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Abstract

While several tests for serial correlation in financial markets have been proposed and
applied successfully in the literature, such tests provide rather limited information
to construct predictive econometric models. This manuscript addresses this gap by
providing a model-free definition of signed path dependence based on how the sign
of cumulative innovations for a given lookback horizon correlates with the future
cumulative innovations for a given forecast horizon. Such concept is then theoreti-
cally validated on well-known time series model classes and used to build a predictive
econometric model for future market returns, which is applied to empirical forecasting
by means of a profit-seeking trading strategy. The empirical experimentrevealed strong
evidence of serial correlation of unknown form in equity markets, being statistically
significant and economically significant even in the presence of trading costs. More-
over, in equity markets, given a forecast horizon of one day, the forecasting strategy
detected the strongest evidence of signed path dependence; however, even for longer
forecast horizons such as 1 week or 1 month the strategy still detected such evidence
albeit to a lesser extent. Currency markets also presented statistically significant serial
dependence across some pairs, though not economically significant under the trading
formulation presented.

Keywords Empirical asset pricing - Serial correlation - Time series momentum -
Econometric forecasting - Quantitative investment strategies

The authors gratefully acknowledge the helpful comments of two anonymous referees, the support given
to FSD by Lloyds Banking Group and the support given to GWP by ARC Grant Proposal
IDDP180100597 as a Partner Investigator. The views expressed here are solely those of the authors and do
not represent the views of Lloyds Banking Group.

B Fabio S. Dias
fabio.dias @stalwart.it

Gareth W. Peters
garethpeters78 @ gmail.com

Department of Statistical Science, University College London, London, UK

Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-019-09934-7&domain=pdf
http://orcid.org/0000-0003-3426-7531

462 F.S. Dias, G. W. Peters

Mathematics Subject Classification 62M10 - 62P20 - 91B84

1 Introduction

The arrival of new information into asset price formation has been subject of extensive
discussion. If such information is always fully reflected and incorporated into market
prices, asset returns should be largely unpredictable and in the long run driven by
compensation for taking market risk. Such a perspective on the driver for returns on
investment is most directly justified in settings in which there exists a competitive
double auction market with informed rational market participants that will not make
irrational errors on a systematic basis, and instead will exploit any known informational
inefficiency until its exhaustion. This is typically formulated in financial mathematics
pricing theory through concepts such as the Efficient Market Hypothesis (EMH), von
Neumann Morgenstern rationality and other related financial assumptions on markets
and agent behaviours as captured in, for instance, the technical discussions on such
assumptions in Chapters 9 and 14 of Platen and Heath (2006).

Initial work on the EMH focussed heavily on statistical properties of stock prices
(Fama 1963, 1965a,b), arguing that in strongly efficient markets asset prices fluctuate
in unpredictable and completely random ways. The seminal work in Fama (1970) has
subsequently provided the definition of three forms of financial market efficiency:
weak, where information contained in past prices is fully reflected in current prices;
semi-strong, where all public information available (including past prices) is fully
reflected in current prices; and strong, where all public and private information avail-
ableis fully reflected in current prices. Such school of thought has evolved considerably
and several different tests have been developed; however, it is still common practice to
focus on the serial dependence of asset price changes to test for market efficiency, with
a notable recent example seen in Urquhart and McGroarty (2016). These tests look
for violations of the weak form of financial market efficiency that, if clearly present,
could be used as evidence that the EMH does not hold in any of its forms.

Results from tests on serial depedency have been mixed. Nevertheless, the fact
that a specific test does not detect serial dependence in a given price series does not
guarantee in itself that serial dependence is not present: it is only evidence that a
particular form of dependence is not present, but there might still be another form of
serial dependence that was undetected due to test misspecification. This motivates a
continuous research on finding potential new models that can cope with such alleged
dependence and, ideally, use the detected dependence to make informed predictions
of future market behaviour.

It is a stylized fact that asset returns do not exhibit linear serial correlation (Cont
2001); however, a number of different tests have been proposed in the literature which
have detected statistically significant evidence that asset returns exhibit some form
of serial correlation which is not necessarily linear. Section 3 of Lim and Brooks
(2011) provides an extensive review of the most well-known methods. One of the
most popular tests is the variance ratio test (VR), which postulates that, under the
absence of serial correlation, the variance of the k-period return should be equal to
k times the variance of the one-period return; therefore, the ratio of such variances
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should not be statistically different from one under the null hypothesis of absence of
serial correlations. Nevertheless, this has been found not to hold across several global
equity markets (Griffin et al. 2010).

Other well-known tests aiming to reject the hypothesis of the absence of serial
correlations in financial markets include the automatic Box—Pierce test in Lim et al.
(2013), long-memory tests in Chung (1996), Hurst Exponent tests in Qian and Rasheed
(2004) and tests on the frequency domain that can be found in Lee and Hong (2001).
However, despite several tests demonstrating the presence of serial correlation in
financial markets and the potential for predictability, there aren’t many studies in
the literature developing actual predictive models and validating them in empirical
financial data.

Notably, Moskowitz et al. (2012) defines a linear regression of the return of an asset
scaled by its ex-ante volatility against the sign of its return lagged by some amount of
time and shows empirically there is strong evidence of predictability when a lagged
1-year return is used to predict the return 1 month ahead. Similar studies of this nature
can also be found in Baltas and Kosowski (2013) where the authors establish relation-
ships between univariate trend-following strategies in assets in futures markets and
commodity trading advisors in order to examine questions of capacity constraints in
trend following investing. Additionally, Corte et al. (2016) found evidence of negative
dependence in daily returns of international stock, equity index, interest rate, com-
modity and currency markets, with such negative dependence becoming even stronger
when the returns are decomposed into overnight (markets closed for trading) and intra-
day (markets open for trading). These studies though lack a stronger theoretical basis,
being instead more focussed on the empirical aspects.

This paper provides theoretical contributions to the literature by proposing in Sect. 2
anon-parametric definition of signed path dependence and demonstrating the sufficient
and necessary conditions for it to be present in covariance stationary time series.
Further, Sect. 3 proposes a formal inference procedure to detect serial correlation of
unknown form based on a hypothesis testing formulation of signed path dependence,
which is validated on experiments on synthetic data in Sect. 4. This paper provides
empirical contributions to the literature in Sect. 5 by using the test previously defined to
detect evidence of serial correlation in a number of equity index and foreign exchange
markets. Additionally, based on the test statistic proposed, a predictive model is defined
and used to feed trading strategies whose out-of-sample performance is analysed, gross
and net of transaction costs. Section 6 concludes the work. The proofs for all theorems
and lemmas given in this paper can be found in the Technical Appendix (other than for
commonly known theorems, which are just enunciated for the sake of completeness
and clarity).

It is noted that this paper uses cross-validation and bootstrap techniques to calibrate
and test the predictive model proposed. A comprehensive review of these techniques
can be seen in Kohavi (1995). Numerous studies have used similar techniques to
extract serial dependence and predict future behaviour in market prices: Qian and
Rasheed (2007), Choudhry and Garg (2008) and Huang et al. (2005) to name a few.
This paper contributes to such area of research by developing its own classifiers which
are bespoke to markets that have signed path dependence and hence will have better
classification performance than models such as Support Vector Machines, Genetic
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Algorithms for trading rules and others, given that these aim to be more generic and
hence less sensitive to peculiar market features. After all, it is expected that a test
whose null hypothesis is more specific to a particular problem in financial time series
is likely to have more power and more accurate estimation properties than a test based
on wider machine learning tools that will consequently imply a wider scope for its
equivalent null hypothesis.

This paper focuses solely on both how to detect serial correlation in a formal
statistical manner and how to model it, paving the way to build predictive models
that can be used for the purposes of general market forecasting/risk management or
even for the development of trading strategies. As such, technical discussions around
assumptions on the price discovery process which might or might not generate price
predictability are left outside of the scope of this paper. We also remark that some
studies claim that apparent trend-following profits might actually not be arising out
of positive serial correlation in returns but possibly out of intermediate horizon price
performance (Novy-Marx 2012) or exogenous factors such as the presence of informed
trading (Chena and Huainan 2012) or imbalances in liquidity and transaction costs
(Lesmonda et al. 2004). In such cases, the use of time series models will not yield
significant benefits to an investor, as claimed in Banerjee and Hung (2013). Further,
as with any time series, its behaviour can abruptly change due to exogenous reasons;
it is a common problem that can possibly reduce the usability of time series models,
even though the tuning scheme based on a rolling observation window used in the
calibration of the predictive model hereby proposed can alleviate this problem by
readapting the model to most recent data and leaving obsolete data out of the fitted
model.

2 A Definition of Signed Path Dependence and Implications to Time
Series Models

In this section we propose an extension of the concept of time series momentum intro-
duced in Moskowitz et al. (2012). In Moskowitz et al. (2012) it has been shown that for
several markets the financial return in a particular month was positively correlated with
the sign of the cumulative financial return of the previous 12 months. Empirical exper-
iments demonstrated that, when employed together with a suitable leveraging strategy
based on volatility scaling, such a phenomenom could be used to build investment
strategies that offered a risk-reward ratio superior to the one offered by conventional
equity investments. Our statistical framework is more general so that it provides a
model-free hypothesis test for the presence of significant correlation, positive or neg-
ative, between the financial return in a given forecasting horizon against the sign the
cumulative financial return over any arbitrary lookback window and use such alleged
presence to predict the sign of future market returns. We also provide a method to
detect the optimal lag to be used for forecasting and analyse our definition from the
point of view of a number of parametric econometric models.

In most of this work, we will consider a single asset whose price is observed at
different time points 7 C Z, interpreted as unit intervals of observation. We will
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denote the log-price of the asset at time t € T by p(¢), the log-return by r(¢), as usual
defined as r(t) := p(¢t) — p(t — 1).
We further define cumulative log-returns over longer time scales as follows:
(i) ron (1) = p(t) = p(t —n) = YI2g r (t — i),
the (n unit intervals) look-back cumulative log-return at time ¢.
(i) ron (1) = plt+h) = p(6) = X r (1 + 1),
the (over a horizon of % unit intervals) look-ahead cumulative log-return at time
t.

As it is common, by slight abuse of notation, we will denote by the above objects
simultaneously random variables from which they may be obtained as observa-
tions/realisations, with arguments ¢, n, h being the only quantities considered fixed
and not random. When expectations are taken, they are taken over the whole gen-
erative process. In the definitions below, we will condition on some observational
knowledge at a time point ¢; at this state, _,(¢) is constant (not random) for any n,
while 7, is arandom variable since the future price p(t+#h) is unknown. Additionally,
throughout this manuscript we shall be referring to 7 as the estimated long term mean
log-return of the asset being modelled and we shall refertos(r+1) = sgn(r (r+1) —7)
where sgn is the sign function. In the context of estimation, S(T—l—\l) e {—1, 1} is the
predicted realisation of s( + 1) given the observed realisation of the log-return time
series up until time 7.

Definition 1 generalizes the concept of time series momentum by the use of condi-
tional expectations of cumulative returns:

Definition 1 (Signed Path Dependence) We say the considered asset (or the associated
process) has signed path dependence with memory n at forecast horizon h > 0—or
simply dependence(—n,+h)—if, for all t where r_,, (t) # nE [r (¢)] it holds that

sgn (ron (1) =E[r—y O]) (E[ 740 Olr—n O] =E[ren ©O]) #0 2.1

Definition 1 intuitively says that, in a process with signed path dependence, knowl-
edge of the look-back cumulative innovation over n time intervals in the past allows us
to guess the sign of the look-ahead cumulative innovation / intervals in the future. If
the equation is positive, such sign will be the same, and if negative, the sign will be the
opposite. We intentionally look only at two cumulative innovations and only at the sign
of the future one as to keep the definition intentionally parsimonious; this will allow us
to check whether there is serial correlation without having to specify the exact quan-
titative nature of such a dependence. While being less strong for forecasting than an
explicit forecasting model, we intentionally abstain from a more parametric approach
as we first want to answer the question whether there is any form of dependence that
could be forecast instead of right away making a forecast of a specific form. However,
such definition still allows one to forecast future innovations with more accuracy than
making a random guess (by accurately forecasting their signs) and such forecasting
exercise on its own might after all be the best forecast one can make about future
innovations if they are highly dynamic and seemingly unpredictable.

Formally, we would like to point out that the definition of signed path dependence
depends on the look-back and look-ahead horizons n and 4, as well as p(¢) considered
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as a random variable. n and & are parameters of either definition, and while p(¢)
is unobserved we will see that “having serial dependence” is a property that can be
estimated from observations of p(t) via predictive strategies. Further properties and
basic observations pertaining to signed path dependence of a time series are listed in
Remark 1 below.

Remark 1 (i) The definition could also have been made as a function of prices only
at three time points, namely at times ¢, t 4+ h, and t — n.

(i) The same asset can have both positive dependence(—n,+h) and negative depen-
dence(—n’',+h") simultaneously as long as the pair (n, h) is different from the
pair (n’, h').

(iii) As the definition requires the inequality to hold for all time points ¢, it is possible
that it won’t hold across the entire process; however, one can also define a local
version of dependence where the inequality would hold only in a localised version
of the process.

(iv) The definitions make no assumption on the probability distribution of the returns
of the asset or the rate of decay of statistical dependence of two points with
increasing time interval.

(v) The definitions are independent of the time scale the estimation is done: given
three time points, it does not matter for the definition whether the observations
have finer resolution or not. This means parameters for high frequency data and
low frequency data can be estimated using the same algorithm and even the
same time series: for example, if one has a high frequency data series but sets
the forecasting horizon £ to a sufficiently large number, one will be in essence
making low frequency forecasts.

In this manuscript, we theoretically validate our definition of signed path depen-
dence by verifying the conditions for its presence in the class of linear processes that
admit a Wold representation. A key assumption in the models subsequently defined is
that the input series is covariance stationary. Such property defined as follows:

Definition 2 (Covariance Stationarity) A time series r(t) is covariance stationary if
E[r (@)r i+ p)l=C,foralli >0,i + p > 0 where C), is a constant number.

We now provide the necessary and sufficient conditions for positive or negative path
dependence in the case of covariance stationary processes. Our characterization will
build on the the explicit classification of such processes given by Wold’s representation
Theorem 1 Wold (1954).

Theorem 1 (Wold Representation Theorem) Every covariance stationary time series

r(t) can be written as the sum of two time series, one deterministic and one stochastic,
in the following form:

r(t) =Y _bje(t — j)+n(), 22)

Jj=0
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where g, is an uncorrelated innovation process, b; € R, and 1(t), is a pure predictable
time series, in the sense that P [n(t +s)|r(t — 1), r(t —2),..] = nt +s5),s >0
where P [n(t + s)|x] is the orthogonal projection of n(t + s) on x.

Remark2 All linear processes have a Wold representation. Furthermore, one may
consider this theorem as an existence theorem for any stationary process.

The following theorem gives the conditions for negative or positive path dependence
for processes admiting a Wold representation:

Theorem 2 (Signed Path Dependence in Covariance Stationary Processes) Let r (1)
be a purely non-deterministic covariance stationary process with Gaussian innova-
tions that has a Wold representation r (t) = Z?io bje (t — j) with uncorrelated

innovations such that € (t) ~ N (0, 012).
IfV(h,t) = Zf‘:] Z?ih biyj—n Uzz—i—j+h+l then the following characterization
holds:

(i) The process r (t) has positive dependence(—n, +h) if and only if V(h,t) > 0
forallt.

(i1) The process r (t) has negative dependence(—n, +h) if and only if ¥ (h,t) < 0
forallt.

All above statements are independent of n.

Remark 3 Notice that the assumption of Gaussian innovations in Theorem 2 was only
critical in the proof to ensure that the distribution of the cumulative increments was
still Gaussian. Therefore, this assumption can be relaxed to an assumption that partial
sums of the innovations of the process follow a stable law, i.e. their distribution is such
that a linear combination of variables with this distribution has the same distribution
up to location and scale parameters, and a similar derivation of the same properties
can be constructed that allows for heavy tailed and skewed innovations.

Based on the results of Theorem 2, it becomes straightforward to infer in any
covariance stationary fitted time series model whether there is positive or negative
(or none) serial dependence in the sense of Definition 1 by finding its equivalent
Wold decomposition and verifying if the fitted parameter values satisfy the derived
conditions on the characteristic polynomial of AR and MA roots.

Moreover, notice that the definition of signed path dependence concerns only devi-
ations around the process unconditional expectation—i.e. the deterministic part of the
process. Also, if the process is linear, its innovations will have the same variance. As
such, we can state the following corollary:

Corollary 1 (Signed Path Dependence in Linear Covariance Stationary Processes) Let
r (t) be a linear covariance stationary process whose innovations follow a distribu-
tion such that a linear combination of variables with this distribution has the same
distribution up to location and scale parameters. If r (t) has signed path dependence
of sign ¢ € {—1, 1} with lookback n; and horizon h for some n; > 0, then r (t) will
have signed path dependence of the same sign ¢ with lookback n and horizon h for
any integer n > Q.
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Remark 4 Also notice that if these sufficient conditions in Theorem 2 are not satisfied
forall values of n € N but only a finite subset of these, then the presence of signed path
dependence needs further refinement. In this way we comment that these conditions
are sufficient but not necessary.

To facilitate understanding, we conclude the section by enunciating two lemmas that
link the concept of Signed Path Dependence to known parametric time series models.
These lemmas demonstrate one-to-one correspondences between parameter ranges
and the presence of signed path dependence. Beyond providing theoretical evidence
and hence validation for our definition, these lemmas will allow us to generate data
with known signed path dependence by simulating a parametric process with suitable
parameter values and subsequently use in the synthetic validation experiment given
in Sect. 4. The first lemma provides sufficient and necessary results for the simplest
non-trivial case of time series models, the AR (1) processes. The lemma supresses the
constant term by assuming that the variable being modelled has been measured as
deviations from its mean.

Lemma 1 (Signed Path Dependence in a Stationary AR(1) Process of Constant Volatil-
ity) Assume that r (t) is a stationary AR(1) process given by

r)=¢-rt—10+e(@ 2.3)

with i.i.d. innovations ¢ (t) ~ N (O, 02) and |¢| < 1. Then:

(i) The process r (t) has positive path dependence if and only if ¢ > 0.
(i1) The process r (t) has negative path dependence if and only if ¢ < 0.

In particular, if ¢ = O the process has no signed path dependence, and all statements
above are independent of n and h.

And the second lemma derives conditions for Autoregressive Fractionally Inte-
grated Moving Average (ARFIMA) models. These models generalize ARMA models
by introducing long-memory features considering a non-integer differencing param-
eter. Note that the ARFIMA (=sFARIMA) models include the ARIMA models (as
ARFIMA (p, d, q) with d integer), the ARIMA models include the ARMA models (as
ARMA(p, g) = ARIMA(p, 0, ¢)), and the ARMA models include the AR models
(as AR(p) = ARMA(p, 0)), including the AR(1) of the first lemma.

Lemma 2 (Signed Path Dependence in an ARFIMA(p.d,q) Process) Assume that r (t)
is a purely non-deterministic ARFIMA (p, d, q) process with i.i.d. Gaussian innova-
tions given by ® (B) (1 — B)d r(t) = ©(B) e (1), where ® and © are polynomials of
degree p resp. q in the backshift operator B, with i.i.d. innovations & (t) ~ N (0, 02).
Let 2?0:0 bje (t — j) be the Wold representation of the ARMA process %8 (t) and
define W (h) = YI_ 352, biyj—p. It holds that:

(i) Ifd > — 0.5, the process r (t) has positive path dependence for all h € NT and
n € Nt ifand only if d¥ (h) > 0; and

(ii) Ifd > — 0.5, the process r (t) has negative path dependence for all h € N* and
n € NT ifand only if d¥ (h) < 0.
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Additionally, if p = q = 0, it holds that:

(i) The process r (t) has positive path dependence if and only if d > 0.
(ii) The process r (t) has negative path dependence if and only if —0.5 < d < 0.

Notice that ARFIMA models can demonstrate signed path dependence if they are
at least in fact in the sub-class of invertible processes and may or may not contain
long memory. In the case of reversal properties of an ARFIMA model we learn that
invertible models are also of interest and again these sub-class of models may or may
not contain long memory properties. Most interestingly, we see that in the special case
of only fractional differencing of the process, i.e. no AR and no MA components of
the process, we can only have positive path dependence in the ARFIMA process if the
process is invertible and it may or may not be stationary or contain long memory. In
the case of the ARFIMA model with no AR and no MA components of the process,
then negative dependence can only occur in sub-processes which have the properties
that they dont have long memory, furthermore, they must be invertible and stationary.

3 Statistical Inference Under Signed Path Dependence

The models in the previous section assumed some structure for the serial correlation
present in the series. We now derive a non-parametric hypothesis test for signed path
dependence under certain regularity conditions. Such regularity conditions are listed
in Assumption 1. The test proposed assumes these conditions to hold over the entire
series, but one can allow for a localised version of the test by segmenting the series
being tested and testing each segment. The inference procedure proposed aims to test
the following assumption (the single sided version of the test would swap the inequality
sign for a greater than or less than sign depending on whether positive or negative path
dependence is being tested):

HO (Absence of Linear Correlations between Signs and Returns) given n, for all
k < n the sign of the sum of the previous k observations has no linear correlation with
the observation 1-step ahead, i.e. E [sgn (r—¢ (1)) r (t + 1)] = 0 forall k < n.

H1 (Presence of some Linear Correlation between Signs and Returns) r (¢) are
associated such that [E [sgn (r—xg ) r(t+ 1)] # 0 for some value of k < n.

Before formally stating the not too restrictive classical regularity conditions, a
definition is needed:

Definition 3 (Lindeberg Condition) A time series r(t) is said to satisfy the Lindeberg
condition if for all € > 0 the following holds:

1 n 1 n
Lty / df = limpasos Y E [(r ()2 T(r ()| > ev/n}] = 0
Z |x|>e/n n ; [ ]

n i=1
@3.1)

where f; is the density function of (i) and I is the indicator function.
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The intuition behind the Lindeberg condition is that, in the series being tested, the
individual contribution of any observation to the sum of the variances of all obervations
should be arbitrarily small for a sufficiently large series.

As such, the regularity conditions are given by the following assumption:

Assumption 1 The time series being tested r(¢) is comprised of deviations from the
long-term mean of a stochastic process with a well-defined mean, hence having zero
mean by definition, is covariance stationary in the sense of Definition 2, satisfies the
Lindeberg condition and weighted partial sums of the process are assumed to follow
asymptotically a Gaussian law.

The assumption that the Lindeberg condition is satisfied is very general and few
processes of interest will fail to satisfy this condition so it is not overly restrictive in
any sense. Also notice that, as the series being tested is assumed covariance stationary
in the sense of Definition 2, Theorem 2 will guarantee that if this series has positive or
negative path dependence for a given forecast horizon £, it will have the same property
(i.e. it will be always positive or always negative) for all values of the memory n, and
at all time points ¢. So, one can fix the forecast horizon 7 = 1 and test for signed path
dependence at that forecast horizon by aggregating the time series over ¢ (for example,
testing with daily data if the forecast horizon & equals to one day, testing with weekly
data if it equals to 1 week, and so on so forth).

Before proposing our test statistic, we will state a result that will base the derivation
of the asymptotic distribution of our test statistic under the null hypothesis for the class
of processes which are covariance stationary. For proof, see H Diananda (1954).

Theorem 3 (Central Limit Theorem for Covariance Stationary m-Dependent Vari-
ables) Let R =r(1),r (2),...,r (n) be random variables of zero mean and finite
variances such that r (t) is uncorrelated with r (t + 1) for all i > m, m fixed. If
the variables are covariance stationary and satisfy the Lindeberg condition then, as

nﬁoqZ%%QgAﬂQDwMozzEN%mq+22£dEUmrU+M}

As such, the asymptotic distribution of our test statistic is given by the following
theorem:

Theorem 4 (Critical Rejection Value of the Test Statistic) Given an arbitrary positive

iy sgn (i r =
value of n, define d (t) = r(t)w(t) where w(t) = ] <nk ! ) and let d =
ﬁ Z‘;:n 114 (j). Let r(t) be a time series that satisfies Assumption 1 and define
a random vector R := (r (1),r (2),...,r (s)) where s is a given constant. When

s — 00, under the null hypothesis of Absence of Linear Correlations between Signs
and Returns the test statistic H (R) 3 N (0, 1) with

d

[2i=n V(@)
s—n

H(R) = (3.2)
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where

~ 1 = — _
ym=—0 ) (@) -d)(dG-Ith—d) (33)

J=ltl+1

Therefore, for a given significance threshold o, the null hypothesis will be rejected as
true if |H| > ¢! (1 — %) where &~ (x) is the inverse standard normal cumulative
distribution function of x.

Remark 5 There are situations where one would be interested only to test for a specific
sign of the signed path dependence. For example, if the aim is to test the suitability
of trend-following strategies, one would be interested to test only for positive signed
dependence. Equally, if the aim is to test the presence of mean reversion in a particular
series, one would be interested to test only for negative signed dependence. These
situations can be accommodated by making the test proposed in Theorem 4 one-sided
and rejecting the null hypothesis if H > ®~! (1 — «) for a positive sign dependence
test or if H < ®~! () for a negative sign dependence test.

Remark 6 The test statistic defined in Eq. 3.2 can also be interpreted as a correlation
coefficient if normalised by the sum of all absolute returns one-step ahead instead
2 jnt140)
i Sueh
coefficient will be bounded between — 1 and 1, with its sign indicating the sign of
the path dependence being estimated and its absolute value indicating the strength of
such dependency. Sect. 5 calculates this coefficient for a number of financial assets
and forecast horizons and compares it against the Pearson correlation of the future
return against the average return over the previous n days. We chose comparing our
measure against the Pearson correlation to provide a meaningful comparison between
signed path dependence and classical dependence in correlation metrics. The results
show that this coefficient was able to detect a significantly positive serial correlation
in situations where its Pearson counterpart was not significantly different than zero.

of normalised by the sample variance, i.e. if calculated as p =

Remark 7 Theorem 4 can be easily extended with relaxation of the Lindeburg condition
to admit covariation stationary processes which admit an analogous «-stable limit
theorem result, interested readers are referred to derivations of such results in Peters
and Shevchenko (2015).

As the test given by Theorem 4 relies on the asymptotic distribution of the test
statistic under the null hypothesis, one might want to investigate how large the sample
should be to obtain convergence. In this subsection, an alternative test is proposed that
has the same asymptotic distribution for the test statistic under the null hypothesis.
This way, one can run both tests under the same simulation experimental conditions
whilst increasing the sample size of the simulated data to assess the power of the test,
also obtaining an indication of the speed of convergence of the asymptotic test given
by Theorem 4. Such test is described in Algorithm 1. The test relies on an empirical
percentile bootstrap to get a confidence interval for the test statistic under the null
hypothesis of no signed path dependence and can therefore be used to check whether
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the value of test statistic calculated in the given sample is outside of this confidence
interval, rejecting the null if this is the case.

The bootstrap test proposed is adequate to check for convergence of the asymptotic
test statistic given by Theorem 4 because of the result given by Lemma 3:

Lemma 3 (Convergence of the Bootstrap Test Statistic Distribution under the Null
Assumption) Let h be the 1 — 5 empirical percentile of the bootstrap test statistic used
to reject the null hypothesis of the test procedure given by Algorithm 1 at szgmﬁcance
threshold «. For large samples (s — 00), h — &~ (l — —), where ®7 is the
inverse CDF of a standard normal distribution. Therefore, for large samples, the
critical rejection value of the bootstrap test statistic given by Algorithm 1 converges
to the critical rejection value of the test given by Theorem 4.

It is worth noting that the rejection of the null hypothesis of the test given by
Theorem 4 also implies that one can build a predictive model for the sign of return
one step ahead based on the sign of the cumulative returns observed on the previous
n steps. This is further explored in Sect. 5. The section compares the performance of
a predictive model based on signed path dependence to make buy and sell decisions
against the performance of an investment strategy known as Buy and Hold, which in
essence is always buying and hence always estimating s(T—i—\l) = 1. Theorem 5 gives
the mathematical construction of the predictive model to be studied.

Algorithm 1 Bootstrap procedure to test for signed path dependence

Input: R=(r(1),r(2),..., r (z)) a sample of length z of observed log-returns, a significance threshold
o and a number of simulations W

Output: TRUE if the null hypothesis of no signed path dependence is rejected with Type I error probability
o and FALSE otherwise

1: Generate matrix U € [0, l]W X% with each Uy, ; drawn i.i.d. according to a discrete uniform distribution
onthe set {1,2,...,z}

2: Generate W random series r{”(t) of length s such that rl", ) :=r(Up,:)

: Construct an array B of length W so that B(1 <w < W) =H (r ) where H ( ) is the test statistic

given by Equation (3.2) calculated over series r,,

: Construct Fg the empirical cdf of B

: Evaluateﬁ; ~—inf{x eR: IT"E x)>1-— 7}

Return TRUE if |H (R) | > ﬁ; or FALSE otherwise

(98]

g‘\LII-Jk

Theorem 5 (Mathematical Construction of the Predictive Model) Obtain s (/t+\1) by
performing the following steps:
1. Given a log-return sample r (1) ,r (2),...,r (t) estimate the sample mean as
F=3t_ )/t
2. Apply the test given by Theorem 4 to the given sample to detect if there is path
dependence of any sign and let { € {—1, 1} be the sign of the path dependence
detected.
3. If ¢ = —1 choose an appropriate value of n such that E [sgn (r—p (t) — nr)
rit+1)—7r] <0 andsets(?—i—\l) = —sgn (r—, (t) — nr)
4. Otherwise choose an appropriate value of n such that E [sgn (r—n (t) — nr)
rit+1)—7r]>0 andsets(T-—i—\l) =sgn (r—, (t) — nr)
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Also define the prediction loss of a predictive strategy as L = —s(T-—i—\l)r t+1).
Note that the prediction loss of a Buy and Hold strategy is trivially given by Lpgy =

—r (t 4+ 1). For the aforementioned strategy we have that E [Lm] < E[Lp&ulif
the null hypothesis of the test given by Theorem 4 is not true for the demeaned returns

r()—r,r2Q)—r,...,r(t)—r.

We conclude the section by describing a predictive algorithm that attempts to fore-
cast the sign of future asset returns using the method described in Theorem 5. Notice
that the method given by Theorem 5 dynamically decides whether the prediction should
be made expecting a continuation of sign (¢ = 1) or reversal of sign (¢ = —1). Given
that the particular case of trading strategies that only assume continuation in sign
(trend-following) receives special attention in Finance, see CSzakmary et al. (2010).
Our algorithm will cater for both cases (only continuation assumed or dynamic deci-
sion between continuation and reversals). To achieve that, we define two different
predictors in Definitions 4 and 5:

Definition 4 (Moving Average (MA) Classifier) An MA(n, 7) predictor receives a log-
return sample » = (v (1), ..., r (n)) and predicts that s (n + 1) = sgn (r—, (n) — 7).

Definition 5 (Dynamic Moving Average (DMA) Classifier) A DMA(n, 7, E) predictor
receives a log-return sample » = (r (1), ...,r (n)) and predicts that s (n + 1) =
¢ xsgn(r—, (n) —7r) where ¢ € {—1, 1}.

In order to apply these methods for prediction, parameters n, ¥ and ¢ have to
be estimated. Naturally, 7 can be estimated as the sample mean log-return. The
remaining parameters can be estimated by weighted least squares of an adequately
defined error function. A simple suitable error weighted function can be given as
e(t) =r() (s/(t\)— s (t)). Also, it is clear from Theorem 5 that predictions made
by the aforementioned predictors will not be useful in a process that has no signed
path dependence. Therefore, before attempting to apply any of these methods, the test
defined in Theorem 4 is applied to the return series used to fit the model to ascertain
the presence of signed path dependence, given that in the absence of this property no
prediction should be attempted. This yields Algorithm .
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Algorithm 2 Simplified predictive method based on signed path dependence

Input: R =(r (1),r (2),...,r (z)) asample of length z of observed log-returns in chronological order, a
significance threshold « and a test lookback horizon n’

Output: 0 if no prediction was made for s (z + 1), s (?_—',-\1) otherwise

Ct d -1
Lif | —f——| > (1—%) then
Zr:—n’ Y@
S*)‘l/
2: Compute 7 « % Z?:] r (i)
3: Compute 7, gc < argmin f:n_H (r@) (& xsgn(r—p, (i —1)—=7r)—sgn(r @) — ﬂ))2

neNtm<<z

ce{-1L1}
4: Return E x sgn (r—, (z) —7)
5: else
6: Return 0
7: end if

Remark 8 Algorithm 2 implements the DMA predictor, but it can be easily modified
to implement the MA predictor by fixing ¢ = 1 and performing a single sided test in
Step 1.

As with any statistical model, there are multiple ways to estimate its parameters and
weighted least squares is just one simplified possibility. The empirical tests presented
in Sect. 5 have been performed using a more sophisticated machine learning algorithm,
whose detailed description is outside of the scope of the main text of this manuscript. A
description of the machine learning algorithm in the form of commented pseudocode
is available in the Technical Appendix and the R implementation of the machine
learning algorithm used in the empirical experiments of this manuscript is available
in the Supplementary Material.

While the use of such machine learning method is not required to establish the
main results in the paper, we have chosen it for our empirical application because
the use of Train and Test sets reduces potential overfitting that could come out of a
simple weighted least squares procedure, and the use of a rolling model tuning stage
produces better estimates of how accurately the predictive model will perform in a
practical scenario where the model gets updated as new data arrives with the passage
of time.

4 Validation by Simulation

In this section we validate by simulation the properties of the test given in Sect. 3
by simulating synthetic time series where parameters are chosen so that positive or
negative signed path dependence is guaranteed in the simulated series. As part of
the validation exercise, the test defined in Sect. 3 is applied to a number of different
synthetic series and used to detect the simulated dependence. Such results can be used
to infer the robustness of the test statistic against the following factors:

1. Different assumptions in the functional form of the input time series;

@ Springer



A Non-parametric Test and Predictive Model for Signed Path... 475

2. Strength of the dependence present in the input time series, including the effect
of long-range dependence;

3. Time varying variance in the input time series when the required assumption of
covariance stationarity is met; and

4. Time varying variance in the input time series when the required assumption of
covariance stationarity is not met.

Robustness against the aforementioned factors in a controlled environment can give
assurances for the suitability of the test in empirical applications, where the actual
functional form of the input time series is not known and the required assumption of
covariance stationarity might not necessarily be met. Moreover, comparing different
levels of Type I and Type II error probabilities across all validation scenarios can give
useful insights on which properties have higher impact on the accuracy of the test and
any potential biases.

We start our synthetic examples by the simplest case of the AR(1) models. As per
Lemma 1, we know that the sign of the dependence for an AR(1) process depends
entirely on the sign of the parameter ¢, and all series 7 (i) have positive path depen-
dence when ¢; > 0 while all other series will not have so. As such, the first synthetic
validation experiment performed by us is given by the steps below:

Experiment 1 Perform the following steps to illustrate Lemma 1:

1. Generate P = 1000 AR(1) series of length z = 1000 so that r; (i) =
(pjrj(i—l)+8j(i) with rj(l) = 8j(1), 0 <i <2z20< j < P,

0 = 4(# . %) and £; (i) ~ N (0, 1)
2. Fix the significance threshold o and apply the single sided version of the asymp-

totic test to detect positive path dependence as per Remark 5 to all the P series.
3. Use the known presence of positive dependence to calculate the type I and type 11

error probabilities respectively by counting how many of the series where j < g
had the null hypothesis rejected and how many of the series where j > % had
the test failing to reject the null hypothesis.

4. Perform Steps 2 and 3 using the bootstrap test defined in Algorithm 1 to detect
positive path dependence (as a control case).

5. Repeat the procedure for different values of a.

Figure 1 shows the behaviour of type I and type II errors for the bootstrap and
asymptotic tests as a function of the significance threshold for the procedure given
by Experiment 1. As expected by Lemma 3, the two tests converged and the type I
error probability of the asymptotic test was not statistically different than the one of
the bootstrap test. Both tests had their type I error probabilities below the identity line
suggesting that the test is being conservative, though not statistically incorrect. The
type II error probabilities of both tests are also not statistically different than each
other and always lower than 50%, suggesting that even though the test is conservative,
for the AR(1) series constructed it will fail to reject the null when the alternative
hypothesis truly holds only in the minority of the cases.

The theoretical model has also been validated by simulating an ARFIMA(0,d,0)
series. Lemma 2 gives the condition under the forecast horizon 7 = 1 where the sign
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Fig. 1 Performance of the tests in the simulated AR(1) series. The solid lines represent the simulated
error probabilities and the dashed lines represent a 95% confidence margin of the error probability of each
test, obtained via a Poisson approximation for the count of false acceptances/rejections. The chart on the
left shows the simulated type I error probabilities of the asymptotic and bootstrap statistics as functions
of the significance threshold when these tests are applied to the generated series. The black straight line
corresponds to the identity line, where the test type I error is exactly equal to the desired significance
threshold. The chart on the right shows the simulated type II error probabilities of the two tests as functions
of the significance threshold with the dashed lines being the 95% confidence margin

of the path dependence for this model class is known for the whole series: the sign
of the parameter d. To keep the simulation procedure simple, we have reused the
procedure given by Experiment 1 and in Step 1 we constructed the series based on a
single parameter —0.1 < d < 0.1, with the only modification being that the series
generated in Step 1 are ARFIMA(0,¢,0) series (instead of AR(1)).

Figure 2 shows the behaviour of type I and type Il errors for the bootstrap and asymp-
totic tests as function of the significance threshold for the simulated ARFIMA(0,d,0)
series. The type I error probability of the asymptotic test is not statistically different
than the one of the bootstrap test; however, both tests have their type I error proba-
bilities well below the identity line suggesting that the test is being very conservative,
though not statistically incorrect. The type II error probabilities of both tests are also
not statistically different than each other and always lower than 25%, suggesting that
even though the test is conservative, in the large majority of the cases it will not fail to
reject the null when the alternative hypothesis truly holds. The synthetic experiment
for the ARFIMA(0,d,0) model yielded conclusions similar to the ones obtained for
the AR(1) model, with the difference being that both tests were considerably more
powerful. This suggests the long-memory feature of the ARFIMA model introduces a
stronger signed path dependence to the modelled time series than the one introduced
by an AR(1).

Finally, to ascertain some boundary conditions for the applicability of our tests,
we have created a synthetic MA(n) series and analysed the behaviour of the test by
modifying it so that it has a) a very weak correlation structure; b) a non-constant
volatility that follows a stationary GARCH process; or ¢) a non-constant and non-
stationary volatility that is driven by a two-state Markov-switching process.
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Fig. 2 Performance of the tests in the simulated ARFIMA(0,d,0) series. Lines have the same meaning as
in Fig. 1
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Fig.3 Performance of the tests in the baseline simulated MA(S) series. Lines have the same meaning as in
Fig. 1

To build the baseline MA(n) series we note that, as per Theorem 2, when the forecast
horizon 2 = 1 we have that the sign of the sum of the MA coefficients will determine
the sign of the path dependence of the model. We again have reused the procedure
given by Experiment 1 but in Step 1 we generated MA(5) series based on a single
parameter —0.1 < ¢ < 0.1 so that the coefficients of all 5 lags were equal to %(ﬁ.
The synthetic experiment for the MA(5) model yielded conclusions similar to the ones
obtained for the AR(1) model, with the difference being that the test was slightly less
powerful. Figure 3 shows the behaviour of type I and type II errors for the bootstrap
and asymptotic tests as function of the significance threshold for the simulated MA(5)
series. Like in the AR(1) case the tests converged, with both the type I and type II
error probabilities of these tests not being statistically different amongst themselves.
Additionally, the type II error probabilities of both tests was still lower than 50% when
the significance threshold was 0.05 or higher.
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Fig.4 Performance of the tests in the stressed MA(S). Lines have the same meaning as in Fig. 1

After generating the baseline case, we created a stressed MA(5) simulation where
series length is reduced considerably and the correlation structure is weakened. In this
stressed MA(S) simulation, the procedure given by Experiment 1 was reused but in
Step 1 we generated MA(S) series based on a single parameter —0.1 < ¢ < 0.1 so
that the coefficients of lags 1, 3 and 5 were equal to ¢ and the coefficients of lags 2
and 4 were equal to —¢. In this situation, the average sum of all MA coefficients when
the alternative hypothesis holds was still positive, equal to 0.05, though the alternat-
ing signs of the lags weaken the overall positive dependence. Further, the procedure
generated series of shorter length z = 100. Figure 4 shows the behaviour of type I
and type II errors for the bootstrap and asymptotic tests as function of the significance
threshold for the stressed MA(S) series. The type I error probability of the asymptotic
test is always greater than the one of the bootstrap test for a given significance thresh-
old; when the significance threshold is lower than 0.05 it is also above the identity
line and for a significance threshold lower than 0.015 the identity line falls below
the 95% confidence interval of the error probability for the asymptotic test though
stays very close to its lower boundary. At the same time, the type II error probability
of the asymptotic test is always lower than the one of the bootstrap test for a given
significance threshold, though it is always higher than 90%, suggesting the test will
conservatively fail to reject the null in many genuine cases that the alternative hypoth-
esis truly holds. Of course, the reduced power is a consequence of the intentionally
weak correlation structure imposed.

Despite being subject to series of very weak correlation structure, the asymptotic test
still behaved reasonably, with adequate conservatism for all but very low significance
thresholds (¢ < 0.02, when the lower 95% confidence bound goes above the identity
line. The bootstrap test remained adequate even for this low significance threshold,
though at the cost of an even reduced power.

All simulations so far assumed constant volatility. In empirical applications, volatil-
ity is known vary over time and to exhibit serial dependence (Cont 2001). To verify the
effect of a non-constant volatility, we have changed the baseline MA(5) case so that the
error variance follows a GARCH(1,1) process with coefficients « = 1 (the constant
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Fig.5 Performance of the tests in the MA(5)-GARCH(1,1) series. Lines have the same meaning as in Fig. 1

term), B = 0.89 (the term that multiplies the lagged squared error) and y = 0.1 (the
term that multiplies the lagged variance). The choice of GARCH parameters ensured
the series was still unconditionally covariance stationary. All other parameters of the
baseline MA(5) model remained unchanged.

We note that, while the power of the test reduced slightly compared to the baseline
case, comparing Figs. 4 and 5 one can see that the impact of a GARCH volatility in
the power of the test was smaller than the impact of reduced correlation structure.
The test remained very adequate even in the presence of GARCH volatility and Type
I errors stayed either within or under the identity line for all significance thresholds,
indicating adequate conservatism.

Finally, to ascertain a boundary scenario where the main assumption of covariance
stationarity is not strictly satisfied, we have changed the baseline MA(5) case so
that the error variance follows a Markov Switching between two equally probably
GARCH(1,1) states. Such framework is widely popular in financial market research
and is accepted to be a relevant deviation from time series models that has been
extensively observed in empirical applications. In one of the states, the error variance
follows a GARCH(1,1) process with coefficients¢ = 1, 8 = 0.89 and y = 0.1 and in
the other state the error variance follows a GARCH(1,1) process coefficients o = 3,
B = 0.95and y = 0.049. All other parameters of the baseline MA(5) model remained
unchanged.

We again note that, while the power of the test reduced slightly compared to the
baseline case, comparing Figs. 4 and 6 one can see that the impact of a GARCH
volatility in the power of the test was smaller than the impact of reduced correlation
structure. The test remained very adequate even in the presence of Regime Switching
GARCH volatility and Type I errors stayed either within or under the identity line for
all significance thresholds, indicating adequate conservatism.
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Fig. 6 Performance of the tests in the MA(5)-RSGARCH(1,1) series. Lines have the same meaning as in
Fig. 1

5 Empirical Applications

This section applies to real financial data the test given by Theorem 4 and validates
the performance of trading strategies created based on Theorem 5. The dataset used
comprised of the time series of the prices for the MSCI Equity Total Return Indices (in
US Dollar, price returns plus dividend returns net of withholding taxes) for 21 different
countries and the nominal exchange rates of 16 different currencies, all of them traded
against the US Dollar. Table 1 lists the equity indices and currencies studied.

For all the 37 financial instruments the daily log-returns (defined as the logarithm
of the closing price at the end of day d+ 1 divided by the closing price at the end
of day d) were obtained based on the price series from 31-Dec-1998 to 31-May-
2017, yielding 4803 observations per instrument (and 177,711 observations in total).
To conduct further analyses at different levels of observational noise, several other
sampling frequencies were studied. The same log-returns were aggregated to weekly
log-returns (defined as the logarithm of the closing price at the end of the Friday of
week w+ 1 divided by the closing price at the end of the Friday of week w), yielding
961 observations per instrument (and 35,557 observations in total); the returns were
also aggregated to monthly log-returns (defined as the logarithm of the closing price
at the end of the last business day of month m+ 1 divided by the closing price at the
end of the last business day of month m), yielding 221 observations per instrument
(and 8177 observations in total). Each of the MSCI Index studied currently has at least
one tradable Futures contract linked to it and many of them have also shortable ETFs
linked to them, which means the any predictive model resulting out of the experiments
performed in this paper can also be used to guide real equity investment strategies.

In the case of exchange rates, to accurately reflect the total returns of the investment
strategies proposed, the results of the experiment include the financial returns arising
out of the interest rate differential between the issuing country and the US (also known
as the “rollover interest”) for each open position and also include the interest paid on
the cash deposit held as margin for the currency trade.
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Table 1 Different correlation metrics for equity indices in the first half of the sample

Country Daily Weekly Monthly

Rho Pearson Rho Pearson Rho Pearson
Australia 0.0193 —0.0248 0.0067 —0.0108 —0.0303 —0.0747
Brazil 0.0851%#%%* 0.0218 0.0292 0.0072 0.1305%* —0.0567
Canada 0.0210 —0.0185 —0.0213 0.0120 0.1414%%* 0.1321*
Chile 0.1642%%* 0.0978%** 0.1012%%* 0.0449 0.1274 0.1054
China 0.08717%%* 0.0316%* 0.0916%* 0.0560 0.1914%**%  0.0459
Colombia 0.2021%%* 0.0972%%** 0.2152%*%*  (.130]*** 0.0590 —0.0083
Czech 0.0557%#%*%* 0.0051 0.0989%**  0.0469 0.0447 —0.0353
France —0.0327** —0.0710%**  —0.0271 —0.0278 0.1684***  0.0308
Greece 0.0809%%*%* —0.0129 0.0445 0.0261 0.2160***  0.0845
Hongkong 0.0418%** —0.0045 0.0773%* 0.0326 0.1407* 0.0200
Hungary 0.067 1#%* 0.0250 0.0699%#%* 0.0262 0.0303 —0.0038
India 0.1186%** 0.05407%** 0.1379%*%%  0.0750* 0.1145%* 0.0011
Japan —0.0177 —0.0271* —0.0190 —0.0211 0.2458%*%  (.2195%*
Mexico 0.0669%%** —0.0045 0.0079 —0.0164 0.0253 —0.1339*
New Zealand  —0.0118 —0.0358%** 0.0437 —0.0388 —0.0086 0.0376
Russia 0.0661%** —0.0003 0.0537%%* —0.0162 —0.0572%  —0.0973
Singapore 0.0628%%** 0.0276* 0.0774* 0.0497 0.2127#%* 0.0586
South Africa  0.0334%*%* 0.0004 0.0266 0.0171 —0.0114 —0.1463*
Taiwan 0.0546%** 0.0255 0.0123 0.0038 0.08527#: 0.0143
UK —0.0450%**%  —0.1026%**  —0.0249 —0.0532 0.1575%:* 0.0848
USA —0.0405%**%  —0.0668***  —0.0456 —0.0959**%  0.0603* 0.0377

*Significantly different than zero at 10% p value
**Significantly different than zero at 5% p value
##%Significantly different than zero at 1% p value

Before testing any trading strategies, the first half of the sample described in the
second paragraph of this section (corresponding to observations from 31-Dec-1999
to 31-Mar-2008) was used to calculate the test statistic defined in Equation 3.2 and
detect the presence of significant serial dependence in individual assets. Tables 1 and 2
show the values of the serial correlation coefficient calculated as Remark 6 for forecast
horizons of one day, 1 week and 1 month (n = 5 in all cases).

The statistical significances in the tables were obtained using the test procedure
described in Theorem 4. For control, the tables also display the Pearson correlation
coefficient between the average return of the n previous periods and the 1-step ahead
return. The significances of the Pearson correlation were estimated using a Fisher
transform and its limiting Gaussian approximation. The rationale for applying the test
only on the first half of the sample is to ensure there is no fitting bias in the trading
model, whose performance is evaluated using the second half of the sample and whose
equities and currencies traded are selected based on the test results.
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Table 2 Different correlation metrics for currencies in the first half of the sample

Country Daily Weekly Monthly
Rho Pearson Rho Pearson Rho Pearson

AUDUSD 0.0107 —0.0125 0.0347 —0.0042 0.0108 —0.0086
BRLUSD 0.0791%#%** 0.0539%#%%* 0.1283%#%%* 0.0866%* 0.2025%* 0.1113
CADUSD —0.0291* —0.0319* 0.0041 0.0280 0.0252 0.0033
CHFUSD —0.0279* —0.0156 0.0123 0.0024 —0.0169 —0.0516
CZKUSD 0.0116 0.0152 0.0407 0.0391 0.0409 —0.0537
EURUSD —0.0112 0.0015 0.0312 0.0502 0.13937#* —0.0149
GBPUSD —0.0193 —0.0033 0.0121 —0.0375 —0.0559* —0.0052
HUFUSD —0.0196 —0.0299* —0.0239 —0.0012 0.0046 —0.0210
INRUSD —0.0651* —0.0657##* 0.2311%#%* 0.1995%%*%* 0.2657%#%*%* 0.0942
JPYUSD —0.0107 —0.0271* —0.0247 —0.0245 0.0504 0.0075
MXNUSD —0.0077 —0.0392%%* 0.0531 —0.0274 —0.0674 —0.1037
NOKUSD 0.0077 —0.0055 —0.0049 —0.0025 0.0069 —0.0667
NZDUSD 0.0043 —0.0199 0.0142 0.0046 0.1042 —0.0051
PLNUSD 0.0576%%#%* 0.0275%* 0.0292 0.0357 —0.0802 —0.0653
SEKUSD —0.0011 —0.0165 0.0330 0.0355 0.0411 0.0272
ZARUSD 0.0005 —0.0519%#* 0.0868* 0.0467 0.1157 0.0712

*Significantly different than zero at 10% p value
**Significantly different than zero at 5% p value
*#%Significantly different than zero at 1% p value

It can be seen that the correlation coefficient proposed in this paper and its associ-
ated test are more powerful than the Pearson estimate. Notably, only in the case of New
Zealander equities that the Pearson estimate was able to detect significant correlation
without our proposed method not simultaneously finding any significant correlation,
whilst for many equity indices only our proposal could find a significant coefficient
when the Pearson estimate was not significantly different than zero. Another interest-
ing finding is that even though most of the equity indices had positive dependence,
this was not always the case. For example, US, UK and French equities bucked the
trend and exhibited significant negative dependence at a 1-day forecast horizon and
Russian equities had significant negative dependence at a 1-month forecast horizon.
Interestingly enough, the markets that had significant negative 1-day dependence had
significant positive 1-month dependence and the market that had significant negative
1-month dependence had significant positive 1-day dependence.

It can also be seen that the procedure proposed in this paper detected dependence in a
mix of emerging and developed market currencies, with significant 1-day dependence
being found in the Brazilian Real, Indian Rupee, Polish Zloty, Canadian Dollar and
Swiss Franc in addition 1 month-dependence being found in the Euro and British
Pound. Our proposal detected dependence in more currencies than the Pearson estimate
could, though the Pearson estimate detected 1-day dependence on the Japanese Yen
and Mexican Peso that was undetected by our proposal. However, in most cases that
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the dependence found is statistically significant it is of lower magnitude than with
Equities and therefore less pronounced and likely to be less exploitable for economic
purposes.

To validate the power of our predictive framework, the machine learning version
of Algorithm 2 (described in the “Technical Appendix”) has been applied to the data
described in the beginning of this section and the predictions were translated into
investment decisions: buy (when the predicted sign is positive) and sell (when the
predicted sign is negative). The trading strategies were tested assuming the following:
(1) there are no short sale restrictions—which is most likely the case if only futures
are used to trade; and (ii) if a shortable ETF is used, its borrow cost is no more than
the interest on the cash received from the short sale proceeds. Initially the markets
are assumed frictionless but this assumption is relaxed at the end of this section by
performing a sensitivity analysis to transaction costs.

To ascertain the out-of-sample performance of the trading models proposed, five
different performance metrics were calculated for all strategies and compared against
the same values of a Buy and Hold benchmark portfolio. The Buy and Hold benchmark
portfolio consisted of an equal weighted long position across all 21 equity indices in
the case of equity strategies and an equal weighted long position across all 16 foreign
currencies in the case of currency strategies. As the rollover rates are being included in
the calculation of the returns, the currencies benchmark can be interpreted as a global
unhedged money market investment portfolio from a US investor’s perspective.

The performance metrics used were:

— Average monthly out-of-sample returns of a portfolio that invested equally
weighted across all equities and currencies according to the underlying classi-
fication strategy, per asset class per classifier;

— Standard Deviation of the out-of-sample monthly returns of the said portfolio;

— Sharpe Ratio, not adjusted by the risk-free rate: simple average of the out-of-sample
monthly returns divided by their respective standard deviations; and

— Maximum Drawdown: the maximum loss from a peak to through of the cumulative
monthly portfolio returns before a new peak is attained.

— Alpha, not adjusted by the risk-free rate: the intercept of a linear regression between
the returns of the strategy and the returns of the Buy and Hold portfolio.

The returns used to calculate the Sharpe Ratio and Alpha were not adjusted by the
risk-free rate to keep the implementation simple and avoid an extra choice of variable
(i.e. the choice of what constitutes a risk-free rate). The lack of adjustment does not
change the conclusions of the present section of the paper given that these performance
metrics are being used solely to compare the performance of the different strategies
against the Buy and Hold without making a more general assessment of the economic
value of such strategies. All performance measures are also accompanied by their
standard errors calculated using the leave-one-out Jackknife method. Additionally,
the Alpha was tested for statistical significance and the Type I Error probability of
the Hypothesis Test that the Alpha is greater than zero is shown on all comparative
performance tables.

The trading strategy given by Theorem 5 has been empirically tested using the MA
and DMA predictors to obtain out-of-sample predictions for the period corresponding
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Table 3 Comparative performance of the strategies applied to equity indices on daily data, gross of trans-
action costs

Strategy B&H MA DMA

Monthly avg return 0.31% (0.60%) 1.07% (0.24%) 1.25% (0.22%)
Monthly std deviation 6.27% (0.68%) 2.48% (0.56%) 2.26% (0.59%)
Sharpe ratio 0.0502 (0.0999) 0.4312 (0.0833) 0.5516 (0.0867)
Max drawdown 56.2% (19.2%) 6.3% (2.9%) 3.7% (2.4%)
Alpha N/A 0.0111 (0.0023) 0.0128 (0.0020)
p value (Alpha > 0) N/A <0.0001 <0.0001

Standard errors in parenthesis

to the months from April-2008 to May-2017, equivalent to the second half of the entire
dataset used in this study. As our predictive method only predicts one step ahead, after
a prediction is made the in-sample period gets the actual return observed one step
ahead appended to it whilst the first in-sample point is discarded, so that in the next
iteration the algorithm is over the new in-sample period. This is repeated until the
end of the out-of-sample period. Tables 3, 4, 5, 6, 7 and 8 list the returns gross of
transaction costs; however, we later incorporate transaction costs into our analysis.

The strategies proposed obtained their best performance when trading equities
using a 1-day forecast horizon. As Table 3 shows, the MA strategy was able to get a
monthly return that was more than three times the return of the Buy and Hold strategy,
with a monthly standard deviation that was almost one third and, more importantly, a
maximum drawdown that was less than one sixth, meaning that the tail behaviour was
even better than the average behaviour. The resulting Sharpe Ratio, when annualised,
is greater than one, a level taken as very good for the practitioners. The DMA strategy,
that takes both trend-following and contrarian positions, performed even better, with
an 18bps gain in expected return over the MA and a reduced maximum drawdown
of just 3.7%, a fraction of the Buy and Hold maximum drawdown. The resulting
Sharpe Ratio, when annualised, is very high and close to two. This can be seen as
evidence that, on a 1-day trading interval, the introduction of contrarian positions in
the DMA strategy can have a significant improvement over the pure trend-following
MA strategy. However, when applied to foreign exchange markets, both the MA and
DMA trading strategies had returns close to zero with very small standard errors. This
is driven by the fact that not many currencies had displayed significant correlation
(as per Table 2) and the trading model only enters into positions when the correlation
detected is statistically significant.

As demonstrated on Table 5, there was a reduction in performance, gross of trans-
action costs, when the forecast horizon lengthened from 1 day to 1 week. However, as
Table 9 shows, there was a commensurate reduction in trading activity, meaning that
depending on the level of transaction costs, it might be more advantageous to trade
using a 1 week forecast horizon (as opposed to a 1day forecast horizon). Whilst the
average monthly return of the strategies is no longer statistically different than the
Buy and Hold, they have considerable lower risk which translates into a significanly
positive Alpha. The DMA trading strategy did not have a significant difference in
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Table4 Comparative performance of the strategies applied to currencies on daily data, gross of transaction
costs

Strategy B&H MA DMA

Monthly avg return —0.10% (0.28%) —0.03% (0.04%) 0.00% (0.03%)
Monthly std dev 2.93% (0.25%) 0.43% (0.04%) 0.33% (0.04%)
Sharpe Ratio —0.0355 (0.0964) —0.0776 (0.0984) —0.0208 (0.0990)
Max Drawdown 28.5% (12.1%) 6.7% (3.5%) 3.7% (2.5%)
Alpha N/A —0.0004 (0.0004) —0.0001 (0.0003)
p value (Alpha > 0) N/A 0.8296 0.6044

Standard errors in parenthesis

Table 5 Comparative performance of the strategies applied to equity indices on weekly data, gross of
transaction costs

Strategy B&H MA DMA

Monthly avg return 0.34% (0.61%) 0.35% (0.22%) 0.28% (0.17%)
Monthly std dev 6.33% (0.66%) 2.28% (0.41%) 1.77% (0.36%)
Sharpe ratio 0.0533 (0.0993) 0.1539 (0.0894) 0.1595 (0.0757)
Max drawdown 56.2% (19.2%) 8.9% (5.7%) 6.6% (2.9%)
Alpha N/A 0.0040 (0.0020) 0.0031 (0.0016)
p value (Alpha>0) N/A 0.0240 0.0245

Standard errors in parenthesis

Table6 Comparative performance of the strategies applied to currencies on weekly data, gross of transaction
costs

Strategy B&H MA DMA

Monthly avg return —0.09% (0.27%) —0.03% (0.03%) 0.01% (0.03%)
Monthly std dev 2.82% (0.25%) 0.52% (0.07%) 0.32% (0.05%)
Sharpe ratio —0.0318 (0.0969) —0.0573 (0.1034) 0.0047 (0.0993)
Max drawdown 28.5% (11.4%) 1.9% (1.1%) 1.6% (0.7%)
Alpha N/A —0.0003 (0.0005) 0.0000 (0.0003)
p value (Alpha > 0) N/A 0.7682 0.5112

Standard errors in parenthesis

risk-adjusted performance compared to the MA strategy, with both obtaining similar
Sharpe Ratios and Alphas. This can be seen as evidence that, in longer forecast hori-
zons, equity markets have mostly positive dependence and trend-following trading
strategies alone will capture this dependency, with the inclusion of contrarian trading
not adding economic value.

In the case of weekly currency trading, Table 6 shows similar performance when
compared to the daily strategy (gross of transaction costs), though the DMA strategy
had a slight improvement. Like in the case of the daily frequency, the Alphas generated
by currency trading are not significanly different than zero, though the maximum
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Table 7 Comparative performance of the strategies applied to equity indices on monthly data, gross of
transaction costs

Strategy B&H MA DMA

Monthly avg return 0.30% (0.60%) 0.34% (0.27%) 0.34% (0.23%)
Monthly std dev 6.27% (0.68%) 2.36% (0.38%) 2.05% (0.23%)
Sharpe ratio 0.0473 (0.1002) 0.1174 (0.0910) 0.1165 (0.0905)
Max drawdown 56.2% (19.2%) 11.4% (7.9%) 8.2% (5.5%)
Alpha N/A 0.0041 (0.0024) 0.0039 (0.0021)
p value (Alpha > 0) N/A 0.0458 0.0305

Standard Errors in parenthesis

Table 8 Comparative performance of the strategies applied to currencies on monthly data, gross of trans-
action costs

Strategy B&H MA DMA

Monthly avg return —0.10% (0.28%) —0.01% (0.04%) 0.00% (0.03%)
Monthly std dev 2.94% (0.25%) 0.53% (0.09%) 0.35% (0.07%)
Sharpe ratio —0.0334 (0.0970) —0.0113 (0.1035) —0.0065 (0.1064)
Max drawdown 28.5% (12.1%) 5.1% (4.1%) 3.5% (2.1%)
Alpha N/A —0.0001 (0.0005) 0.0000 (0.0003)

p value (Alpha> 0) N/A 0.5856 0.5621

Standard Errors in parenthesis

drawdown of the DMA strategy was much lower than the one of the Buy and Hold,
indicating potential use of the model for risk management and forecasting purposes.

As shown in Table 7, the equity strategies did not provide monthly returns statisti-
cally different than the one of the Buy and Hold though they did have much reduced
risk, again translating into a significanly positive Alpha. This means all equity trading
strategies applied to all forecast horizons proposed produced significantly positive
Alphas. As it can be seen on Table 9, there was a reduction in portfolio turnover when
lengthening the forecast horizon from 1 week to 1 month (from about 75% of the port-
folio per month to about 25% of the portfolio per month). This reduction is most
likely not enough to justify the reduction in performance for investors with access
to relatively sophisticated execution methods and low execution costs, but is likely
to justify the implementation of a smart-beta/semi-passive strategy, as it will yield a
similar return to Buy and Hold but with a considerable reduction in market risk and
limited portfolio turnover.

We remark that the currency strategies with monthly trading (shown in Table 8)
also did not produce an Alpha statistically different than zero, though the significant
reduction in maximum drawdown was another feature present in this case. Therefore,
we conclude that the use of the strategies proposed in currency markets is not likely to
add economic value on its own, but there is potential risk management and forecasting
value for the underlying correlation model.
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Table 9 Average monthly turnover per strategy (times the portfolio size)

Equities Currencies
Daily Weekly Monthly Daily Weekly Monthly
MA DMA MA DMA MA DMA MA DMA MA DMA MA DMA

9.81 1132 094 0.61 030 0.18 2.06 0.92 0.55 031 0.11  0.05

All the results so far are gross of transaction costs. The previous steps have avoided
embedding the costs as part of the model given that the actual transaction costs an
investor has will depend massively on a large numbers of factors that are particular to
each individual investor: whether market or limit orders are used, the order execution
algorithm, the latency between the server issuing the order and the exchange receiving
the order, the size of the order, the choice of broker, the level of commissions and
rebates are all factors affecting the final cost.

In Anand et al. (2012) it is presented a thorough descriptive analysis of trades
executed in the US equity markets by 664 institutions that traded 100 times or more
per month during the time period from January 1, 1999 to December 31, 2005. The
authors found that the difference between the costs of the lowest quintile and the
highest quintile was as high as 69 basis points. They also found that institutions
in the lowest quintile were able to get negative execution shortfalls, meaning their
technology, order execution policy and broker arrangements was able to add value to
the gross returns, instead of removing it. Similar findings are made by Brogaard et al.
(2014) where the authors claim the lowest quartile of execution costs by institutional
investors in UK equities was only 0.4 basis points whilst the top quartile had costs of
27.8 basis points. Therefore, instead of fixing a single cost number, we have chosen a
set of possible costs per transaction and combined it with the out-of-sample metrics
provided in Tables 3, 4 5, 6 7 and 8 to determine what would be return of a given
strategy if it was subject to a given level of transaction costs. To make the numbers
easier to compare between themselves and with Buy and Hold, we have rescaled the
net returns for all strategies by the ratio of the strategy’s monthly standard deviation
and the Buy and Hold’s monthly standard deviation—i.e. all returns, net of transaction
costs, are risk adjusted so that all of them have the same market risk as the Buy and
Hold strategy.

The level of transaction activity for each strategy was also calculated as this is an
additional input needed to calculate the net returns. Table 9 shows how many times
the portfolio was entirely rebalanced over a month. It can be seen that the Daily
Equities MA strategy had the highest turnover, trading on average 11.319 times the
entire portfolio in a typical month. On the other hand, the Monthly FX DMA strategy
had the lowest turnover, trading only 5% of the portfolio per month. FX strategies
naturally had lower turnovers as the test identified less evidence of serial correlation
in currencies than in equities, so it traded them less.

Table 10 shows the returns of the strategies applied to equities. The daily strategies
have the best returns for investors that can achieve low trading costs. In particular, if one
can achieve trading costs of 5Sbps per trade (a level that can be achieved for the most
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Table 10 Annualised return, net of costs, per equity trading strategy per level of costs

Cost per transaction 3 bps 5 bps 10 bps 15 bps 20 bps
Daily EQ MA 24.58% 18.16% 2.71% —11.93% —25.80%
Daily EQ DMA 31.79% 23.55% 3.83% —14.70% —32.11%
Weekly EQ MA 10.96% 10.31% 8.71% 7.12% 5.53%
Weekly EQ DMA 11.50% 10.96% 9.62% 8.28% 6.94%
Monthly EQ MA 9.04% 8.88% 8.46% 8.05% 7.63%
Monthly EQ DMA 10.87% 10.75% 10.46% 10.16% 9.87%
Annualised Return of Buy and Hold gross of any transaction costs 3.87%

Table 11 Annualised return, net of costs, per currency trading strategy per level of costs

Cost per transaction 2 bps 4 bps 6 bps 10 bps 15 bps
Daily FX MA —6.10% —9.47% —12.82% —19.47% —27.71%
Daily FX DMA —2.67% —4.60% —6.53% —10.37% —15.15%
Weekly FX MA —2.66% —3.37% —4.08% —5.50% —7.27%
Weekly FX DMA —0.48% —1.13% —1.77% —3.05% —4.65%
Monthly FX MA —0.55% —0.69% —0.84% —1.13% —1.50%
Monthly FX DMA —0.33% —0.43% —0.53% —0.73% —0.98%
Annualised Return of Buy and Hold gross of any transaction costs —1.16%

sophisticated investors), the EQ DMA strategy would have obtained an annualised
return of more than 20% for the same level of risk that the Buy and Hold would have
obtained an annualised return of 3.87%. However, even with trading costs as high as
20bps per trade (a level that is attainable even for savvy retail investors), trading the
DMA strategy on a monthly basis can achieve an annualised return in the region of
10% for the same level of risk of the Buy and Hold.

Table 11 shows the returns of the strategies applied to currency trading. Given that
no strategy could have a positive Alpha, it is also seen that no strategy could have
a positive annualised return net of costs, though the Buy and Hold return was also
negative for the period. Therefore, these strategies when applied to currencies cannot
provide absolute returns on their own. Nevertheless, it is also worth noting that the
lower maximum drawdown indicates some potential use of the underlying model for
Global Fixed Income portfolios, where the foreign carry interest is also a component
of the return, and the strategies would be acting as currency risk mitigants.

6 Concluding Remarks
This research has proposed a novel framework to deal with unstructured serial depen-
dence by introducing a measure of dependence that only focuses on the behaviour

of the sign of changes in the process. This definition also has the power to simplify
the interpretation of models with several parameters like ARFIMA by establishing
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boundaries in the values of the parameters that can be interpreted as simply positive
or negative dependence.

The definition was used to propose a statistical inference framework to detect
unstructured serial dependence, which was validated both via simulation in synthetic
models and in empirical data. In the case of empirical data for equity indices, the
framework was able to detect significant dependence that could not be detected using
a linear correlation model and was also able to feed a quantitative trading model that
provided risk adjusted returns which were significantly superior to the ones of a Buy
and Hold strategy and also robust to the presence of transaction costs.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Technical Appendix
A Proofs of All Theorems in the Main Paper

The derivation of necessary conditions for signed path dependence in several para-
metric models depends on the lemma below:

Lemma4 Letxi<j<y, be independent and normally distributed random variables with
zero mean and variance s . For afixed j, 1 < j < n, given weights b1<j<, we have
that

> bixi | = Zl<< ST > bix; (A1)
L=n

1<i<n i Si 1<i<n

Lemma 4 allows us to validate the definition of positive dependence in a number of
well known time series model classes, as long as the innovations are Gaussian. We note
that extensions can be developed for other classes of driving white noise sequences,
including heavy tailed cases.

Proof Define z = ), _;, xi. Since the x; are independent, z is normally distributed

with zero mean and variance ), _; ., siz, hence (x;, z) are jointly normally distributed
N

with correlation py, ; = \/ﬁ From this result it follows that
<isn"i

2
=
J
E xj| E Xi|l=——— E Xi,
l<i<n Zlfifn Si 1<i<n
which implies the equality that was to be proven. O

We now provide all the subsequent proofs.
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Proof of Theorem 2. Observe the following identity

h oo
ren ()= bjet+i—j)
;:ll’zo (A2)
—Z bZe(H—j) +ZZb,+, we(t—i—j+h+1),

i=h j=1

implying that

oo h
E[ron®lr ] =YY biyjwE[et—i—j+h+DIr,®].  (A3)

i=h j=1

Similarly, the following identity holds

n—1 oo
roa (=YY bie(t—i—j)
i=0 j=i
=boe (t) + (bg+b1)e(t — 1)

n—1

totet—n+DY b +£(t—n)Zb +-
i=0 i=1

n—1 i

Yobileat—i+> | Y. bife—i)
j=0

i=n j=i—n+1

Il
o

e(t—1i) Z bi|. (A.4)

j=max(0,i—n+1)

o

Il
=}

Which implies that

E[rin O] r—n (0]

oo h 00
= > biyjnE| et—i—j+h+DIY [e@—0) > b;

i=h j=1 i=0 j=max(0,i—n+1)
(A.5)

Now, using the result from Lemma 4 yields the following expression

h 00 o 2
Doimt 2 jeh bitj—h0ii_jint

o0 2 ]
2 iz00i; (le:max(o,i—n+l) bj)

E[rn Olr-n (0] = srn (). (A6)
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Now define W (h,1) = Y1, > bi+j—h0t2—i—j+h+1' As the denominator of
the expression in Equation A.6 will always be positive, it follows that the sign of
E[ ren (1) r—y (1)] will be entirely determined by the sign of r_, (1) W (h,1). As
such, if W (h, t) > 0 for all ¢ the process will have positive sign dependence and if
W (h,t) < O for all 7 the process will have negative sign dependence. O

Proof of Lemma 1. From Equation 2.3 we have that

ry=) ¢let—j. (A7)

j=0

Now, let W (h, 1) = o Zf-’:l >0 @' T7= Tt trivially follows that if ¢ > 0 then
W (h, t) > 0 and hence from Theorem 2 it follows that the process will have positive
path dependence irrespective of n and h. Equally, if ¢ = 0 then W (h, ) = 0 and as
such the process will have no signed path dependence.

Also notice that

W (h 1) :022;1: o _ el —w’;). (A.8)
Z1-9" " -9

As whenever 0 > ¢ > —1 we have that 1 — ¢ > 0, it follows that whenever
0> ¢ > —1,W¥(h,t) < 0irrespective of & and therefore, from Theorem 2 it follows
that the process will have negative path dependence. O

Proof of Lemma 2. According to Granger and Joyeux (1980), an ARFIMA (p, d, q)
process can also be written as

. T (k+2d)
® (B)r (1) = O (B) ( _— (1 — k)) (A.9)
kX:(:) T (k+ 1T (2d)

and therefore we have that

[e¢]

e T (k + 2d)

= CD(B)I‘(Zd)kZ:(:) rarn 00
_if(k+2d) Y 520bjet =) (A10)
N T (k+1) I (2d) '

Ifd > —0.5then Z,‘:ih Flffk'fﬁ) > O andsgn (I" (2d)) = sgn (d). Therefore, using the
same derivation as per the proof of Theorem 2, it follows that given & € N the sign of
dW (h) will determine whether the process has positive or negative path dependence
for all n.

Additionally, when p = ¢ = 0, ® (B) = ® (B) = 1 and hence the process will
have positive path dependence for all 4 and n whenever d > 0 and negative path
dependence whenever —0.5 < d < 0. O
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Proof of Theorem 4. As w(t + 1) = }l > i—;sgn (r—i (1)), we have that

E[d(1)] = ZE [sen (r_x (t — D) r (1] (A.11)
k=1

and hence under the null hypothesis it follows that E [d (¢)] = 0.
Further, given that r(¢) is assumed covarance stationary, by Theorem 2 we know
that the value of sgn (r_x (1)) E [r (t+1)|r—¢ (t)] is the same for all £ and hence if

sgn(r—x ) E[r ¢+ D lr—g )] =0 (A.12)

for all k < n, then the equality will also hold for all £ > n. Therefore, under the null
hypothesis we have that

E[sgn(r—x 1) r (t + 1] =0 (A.13)

for all values of k which implies that d(¢) is uncorrelated with d (¢ + i) for alli > n,
hence being n-dependent.
Additionally, as 0 < |w ()| < 1, we have that

@@ 01> ] = B[ o 01 001 > 5]

|\/E}i| (A.14)

<E [(r ) I{|r ()| >
o (i)

implying that d(¢) also satisfies the Lindeberg condition given that r(¢) is assumed to
satisfy it.

Therefore, as per Theorem 3, we have that under the null hypothesis, when s — oo
the statistic defined in Equation 3.2 will converge in distribution to a standard normal
normal variable as 7 defined in Equation 3.3 is the sample estimator of the variance
of d. O

Proof of Lemma 3. Let h, be the 1—35 quantile of the true distribution of the test statistic
given by Equation (3.2) under the null hypothesis stated in the §§cond paragraph of
Section 3. As per Efron and Tibshirani (1993) (p. 187), P [ha > h ] =3 44 £ 7 where

¢ is a constant value. Hence when s — oo we have that P [ha > ha] — %

Now, as per the Theorem 4 the true distribution of the test statistic given by Equation
(3.2) converges to a standard normal as s — oo. Therefore h — @' (1-¢%)and
hence P [hq < @ (1-%)] - %, meaning that /1, — &~ (1 -%). O

Proof of Theorem 5. If the null hypothesis of the test given by Theorem 4 is not true then
thereisavalueof ¢ € {—1, 1}suchthat¢ = sgn (IE [sgn (r—p @) —nr)r(+ 1)] — 7).

In that case, we have that if E = —1 then E [—sgn (r—p @) —nr)r(+ 1)] >
o= E[Lm] < E[Lpen] as E[Lpgn] = —F. Equally, if £ = 1 then

E[sgn(r_n (t) —ni)r (t+ 1)] > 7 = E [L < E[Lpen]. 0

sa7m)
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B Machine Learning Estimation Method

This section describes a machine learning method that reads a data stream of log-
returns in chronological order + = 1,2, ... and for each r(¢) read it returns either

s(t/—ﬁ) or zero if it cannot make a reliable prediction for this sign, which could
happen either because there is not enough observed information up until time ¢ to
make such prediction or because the test defined in Theorem 4 could not find evidence
of signed path dependence in the series provided up until that point.

The section alternates between pseudocode, in smaller font to make it distin-
guishable, and descriptive text. Reading this section requires some knowledge of
object-oriented programming concepts as the pseudocode listed comprises of an
object-oriented implementation aimed to be ported into languagues such as C++ and
Python. All required variables are listed and commented in the pseudocode.

A single class object is described in this section. Such object, once fully initialised,
should be run by sequentially in/v\oking method Classify every time a new data point

is observed, obtaining either s(¢# + 1) or zero. For a practical application, the output
of the method Classify is translated into a trading strategy with three decisions: buy,
sell or take no position.
All class variables only require private visibility and are listed as follows:
class Name the name of the classifier being implemented (either MA or DMA)
R alist that will contain a sample of observed log-returns for a given asset at a given trading frequency
P alist that will contain positive integer numbers candidate values for the parameter n of the classifier
being implemented
Z an integer number corresponding to the desired learning sample size, assumed even for simplicity
« the significance threshold for the application of the signed path dependence test
w an integer number corresponding to a retuning interval
v an integer number corresponding to a retraining interval
n’ an integer number corresponding to a test lookback horizon
nmax the optimal value of the classifier lookback for prediction
bTrade indicating whether the asset is worth trading or not
7 the long term unconditional mean of the return process
¢ the sign of the path dependence being assumed by the predictive method
countSinceTune storing how many data points have been read since the last time the classifier was
tuned
countSinceT rain storing how many data points have been read since the last time the classifier was
trained
The class object contains four different methods: Initialise, Classify, Predict and
Update.
Method Initialise is implemented as below:
procedure INITIALISE(P = (n1,n2,...,n5),2> 0,1 >a >0,w > 0,v > 0, n' > 0, className)
this.R <0 > R is initialised as the empty set and will be built as new data is observed
this.P < P;this.z < z;this.a < «a;this.w < w;this.v < v;this.className < class Name
this.countSinceTune < 0; this.countSinceTrain < 0; this.n' < n’
end procedure
Description of method Initialise: This method is the class constructor and will be
called whenever an instance of the class is created. It stores into internal memory
all parameters that are required by subsequent methods and initialises other relevant
internal variables. Creating an instance of this class will always require the following
parameters:
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— className: one of MA or DMA, representing the classifier being implemented
by this instance of the class—notice that it is a decision of the user whether only
sign continuation is to be assumed or if a dynamic decision between continuation
and reversals is needed.

— P:alistof integers containing acceptable values for the parameter n of the classifier

being implemented (the actual choice of n will be performed by method Update).

z: an integer corresponding to the desired learning sample size, to be used by

methods Classify and Update.

— «o: the significance threshold to be used by method Update.

w: an integer corresponding to a retuning interval, to be used by method Update.

— v: an integer corresponding to a retraining interval, to be used by method Update.

n’: an integer corresponding to a test lookback horizon, to be used by method

Update.

Method Classify is implemented as below:
function CLASSIFY(r (1))
Append r () to the end of list this.R
if length(this.R) > this.z then
Drop the first element of list this.R
end if
if length(this.R) = this.z then
Call this. Update()
if bTrade = T RUE then
return this. Predict(this.R, this.r, this.nmyayx)
end if
end if
return 0
end function

Description of method Classify: This is the only public method of the class. It should
be called every time ¢ a new data point has become available and returns either S(T—ﬁ)
or zero, which also can be taken as a trading decision: — 1 meaning negative/sell; 1
meaning positive/buy; 0 meaning no predicted sign/take no position. The only param-
eter required to run this method is:

— r (¢): the observed data point (log-return).

The method stores 7 (¢) in an internal class variable, in sequential order so that it can
be used in subsequent iterations and updates of the model. However, if after storing
r(¢) the internal storage has z+ 1 points (with z given during initialisation), the method
will drop the oldest (first) data point of the internal storage to ensure that the learning
sample size stays constant at z.

If there are less than z data points in the internal storage, the method simply returns
zero, not attempting any prediction until more data is received to fill up the internal
storage. Otherwise, it calls the internal method Update which will learn the optimal
values for parameters n and 7 given the data in the internal storage and save to internal
memory the results of the test defined in Theorem 4.

Finally, if the test results saved in memory inform that there is no significant path
dependence in the series saved to the class internal storage, the method will again
simply return zero. Otherwise, it will return the result of calling the internal method
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Predict giving the whole data in the internal storage as the parameter R and the
parameters n and 7 as obtained in the method Update.
Method Update is implemented as below:

procedure UPDATE( )
this.countSinceTune < this.countSinceTune + 1
this.countSinceTrain < this.countSinceTrain + 1

if this.countSinceTune = w then > The tuning stage is performed inside this block
this.F < L5 this.R (i)
if this.className="MA"and ——4 > ¢~! (1 — this.«) then
lezis.n;l‘ 7@
T=—this.n
s—this.n’
this.bTrade < TRUE
this. <1
else if this.className = "DMA" and #/ > ¢! (1 - ’h’%) then
Ztrl!irtlhix.n’ v
s—this.n’

this.bTrade < TRUE 5

this.t « 1 if > ¢! (17 ”“%) or -1 if <
s—this.n’
—1 ( this.«
ot (#5)
else
this.bTrade < FALSE > The asset is not worth trading
end if
this.countSinceTune < 0
end if
if this.countSinceTrain = v then > The training stage is performed inside this block

T < 232 this.R ()

i=1

this.nmax <~ argmax% Z?—ZH exp (this.R (i) x this.Predict ((this.R (i —z/2), ...,
P - -2

ne
this.R (i — 1)),77, 1))
this.countSinceTrain < 0
end if
end procedure
Description of method Update: This is an internal method that performs the learning
process of the class, split into two stages:

— Tune: This stage decides if any reliable prediction can be made and sets other rel-
evant internal variables of the class. To enhance runtime performance, the Update
method runs this stage only once every w iterations (with w given during ini-
tialisation) and relies on results from previous runs (stored in internal memory)
when this stage is not run. This stage uses all data points in the internal storage
of the class to decide if the asset is worth trading by checking for significant path
dependence as follows:

— If the classifier being implemented by this instance of the class is the MA
classifier, the test defined in Theorem 4 is applied to all stored data points to
look for significant positive path dependence only, and the asset is deemed
worth trading if such dependence is found.

— Alternatively, if the classifier being implemented by this instance of the class
is the DMA classifier, the test defined in Theorem 4 is applied to all stored
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data points to look for significant path dependence of any sign which, if found,
would make the asset worth trading.

If the asset is deemed worth trading, the method estimates its long term mean
return (and stores it internally for future usage) as the observed mean return over
all data points in the internal storage of the class.

— Train: This stage decides the actual value of n that should be used for classification.
To enhance runtime performance, the Update method runs this stage only once
every v iterations (with v given during initialisation) and relies on results from
previous runs (stored in internal memory) when this stage is not run. This stage
splits the data points in the internal storage into two subsamples of equal length:
training (the first chronological half of the stored list) and validation (the second
chronological half of the stored list, henceforth referred to as Ryaiigation). Using
the mean return over the training sample as an input to the classifier being trained,
it finds which value of n produces the highest classification gain over the validation
sample, with the gain defined as:

G (n) = exp > rxs® (B.1)

r(t)€Ryalidation

where S/(-B is obtained by method Predict using R = (r(t — 1),r(t —2), ...,
r(t — z/2)), ¥ equal to the mean return over the training sample and n as the
lookback parameter.

All learned parameters are stored in the private class variables for subsequent usage.

Remark 9 The gain function chosen has the advantage of being linear on the returns,
which means it can also be used to evaluate the returns of a portfolio comprised of
several assets invested according to the underlying classification strategy.

And, finally, method Predict is implemented as below:
function PREDICT( R, 7, n )
return this.l x sgn (Z::ol (R (length (R) — i) — 7))
end function
Description of method Predict: This is an internal method that performs the actual
prediction as a direct one step ahead implementation of Definition 4 if class Name
="MA" or as per Definition 5 if class Name = "DMA", returning either — 1 or 1. It

receives three inputs:

— R:alist of log-returns in chronological order, assumed to be the most recent returns
up to the point that the method Predict was called.

— 7: the long term mean log-return of the asset.

— n: the value of the lookback parameter.

In case this instance othe class is a DMA classifier, the value of g: will have already
been obtained and stored internally by method Update by the time this method is
called.
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In the empirical experiment of Sect. 5, the tuning stage of the algorithm was done
every 6 months, which meant a retune was done after six new monthly data points, 24
new weekly data points and 126 new daily data points. The training stage was done
monthly, which meant a retrain was done for every new point for monthly data, after
4 new points for weekly data and after 21 new points for daily data.
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