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Abstract

In a previous paper Amman et al. (Macroecon Dyn, 2018) compare the two dominant
approaches for solving models with optimal experimentation (also called active learn-
ing), i.e. the value function and the approximation method. By using the same model
and dataset as in Beck and Wieland (J Econ Dyn Control 26:1359-1377, 2002), they
find that the approximation method produces solutions close to those generated by
the value function approach and identify some elements of the model specifications
which affect the difference between the two solutions. They conclude that differences
are small when the effects of learning are limited. However the dataset used in the
experiment describes a situation where the controller is dealing with a nonstationary
process and there is no penalty on the control. The goal of this paper is to see if their
conclusions hold in the more commonly studied case of a controller facing a stationary
process and a positive penalty on the control.
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1 Introduction

In recent years there has been a resurgent interest in economics on the subject of
optimal or strategic experimentation also referred to as active learning, see e.g. Amman
et al. (2018), Buera et al. (2011) and Savin and Blueschke (2016).! There are two
prevailing methods for solving this class of models. The first method is based on the
value function approach and the second on an approximation method. The former uses
dynamic programming for the full problem as used in studies by Prescott (1972), Taylor
(1974), Easley and Kiefer (1988), Kiefer (1989), Kiefer and Nyarko (1989), Aghion
et al. (1991) and more recently used in the work of Beck and Wieland (2002), Coenen
et al. (2005), Levin et al. (2003) and Wieland (2000a, b). A nice set of applications on
optimal experimentation, using the value function approach, can be found in Willems
(2012).

In principle, the value function approach should be the preferred method as it derives
the optimal values for the policy variables through Bellman’s (1957) dynamic pro-
gramming. Unfortunately, it suffers from the curse of dimensionality, as is shown in
Bertsekas (1976). Hence, the value function approach is only applicable to small prob-
lems with one or two policy variables. This is caused by the fact that solution space
needs to be discretized in such a fashion that it cannot be solved in feasible time. The
approximation methods as described in Cosimano (2008) and Cosimano and Gapen
(2005a,b), Kendrick (1981) and Hansen and Sargent (2007) use approaches, that are
applied in the neighborhood of the linear regulator problems.? Because of this local
nature with respect to the statistics of the model, the method is numerically far more
tractable and allows for models of larger dimension. However, the verdict is still out as
to how well it performs in terms of approximating the optimal solution derived through
the value function. By the way, the approximation method described here, should not
be mistaken for a cautious or passive learning method. Here we concentrate only on
optimal experimentation—active learning—approaches.

Both solution methods consider dynamic stochastic models in which the control
variables can be used not only to guide the system in desired directions but also to
improve the accuracy of estimates of parameters in the models. There is a trade off
in which experimentation of the policy variables early in time deviates from reaching
current goals, but leads to learning or improved parameter estimates and improved
performance of the system later in time. Ergo, the dual nature of the control. For this
reason, we concentrate in the sections below on the policy function in the initial period.
Usually most of the experimentation—active learning—is done in the beginning of
the time interval, and therefore, the largest difference between results obtained with
the two methods may be expected in this period.

! The seminal work on this subject in economics, stems from an early paper by MacRae (1972, 1975),
followed by a range of theoretical papers like Easley and Kiefer (1988), Bolton and Harris (1999), Salmon
(2001), Moscarini and Smith (2001) and applications like.

2 For consistency and clarity in the main text, we used the term approximation method instead of adaptive or
dual control. The adaptive or dual control approach in MacRae (1975), see Kendrick (1981), Amman (1996)
and Tucci (2004), uses methods that draw on earlier work in the engineering literature by Bar-Shalom and
Sivan (1969) and Tse (1973).There are differences between this approach and the approximation approaches
in Cosimano (2008) and Savin and Blueschke (2016) which we will not discuss in detail here. Through out
the paper we will use the approach in Kendrick (1981).
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Until very recently there was an invisible line dividing researchers using one approach
from those using the other. It is only in Amman et al. (2018) that the value func-
tion approach and the approximation method are used to solve the same problem
and their solutions are compared. In that paper the focus is on comparing the policy
function results reported in Beck and Wieland (2002), through the value function, to
those obtained through approximation methods. Therefore those conclusions apply to
a situation where the controller is dealing with a nonstationary process and there is
no penalty on the control. The goal of this paper is to see if they hold for the more
frequently studied case of a stationary process and a positive penalty on the control.
To do so a new value function algorithm has been written, to handle several sets of
parameters, and more general formulae for the cost-to-go function of the approxima-
tion method are used. The remainder of the paper is organized as follows. The problem
is stated in Sect. 2. Then the value function approach and the approximation approach
are described (Sects. 3 and 4, respectively). Section 5 contains the experiment results.
Finally the main conclusions are summarized (Sect. 6).

2 Problem Statement
The discrete time problem we want to investigate dates back to MacRae (1975) and it
closely resembles that used in Beck and Wieland (2002). For this reason it is going to

be referred to as MBW model throughout the paper. It is defined as follows:
Finding the control that minimize the cost functional, i.e.

o
J=min)  p'L(x, ) M
t=0
subject to the one period loss function taking the form
L(xi,up) = E—i[w(xy — x™) + Ay — u™)] 2)
and the linear system
Xe=yxi—1+ B +a+¢ 3)
with the time-varying parameter modeled as
Be = Bi—1 + (4)

where ¢, ~ N (0, 03) and n; ~ N(0, 0,72). The parameter §; is estimated using the
Kalman filter

Et—l(ﬂz) =b; (5)
by =b;1+ MtV;b_lF;_l(xt —o—biqu —yxi—1) (6)
VAR, 1(B) = v +a, ©)
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b b b 2 -—1

vy = vy — v qup B v (8)
2.b 2

F=uv, | +c )

The parameters by, vg , 0772 and 062 are assumed to be known.

3 Solving the Value Function

The above problem can be solved using dynamic programming. The corresponding
Bellman equation is

Vxi—1,u) = rrliin {L(xh uz|by, Uf)
t
o0

+p / V<xt,u,|bt,vf’)xf(xt,utwt,vf)dxt} (10)

—00

with the restrictions in (2)—(9), dropping b, and vf’ for convenience, f(x;) being the
normal distribution and p the discount factor

1 Xr — My \2
() = —— ex [— ] 1)
with mean E;_1(x;) = u, and Var;—1(x;) = 0X2, hence

V(x/-1,u;) = min {L(xt, u)
Ur

i 1 Xr — Mx\2
+p_/ V(xf,u,)mexp[—( — ) dxt]} (12)

If we use the transform

Yr = Uxﬁ (13)
hence
X = 0V 2y, + (14)
and
dx; = 6.\/2dy; (15)
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Furthermore

e = Eri[x] = a + biqus + yxi_ (16)
0 = VAR 1[x] = (o}, +oD)u} + o7 (a7

and insert them in (12) we get
o0
, o
V(xi—1,ur) = “3,1,“ {L(-xls ur) + ﬁ / V(xt, ur) x exp [ - )’tz] dy; } (18)
—00

The integral part of the right hand side of (18) can be numerically approximated on
the {y; ... y,} nodes with weights {x; ... x,} using a gauss-hermite quadrature

Vo, u) =rr;gn{L(x,,ut)+%;xw(xk,u»} (19)

Xy the value of x at the node yy
Xk = 0V 2y + [ (20)

and the necessary updating equations

b = b1 +uv? (F7 o — @ — by—quy — yxi—1) 1)
v =l v uF e (22)

We can expand L(x;, u;) in (2) as follows>

L(x;,u;) = w[a2 + utz(btz_l + vfl] + O’,?) + (yxi—1 — )% + 062
+2abi—qu; + 20 (yxi—1 — x*) + 2b;_qu (Y x;—1 — x*)]
+ A —u*)? (23)
The computational challenge is to solve (19) numerically. If we set up a grid

xg € {xM7 x4

3 Note that E,_1 (%) = b2 | +v0_| +02.
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of size my,
min max
be € (b1 ... b1}
of size mp and
pmin pmax

vge{v',_...v7 1}

of size my,
we can compute an initial guess for V0 by computing u, that minimizes L (x;, u;) in
Eq. (23) on each of the m, x mj x m, tuples {bg, vg, x¢}

V;) = argmin[L(x,, ulCE)] (24)

where the optimal value of the policy variable u,CE is equal to

opt _ w(yxi—1 —x")br—1 . wab;
' wb> +v0  +o2)+h whi | +v0 | +02)+ A
Au*

(25)

_l’_
wb?_ | + 00 +02)+ A

which is the certainty equivalence (CE) solution of the problem in equations
defined in (1)—(2). Now we have an initial value V° we can solve equation (19)
iteratively. 4

n
. . o ;
yith — ar mm{L(x,u)-i—— Xij(xk,u)} (26)
gu, > Uy N /; t
b = by +uvp  F7 (o — o — by — yx, 1) (27)
v,éJ = vf’_l — vf’_lutth_lvt_l (28)

The value of u, that minimizes the. right hand side of (26) can be obtained through
a simple line search. The value of V7 (xg, u;|by, v,l: ) in (26), can be found by finding
the corresponding spot on the grid.

4 As far as we know there are no Riccati based recursion methods to solve Eq. (26).
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Algorithm
Solving the Bellman equation

Initialization;
read parameters «, B, p, ¥y, w, A, x*, u*
. min max min max pmin pmax
setup grid {x;"7 ... x0T L DY (07 L v

compute u& £ = u? for each tuple
compute VO(M?)

while ||V/ — VIi~l|| > tol, do

compute Vi (u,J )

while [|u/ — u!/™'|| > tol, do

| line search to find u”’, argminV (u{"")

end

uopt N uj-i—l;

yitl 5 vi

end

4 Approximating the Value Function

In this section we present a short summary of the derivations found in Amman and
Tucci (2017). Following Tse and Bar-Shalom (1973) and Kendrick (1981, 2002),
for each time period, the approximate cost-to-go at different values of the control
is computed. The control yielding the minimum approximate cost is selected. This
approximate cost-to-go is decomposed into a deterministic, cautionary and probing
component. The deterministic component includes only terms which are not stochastic.
The cautionary one includes uncertainty only in the next time period and the probing
term contains uncertainty in all future time periods. Thus the probing term includes
the motivation to perturb the controls in the present time period in order to reduce
future uncertainty about parameter values.
The approximate cost-to-go in the infinite horizon BMW model looks like

Joo = (Y1 +81) ud + (Y2 + 82) uo + (Y3 + 83)

N <@) $1 (dauo + ¢3)°

29
2 ) ol +a) @

Equation (29) is identical to equation (27) in Tucci et al. (2010), but now the
parameters associated with the deterministic component, the 1’s, are defined as

1
Vi =53 (x + b%pk”)
V2 = pk™ boaxo

1
Y3 = S pk™ (eex0)? (30)
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Fig.1 Plot for bg = —0.05

where by is the estimate of the unknown parameter at time 0 and
PR = | = kCE
with kCF the fixed point solution to the usual Riccati recursion’
KCE = w + o?pkCE — (akaEbo>2</\+kaEb(2))il 31)
The parameters associated with the cautionary component, the §;, take the form
5 = %vg [ki”‘ +iPPp3 4 212’13"190}
Sy = vé’ |:l;fﬂb0 + Igfxi|otxo

1 e
8 = 5[ g1 —p) 4 u{;kfﬁa%g} (32)

5 In this case the Riccati equation is scalar function and can easily be solved. The multi-dimensional case
can be more complicated to solve. See Amman and Neudecker (1997).
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Optimal solution for b0=-0.4, v0=0
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Fig.2 Plot for by = —0.4

with

» -1
k?x = 2pki* (¢ + boG) [1 —p(a+ boG)z] G

Optimal solution for b0=-0.4, v0=0.25

Optimal control Uy

Optimal control Uy

=== Value function approach

Approximation approach | 4

0
State variable X,

Optimal solution for b0=-0.4, v0=1

=== Value function approach

Approximation approach | 4

0
State variable X,

K = k™ [143p (@ + bGP | [1 = p (a + boG)z]_z G?

_112
— (oK) {a +200G 1= p (@ + boG)?] 1}

(A] + pk{"b?))_l [1 —p(a+ boG)z]‘l

(33)

(34)
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Optimal solution for b0=-1, v0=0 Optimal solution for b0=-1, v0=0.25
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Fig.3 Plot for bg = —1.0

where®

—1
G=— (,\ + kaEbg) apkCED, (35)

Finally the parameters related to the probing component, the ¢’s, take the form

?1

[(ﬂki‘x)z (/\1 + pki‘xbé)l} [1 —p(a+ boG)z]i2

-1
¢ = {a + 2byG [1 —p(ax+ boG)z] }bo

6 This compares with I}/ISx = 2wy (¢ + bG1) Gy and
~ —1
P — 0y G + w3 (@ +2bG1)? [— (/\1 + bzwz)]

where the feedback matrix is defined as G| = (—abwz/kl + bzwz), in the two-period finite horizon
model.
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Fig.4 Plot for by = —2.0

-1
P3 = {a + 2boG [1 —p(x+ boG)z] }ozxo (36)

As shown in Amman and Tucci (2017) the new definitions are perfectly consistent
with those associated to the two-period finite horizon model.

5 Experimentation

In this section the infinite horizon control for the MBW model is computed for the
value function and approximation method when the system is assumed stationary.
Moreover an equal penalty weight is applied to deviations of the state an control from
their desired path, assumed zero here. In order to stay as close as possible to the
case discussed in Beck and Wieland (2002, p. 1367) and Amman et al. (2018) the
parametersare« = 0.7,y =0, g =1L, w=1,A =1, p = 0.95.

Figures 1, 2, 3 and 4 contain the four typical solutions of the model for by = —0.05,
by = —0.4, by = —1.0 and by = —2.0. For each value of by, four different levels
of uncertainty, as measured by the estimated parameter variance vg, are considered.
By doing so it is possible to assess the relevance of relative uncertainty on the per-
formance of the two approaches considered in this work. In this situation both the
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t-stat and control versus variance b0=-0.05, x0=1 t-stat and control versus variance b0=-0.4, x0=1
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Fig.5 Comparison control versus variance and ¢-statistics

approximation approach (solid line) and the value function approach (dotted line)
suggest a more conservative control than in the nonstationary and no penalty on the
control case. The difference between the two approaches tends to be much smaller
when the initial state is not too far from the desired path and the parameter uncer-
tainty is relatively small, whereas it is approximately the same for xo = —5 or
xo = 5 (compare Figure (1) in Amman et al. (2018) with the top right panel in
Fig. 2). 7 By comparing the different cases reported below, it is apparent that the
difference between the solutions generated by the two methods depends heavily
upon the level of relative uncertainty about the unknown parameter. For instance
in Fig. 2, top-left panel , it is shown that the two approaches generate almost iden-
tical results for the whole spectrum of possible initial states when by is estimated
with very little variance, i.e. 0.01. The situation changes, Fig. 2 remaining pan-
els, when the same parameter estimate is associated with higher variances. A small
shock from the desired initial state causes the two algorithms to give meaningfully
different solutions when the variance is 1. Therefore it turns out that in all cases,
Figs. 1, 2 and 3, relative uncertainty is very important in explaining the different
results. Moreover it turns out that the distinction between high relative uncertainty

7 The reader should keep in mind that the opposite convention is used in Amman et al. (2018).
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Fig.6 Plot for by = —0.05

and extreme uncertainty becomes relevant. For instance in Fig. 1, bottom panels, the
unknown parameter is extremely uncertain and the two approaches suggest opposite
controls.

A readily availble measure of relative uncertainty of an unknown parameter is the
usual #-statistics automatically generated by all econometrics software, i.e. the ratio of
the parameter estimate over its estimated standard deviation. By using this econometric
tool it can be stated that when there is very little or no uncertainty about the unknown
parameter as in Fig. 4, a situation where the ¢ -statistics ranges from virtual certainty
(top left panel) to 2 (bottom right panel), the two solutions are almost identical as
it should be expected. As the level of uncertainty increases, as in Figs. 2 and 3, the
difference becomes more pronounced and the approximation method is usually less
active then the value function approach. Figure 2, with the ¢ ranging from certainty
to 0.4, and 3, with ¢ going from certainty to 1, reflect the most common situations.
However when there is high uncertainty as in Fig. 1, where the ¢ goes from 5 (top left
panel) to 0.05 (bottom right panel), the approximation method shows very aggressive
solutions when the ¢ -statistics is around 0.1-0.2 and the initial state is far from its
desired path. In the extreme cases where the ¢ drops below 0.1, bottom panels of
Fig. 1, this method finds optimal to perturb the system in the ’opposite’ direction in
order to learn something about the the unknown parameter. These are cases where the
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Fig.7 Plot for by = —0.4

99 percent confidence intervals for the unknown parameter are (—2.15:2.05), when
vo = 0.49, and (—3.05:2.95), when vg = 1. Alternatively, if the initial state is close
to the desired path this method is very conservative.

On the other hand the value function approach seems somehow ’insulated’ by the
extreme uncertainty surrounding the unknown parameter. As apparent from Fig. 1 this
optimal control stays more or less constant in the presence of an extremely uncertain
parameter. The major consequence seems to be a bigger ’jump’ in the control applied
when the initial state is around the desired path. Summarizing, a very higher param-
eter uncertainty results in a more aggressive control when the initial state is in the
neighborhood of its desired path and a relatively less aggressive control when it is far
from it.

Figures 1, 2, 3 and 4 show the importance of the parameter relative uncertainty, as
measured by its ¢-statistics, in explaining the difference between the two alternative
approaches. But is there a continuous monotonous relationship? At what levels of this
t-value the differences become pronounced? Is there a threshold value under which
‘extreme uncertainty’ results appear? To answer these questions.

Figure 5 uses the same four values of by to compare the two methods at various
variances, when the initial state is xo = 1 explicitly taking into account the z-ratio. It
is apparent that there is an inverse relationship between this statistics and the discrep-
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Optimal solution for b0=-1, v0=0
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Fig.8 Plot for by = —1.0

ancy between the two approaches under consideration. Again the difference is more
noticeable when the z-statistics drops below 1. In the presence of extreme uncertainty,
i.e. when this statistics falls below 0.5, and an initial state far from the desired path
this difference not only gets larger and larger but it may be also associated with the
approaches giving opposite solutions, i.e. a positive control vs a negative control. This
is what happens in the top left panel of Fig. 5 where for very low f-statistics the value
function approach suggests a positive control whereas the approximation approach
suggests a slightly negative control.

The same qualitative results characterize a situation with a much smaller system
variance, namely ¢ = 0.01, as shown in Figs. 6, 7, 8 and 9. In this scenario controls
are less aggressive than in the previous one and, as previously seen, the approximation
approach is generally less active than the competitor. It looks like the optimal control
is insensitive to system noise when the parameter associated with it has very little
uncertainty as in the top left panel of Figs. 1 and 6. However, when the unknown
parameter has a very low z-statistics the control is significantly affected by the system
noise. Then the distinction between high and extreme uncertainty about the unknown
parameter becomes even more relevant then before. At a preliminary examination it
seems that a higher system noise has the effect of "reducing’ the perceived parameter
uncertainty. For example, the bottom right panels in Figs. 2 and 7 show the opti-
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Fig.9 Plot for bg = —2.0

mal controls when the ¢ associated with the unknown parameter is around 0.5. This
parameter uncertainty is associated with a very low system noise in the latter case.
Therefore it is perceived in its real dimension and the approximation approach sug-
gests a control in the *opposite’ direction when the initial state is far from its desired
path.

Figure 10 uses the same four values of by to compare the two methods at various
variances, when the initial state is xo = 1 and the system variance is ¢ = 0.1. As in
Fig. 10 the difference is more noticeable when the #-statistics drops below 1.

It is unclear at this stage if the distinction between high uncertainty and extreme
uncertainty is relevant also for the nonstationary case treated in Amman et al. (2018).
A hint may be given by their Fig. 8. It reports the results for the case where the
parameter estimate is 0.3 and its variance is 0.49, i.e. the z-statistics of the unknown
parameter is around 0.4. In this case the approximation approach is more active than
the value function approach when the initial state is far from the desired path, i.e. xq
greater than 3. This seems to suggest that the distinction between high and extreme
uncertainty is relevant also when the system is nonstationary and no penalty is applied
to the controls.
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Fig. 10 Comparison control versus variance and -statistics

6 Conclusions

In a previous paper Amman et al. (2018) compare the value function and the approx-
imation method in a situation where the controller is dealing with a nonstationary
process and there is no penalty on the control. They conclude that differences are
small when the effects of learning are limited. In this paper we find that similar results
hold for the more commonly studied case of a controller facing a stationary process
and a positive penalty on the control. Moreover we find that a good proxy for param-
eter uncertainty is the usual ¢ -statistics used by econometricians and that it is very
important to distinguish between high and in extreme uncertainty about the unknown
parameter. In the latter situation, i.e. ¢ close to O, when the initial state is very far
from its desired path and the parameter associated with the control is very small the
approximation method becomes very active. Eventually it even perturbs the system in
the opposite direction.

This is something that needs further investigation with other models and parameter
sets. It may be due to the fact that the computational approximation to the integral
needed in value function approach does not fully incorporate these extreme cases. Or
it may the consequence of some hidden relationships between the parameters and the
components of the cost-to-go in the approximation approach. However the behavior
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of the ’approximation control’ makes full sense. Its suggestion is ’in the presence of
extreme uncertainty don’t be very active if you are close to the desired path but "go
wild’ if you are far from it’. If this characteristics is confirmed it may represent a
useful additional tool in the hands of the control researcher to discriminate between
cases where the control can be reliably applied and cases where it cannot.
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