-space form using the consistent estimates

ðR̂; B̂; Â; K̂Þ, factors can be re-estimated using one run of Kalman filter and

Kalman smoother while incorporating the unbalanced part of the data set.

3.2 Linear Models

To link monthly factors with quarter-over-quarter (QoQ) GDP growth rates, we

obtain quarterly factors from their monthly counterparts by extracting those that

correspond to the last month of each quarter. Let us assume that ftm ,
tm ¼ 1; 2; . . .; Tm, starts at the first month of a quarter. Then its quarterly counterpart

can be represented as ftfq ; t
f
q ¼ 1; 2; . . .; Tf

q;, where Tm ¼ Tf
q=3, with tfq being the

quarterly time index for factors and Tf
q representing the sample length of quarterly

factors. Similarly, let us define QoQ GDP growth rates ytq , tq ¼ 1; 2; . . .; Tq, with tq
being the quarterly time index for y and Tq representing the sample length of QoQ

GDP growth rates. We can obtain accurate nowcasts of y owing to the fact that

Tf
q [ Tq.

We use two linear models as benchmarks. In the first model, two factors are

derived from the whole data set using the r ¼ 2; q ¼ 2; p ¼ 1 specification,7 where

r, q, and p represent the static factors, the dynamic factors, and the number of lags,

respectively, as introduced in Sect. 3.1. The QoQ GDP growth rates ytq can be

modeled by the quarterly factors f̂i;tqjtm , which are extracted from the monthly factors

estimated using all the information up to Tm:

ytq ¼ cþ
X2

i¼1

bi f̂i;tqjtm þ ft; ð3Þ

where ft is the error term. Then, the hq-steps-ahead predictions of quarterly GDP

growth rates using parameters derived from Eq. (3) via OLS, ŷtqþhqjtq , are obtained

as follows:

7 There are various ways to determine the number of factors, such as using the information criteria

proposed by Bai and Ng (2002) and Bai and Ng (2007), the best being an ex-post specification grid search

with cross-validation. However, we follow a simple but frequently used approach and adopt the

specification of Giannone et al. (2008), which is quite appropriate for these kinds of nowcasting

exercises. Soybilgen (2020) also tests various DFM specifications in a similar nowcasting exercise and

shows that the r ¼ 2; q ¼ 2; p ¼ 1 specification produces overall good results.
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ŷtqþhqjtq ¼ ĉþ
X2

i¼1

b̂if̂i;tqþhqjtm : ð4Þ

In the second model, two factors are extracted from each group in the data set using

the r ¼ 2; q ¼ 2; p ¼ 1 specification, and we obtain 20 factors in total. As in Eq. (3),

ytq is linked to factors using a single-equation model:

ytq ¼ cþ
X20

i¼1

aif̂i;tqjtm þ 1t; ð5Þ

where 1t is the error term. Then, hq-steps-ahead predictions of quarterly GDP

growth rates using parameters derived from Eq. (5) via OLS, ŷtqþhqjtq , are obtained

as follows:

ŷtqþhqjtq ¼ ĉþ
X20

i¼1

âi f̂i;tqþhqjtm : ð6Þ

3.3 Tree-Based Machine Learning Models

In this study, we use tree-based ensemble machine learning models, namely, bagged

decision trees, random forests, and boosted decision trees. As in Eq. (5), we feed 20

factors into our machine learning models, since this approach gives us more

information when analyzing which factors are important for predicting GDP.

3.3.1 Bagged Decision Trees and Random Forests

Classification and regression trees (CART), proposed by Breiman et al. (1984),

work by dividing the feature space into mutually exclusive rectangular regions that

minimize an objective function, namely, the residual sum of squares (RSS) for

regression trees, while fitting a simple model in each region. As searching for the

best optimal partition that minimizes the objective function is computationally

infeasible, the recursive binary splitting strategy, which is a top-down greedy

approach, is adopted. In this greedy strategy, we recursively split the space into two

distinct regions by finding the best variable k and split point s that minimize the RSS

until a stopping criterion is reached, such as the minimum number of observations in

each region.

For ease of notation, let us assume that the feature space is partitioned into M
regions R1;R2; . . .;RM and that f ¼ ff1; f2; . . .; f20g denotes the 20 factors used as

predictors in our model. Following (Hastie et al. 2009, p. 307), the regression tree

can be represented using the following piecewise-constant model:

gðfÞ ¼
XM

m¼1

cmIðf 2 RmÞ; ð7Þ
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where I is the indicator function, which is 1 when the arguments evaluate to true and

0 otherwise. The best estimator that minimizes the RSS is

ĉm ¼ averagefytq : ftq 2 Rmg. Regions are defined recursively by finding the split

variable k and split point s that solve

min
k;s

min
c1

X

ftq2R1ðk;sÞ
ðytq � c1Þ2 þmin

c2

X

ftq2R1ðk;sÞ
ðytq � c2Þ2

2

4

3

5; ð8Þ

where R1ðk; sÞ ¼ ff jfk\sg and R2ðk; sÞ ¼ ff jfk � sg. The optimal solution of the

minimization problem (8) is obtained as ĉ1 ¼ averageðytq : ftq 2 R1Þ and

ĉ2 ¼ averageðytq : ftq 2 R2Þ.
Even though decision trees are extremely easy to interpret, they tend to make

poor and noisy predictions in many cases compared to more advanced machine

learning models. Breiman (2001) introduced random forests, which are a type of an

ensemble decision tree model, as a technique with low variance and high prediction

performance. Random forests are based on bagging (bootstrap aggregating) of

decision trees. For bagged decision trees, we first obtain B bootstrapped training sets

from original data and then fit a decision tree to each bootstrapped training set. This

procedure is known to reduce variance while increasing the prediction performance

of decision trees. However, if fitted bagged decision trees are too strongly correlated

with each other, this procedure may fail to yield the desired improvement. Random

forests solve this problem by allowing only a random sample of variables to be

considered in each split. In this way, bagged fitted trees are dissociated from each

other.

Following (Hastie et al. 2009, p. 588), let b ¼ 1; . . .;B denote the number of

bootstrap iterations. The random forest algorithm can then be summarized as

follows:

1. Obtain the bootstrapped data from the original data covering the time span up to

Tq, tq ¼ 1; . . .; Tq.

2. Using the bootstrapped data obtained in step 1, estimate a regression tree ĝ
ðbÞ
RFðf Þ

by just considering p factors at random from 20 factors when determining the

best variable/split point for each terminal node of tree until the minimum node

size nmin is reached.

3. Repeat steps 1 and 2 B times.

After obtaining B decision trees using the above procedure, hq-steps-ahead
predictions of QoQ GDP growth rates are calculated as the average value of B
trees as follows:

ŷtqþhqjtq ¼
1

B

XB

b¼1

ĝ
ðbÞ
RFðf̂tqþhqjtmÞ: ð9Þ

If m ¼ 20 in the random forest procedure, then we obtain bagged decision trees

ĝ
ðbÞ
BGðf̂ Þ. Similar to Eq. (9), we obtain the predictions as
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ŷtqþhqjtq ¼
1

B

XB

b¼1

ĝ
ðbÞ
BGðf̂tqþhqjtmÞ: ð10Þ

3.3.2 Boosted Decision Trees

Boosting is a general approach that turns weak learners into strong learners in a

sequential way instead of separately as in random forests. It is mostly used in the

context of decision trees. After an initial estimate, each tree is fitted to the residual

of the previous estimate, and this fitted tree is then used to update the current

estimate according to a learning parameter. To predict GDP growth rates, we use

stochastic gradient tree boosting with squared errors as loss function, following

Friedman (2001) and Friedman (2002).

In gradient boosting, regression trees are fitted to pseudo-residuals, with negative

gradients, instead of actual residuals, since this simplifies the optimization process.

Friedman (2001) also used different learning rates for each region of a decision tree

for higher prediction performance. In stochastic gradient tree boosting, Friedman

(2002) further improved the model by using only a part of the training set drawn at

random without replacement in each iteration.

Following Friedman (2002) and (Hastie et al. 2009, p. 361), let us define m ¼
1; . . .;M as the number of boosting iterations, fytq ; ftqg

Tq
1 as the original training set,

fypðtqÞ; fpðtqÞg
~Tq
1 as the fraction of the original training set randomly selected without

replacement, and k as the learning parameter. Then the gradient tree boosting

algorithm can be summarized as follows:

1. Initialize h0ðf Þ ¼ argminc

XTq

tq¼1

Lðytq ; cÞ.

2. Use the fraction of the training set, fypðtqÞ; fpðtqÞg
~Tq
1 .

3. For pðtqÞ ¼ 1; 2; . . .; ~Tq compute rpðtqÞ;m ¼
oL ypðtqÞ; hðfpðtqÞÞ
� �

ohðfpðtqÞÞ

2
4

3
5

h¼hm�1

.

4. Fit a regression tree to the targets rpðtqÞ;m, giving terminal regions

Rj;m; j ¼ 1; 2; . . .; Jm.

5. For j ¼ 1; 2; . . .; Jm, compute cj;m ¼ argminc

X

fpðtqÞ2Rj;m

L ypðtqÞ; hm�1ðfpðtqÞÞ þ c
� �

.

6. Update hmðf Þ ¼ hm�1ðf Þ þ k
XJm

j¼1

cj;mIðf 2 RmÞ.

7. Repeat steps 2, ..., 6 M times.

8. Derive the final model ĥðf Þ ¼ hMðfÞ.

After the final model ĥðfÞ has been obtained, hq-steps-ahead predictions of QoQ

GDP growth rates are calculated as ŷtqþhqjtq ¼ ĥðf̂tqþhqjtmÞ. In the above algorithm,
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the complexity of the regression trees can be controlled by adjusting the minimum

node size of the terminal nodes, nmin, and the maximum depth allowed for each tree,

C. Higher C and lower nmin produce more complex regression trees, which may

cause overfitting of the procedure to occur more quickly. Furthermore, the learning

rate k controls the learning speed of the algorithm. A small value of k indicates a

slow learning process, so we may need a large number M to have a low bias error.

On the other hand, a higher k may cause the model to memorize data quickly, so we

need to use a lower number of iterations.

4 Empirical Results

4.1 Nowcasting Performance

We estimate our models between January 2000 and December 2018 using vintage

data that take account of data revisions. In each month, we produce predictions for

both the current quarter and the next quarter. We assume that each prediction is

computed at the end of the month and replicate historical data availability

accordingly. As a result, we have six predictions for each reference quarter.

For example, let us assume that we are in January 2001. To replicate the

information set of a forecaster in January 2001, we use the vintage data set of

January 2001. This data set covers the period between July 1960 and December

2000. To predict the current and next quarters, we also need the period between

January 2001 and June 2001. In the first step, we obtain common monthly factors

between July 1960 and June 2001 using the DFM. Next, we extract quarterly factors

from the monthly factors by collecting each monthly factor that corresponds to the

last month of each quarter. As a result, our quarterly factors include the period

between 1960Q3 and 2001Q2. In January 2001, we have GDP data until 2000Q4.

To estimate the models, we regress quarterly factors on QoQ GDP growth rates

between 1960Q3 and 2000Q4. After estimating the models, we calculate nowcasts

of GDP data for 2001Q1 and 2001Q2 using quarterly factors of 2001Q1 and

2001Q2. As a result, we obtain the first nowcast of the QoQ GDP growth rate for

2001Q2 in January 2001. The first nowcast for the reference quarter is performed

with very little information about the reference quarter, so it is expected to be one of

the worst nowcasts. Following the same procedure, the second nowcast of the QoQ

GDP growth rate for 2001Q2 is estimated in February 2001 using the vintage data

set of February 2001. The third, fourth, fifth, and sixth nowcasts are also estimated

in the same manner. Finally, when the advance/first estimate for 2001Q2 is

announced by the US Bureau of Economic Analysis (BEA) in July 2001, we can

evaluate the nowcasting accuracy of model predictions.

By using root mean square errors (RMSEs), we evaluate the accuracy of the ith
nowcasts produced by our models between 2000Q2 and 2018Q4:
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RMSEi ¼ ðð1=nÞ
X2018Q4

tq¼2000Q2

ðytq � ŷ
ðiÞ
tq Þ

2Þ1=2; i ¼ 1; 2; :::; 6; ð11Þ

where ŷ
ð1Þ
tq denotes the first nowcast, ŷ

ð2Þ
tq denotes the second nowcast, and so on. n is

the number of nowcasts. The RMSE is not always easy to interpret since it gives

disproportionally more weight to outliers, so we also use mean absolute errors

(MAEs) to evaluate the nowcasting accuracy of models. The MAE of the ith
nowcast is calculated as

MAEi ¼ ð1=nÞ
X2018Q4

tq¼2000Q2

jytq � ŷ
ðiÞ
tq j; i ¼ 1; 2; :::; 6: ð12Þ

We estimate our models using both an expanding estimation window and a rolling

estimation window. In the expanding estimation window, we increase the monthly

data set by one month in each nowcasting iteration. In the rolling estimation win-

dow, we keep the time span of our monthly data set fixed. For example, our

estimation period in January 2000 is between July 1960 and December 1999. In

February 2000, we use the estimation period between July 1960 and January 2000

for the expanding estimation window and the estimation period between August

1960 and January 2000 for the rolling estimation window.

During the nowcasting exercise, we choose optimal hyperparameters once using

the initial estimation window.8 We perform a grid search using threefold cross-

validation three times.9 For bagged decision trees, we choose hyperparameters that

minimize the RMSE according to the number of trees, B ¼ 100; 200; . . .; 1000. The
optimal number of trees is 1000. For random forests, we choose hyperparameters

that minimize the RMSE according to the number of trees and the number of

variables considered at each split, B ¼ 100; 200; . . .; 1000 and p ¼ 2; 4; 6; . . .; 18.
For random forests, the optimal numbers of trees and variables are 500 and 12,

respectively. For gradient boosting machines, we make a grid search over the

following parameters: the maximum depth of each tree, which controls the

complexity of the trees, C ¼ 1; 2; 4; 6; 8; 10; the learning rate k ¼ 2�8; 2�7; . . .; 2�1;

the number of boosting iterations, M ¼ 10� 21; 10� 22; 10� 23; . . .; 10� 28; and

the minimum number of observations in the terminal nodes of the trees,

nmin ¼ 2; 4; . . .; 20.10 The optimal parameter combination for stochastic gradient

tree boosting is C ¼ 2, k ¼ 0:03125, M ¼ 80, and nmin ¼ 2.11

8 We could also choose optimal hyperparameters in each nowcasting iteration, but this greatly increases

the computational burden.
9 We also choose hyperparameters using fivefold cross-validation and reach similar results.
10 Grid search for stochastic gradient tree boosting is a difficult process. To be sure that we conduct the

grid search correctly, we try out hundreds of different parameter combinations ex-post. Results show that

our optimal parameter combination produces one of the best results, and there are many parameter

combinations that produce similar results. Therefore, results are also robust to parameter selection.
11 We use the randomForest package in R for estimating random forest and bagged decision trees and the

gbm package in R for estimating stochastic gradient tree boosting. We also calculate permutation

importance metrics for BDT and RF using the randomForest package in Sect. 4.3. For GBM, we use our
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Tables 1 and 2 present RMSEs and MAEs of both machine learning and

benchmark models for each prediction i calculated according to Eqs. (11) and (12),

respectively. RW refers to the random walk model. 2FLM and 20FLM represent the

linear dynamic factor models presented in Eqs. (4) and (6), respectively. BDT, RF,

and GBM refer to bagged decision trees, random forests, and stochastic gradient tree

boosting, respectively.

In the first predictions for the reference quarter, 20FLM has the highest

forecasting performance in terms of RMSE. However, BDT and RF have the best

nowcasting performance in terms of MAE. These results indicate that machine

learning models are producing volatile nowcasts when there is little information

available for the reference quarter. Starting from the second predictions for the

reference quarter, all machine learning models consistently outperform competing

models. Among machine learning models, the highest nowcasting performance is

given by RF, followed in turn by BDT and GBM. The nowcasting performance of

machine learning models improves significantly as more information becomes

available for the target reference quarter.

In Tables 1 and 2, the last row presents the average RMSEs and MAEs,

respectively, of the models. The average RMSE of RF is approximately 28% lower

than those of 2FLM and RW. Furthermore, the average RMSE of RF is 5.8% lower

than those of 20FLM. BDT and GBM also have lower average RMSEs than all

competing models. In terms of MAEs, BDT and RF nowcast QoQ GDP growth rates

by nearly 0.18 percentage points better than 2FLM and 0.02 percentage points better

than 20FLM on average.

In Tables 1 and 2, we present the prediction performance of the models for the

whole period. However, it can be seen from studies in the literature that the

forecasting performance of models is usually unstable, and the ranking of models

can change over time (see, e.g., Stock and Watson 2003, 2004; Kuzin et al. 2013)

Therefore, we present the prediction performance of 2FLM, 20FLM, BDT, RF, and

GBM12 by calculating five years rolling windows of RMSEs in Figure 1 as

follows:13

RMSEt;i ¼ ðð1=nÞ
X2005Q1þt

tq¼2000Q2þt

ðytq � ŷ
ðiÞ
tq Þ

2Þ1=2; t ¼ 0; 1; 2; :::; T & i ¼ 1; 2; :::; 6:

ð13Þ

In the first predictions for the reference quarter, the RMSEs of the machine

learning models and 20FLM move very closely together until August 2008. After

prediction errors due to the great financial crisis, the RMSEs of all the models start

Footnote 11 continued

own code for calculating the out of bag permutation importance metric as it is not available in the

package. If not otherwise stated, default parameters in packages are not altered.
12 We omit RW for brevity. Results for RW are available upon request.
13 We also perform same type of calculations using MAEs as follows:

MAEt;i ¼ ð1=nÞ
P2005Q1þt

tq¼2000Q2þt jytq � ŷ
ðiÞ
tq j; t ¼ 0; 1; 2; :::;T & i ¼ 1; 2; :::; 6. However, we put these

results on Appendix 2 as they show similar results.
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to increase. In the first predictions between 2009 and 2014, 20FLM gives higher

prediction performance than the machine learning models, with RF being the

second-best model. This indicates that 20FLM produces more accurate forecasts

than other models during the financial crisis. When the crisis period is dropped from

the RMSE calculations at the end of 2014, RF and BDT perform better than 20FLM.

Furthermore in the last two years of the sample period, all of the machine learning

models outperform 20FLM. Except for a short period between 2010 and 2012,

2FLM is the worst model. In the second and third predictions for the reference

quarter, the results are very similar to those for the first predictions. The main

differences are as follows: 20FLM performs much worse than the machine learning

models until August 2008, and 2FLM is the worst model for the whole sample.

In the fourth, fifth, and sixth predictions for the reference quarter, new patterns

began to emerge. We predict the current quarter in these predictions. In the fourth

predictions for the reference quarter, RF and BDT outperform 20FLM in most of the

sample. RF even has higher nowcasting power between 2009 and 2014. Before 2008

Table 1 RMSEs of the models estimated with an expanding window for successive nowcasting horizons

between 2000Q2 and 2018Q4

RW 2FLM 20FLM BDT RF GBM

First prediction 0.626 0.667 0.506 0.535 0.510 0.538

Second prediction 0.679 0.672 0.499 0.496 0.482 0.498

Third prediction 0.699 0.654 0.493 0.476 0.465 0.487

Fourth prediction 0.507 0.600 0.463 0.430 0.423 0.444

Fifth prediction 0.517 0.533 0.405 0.375 0.361 0.399

Sixth prediction 0.538 0.457 0.367 0.337 0.334 0.358

Average 0.594 0.597 0.455 0.442 0.429 0.454

RW, random walk model; 2FLM, linear dynamic factor model using 2 factors; 20FLM, linear dynamic

factor model using 20 factors; BDT, bagged decision trees; RF, random forests; GBM stochastic gradient

tree boosting

Table 2 MAEs of the models estimated with an expanding window for successive nowcasting horizons

between 2000Q2 and 2018Q4

RW 2FLM 20FLM BDT RF GBM

First prediction 0.446 0.558 0.376 0.367 0.363 0.391

Second prediction 0.489 0.566 0.366 0.356 0.352 0.374

Third prediction 0.499 0.545 0.367 0.343 0.342 0.363

Fourth prediction 0.389 0.475 0.348 0.321 0.322 0.333

Fifth prediction 0.392 0.425 0.320 0.287 0.284 0.303

Sixth prediction 0.405 0.379 0.287 0.269 0.268 0.286

Average 0.437 0.491 0.344 0.324 0.322 0.342

For abbreviations see Table 1
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Fig. 1 Five-year rolling average RMSEs of the models estimated with an expanding window for
successive nowcasting horizons between 2005Q1 and 2018Q4. For abbreviations see Table 1
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and after 2016, all of the machine learning models are able to beat 20FLM. In the

fifth predictions for the reference quarter, BDT and RF cannot outperform 20FLM

between 2009 and 2014, but the nowcasting performance of RF is very similar to

that of 20FLM. In all other periods, the machine learning models generally beat

20FLM. In the sixth predictions for the reference quarter, RF and BDT perform

similarly to 20FLM or outperform it slightly until the end of 2014. Interestingly,

after 2014, 20FLM performs much worse than the machine learning models. In the

fourth, fifth, and sixth predictions, even though 2FLM performs pretty decently until

the financial crisis, its prediction performance deteriorates rapidly after the crisis.

In the presence of instabilities induced by structural breaks, rolling window

estimation can improve the forecasting performance of models compared to

expanding window estimation. Tables 3 and 4 present RMSEs and MAEs of both

machine learning and benchmark models estimated with a rolling window. The

results show that rolling window estimation improves the prediction performance of

both linear and machine learning models. On average, 2FLM enjoys the most

significant improvement, followed by BDT, RF, and GBM. However, the prediction

performance of 20FLM increases slightly. In Tables 3 and 4, RF has lower RMSEs

and MAEs than all of the benchmark models. As in the case of expanding window

estimation, BDT and RF outperform all other benchmark models starting from the

second predictions for the reference quarter. The average RMSEs of RF and BDT

are now 8.6% and 7.5% lower than that of 20FLM, and the average MAEs of RF

and BDT are 0.033 percentage points better than that of 20FLM. Rolling window

estimation appears to help in improving the nowcasting performance of machine

learning models significantly compared to the performance of 20FLM.

Finally by calculating 5 years rolling windows of RMSE, we present the

prediction performance of 2FLM, 20FLM, BDT, RF, and GBM estimated using a

rolling window in Fig. 2. It seems that Figs. 1 and 2 exhibit very similar results.

Table 3 RMSEs of the models estimated with a rolling window for successive nowcasting horizons

between 2000Q2 and 2018Q4

RW 2FLM 20FLM BDT RF GBM

First prediction 0.626 0.631 0.498 0.503 0.491 0.519

Second prediction 0.679 0.635 0.494 0.474 0.468 0.484

Third prediction 0.699 0.616 0.487 0.453 0.447 0.470

Fourth prediction 0.507 0.564 0.457 0.406 0.403 0.433

Fifth prediction 0.517 0.496 0.403 0.348 0.346 0.385

Sixth prediction 0.538 0.418 0.371 0.323 0.321 0.342

Average 0.594 0.560 0.452 0.418 0.413 0.439

For abbreviations see Table 1
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4.2 Tree-Based Machine Learning Models versus GDPNow

We compare our machine learning models against benchmark models and show that

our proposed models beat those models. We also want to compare our models

against a well-known nowcasting model watched by market participants to further

show that our proposed models can be of value to a user. Probably the most well-

documented and well-known nowcasting model for the US economy is Atlanta

FED’s GDPNow. GDPNow uses an indirect approach for nowcasting GDP by first

predicting its subcomponents with linear factor models and Bayesian vector

autoregression approaches and then aggregating them (Higgins 2014). Instead, we

use a direct approach for nowcasting GDP.14 As GDPNow only nowcasts the

current quarter, we can only test the fourth, fifth, and sixth predictions of our models

against GDPNow nowcasts. We obtain historical nowcasts of GDPNow between

2011Q3 and 2018Q4.15 Table 5 presents RMSEs and MAEs of both machine

learning models and GDPNow.16 Table 6 shows the total number of reference

quarters in which a machine learning model predicts actual GDP better than

GDPNow together with N, the total number of reference quarters available for the

ith prediction.17

For fourth predictions, the machine learning models outperform GDPNow in

terms of MAEs. Furthermore, BDT, RF, and GDPNow perform very similarly in

terms of RMSEs. Out of 29 quarters, RF and BDT beat GDPNow more than 50% of

the time. Overall, BDT and RF yield better performance for fourth predictions

compared to GDPNow. For fifth predictions, GDPNow outperforms machine

learning models slightly in terms of both MAE and RMSE. GDPNow predicts actual

Table 4 MAEs of the models estimated with a rolling window for successive nowcasting horizons

between 2000Q2 and 2018Q4

RW 2FLM 20FLM BDT RF GBM

First prediction 0.446 0.516 0.369 0.353 0.350 0.370

Second prediction 0.489 0.524 0.361 0.338 0.336 0.353

Third prediction 0.499 0.505 0.362 0.331 0.330 0.344

Fourth prediction 0.389 0.442 0.348 0.307 0.305 0.325

Fifth prediction 0.392 0.391 0.316 0.268 0.273 0.289

Sixth prediction 0.405 0.343 0.288 0.252 0.254 0.267

Average 0.437 0.453 0.341 0.308 0.308 0.325

For abbreviations see Table 1

14 An indirect nowcasting approach may also yield better results than a direct approach. However,

comparing indirect and direct nowcasting approaches is not within the scope of this study.
15 GDPNow has started producing nowcasts in the second half of 2011 (Higgins 2014).
16 As we have already shown that rolling window estimation yields better results, we present results only

for rolling window estimation. Results for expanding window estimation are available upon request.
17 GDPNow did not produce the fourth prediction for the period of 2012Q2. Therefore, N ¼ 29 for the

fourth predictions and N ¼ 30 for others.
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Fig. 2 5 years rolling average RMSEs of the models estimated with a rolling window for successive
nowcasting horizons between 2005Q1 and 2018Q4. For abbreviations see Table 1

123

Nowcasting US GDP Using Tree-Based Ensemble Models... 403



QoQ GDP growth rates by 0.01 percentage points better than BDT according to the

MAEs. Out of 30 quarters, GBM beats GDPNow 53% of the time, but RF and BDT

only perform better 47% and 43% of cases, respectively. For sixth predictions,

GDPNow also outperforms machine learning models in both metrics. However,

BDT and RF perform better in 54% and 52% of the reference quarters, respectively.

When we take account of all prediction horizons, according to the average MAE,

GDPNow nowcasts QoQ GDP growth rates by 0.004 percentage points better

compared to BDT and 0.008 percentage points better compared to RF. However,

BDT and RF outperform GDPNow in a greater number of reference quarters. Our

results indicate that machine learning models can be an alternative to GDPNow for

tracking the current state of the economy, especially at the start of the reference

quarter.

4.3 Importance of Variables

In this subsection, we analyze which variables have more importance in predicting

US GDP with tree-based ensemble models. We use permutation importance metrics

to calculate the importance of a variable in our tree-based ensemble models.

Permutation importance for a variable is calculated as follows

Table 5 MAEs and RMSEs of machine learning models and Atlanta FED’s GDPNow for successive

nowcasting horizons between 2011Q3 and 2018Q4

RMSE MAE

BDT RF GBM GDPNow BDT RF GBM GDPNow

Fourth prediction 0.090 0.089 0.108 0.090 0.226 0.223 0.242 0.259

Fifth prediction 0.078 0.080 0.088 0.058 0.223 0.226 0.227 0.213

Sixth prediction 0.064 0.067 0.074 0.041 0.188 0.198 0.212 0.154

Average 0.077 0.078 0.090 0.063 0.212 0.216 0.227 0.208

For abbreviations see Table 1. Note that the machine learning models are estimated using a rolling

window

Table 6 Total number of

reference quarters in which a

machine learning model predicts

actual GDP better than

GDPNow between 2011Q3 and

2018Q4

BDT RF GBM N

Fourth prediction 16 18 14 29

Fifth prediction 13 14 16 30

Sixth prediction 17 16 13 30

Total 46 48 43 89

For abbreviations see Table 1. N denotes the total number of

reference quarters available for the ith prediction. Note that the

machine learning models are estimated using a rolling window
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1. Calculate the prediction accuracy of a baseline model.

2. Re-calculate the prediction accuracy of the same model when the target variable

is permutated.

3. Finally, take the difference between two prediction accuracies calculated in

steps 1 and 2 to obtain the permutation importance of that particular variable.

4. Repeat steps 2 and 3 to calculate the permutation importance for all variables.

We use the out-of-bag sample to calculate the prediction accuracy of a baseline

model.

Figure 3 presents the average importance metric of dynamic factors for BDT, RF,

and GBM estimated using both a rolling window and an expanding window. To

calculate the average importance, we calculate permutation importance metrics for

each model in each nowcasting period and then take the simple average of

importance metrics calculated over all periods between January 2000 and December

2018. As a result, this produces an importance metric for each factor over the whole

nowcasting period.

In all cases, the most important dynamic factors are obtained from real variables.

For the output and income group, the first factor has the greatest influence on the

models among all other factors, and the influence of the second factor from this

group is mostly negligible. The first factor of the output and income group seems to

capture nearly all information related to GDP, and the second factor does not

contain any additional information. The first factor from the consumption, orders,

and inventories group and the first factor from the labor market group are the second

and third most important variables, respectively. For RF and BDT, the second

factors of these two groups also have important influences on the models compared

to factors derived from groups of financial variables. Interestingly, factors derived

from financial variables and prices are mostly unimportant. Expanding window

estimation and rolling window estimation mostly provide similar results. The most

significant difference between them is that importance of the first factor from the

output and income group is higher in expanding window estimation than in rolling

window estimation, which indicates that output and income variables become less

important in recent years.

Overall while groups of real variables constitute almost all important factors,

output and income group being the most influential among them, financial and price

variables carry very little information for our models. This seems to be an important

result which demands further investigation. Therefore, additionally we analyze

these results by calculating time-varying aggregate influence metrics of factors

derived from real variables (the output and income; the consumption, orders, and

inventories; the housing; and the labor market groups) versus factors derived from

financial and price variable groups over the whole forecasting period. Let us define

IMPrtq;i as the importance value of real factor i at time tq and IMP
fp
tq;l

as the

importance value of financial and price factors l at time tq. Then the aggregate

importance of real factors, AGGIMPrtq;i, and the aggregate importance of financial

and price factors, AGGIMP
fp
tq;l
, can be calculated as follows:
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Fig. 3 Average permutation importance values of factors covering the period between January 2000 and
December 2018. For abbreviations see Table 1

123

406 B. Soybilgen, E. Yazgan



Fig. 4 Time-varying aggregate permutation importance values of real factors and financial and price
factors between January 2000 and December 2018. For abbreviations see Table 1
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AGGIMPrtq;i ¼
XNr

i¼1

IMPrtq;i; i ¼ 1; 2; . . .;Nr; ð14Þ

AGGIMP
fp
tq;i

¼
XNfp

i¼1

IMP
fp
tq;i
; i ¼ 1; 2; . . .;Nfp; ð15Þ

where Nr and Nfp denote the number of real factors and the number of financial and

price factors, respectively.

Figure 4 presents the time-varying aggregate importance of real factors against

financial and price factors between January 2000 and December 2018. As expected,

real factors dominate financial and price factors in all models. For BDT, the

influence of financial and price factors is negative until the great financial crisis.

Only in the period after the crisis, the influence of financial and price factors

becomes positive. For BDT estimated using an expanding window, the aggregate

importance metric of financial and price factors reaches 20% and then fluctuates

around 10%. For BDT estimated using a rolling window, the aggregate importance

metric of financial and price factors steadily increases to 40%, while the influence of

real factors decreases slightly. For RF estimated using a rolling window, the

aggregate importance metric of financial and price factors increases steadily after

the great financial crisis. For RF estimated using an expanding window, the

aggregate importance of financial and price factors increases slightly after the crisis

and then fluctuates around 10%. For GBM estimated recursively, we do not see

much difference in the relative importance of variables. For GBM estimated using a

rolling window, the relative importance of real variables decreases gradually after

2010.

Overall, while the real variables appear to be dominant over the sample,

especially prior to the great financial crisis, the importance of financial variables has

significantly increased after the crisis. Apparently, ultra expansionary monetary

policy measures to stimulate the economy, implemented by the FED following the

crisis, have led the information content of financial variables become more

important in predicting real GDP.

5 Conclusion

In this study, we used bagged decision trees, random forests, and stochastic gradient

tree boosting to nowcast US GDP between January 2000 and December 2018. We

used a large-scale data set containing more than 100 financial and macroeconomic

variables. Instead of feeding this data set directly to machine learning models, we

first extracted dynamic factors from 10 groups of financial and macroeconomic

variables. Using a dynamic factor model as an intermediate step solved both the

ragged data problem of nowcasting and reduces the dimension of the data set. We

estimated our machine learning models using both a rolling window and an

expanding window. Finally, we tested which variables are more influential for tree-

based ensemble models.

123

408 B. Soybilgen, E. Yazgan



Our results show that tree-based ensemble models beat linear models most of the

time. The performance of machine learning models especially increases when more

data for the reference quarter become available. Our results also indicate that

random forests and bagged decision trees outperform linear models more

significantly after the great financial crisis. We also show that tree-based ensemble

models estimated with a rolling window have better nowcasting performance than

models estimated recursively. A comparison of the results from our machine

learning models with those from Atlanta FED’s GDPNow, which is a well-known

nowcasting model, shows that the machine learning models outperform GDPNow at

the start of the reference quarter, but GDPNow performs better than our proposed

models at the end of the reference quarter.

Finally, our results indicate that factors obtained from real variables have more

impact on the models than factors obtained from financial or price variables, but the

influence of factors extracted from financial and price variables increases after the

great financial crisis. In this regard, the importance gained by financial variables in

predicting the real GDP in the period following the crisis can be interpreted as a sign

of effectiveness of the extra loose monetary policy implemented by the Fed in

boosting economic growth. Repeating this study for the period after the recent

Covid-19 crisis may constitute useful future research to see the effect of the current

extra loose monetary policy.
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Appendix 1: Description of the Data Set

Groupa Description Transformationb Period

1 Real personal income 1 All

1 Real personal income excluding current transfer receipts 1 All

4 Real personal consumption expenditures (chain-type quantity

index)

1 2003:12–

4 Real manufacturing and trade industries sales 1 All

4 Real retail and food services sales 1 All

1 Industrial production index 1 All

1 Industrial production: Final products and nonindustrial

supplies

1 All

1 Industrial production: Final products (market group) 1 All

1 Industrial production: Consumer goods 1 All

1 Industrial Production: Durable consumer goods 1 2002:11–

1 Industrial production: Nondurable consumer goods 1 2002:11–

1 Industrial production: Business equipment 1 2002:11–
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Groupa Description Transformationb Period

1 Industrial production: Materials 1 All

1 Industrial production: Durable materials 1 2002:11–

1 Industrial production: Nondurable materials 1 2002:11–

1 Industrial production: Manufacturing (SIC) 1 All

1 Industrial Production: Residential utilities 1 2002:11–

1 Industrial production: Fuels 1 2002:11–

1 Capacity utilization: Manufacturing (SIC) 2 All

2 Civilian labor force 1 All

2 Civilian employment level 1 All

2 Civilian unemployment rate 2 All

2 Average (mean) duration of unemployment 2 All

2 Number of civilians unemployed for less than 5 Weeks 1 All

2 Number of civilians unemployed for 5–14 weeks 1 All

2 Number of civilians unemployed for 15 weeks and over 1 All

2 Number of civilians unemployed for 15–26 weeks 1 All

2 Number of civilians unemployed for 27 weeks and over 1 All

2 Initial claims 1 All

2 All employees: Total nonfarm payrolls 1 All

2 All employees: Goods-producing industries 1 All

2 All employees: Mining and logging: Mining 1 All

2 All employees: Construction 1 All

2 All employees: Manufacturing 1 All

2 All employees: Durable goods 1 All

2 All employees: Nondurable goods 1 All

2 All employees: Service-providing industries 1 All

2 All employees: Trade, transportation and utilities 1 2003:05–

2 All employees: Wholesale trade 1 All

2 All employees: Retail trade 1 All

2 All employees: Financial activities 1 All

2 All employees: Government 1 All

2 Average weekly hours of production and nonsupervisory

employees: Goods-producing

2 All

2 Average weekly overtime hours of production and

nonsupervisory employees: Manufacturing

2 All

2 Average weekly hours of production and nonsupervisory

employees: Manufacturing

2 All

3 Housing Starts: Total: new rivately owned housing units

started

1 All

3 Housing starts in Northeast census region 1 All

3 Housing starts in Midwest census region 1 All

3 Housing starts in South census region 1 All

3 Housing starts in West census region 1 All

3 New private housing units authorized by building [ermits 1 All
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Groupa Description Transformationb Period

3 New private housing units authorized by building permits in

the Northeast census region

1 All

3 New private housing units authorized by building permits in

the Midwest census region

1 All

3 New private housing units authorized by building permits in

the South census region

1 All

3 New private housing units authorized by building permits in

the West census region

1 All

4 Manufacturers’ new orders: Durable goods 1 All

4 New orders for nondefense capital goods 1 All

4 Value of manufacturers’ unfilled orders for durable goods

industries

1 All

4 Total business inventories 1 All

4 Total business: Inventories to sales ratio 2 All

5 M1 money stock 1 All

5 M2 money stock 1 All

5 Real M2 money stock 1 All

5 St. Louis adjusted monetary base 1 All

5 Total reserves of depository institutions 1 All

5 Reserves of depository institutions. nonborrowed 1 All

5 Commercial and industrial loans. all commercial banks 1 All

5 Real estate loans. all commercial banks 1 All

5 Total nonrevolving credit owned and securitized. outstanding 1 All

5 Nonrevolving consumer credit to personal income 1 All

8 S&P 500 1 All

8 S&P 500 industries 1 All

8 S&P dividend yield 1 All

8 S&P PE ratio 1 All

6 Effective federal funds rate 2 All

6 3 Month AA financial commercial paper rate 2 All

6 3 Month treasury bill: Secondary market rate 2 All

6 6 Month treasury bill: Secondary market rate 2 All

6 1 Year treasury constant maturity rate 2 All

6 5 Year treasury constant maturity rate 2 All

6 10 Year treasury constant maturity rate 2 All

6 Moody’s Seasoned Aaa Corporate Bond Yield 2 All

6 Moody’s Seasoned Baa Corporate Bond Yield 2 All

9 3 Months commercial paper minus federal funds rate 0 All

9 3 Months treasury bill minus federal funds rate 0 All

9 6 Months treasury bill minus federal funds rate 0 All

9 1 year treasury constant maturity minus federal funds rate 0 All

9 5 years treasury constant maturity minus federal funds rate 0 All

9 10 years treasury constant maturity minus federal funds rate 0 All
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Groupa Description Transformationb Period

9 Moody’s seasoned Aaa corporate bond minus federal funds

rate

0 All

9 Moody’s seasoned baa corporate bond minus federal funds rate 0 All

10 Switzerland/U.S. foreign exchange rate 1 All

10 Japan/U.S. foreign exchange rate 1 All

10 U.S./U.K. foreign exchange rate 1 All

10 Canada/U.S. foreign exchange rate 1 All

7 Producer price index by commodity for finished goods 3 –2016:01

7 Producer price Index by commodity for finished consumer

goods

3 –2016:01

7 Producer price index by commodity intermediate materials:

Supplies and components

3 –2016:01

7 Producer price index by commodity for crude materials for

further processing

3 –2016:01

7 Crude oil prices: West texas intermediate (WTI) – cushing,

Oklahoma

3 All

7 Producer price index by commodity metals and metal

products: Primary nonferrous metals

3 All

7 Consumer price index for all urban consumers: All Items 3 All

7 Consumer price index for all urban consumers: Apparel 3 All

7 Consumer price index for all urban consumers: Transportation 3 All

7 Consumer price index for all urban consumers: Medical care 3 All

7 Consumer price index for all urban consumers: Commodities 3 All

7 Consumer price index for all urban consumers: Durables 3 –2014:11

7 Consumer price index for all urban consumers: Services 3 All

7 Consumer price index for all urban consumers: All items less

food

3 All

7 Consumer price index for all urban consumers: All items less

shelter

3 All

7 Consumer price index for all urban consumers: All items less

medical care

3 All

7 Personal consumption expenditures: Chain-type price index 3 2000:07–

7 Personal consumption expenditures: Durable goods (chain-

type price index)

3 2000:07–

7 Personal consumption expenditures: Nondurable goods (chain-

type price index)

3 2000:07–

7 Personal consumption expenditures: Services (chain-type price

index)

3 2000:07–

2 Average hourly earnings of production and nonsupervisory

employees: Goods-Producing

3 All

2 Average hourly earnings of production and nonsupervisory

employees: Construction

3 All

2 Average hourly earnings of production and nonsupervisory

employees: Manufacturing

3 All

5 MZM money stock 1 All

5 1 All
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Groupa Description Transformationb Period

Consumer motor vehicle loans owned by finance companies.

outstanding

5 Total consumer loans and leases owned and securitized by

finance companies. outstanding

1 All

5 Securities in bank credit at all commercial banks 1 All

8 CBOE S&P 100 volatility index: VXO 1 Allc

7 Producer price index by commodity for finished goods 3 2016:02–

7 Producer price index by commodity for finished consumer

goods

3 2016:02-

7 Producer price index by commodity intermediate materials:

Supplies and components

3 2016:02–

7 Producer price index by commodity for crude materials for

further processing

3 2016:02–

7 Consumer price index for all urban consumers: durables 3 2014:12–

aThis column shows the group of the variable: 1, output and income; 2, labor market; 3, housing; 4,

consumption, orders, and inventories; 5, money and credit; 6, interest rate; 7, prices; 8, stock market; 9,

yield spread; 10, exchange rate. bThis column denotes the following data transformation for a series: 0,

no transformation; 1, monthly growth rate; 2, monthly differences; 3, monthly differences of the yearly

growth rate. c Except for the period between 2004:12 and 2005:07

Appendix 2: Five-Year Rolling Averages of MAEs

See Figs. 5 and 6.
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Fig. 5 Five-year rolling average MAEs of the models estimated with an expanding window for
successive nowcasting horizons between 2005Q1 and 2018Q4. For abbreviations see Table 1
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Fig. 6 Five-year rolling average MAEs of the models estimated with a rolling window for successive
nowcasting horizons between 2005Q1 and 2018Q4. For abbreviations see Table 1
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