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Abstract
Dynamic factor models have become very popular for analyzing high-dimensional
time series, and are now standard tools in, for instance, business cycle analysis and
forecasting. Despite their popularity, most statistical software do not provide these
models within standard packages. We briefly review the literature and show how to
estimate a dynamic factor model in EViews. A subroutine that estimates the model is
provided. In a simulation study, the precision of the estimated factors are evaluated,
and in an empirical example, the usefulness of the model is illustrated.

Keywords Dynamic factor model · State space · Kalman filter · EViews

1 Introduction

Dynamic factor models are used in data-rich environments. The basic idea is to sep-
arate a possibly large number of observable time series into two independent and
unobservable, yet estimable, components: a ‘common component’ that captures the
main bulk of co-movement between the observable series, and an ‘idiosyncratic com-
ponent’ that captures any remaining individual movement. The common component
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is assumed to be driven by a few common factors, thereby reducing the dimension of
the system.

In Economics, dynamic factor models are motivated by theory, which predicts that
macroeconomic shocks should be pervasive and affect most variables within an eco-
nomic system. They have therefore become popular among macroeconometricians;
see, e.g., Breitung and Eickmeier (2006), for an overview. Areas of economic anal-
ysis using dynamic factor models include, for example, yield curve modeling (e.g.,
Diebold and Li 2006; Diebold et al. 2006), financial risk-return analysis (Ludvigson
andNg 2007),monetary policy analysis (e.g., Bernanke et al. 2005; Boivin et al. 2009),
business cycle analysis (e.g., Forni and Reichlin 1998; Eickmeier 2007; Ritschl et al.
2016), forecasting (e.g., Stock and Watson 2002a, b) and nowcasting the state of the
economy, that is, forecasting of the very recent past, the present, or the very near future
of indicators for economic activity, such as the gross domestic product (GDP) (see,
e.g., Banbura et al. 2012, and references therein). Information of the economic activ-
ity is of great importance for decision makers in, for instance, governments, central
banks and financial markets. However, first official estimates of GDP are published
with a significant delay, usually about 6–8 weeks after the reference quarter, which
makes nowcasting very useful. Despite the attractiveness of dynamic factor models
for macroeconomists, statistical or econometric software do not in general provide
these models within standard packages. In this paper, we illustrate how to, by means
of programming, set up the popular two-step estimator of Doz et al. (2011) in EViews
(IHS Global Inc. 2015a, b, c, d), a software specialized in time series analysis that is
broadly used by economists, econometricians, and statisticians.

The parameters of dynamic factor models can be estimated by the method of princi-
pal components. This method is easy to compute, and is consistent under quite general
assumptions as long as both the cross-section and time dimension grow large. It suffers,
however, from a large drawback: the data set must be balanced, where the start and end
points of the sample are the same across all observable time series. In practice, data are
often released at different dates. A popular approach is therefore to cast the dynamic
factor model in a state space representation and then estimate it using the Kalman
filter, which allows unbalanced data sets and offers the possibility to smooth missing
values. The state space representation contains a signal equation, which links observed
series to latent states, and a state equation, which describes how the states evolve over
time. Under the assumption of Gaussian noise, the Kalman filter and smoother provide
mean-square optimal projections for both the signal and state equations. The method
we set up in this paper is a two-step procedure, in which parameters are first estimated
by principal components, and then, given these estimates, the factors are re-estimated
as latent states by the Kalman smoother.

The rest of the paper is organized as follows. Section 2 outlines the notion and
conventional estimation of dynamic factor models. Section 3 derives a state space
solution. Section 4 describes the estimator considered in this paper. The estimator is
evaluated in a simulation study in Sect. 5, and applied in an empirical example in
Sect. 6. Section 7 concludes. A subroutine containing the estimator and programs that
replicate our results are provided as supplementary material.
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2 A Dynamic Factor Model

Let xt = (x1,t , x2,t , . . . , xN ,t )
′ be a vector of N time series, each of which is a real-

valued stochastic process {xi,t , t ∈ Z}. Suppose we observe a finite realization of xt
over some time points t = 1, 2, . . . , T , and let the empirical information available
at time t be condensed into the information set Ft = {x1, x2, . . . , xt }. A dynamic
factor model is usually specified such that each observable xi,t (i = 1, 2, . . . , N ) is
the sum of two independent and unobservable components: a common component
χi,t , which is driven by a small number of factors that are common to all individuals,
and a remaining idiosyncratic (individual-specific) component εi,t (see, e.g., Bai and
Ng 2008). In panel notation, the model is

xi,t = χi,t + εi,t , (i = 1, 2, . . . , N ; t = 1, 2, . . . , T ),

χi,t = υi (L)′zt , (1)

where υi (L) = υi,0 + υi,1L + · · · + υi,�L� (� < ∞) is a vector lag-polynomial
of constants loading onto a vector of K unobservable common factors, zt =
(z1,t , z2,t , . . . , zK,t )

′.1 Thus, only the left-hand side of (1) is observed; the right-
hand side is unobserved. If the dimension of zt is finite (K < ∞), then there exists
for every i an R × 1 vector (R ≥ K) of constants λi = (λi,1, λi,2, . . . , λi,R)′,
such that υi (L)′ = λ′

iC(L), where C(L) is an R × K matrix lag-polynomial,

C(L) = ∑∞
m=0 CmLm , that is absolutely summable,

∑∞
m=0 ||Cm || < ∞ (see Forni

et al. 2009 ).2 Thus, letting ft = ( f1,t , f2,t , . . . , fR,t )
′ = C(L)zt , the dynamic factor

model can be cast in the static representation

xi,t = ci,t + εi,t ,

ci,t = λ′
i ft , (2)

which, equivalently, can be written in vector notation as

xt = ct + εt ,

ct = �ft , (3)

where ct = (c1,t , c2,t , . . . , cN ,t )
′, εt = (ε1,t , ε2,t , . . . , εN ,t )

′ and � = (λ′
1,λ

′
2, . . . ,

λ′
N )′. The common factors in zt are often referred to as dynamic factors, while the

common factors in ft are referred to as static factors. The number of static factors,R,
cannot be smaller than the number of dynamic factors, and is typically much smaller
than the number of cross-sectional individuals, K ≤ R � N . As with χi,t in the
dynamic representation (1), we refer to the scalar process ci in (2), or the multivariate
process ct in (3), as the common component.

1 The transpose of υi (L) is defined as υi (L)′ = υ′
i,0+υ′

i,1L+· · ·+υ′
i,�L

�, where υi,q (q = 1, 2, . . . , �)

are K × 1 vectors, so that χi,t = υ′
i,0zt + υ′

i,1zt−1 + · · · + υ′
i,�zt−�.

2 Here, || · || denotes the Frobenius norm, ||Cm || = √
tr(CmC′

m ).
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In general, we suppose that xi,t is a weakly stationary process with mean zero that
has finite second-order moments, E(xi,t ) = 0, E(xi,t xi,t−s) < ∞ (s ∈ Z). To uphold
this, something close to the following is usually assumed:

A1 (common factors) The q-variate process zt is independent and identically dis-
tributed (i.i.d.) over both the cross-section and time dimension with zero mean:
E(zt ) = 0, E(ztz′

s) = 0 for all t �= s and E(ztz′
t ) = diag(ω2

1, ω
2
2, . . . , ω

2
R) is a

diagonal matrix with main diagonal entries ω2
1, ω

2
2, . . . , ω

2
R, where ω2

j < ∞ for
all j .

A2 (idiosyncratic components) The process εi,t admits a Wold representation εi,t =
θi (L)ui,t = ∑∞

m=0 θi,mui,t−m , where
∑∞

m=0 |θi,m | < ∞ and ui,t is i.i.d. white
noise with limited cross-sectional dependence: E(ui,t ) = 0, E(ui,t u j,s) = 0 for
all t �= s, and E(ui,t u j,t ) = τi, j , with

∑N
i=0 |τi, j | < J , whereJ is some positive

number that does not depend on N or T .
A3 (independence) The idiosyncratic errors ut = (ui,t , u2,t , . . . , uN ,t )

′ and common
shocks zt are mutually independent groups: E(utz′

s) = 0 for all t, s.

From Assumption A1, the static factors are stationary and variance-ergodic processes
admitting a Wold representation ft = C(L)zt = ∑∞

m=0 Cmzt−m . Assuming invert-
ibility, the static factors may therefore follow some stationary VAR(p) process,

B(L)ft = zt , (4)

where B(L) = IR − B1L − B2L2 − · · · − BpL p = C(L)−1, and IR denotes the
R × R identity matrix.

We have assumed here, for the sake of argument, that the dynamic factors zt (some-
times referred to as the primitive shocks) enters as errors in the static factor VAR
process (4). This is unnecessarily strict. To be more precise, by suitably defining ft ,
the dynamic factor model (1) can in general be cast in the static representation (2),
where ft follows a VAR process which exact order depends on the specific dynamics
of zt . The number of static factors is alwaysR = K(�+ 1), whereK is the number of
dynamic factors and � is the order of the vector lag-polynomial υi (L) in the common
component in (1); see Bai and Ng (2007). In practice, the static representation is typ-
ically stated without reference to a more general dynamic factor model. Additionally,
it is often assumed that the static common factors follow a stationary VAR process.
Assumption A1 is innocuous, as we may assume that zt is an orthonormal error of
the static factor VAR process, and that this, in general, relates to some dynamic factor
model (1).

Now, from Assumptions A1–A3, the autocovariance of the panel data is

�x (h) = E(xtx′
t−h) = �� f (h)�′ + �ε(h),

where � f (h) = E(ft f ′t−h) and �ε(h) = E(εtε
′
t−h). By denoting � = �x (0), ϒ =

� f (0) and 	 = �ε(0), we can write the contemporary covariance matrix of xt as
� = �ϒ�′ + 	. If the largest eigenvalue of 	 is bounded as N → ∞, then we
have an approximate factor model as defined by Chamberlain and Rothschild (1983).
Approximate factor models have become very popular within, for instance, panel
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data econometrics, because they allow for a cross-sectional dependence among εt ,
whilst letting the factor structure be identified. If 	 is diagonal, then we have the
exact (or strict) factor model. Since the diagonal elements of 	 are real and finite, the
exact factor model is nested within the approximate factor model as a special case.
The largest eigenvalue of 	 is, in fact, smaller than max j

∑N
i=1 |E(εi,tε j,t )| (see Bai

2003), which is bounded with respect to both N and T by Assumption A2.3 Hence,
by assumption, we have an approximate factor model.

On top of this, some technical requirements are usually placed on the factor load-
ings, such that the common component is pervasive as the number of cross-sectional
individuals increase. In essence, as N → ∞, all eigenvalues of N−1�′� should
be positive and finite, implying that the R largest eigenvalues of � are unbounded
asymptotically.4 Because the largest eigenvalue of 	 is asymptotically bounded, the
covariance decomposition in � is asymptotically identifiable.

Note finally that, without imposing restrictions, the factors and factor loadings are
only identified up to pre-multiplication with an arbitrary R × R full rank matrix M.
That is, (3) is observationally equivalent to xt = �̌f̌t + εt where �̌ = �M and

f̌t = M−1ft , since, in terms of variances, � = �ϒ�′ + 	 = �̌Var(f̌t )�̌
′ + 	. Due

to this rotational indeterminacy in the factor space, we may without loss of generality
impose the normalization ϒ = IR, restricting M to be an orthogonal matrix. This
implies that only the spaces spanned by, respectively, the columns of � and those of
ft , are identifiable from the contemporary covariance �. In general, this identification
requires a large N . Inmany cases, estimating the space spanned by the factors is as good
as estimating the factors themselves. For instance, in forecasting under squared error
loss, the object of interest is the conditional mean, which is unaffected by rotational
multiplication. If, however, the actual factors or the coefficients associated with the
factors are the parameters of interest, then we need to impose some identifying, yet
arbitrary, restrictions such that the factors and factor loadings are exactly identified;
see Bai and Ng (2013) and Bai and Wang (2014).

2.1 Estimation

Estimation of dynamic factor models concern foremost the common component; the
idiosyncratic component is generally considered residual. The common component of
the dynamic factor model (1) may be consistently estimated in the frequency domain
by spectral analysis (see, e.g., Forni et al. 2004). Themain benefit of the static represen-

3 From Assumption A2, E(εi,t ε j ,t ) = ∑∞
m=0 θi,mE(ui,t−mu j,t−m ) = ∑∞

m=0 θi,mτi, j =
τi, j

∑∞
m=0 θi,m . Thus, |E(εi,t ε j ,t )| = |τi, j ||

∑∞
m=0 θi,m |, and so max j

∑N
i=1 |E(εi,t ε j,t )| =

| ∑∞
m=0 θi,m |max j

∑N
i=1 |τi, j | < ∞.

4 To be more precise, Doz et al. (2011) assume that, as N → ∞, the infimum of ϕmin(�′�)/N exists and
the supremum of ϕmax (�

′�)/N is finite, where ϕmin(·) and ϕmax (·) denote the minimum and maximum
eigenvalue, respectively. By construction, the R × R matrix �′� is positive definite, whereas the N × N
matrix ��′ is positive semi-definite. It is easily established (see, e.g., Zhou and Solberger 2017, Lemma
A1) that the (positive) ordered eigenvalues of �′�, ϕ1(�′�) ≥ ϕ2(�

′�) ≥ · · · ≥ ϕR(�′�), correspond
exactly to the non-zero ordered eigenvalues of ��′. That is, for i = 1, 2, . . . ,R, ϕi (��′) = ϕi (�

′�),
while for i = R+ 1,R+ 2, . . . , N , ϕi (��′) = 0. Because the eigenvalues of N−1�′� are non-zero, the
eigenvalues of ��′ are unbounded as N → ∞.
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tation (3), however, is that for an approximate factor model, the common component
may be consistently estimated in the time domain, which computational methods are
generally much easier to accomplish. Because the factor model is a panel (i.e., xi,t
is doubly indexed over dimensions N and T ), asymptotic theory has been developed
as both dimensions N and T tend to infinity, which requires some special attention.
Conceptually, estimation theory for panels can be derived in three ways: sequentially,
diagonally, and jointly (see, e.g., Phillips and Moon 1999; Bai 2003). The methods
presented in this paper all concern the latter limit. This limit is the most general, and
its existence implies the existence of the other two limits.

From Assumption A2, each idiosyncratic component is a stationary and variance-
ergodic process that, assuming invertibility, may be stated as a finite-order autore-
gressive process, φi (L)εi,t = ui,t , where φi (L) = θi (L)−1, so that the idiosyncratic
process in (3) may be written as 
(L)εt = ut , where ut = (u1,t , u2,t , . . . , uN ,t )

′ and

(L) = diag(φ1(L), φ2(L), . . . , φN (L)). In terms of parameters, the static factor
model (3) may then be characterized by

{�,B(L),
(L),� f (h),�ε(h); h ∈ (−∞,∞)}.

The autocovariances � f (h) and �ε(h) for h �= 0 are rarely of direct interest, and are
not necessary for consistent estimation of the common component ct . In most cases,
we are merely interested in {�,ϒ,	}, since � is, up to a rotation, asymptotically
identifiable from � (that depends on � f (0) = ϒ and �ε(0) = 	). Given these
parameters, the minimum mean square error (minimum MSE) predictor of the static
factors is the projection (see, e.g., Anderson 2003, Sect. 14.7)

f̂t =
(
ϒ−1 + �′	−1�

)−1
�′	−1xt , (5)

where ϒ = IR, under conventional normalization (see aforementioned).
Naturally, the parameters � and 	 are unknown, and need to be estimated. On

theoretical grounds, maximum likelihood (ML) estimation is attractive. It is generally
efficient and provides means for incorporating restrictions based on theory. However,
ML estimators for dynamic factor models tend to be very complicated to derive, and
full ML estimation is only available for special cases (see, e.g., Stoica and Jansson
2009; Doz et al. 2012). When the idiosyncratic component exhibits either time series
dynamics, cross-sectional heteroscedasticity, or cross-sectional correlations, then full
ML estimation is not attainable. However, by imposing misspecifying restrictions,
subsets of the parameters may be consistently estimated by quasi-ML in the sense
of White (1982). For example, by falsely assuming an exact factor model when the
true model is an approximate factor model, the diagonal elements of 	 (i.e., the
contemporary idiosyncratic variances) and the space spanned by the columns of �

maybe consistently estimated by numerical quasi-MLestimation based on the iterative
Expectation-Maximization (EM) algorithm; see Bai and Li (2012, 2016). In a similar
fashion, Doz et al. (2012) have shown that the space spanned by the factors may
be directly and consistently estimated by quasi-ML using the Kalman filter. If the
procedure is iterated, then it is equivalent to the EM algorithm.
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The workhorse for the static factor model is the method of principal compo-
nents (PC). Consider the covariance matrix of xt , �. Because every covariance
matrix is positive semi-definite, it may be decomposed as � = V�V′, where
� = diag(ϕ1(�), ϕ2(�), . . . , ϕN (�)) is a diagonal matrix with the ordered posi-
tive eigenvalues of � (the principle components) on its main diagonal, and V is a
matrix with the associated eigenvectors as columns, such that V′V = IN . Under the
normalization ϒ = IR, the linear transformation mt = V′xt is the population PC
estimator of the factors ft . It has contemporary covariance Var(mt ) = V′�V = �.
Because � is a diagonal matrix, the population factors are uncorrelated. Now, let
V = (v1, v2, . . . , vN ). The first PC factor, f̂1,t = v′

1xt , is the projection which max-
imizes the variance among all linear projections from unit vectors. Its variance is the
first principal component ϕ1(�). The second PC factor, f̂2,t = v′

2xt , maximizes the
variance under the restriction of being orthogonal to the first PC factor. Its variance
is the second principle component ϕ2(�), and so on. The PC estimator of the factor
loadings is found be setting �̂ equal to the eigenvectors of � associated with its R
largest eigenvalues. Replacing � with its sample counterpart S = T−1 ∑T

t=1 xtx
′
t ,

gives the sample PC estimators. Under an approximate factor model, they are consis-
tent as N , T → ∞ (i.e., as N and T tend to infinity simultaneously) for the spaces
spanned by the factors and factor loadings, respectively; see, foremost, Stock and
Watson (2002a) and Bai (2003).

The method of PC is a dimension reducing technique, and does, as opposed to ML,
not require the existence of the static factor model (3). Yet, the PC and ML estimators
are closely related. Under a Gaussian static factor model with spherical noise, the
ML estimator of the factors is proportional to the PC estimator. The PC estimators of
the factors and factor loadings are therefore often used as initial estimators for ML
algorithms. For approximate factor models, the largest drawbacks of the PC estimators
are that (i) they are inconsistent for fixed N , and (ii) they require a balanced panel.
Meanwhile, ML estimation can be consistent for fixed N , and numerical procedures,
such as the Kalman filter and the EM algorithm can smooth over missing values,
allowing an unbalanced panel with missing values at the end or start of the panel; the
so called “ragged edge” or “jagged edge” problem. This feature is very valuable in, for
instance, economic forecasting, because key economic indicators tend to be released
at different dates. In particular, and of special interest in this paper, Doz et al. (2011)
show that, by consistently estimatingB(L), the precision in estimating the factor space
may be improved by setting up a state space solution and perform one run with the
Kalman smoother to re-estimate the factors ft for t = 1, 2, . . . , T . This method is
presented in detail in Sect. 4, and can be implemented in EViews by using our code
in the supplementary material.

For any estimation approach, the number of factors R is generally unknown, and
needs to be either estimated or assumed. Popular estimators for the number of factors
in approximate factor models can be found in Bai and Ng (2002), Onatski (2010) and
Ahn and Horenstein (2013). Throughout the paper, we will treat the number of factors
as known.
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3 A State Space Representation of the Static Factor Model

The linear time series process xt can be cast in the state space form

xt = Htαt + ξ t , (6)

αt+1 = Ttαt + Rtηt , (7)

where αt (k × 1) is a latent state vector, Ht (N × k) and Tt (k × k) are possibly time-
varying parameter matrices and Rt (k × q; q ≤ k) is, in general, either the identity
matrix or a selection matrix consisting of a subset of the columns of the identity matrix
(see, e.g., Durbin and Koopman 2012). The system is stochastic through the N × 1
vector ξ t and the k × 1 vector ηt , which are mutually and serially uncorrelated with
zero mean and contemporary covariance matrices �ξ and �η, respectively. In the
Gaussian state space form, which is what EViews handles, the errors are normally
distributed: ξ t ∼ N (0,�ξ ), ηt ∼ N (0,�η). We refer to (6) as the signal equation,
and to (7) as the state equation. Note that the state equation is a VAR(1) process.

The static factor model (3) can be written as a state space solution defined by (6)
and (7), where the number of states relates to the latent components of the model, that
is, the common factors and the idiosyncratic components. Moreover, as shown by Doz
et al. (2011), neglecting the idiosyncratic time series dynamics, and thereby possibly
misspecifying the underlying model, can still lead to consistent estimation of the
central parameters of the factor model, given by the common component. Specifically,
imposing the misspecification that εt in (3) is white noise, the static factor model can
be written in state space form where the number of states k is equal to the number of
factors R times the number of VAR lags p: k = Rp. To see this, note that the factor
VAR(p) process (4) can be written in stacked form as the VAR(1) process (see, e.g.,
Lütkepohl 2007, p. 15)

f̃t = B̃f̃t−1 + z̃t , (8)

where

f̃t =

⎛

⎜
⎜
⎜
⎝

ft
ft−1
...

ft−p+1

⎞

⎟
⎟
⎟
⎠

Rp×1

, B̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B1 B2 · · · Bp−1 Bp

IR 0 · · · 0 0
0 IR · · · 0 0
...

...
. . .

...
...

0 0 0 IR 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Rp×Rp

, z̃t =

⎛

⎜
⎜
⎜
⎝

zt
0
...

0

⎞

⎟
⎟
⎟
⎠

Rp×1

. (9)

Thus, if the static factors follow the VAR process (4) and the idiosyncratic components
are serially uncorrelated, then the static factormodel (3) has a state space representation
defined by (6) and (7) with

Ht = (
� 0 · · · 0)
N×Rp

, αt = f̃t , ξ t = εt , R′
t = (

IR 0 · · · 0)
R×Rp

, Tt = B̃, ηt = zt+1,

(10)
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where � and εt are the factor loadings and idiosyncratic error in (3), f̃t and B̃ are the
stacked factors and parameters in (9) and zt is the error in (4). Here, the subscripts may
be dropped fromHt ,Tt andRt , since in this case, the parameters are not time-varying.

Specification and estimation of state space models in EViews is outlined in IHS
Global Inc. (2015d, Chapter 39). A recent demonstration is found in van den Bossche
(2011). The estimation concerns two aspects: (i) measuring the unknown states αt for
t = 1, 2, . . . , T , involving prediction, filtering and smoothing (see Sect. 3.1), and (ii)
estimation of the unknown parameters Ht , Tt , �ξ and �η. Doz et al. (2011) propose
to estimate the parameters by PC (see Sect. 2.1), and leave only the estimation of the
factors (i.e., the states) to the state space form (see Sect. 4).

Remark 3.1 The Eq. (7) is specified for the states in period t + 1, given the errors in
period t , which requires some consideration when modeling correlations between the
signal and state errors in EViews. However, by Assumption A3, the state and signal
errors are mutually uncorrelated. Therefore, the construction of the temporal indices
of the state and signal equations do not affect the methods we use in this paper. For a
state space specification with contemporary error indices, see, e.g., Hamilton (1994,
p. 372).

3.1 The Kalman Filter and Smoother

The latent state vector αt can be estimated numerically by the Kalman filter and
smoother (see, e.g., Harvey 1989; Durbin and Koopman 2012, for thorough treat-
ments). Consider the conditional distribution of αt , based on the available information
at time t − 1, Ft−1. Under the Gaussian state space model, the distribution is normal
αt |Ft−1 ∼ N (at |t−1,Pt |t−1), where

at |t−1 = E(αt |Ft−1), Pt |t−1 = Var(αt |Ft−1).

By construction, at |t−1 is theminimumMSE estimator of (theGaussian)αt , withMSE
matrix Pt |t−1. Given the conditional mean, we can find the minimum MSE estimator
of xt from (6),

x̂t = E(xt |at |t−1) = Htat |t−1,

with error vt = xt − x̂t and associated N × N error covariance matrix

Ft = Var(vt ) = HtPt |t−1H′
t + �ξ ,

where �ξ was defined in relation to (6).
The Kalman filter is a recursion over t = 1, 2, . . . , T that, based on the error vt

and the dispersion matrix Ft , sequentially updates the means and variances in the
conditional distributions αt |Ft ∼ N (at |t ,Pt |t ) and αt+1|Ft ∼ N (at+1|t ,Pt+1|t ) by
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at |t = at |t−1 + Pt |t−1H′
tF

−1
t vt ,

Pt |t = Pt |t−1 − Pt |t−1H′
tF

−1
t HtPt ,

at+1|t = Ttat |t ,
Pt+1|t = TtPt |tT′

t + Rt�ηR′
t , (11)

where Tt and �η were defined in relation to (7). The computational complexity of the
recursion depends largely on the inversion ofFt . Note that the second term in (11) may
be viewed as a correction term, based on the last observed error vt . EViews refers to at |t
as the filtered estimate of αt , and to at+1|t as the one-step ahead prediction of αt . The
recursion requires the initial one-step ahead predicted values a1|0 and its associated
covariancematrixP1|0. If xt is a stationary process, then they can be found analytically.
Otherwise, EViews uses diffuse priors, followingKoopman et al. (1999). The usermay
also provide the initial conditions; see van den Bossche (2011) and IHS Global Inc.
(2015d, p. 683). Additionally, we need estimates of the parametersHt ,Tt ,�ξ and�η.
Conveniently, the Kalman filter provides the likelihood function as a by-product from
the one-step ahead prediction errors (see Harvey 1989, Sect. 3.4.), and the recursion
can therefore be based on maximum likelihood estimators of the parameters; EViews
offers various numerical optimization routines to find the associated estimates. In this
paper, however, we follow Doz et al. (2011) and estimate the main parameters of
the dynamic factor model (3) by PC; only the factors are estimated using the Kalman
filter. Thismethod is consistent and generallymuch faster than a recursion that includes
parameter estimation.

The Kalman filter is a forward recursion. By applying a backward (smoothing)
recursion using the output from the Kalman filter, we can find at |T , theFT -conditional
(i.e., conditional on all available observations) minimumMSE estimator of αt , and its
associated MSE matrix Pt |T . There are different kinds of smoothing algorithms (see,
e.g., Durbin and Koopman 2012, Sect. 4.4). EViews uses a fixed-interval smoothing,
which in its classical form returns the estimatedmeans and variances of the conditional
distributions αt |FT ∼ N (at |T ,Pt |T ) by

at |T = at |t + Pt |tT′
tP

−1
t+1|t

(
at+1|T − at+1|t

)
,

Pt |T = Pt |t − Pt |tT′
tP

−1
t+1|t

(
Pt+1|T − Pt+1|t

)
P−1
t+1|tTtPt |t ,

for t = T , T − 1, . . . , 1.
Because the smoothed estimator at |T is based on all observations, its MSE cannot

be larger than the MSE from the filtered estimator at |t , in the sense that the MSE
matrix of the latter is the MSE matrix of the smoothed estimator plus some positive
definite matrix.5

TheKalmanfilter and smoother offer an exceptionally easyway of handlingmissing
values, whereby the matrix Ht is simply set to zero (see, e.g., Durbin and Koopman

5 If the state space model is not Gaussian, then the Kalman filter and smoother do not in general provide
the conditional means, and the associated estimators are no longer the minimumMSE estimators. They are,
however, the linear minimum MSE estimators.
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2012, Sect. 4.1). This treatment preserves optimality. Similarly,MSE-optimal forecasts
are conducted by treating future values of xt as missing observations.

4 The Two-Step Estimator of the Common Factors

Doz et al. (2011) show that misspecifying the static factor model (3) with respect
to some of the dynamics and cross-sectional properties may still lead to consistent
estimation of the space spanned by the common factors. They propose to estimate
the common factors in two steps. In the first step, preliminary parameter estimates
are computed by PC. In the second step, the factors are re-estimated by MSE-optimal
linear projection from one run of the Kalman smoother, allowing for idiosyncratic
cross-sectional heteroscedasticity, common factor dynamics, as well as an unbalanced
panel.

Because the factors and factor loadings are not uniquely identified, Doz et al. (2011)
consider a specific rotation, outlined in the following way. Under the normalization
ϒ = IR, we have that � = ��′ + 	, so that � is identified up to an orthogonal
multiplication (see Sect. 2). Let �′� have spectral decomposition �′� = QDQ′,
whereD = diag(ϕ1(�

′�), . . . , ϕR(�′�))′ andQQ′ = IN , and consider the following
representation of the factor model (3):

xt = �+gt + εt ,

where �+ = �Q and gt = Q′ft . By construction, �′+�+ = D and �+�′+ = ��′,
such that there exists a matrix P = �+D−1/2 with the property P′P = IR. Because ft
has a VAR representation (4), gt also has a VAR representation,

B+(L)gt = wt , (12)

where B+(L) = Q′B(L)Q and wt = Q′zt . In many cases, estimating gt , or any other
rotation of ft , is as good as estimating ft itself (see Sect. 2). In particular, the conditional
mean, which is used when forecasting under squared error loss, is unaffected by the
rotation.

Suppose X = (x1, x2, . . . , xT ) is the N × T matrix of standardized and balanced
panel data with sample covariance matrix S = T−1 ∑T

t=1 xtx
′
t = T−1XX′. Let D̂ =

diag(d1, d2, . . . , dR) be a diagonal matrix with the R largest eigenvalues of S on its
main diagonal, and let P̂ be the R × R matrix with the associated eigenvectors as
columns. Under the specific rotation Q′ft , the PC estimators of the factors and factor
loadings (see Sect. 2.1) are

ĝt = D̂−1/2P̂′xt , (13)

�̂+ = P̂D̂1/2. (14)

If the covariance decomposition in � is identifiable (see Sect. 2), then under Assump-

tions A1–A3 in Sect. 2 it holds that ĝt
p→ gt and �̂+

p→ �+, as N , T → ∞, where
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p→ denotes convergence in probability. The PC estimators are thus consistent, and in
that sense they suffice. They do not, however, exploit the factor time series dynam-
ics imposed by B(L), or the fact that the idiosyncratic components are potentially
cross-sectionally heteroscedastic (i.e., that the diagonal elements of 	 are possibly
different). Also, they require a balanced panel. Conveniently, the Kalman filter offers
a solution to these issues.

Suppose that the true model (3) fulfills Assumptions A1–A3. Let this model be
characterized by Ω = {�,B(L),
(L),	}. Doz et al. (2011) consider two misspec-
ifications of Ω where the Kalman smoother can be used to exploit the dynamics
of the common factors composed in B(L): one model that is characterized by
ΩA3 = {�,B(L), IN , ψIN }, where ψ is a constant, and a second model that is
characterized by ΩA4 = {�,B(L), IN ,	d}, where 	d = diag(ψ1,1, . . . , ψN ,N ) is a
diagonal matrix with the diagonal elements of	 on its main diagonal. The parameters
of the the approximating models ΩA3 and ΩA4 can be consistently estimated even
though the true model is characterized by Ω . Moreover, given the parameters, the
precision in the factors can be improved by linear projection using the Kalman filter
based on the state space solution in Sect. 3.

Here, imposing the rotation gt = Q′ft , implies that gt by assumption fol-
lows the VAR representation (12). Hence, for the state space solution in Sect. 3,
{gt ,B+

1 , . . . ,B+
p ,wt ,�

+} replace {ft ,B1, . . . ,Bp, zt ,�} in the representation (10).
The signal and state equations (6) and (7) are then, respectively,

⎛

⎜
⎜
⎜
⎝

x1,t
x2,t
...

xN ,t

⎞

⎟
⎟
⎟
⎠

= (�+ 0 · · · 0)

⎛

⎜
⎜
⎜
⎝

gt
gt−1
...

gt−p+1

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

ε1,t
ε2,t
...

εN ,t

⎞

⎟
⎟
⎟
⎠

, (15)

⎛

⎜
⎜
⎜
⎝

gt
gt−1
...

gt−p+1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B+
1 B+

2 · · · B+
p−1 B+

p
IR 0 · · · 0 0
0 IR · · · 0 0
...

...
. . .

...
...

0 0 0 IR 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

gt−1
gt−2
...

gt−p

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

wt

0
...

0

⎞

⎟
⎟
⎟
⎠

. (16)

As shown by Doz et al. (2011), the following steps provide a consistent method for
estimating the factors under ΩA3 and ΩA4:

1. Estimate �+ and gt for t = 1, 2, . . . , T by the rotated PC estimators (13) and
(14).

2. Estimate the VAR polynomial B+(L) by the ordinary least squares (OLS) regres-
sion

ĝt = B+
1 ĝt−1 + B+

2 ĝt−2 + · · · + B+
p ĝt−p + ŵt . (17)

Under standard aforementioned assumptions it holds as N , T → ∞ that B̂+
m

p→
B+
m , for m = 1, 2, . . . , p.
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3. Run the Kalman smoother over the state space model defined by (15) and (16) to
re-estimate the factors gt for t = 1, 2, . . . , T , conditional on the estimates �̂+ and
B̂+(L).

To apply the Kalman filter we need to know the covariance matrices �ξ and �η (see
Sect. 3), which here correspond to, respectively, the idiosyncratic covariance matrix
	 and the covariance matrix for wt in (12), Var(wt ). Under Assumptions A1–A3,

S
p→ �, as N , T → ∞. Thus, wemay consistently estimate	 by 	̂ = S−�̂+�̂

′
+

p→
� − �+�′+ = � − ��′ = 	. Similarly, a consistent estimator of Var(wt ) may be
based on the residuals in (17).

The model defined by ΩA4 is the most general of the two approximating models,
and is therefore expected to have the highest precision in estimating the factors, unless
the model defined by ΩA3 is in fact the true (or very close to the true) model.

4.1 Implementing the Two-Step Estimator in EViews

In the supplementary material, we provide the file subroutine_dfm contain-
ing a subroutine named DFM that estimates the approximating models characterized
by ΩA3 and ΩA4. To call the subroutine, either the subroutine code should be
placed directly into a user’s main script, or the file subroutine_dfm should
be included using the command Include; see Chapter 6 in IHS Global Inc.
(2015a).

EViews works around objects, consisting of information related to a specific choice
of analysis. Two types of objects are frequently used when programming in EViews:
string objects (i.e., sequences of characters) and scalar objects (i.e., numbers). How-
ever, in the code we make more extensive use of the related concepts string variables
and control variables, which are temporary variables whose values are strings and
scalars, respectively, and that only exist while the EViews program executes. String
variables have names that begin with a “%” (see IHS Global Inc. 2015a, p. 92). Control
variables have names that begin with a “!” (see IHS Global Inc. 2015a, p. 126). For
example, the commands%ser = “gdp” and !n = 5 create a string variable %ser
containing the characters ‘gdp’ and a control variable !n containing the number 5.
By enclosing these variables in curly brackets, “{“ and ”}”, EViews will replace the
expressions with the underlying variable value (see section on replacement variables
in IHS Global Inc. 2015a, p. 130). For example, the commands series {%ser}
and Group G{!n} create a series object named gdp and a group object named
G5.

The subroutine DFM is defined by

DFM(Group XGrp, Scalar FNum, Scalar VLag, Sample S,
String Model)

where each argument is specified by anEViews object: a group object XGrp containing
the observable time series in xt , a scalar object FNum containing the number of factors,
a scalar object VLag containing the number of lags in the factor VAR representation
(12), a sample object S over which the Kalman smoother should estimate the states,
and a string object Model that should be set to “A3” for the model characterized by
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Table 1 Summary of objects that are stored by the subroutine DFM

Object name Description Object type

LambdaHat PC-estimated factor loadings: �̂+ Matrix (N × R)

CovEpsHat PC-estimated idiosyncratic covariance matrix: 	̂ Matrix (N × N )

BHat Estimated factor VAR coefficients: (B̂(1), B̂(2), . . . , B̂(R))
′ Matrix (Rp × R)

CovWHat Estimated factor VAR error covariance matrix: ˆVar(wt ) Matrix (R × R)

DFMSS State space specification (state space object) Sspace

SVk_m State relating to factor k, lag m Series

ΩA3, or to “A4” for the model characterized by ΩA4. The subroutine is called by
the keyword Call. Suppose, for example, that we want to estimate a dynamic factor
model under ΩA4 using two factors that are VAR(1). If there is a time series group
object G and a sample object J, then the subroutine may be called by

Call DFM(G, 2, 1, J, "A4")

Within the subroutine, XGrp is assigned the series in the group G, FNum is assigned
the number 2, VLag is assigned the number 1, S is assigned the sample J, and Model
is assigned the characters ‘A4’. The objects within the subroutine are global, meaning
that any changes to the objects inside the subroutine will change the very objects or
variables that are passed into the subroutine. For instance, in the subroutine, the series
in XGrp are standardized prior to the PC estimation. Hence, this will standardize the
series in the group that is used to call the subroutine (G, in the example). EViews
offers also the possibility to use local subroutines; see IHS Global Inc. (2015a, p.
156).

Table 1 displays a summary of the objects that are stored in the Eviews workfile.
These objects belong to the state space specification of the dynamic factor model,
implying that they are required to produce certain output, such as state series graphs,
and state or signal forecasts (see IHS Global Inc. 2015d, Chapter 39). Note that
once the subroutine is called, the objects will be written over. Thus, if the sub-
routine is called several times in an active workfile, say in a loop, then only the
objects from the last run will be available, unless they are consecutively stored by the
user.

The subroutine executes the steps 1–3 as outlined above.6 First, the data are stan-
dardized over the balanced panel, and the factors and factor loadings are estimated by
(13) and (14).7 Next, we estimate the factor VAR (17), producing the matrix BHat
(see Table 1). By default, BHat is theRp ×Rmatrix (B̂(1), B̂(2), . . . , B̂(R))

′, where

6 The data set could contain missing values within the balanced panel. In that case, EViews will disregard
entire rows (each relating to an observation number) for matrix operations, whereby the one-to-one relation
between time and the data positions in matrices will be lost. To avoid such cases, we check each series for
missing values within the balanced panel. If, for a series, missing values are found, then the corresponding
series is removed from the group.
7 The sample covariance matrix S is stored in lower triangular form using a Sym object, which is required
by EViews for collecting its eigenvalues and eigenvectors.
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B̂( j) is a matrix containing the j th columns of each of the estimated autoregressive
coefficient matrices B̂+

k (k = 1, 2, . . . , p) from the regression (17). That is, the first

row of BHat is the first column of B̂+
1 , the second row is the first column of B̂+

2 , and
so on. For more details, see IHS Global Inc. (2015b, p. 815).8

Lastly we set up a state space object and run the Kalman smoother. For the state
space object we need to declare signal and state properties (see van den Bossche 2011),
where every line in (15) and (16) has to be specified. Moreover, if an error should exist
for a specific equation line, then it must be specified. In the signal equation (15), all
lines should have errors, whereas in the state equation (16), only the first R lines
should have errors (relating to the elements in wt ). These errors are named by the
keyword @ename. The signal errors are named e1, e2, and so on, and the state errors
are named w1, w2, and so on.

The error variances and covariances are specified using the keyword @evar.
Variances and covariances that are not specified are by default zero. Following the
estimation procedure for the models defined by ΩA4 and ΩA3, the signal errors are,
bymisspecification, uncorrelated over both time and the cross-section. As such, we are
only concerned with the contemporary signal error variances (the diagonal elements of
	, that also correspond to the diagonal elements of�ξ in Sect. 3). For the modelΩA4,
these parameters are assigned the PC-estimated variances ψ̂1,1, ψ̂2,2, . . . , ψ̂N ,N , col-
lected in the diagonal of CovEpsHat (see Table 1). For the model ΩA3, we impose
the restriction 	 = ψIN , where, following Doz et al. (2011), ψ is estimated by the
mean of the estimated idiosyncratic variances, ψ̂ = N−1 ∑N

i=1 ψ̂i,i = N−1trace(	̂).
The state errors relate to the factor VAR residuals, and are, under correct specification,
also white noise. The variances and covariances of theR first state errors are assigned
the elements in the residual covariance matrix from the estimated regression (17),
CovWHat (see Table 1).

After declaring the signal and state error properties, the subroutine DFM defines
and appends the signal and state equations to the state space object DFMSS using
the keywords @signal and @state. The output of main interest are the estimated
factors. The subroutine lets SVk_m refer to factor k, lag m. Thus, we are primarily
interested in SV1_0, SV2_0, …, SVR_0, i.e., the states referring the contemporary
factors. The remaining states, SV1_1, SV2_1, …, SVR_p, refer to lags of the factors,
and are simply created for the sole reason to complete the markovian state space
solution for the Kalman filter and smoother (see Sect. 4). Accordingly, the state space
object allows only one-period lags of the states.

As an example, say that we wish to model 50 time series in the vector xt =
(x1,t , x2,t , . . . , x50,t )′ by the static factor model (3) with two factors that follow
a VAR(2). There are then Rp = 2 × 2 = 4 states in the state vector αt =
(g1,t , g2,t , g1,t−1, g2,t−1)

′, which by the subroutine are named SV1_0, SV2_0,
SV1_1 and SV2_1, respectively. The signal equation (15) is now

8 We do not check that the estimated VAR is stationary, which for instance could be done by checking
that the eigenvalues of the companion matrix B̃ in (8) all lie within the complex unit circle. This procedure
is easily accomplished in EViews version 9.5 and later, since the companion matrix is then available as a
function return.
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⎛

⎜
⎜
⎜
⎝

x1,t
x2,t
...

x50,t

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

λ+
1,1 λ+

1,2 0 0

λ+
2,1 λ+

2,2 0 0
...

...
...

...

λ+
50,1 λ+

50,2 0 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

g1,t
g2,t
g1,t−1
g2,t−1

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎜
⎝

ε1,t
ε2,t
...

ε50,t

⎞

⎟
⎟
⎟
⎠

, (18)

where [λ+
i, j ] = �+, a matrix with elements λ+

i, j corresponding to the i th row and j th
column, and the state equation (16) is

⎛

⎜
⎜
⎝

g1,t
g2,t
g1,t−1
g2,t−1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

b+
(1)1,1 b+

(1)1,2 b+
(2)1,1 b+

(2)1,2

b+
(1)2,1 b+

(1)2,2 b+
(2)2,1 b+

(2)2,2

1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

g1,t−1
g2,t−1
g1,t−2
g2,t−2

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

w1,t
w2,t
0
0

⎞

⎟
⎟
⎠ , (19)

where [b+
(1) j,k] = B+

1 and [b+
(2) j,k] = B+

2 .
Suppose, for simplicity, that the time series in xt are named x1, x2, …, x50 in the

EViews workfile. The subroutine declares (18) and (19) line by line. First, the N = 50
equations are declared as

x1 = LambdaHat(1, 1) * SV1_0 + LambdaHat(1, 2) * SV2_0 + e1
x2 = LambdaHat(2, 1) * SV1_0 + LambdaHat(2, 2) * SV2_0 + e2
.
x50 = LambdaHat(50, 1) * SV1_0 + LambdaHat(50, 2) * SV2_0 + e50

Then, the R = 2 first state equations are declared as

SV1_0 = BHat(1, 1) * SV1_0(-1) + BHat(2, 1) * SV1_1(-1) + _
BHat(3, 1) * SV2_0(-1) + BHat(4, 1) * SV2_1(-1) + w1

SV2_0 = BHat(1, 2) * SV1_0(-1) + BHat(2, 2) * SV1_1(-1) + _
BHat(3, 2) * SV2_0(-1) + BHat(4, 2) * SV2_1(-1) + w2

(where the underscore “_” joins the lines) and, lastly, the remaining R(p − 1) = 2
state equations are declared as

SV1_1 = SV1_0(-1)
SV2_1 = SV2_0(-1)

To run theKalman smoother in EViews,we need to set up theML estimation procedure
provided by the Kalman filter (see Sect. 3), even though there are no state space param-
eters to be estimated, as we only seek the smoothed states, given the PC-estimated
parameters. The smoothing algorithm is provided by the command Makestates(t
= smooth) *, where the * implies that output will have the same name as the
input, meaning that the smoothed states will have names SV1_0, SV2_0, SV3_0,
…, SV1_1, SV2_1, SV3_1, and so on, each relating to a factor and its lags. If we
want filtered states instead of smoothed states (see Sect. 3.1), then we can change
the option to t = filt. The subroutine code has comments that explain individual
steps. A few final remarks are presented below.

Remark 4.1 We have assumed that the number of factorsR is known. In practice, this
is rarely the case. We could of course estimate the number of factors (see references in
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Sect. 2.1); though, for forecasting or nowcasting (see Sect. 6), the appropriate number
of factors is rather a practical concern, and can be found from forecasting evaluations.
The same reasoning applies to the number of lags in the factor VAR regression (17).
In case we wish to estimate the number of lags, however, we may use the criteria
available in EViews; see IHS Global Inc. (2015b, p. 838) and IHS Global Inc. (2015d,
Sect. 38). These criteria are also discussed in Lütkepohl (2007, Sect. 4.3).

Remark 4.2 Forecasts can be made for the signal and state equations using the EViews
built-in procedures; see IHS Global Inc. (2015d), p. 676. Because future values are
treated as missing data by the Kalman smoother, smoothed state forecasts can be
carried out by simply extending the sample to include the forecast period.

5 Monte Carlo Simulation

For consistency, we replicate the parts of the simulation study by Doz et al. (2011) that
compares the precision of the models defined byΩA4 andΩA3. Code that reproduces
the simulation study is available in the supplementary material.

Doz et al. (2011) consider a one-factor (R = 1) setup with the following data
generating process (DGP):

xi,t = λi ft + εt (i = 1, 2, . . . , N ; t = 1, 2, . . . , T ),

λi ∼ i.i.d. N (0, 1),

(1 − bL) ft = zt ; zt i.i.d. N (0, 1 − b2),


(L)εt = ut ; ut = (u1,t , u2,t , . . . , uN ,t )
′ i.i.d. N (0,�u), 
(L) = (1 − φL)IN ,

�u = [τi, j ]; τi, j = √
κiκ jδ

|i− j |(1 − φ2), κi = βi
1−βi

λ2i ,

βi i.i.d. U(m, 1 − m), (i, j = 1, 2, . . . , N ),

where U denotes the uniform distribution. That is, the factor and idiosyncratic compo-
nents are AR(1) processes, ft = b ft−1+zt , εi,t = φεi,t−1+ui,t (i.e., the idiosyncratic
AR-coefficients are the same over the cross-section), where the idiosyncratic compo-
nents are possibly cross-sectionally dependent through the covariance matrix�u . The
constant δ controls for the amount of idiosyncratic cross-correlation, where δ = 0
implies the exact factor model with no cross-sectional dependence. The constant βi
controls the signal-to-noise ratio, i.e., the ratio between the variance of xi,t and the
variance of the idiosyncratic component εi,t . For this constant we have used the well-
known result that a uniformly distributed variable in the interval [ml ,mu] may be
generated as ml + (mu − ml)μ, where μ ∼ U(0, 1). The correlated idiosyncratic
errors are generated using a Cholesky decomposition, �u = LL′, where L is a lower
diagonal matrix. The multivariate normal error ut ∼ N (0,�u) is then generated as
Let , where et ∼ N (0, IN ), for t = 1, 2, . . . , T .

The autoregressive coefficients are set to b = 0.9 and φ = 0.5, and the constants
δ and m are set to δ = 0.5 and m = 0.1. Note that the variances of the errors zt and

123



892 M. Solberger, E. Spånberg

ui,t are scaled, so that the variances of ft and εi,t are 1 and κi , respectively.9 For a
coherent DGP, the starting values for the factors and idiosyncratic components, f0
and εi,0, should come from the stationary distributions of ft and εi,t , respectively. By
construction of the DGP, we have that ft ∼ N (0, 1) and εi,t ∼ N (0, κi ), for all t .
Hence, f0 and εi,0 should also beN (0, 1) andN (0, κi ), respectively. For convenience,
we generate T +1 observations for periods t = 0, 1, 2, . . . , T and discard the starting
values xi,0.

The dimensions are N = 5, 10, 25, 50, 100 and T = 50, 100. The panel is
unbalanced between the time points T − 3 and T by letting xi,t be available for
t = 1, 2, . . . , T − j if i ≤ ( j + 1) N5 . That is, at time T − 3, 80% of the data are
available; at time T − 2, 60% are available; at time T − 1, 40% are available; and at
time T , 20% are available. For each set of dimensions {N , T }, the parameters βi and
λi are drawn 50 times. Then, for each such draw, the error processes zt and ut are gen-
erated 50 times. Hence, the total number of replications is 2500. At each replication,
we execute steps 1–3 from Sect. 4 using our subroutine. To evaluate the precision of
the smoothed factors ĝt , the following measure is used:

Δt = Trace
[
(ft − Q̂ĝt )(ft − Q̂′ĝt )′

]
, (20)

where Q̂ is the estimated coefficient from anOLS regression of ft on ĝt , using the sam-

ple between t = 1 and t = T − 4, Q̂ = ∑T−4
t=1 ft ĝ′

t

(∑T−4
t=1 ĝt ĝ′

t

)−1 = (Ĝ′Ĝ)−1Ĝ′F,
where Ĝ = (ĝ1, ĝ2, . . . , ĝT−4)

′ and F = (f1, f2, . . . , fT−4)
′. A value closer to zero

indicates higher squared error precision (see Doz et al. 2011). Because ft is in this
particular study a univariate process, we have that Δt = ( ft − Q̂ĝt )2.

In the simulation study we run a large number of replications. This increases the
probability that the OLS estimator of the VAR coefficients in (17) by chance may
provide estimates that are inconsistent with a stationary VAR. That is to say, whereas
we use a single factor with true parameter b = 0.9, the estimate of bmay occasionally
be 1 or larger. To avoid these cases (they are very rare), we assign such estimates with
a value that is near the boundary of the stationary parameter space (a value close to 1,
from below).

Table 2 shows a replication of the parts of Table 1 in Doz et al. (2011) that are
related to modelsΩA4 andΩA3. Here,ΔA4

T−s andΔA3
T−s denote the evaluation by (20)

of a smoothed factor in period T − s (s = 0, 1, . . . , 4) from models ΩA4 and ΩA3,

respectively, and Δ̄A4
T−s and Δ̄A3

T−s denote their averages over the 2500 replications. The

panel is unbalanced for s = 0, 1, 2, 3. The upper part of Table 2 displays the averages

Δ̄A4
T−s , and the lower part displays the ratios Δ̄A4

T−s/Δ̄
A3
T−s (a value below 1 indicates

thatΩA4 is, on average, more accurate). Our simulation results are close to the results
in Doz et al. (2011). However, we note that we have somewhat higher precision for
small N , while slightly less precision for large N . As expected, the average precision
of ΩA4 is uniformly better than the average precision of ΩA3.

9 The variance of an AR(1) process vt = ϕvt−1+εt is Var(vt ) = (1−ϕ2)−1Var(εt ). Hence, Var( ft ) =
(1 − b2)−1Var(zt ) = 1, and Var(εi,t ) = (1 − φ2)−1Var(ui,t ) = (1 − φ2)−1τi,i = κi .
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Table 2 Monte Carlo evaluation

T = 50 T = 100

s N = 5 N = 10 N = 25 N = 50 N = 100 N = 5 N = 10 N = 25 N = 50 N = 100

Kalman smoother with cross-sectional heteroscedasticity: Δ̄A4
T−s

4 0.33 0.32 0.32 0.34 0.33 0.20 0.19 0.17 0.18 0.18

3 0.33 0.32 0.32 0.34 0.33 0.20 0.18 0.17 0.18 0.18

2 0.35 0.33 0.32 0.34 0.33 0.21 0.19 0.17 0.18 0.18

1 0.34 0.33 0.32 0.33 0.33 0.22 0.19 0.18 0.18 0.18

0 0.37 0.34 0.32 0.34 0.33 0.25 0.20 0.18 0.19 0.18

Relative performance to Kalman smoother with cross-sectional homoscedasticity:Δ̄A4
T−s/Δ̄

A3
T−s

4 0.99 0.99 0.99 1.00 1.00 0.99 0.98 0.99 1.00 0.99

3 0.99 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.99

2 0.98 0.98 0.98 0.99 0.99 0.96 0.97 0.99 0.99 0.99

1 0.98 0.98 0.98 0.99 0.99 0.97 0.97 0.98 0.99 0.99

0 0.97 0.97 0.97 0.98 0.99 0.97 0.94 0.96 0.97 0.98

6 An Empirical Example: Nowcasting GDP Growth

The usefulness of our subroutine is illustrated in an empirical example where we
nowcast Swedish GDP growth using a large number of economic indicators. All data
are freely available for download, and are provided as supplementarymaterial, together
with code that replicates the empirical example.

A nowcast is a forecast of the very recent past, the present, or the near future.
Nowcasting the state of the economy is important for economic analysts, because key
statistics on economic activity, such as GDP, are published with a significant delay. For
example, in the euro area, first official estimates of GDP are published 6–8 weeks after
the reference quarter. Additionally, GDP is subject to substantial revisions as more
source data become available. Meanwhile, a large number of indicators related to eco-
nomic activity tend to be released well before official estimates of GDP are available,
and typically at higher frequencies. For instance, whereas GDP is typically measured
at quarterly frequency, data on industrial production (relating to the production side
of GDP), personal consumption (relating to the expenditure side of GDP), unem-
ployment, business survey data, and various financial data are available on monthly,
weekly, or daily frequencies (for overviews, see, e.g., Banbura et al. 2011, 2012). As
an illustration, we nowcast the Swedish GDP growth for the second quarter of 2017
(2017Q2), following in spirit the popular procedure by Giannone et al. (2008). We
use data that were available in late August 2017, about 3 weeks before the Swedish
national accounts were released on September 13.

Let yt denote the quarterly GDP growth at time t , measured as percentage change
from period t − 1, and let xi,t (i = 1, 2, . . . , N ) denote the monthly indicators of
economic activity outlined in Table 3. The number of indicators is large, N = 124.
Hence, constructingmodels based directly on the indicators would quickly suffer from
the curse of dimensionality, with limited degrees of freedom and large uncertainty
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in parameter estimation. Therefore, a dynamic factor model is a natural choice of
model, as an efficient dimension reducing technique. Furthermore, while collinearity
is generally bad for conventional estimation methods, such as OLS, collinearity is
rather preferred when extracting factors, since the goal for the extracted factors is to
cover the bulk of variation in the elements of xt . As can be seen in Table 3, all 124
indicators would be available within 5–6 weeks after the last day of the reference
quarter. This is 2–3 weeks before the first outcome of GDP is released. We could also
choose to nowcast the GDP growth well before this date; either by smoothing missing
data or by simply removing all data with later publication dates. A nowcast for yt may
be found by first estimating the monthly factors f̂ j,t for j = 1, 2, . . . ,R, using the
two-step estimator outlined in Sect. 4, and then by regressing the GDP growth on the
quarterly (collapsed) factors,

ŷt = α̂+
R∑

j=1

β̂ j f̂
Q
j,t , (21)

where α̂ and β̂ j are estimated regression parameters, and f̂ Qj,t are quarterly averages

of the monthly factors f̂ j,t .10 We could also consider lagging the quarterly factors.
However, as advocated by Giannone et al. (2008), the contemporary factors should
capture the bulk of dynamic interaction among the indicators, and hopefully also the
bulk of dynamics in GDP growth.11

We deflate export and import of goods using their respective price indices. The
deflated series are then seasonally adjusted using the U.S. Census Bureau’s x12-
ARIMA procedure, accessible from EViews (see IHS Global Inc. 2015c, p. 416).
Likewise, we seasonally adjust and replace all price indices and new registrations
of cars. Lastly, before estimating the dynamic factor model, we make the transfor-
mations outlined in Table 3 to achieve stationarity. The series that we use from the
Economic Tendency Survey aremeasured in net balances; they are therefore stationary
(or approximately stationary) by construction (see, e.g., Hansson et al. 2005; Öster-
holm 2014, for descriptions of the survey). Based on the (now) stationary monthly
indicators, we estimate two monthly factors (R = 2) that follow a VAR(2) over the
sample 2002M01–2017M06. For seven of the monthly indicators, the start date is later
than 2002M01. For these series, we let the Kalman filter smooth the missing values.

There are numerous outputs and tools available for analyzing a state space object in
EViews; see van den Bossche (2011) and IHS Global Inc. (2015d, Chapter 39). Here,
our main interest is in the estimated factors and their associated error bounds. As
discussed in Sect. 3.1, EViews allows the user to create filtered states, one-step ahead

10 Another approach is to let (amonthly) yt be apart of the observedvector so thatxt = (yt , x1,t , . . . , xN ,t )
′

(see, e.g., Schumacher and Breitung 2008; Banbura and Runstler 2011). At point t , yt is missing. By
projection from the Kalman filter or the EM algorithm, the minimummean-square error estimator of yt can
be achieved.
11 Naturally, we could use the same principle to make a forecast of yt+h , for some h > 0 (see, e.g., Stock
and Watson 2002a, b). The main difference between forecasting and nowcasting is that, for nowcasting we
exploit contemporary (rather than leading) indicators. For forecasting, Stock and Watson (2002b) suggest
to use lags of both the factors and yt as predictors.
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Fig. 1 Smoothed monthly state estimates (black solid lines) with error bounds (gray dashed lines)

predictions of states or smoothed states. In the subroutine, we use smoothed states
(see Sect. 4.1). By default, EViews provides uncertainty bounds constructed from 2
standard errors (see Fig. 1). Recall from Sect. 4.1 that there are Rp = 2 × 2 = 4
states, where the first two (SV1_0 and SV2_0) are our estimated factors, and the last
two are their lags. In our case, the estimated uncertainty in terms of standard errors is
somewhat larger for the second factor than for the first.

Given the estimated factors (that cover the nowcast period), the estimated regression
(21) and its nowcast can easily be obtained in EViews using the interface menus
(see IHS Global Inc. 2015c, Chapter 2), or by programming (see IHS Global Inc.
2015a, pp. 360–362). Carrying out the regression, our nowcast for the GDP growth
2017Q2 is 1.29 percent; the first published outcome by mid-September 2017 was 1.27
percent. Naturally, it would be desirable to have the associated error bounds for the
nowcast. However, basing the error bounds on theory is a bit more cumbersome than
usual, since the regressors in (21) (i.e., the factors) are estimated, and not observed
series (see Bai and Ng 2006). EViews provides conventional error bounds based on a
regression (see IHS Global Inc. 2015d, p. 144). In this particular case, they would be
too narrow. Moreover, the error bounds are complicated by GDP revisions, where the
most recent quarterly outcomes tend to also be revised, affecting the current growth
rate. Figure 2 shows the quarterly collapsed factors and the GDP growth nowcast for
2017Q2 (including outcome up to 2017Q1). Judging from the figure, it is tempting to
conclude that the second factor is partly lagging the first factor. However, itsmovement
is rather a consequence of being (almost) orthogonal to the first factor.
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Fig. 2 GDP growth nowcast and quarterly factors

7 Concluding Remarks

We have demonstrated how to estimate a dynamic factor model by the Kalman filter
and smoother in EViews and provided a global subroutine that can be useful to a
broad range of economists or statisticians using large panel data to extract dynamic
factors. Because the estimation requires only to compute principal components and
thenmake one run with the Kalman smoother, the procedure is fast. Several extensions
are possible. For instance, the code can be used to make an EViews Add-in. The
code could also easily be altered to meet specific user needs. For example, a user
may find it more convenient to work with a local subroutine. Or a user may wish to
add estimation procedures for the number of factors and the number of lags in the
factor autoregression. These modifications would require only basic knowledge in the
EViews programming language.
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