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Abstract
This study investigates the amount of liquidity that is necessary to settle a given net-
work of financial obligations. In our analysis, we assume sequential settlement, which
is standard in real-world interbank settlement systems, instead of simultaneous settle-
ment, which is typically assumed in relevant research. We develop a graph-theoretic
model and apply a flow network technique to investigate how the interconnected fea-
ture could affect the required liquidity. Our main contribution is to show that the effect
of the interconnected feature is characterized with our original concepts regarding
“twist” properties—arc-twisted and vertex-twisted—that are defined on the basis of
the concept of “cycles.” Each of the “twist” properties refers to certain inconsistency
in the dynamics of settlements. The characterization provides a consistent and fun-
damental perspective of how a hub or other network structures affect the required
liquidity. We further investigate the quantitative implications of the “twist” properties
for real-world networks of obligations by examining networks with clustered struc-
tures and small-world structures. We show that “twist” properties have non-linear
effects on the required liquidity against an increase in the amount of obligations.

Keywords Financial crisis · Bank · Modeling

1 Introduction

The financial crisis of 2008 raised the concern that default of a bank may cause a
“domino” of default through interconnected financial obligations among banks. To
ensure the resilience of financial system, the Basel Committee introduced a liquid-
ity regulation under the framework of Basel lll; banks are required to hold sufficient
liquidity against short-term liquidity shocks. For the purpose of liquidity regulation
in general, it is crucial to assess the required liquidity appropriately. The assessment
hinges on, among other things, the assumption of an underlying settlement system. In
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this respect, seminal theoretical studies in the literature on financial contagion1 effec-
tively assume “simultaneous” settlement, by which financial obligations are canceled
out whenever possible, although “sequential” settlement is the standard in the mod-
ern interbank settlement systems. The assumption of simultaneous settlement leaves
the relevant analyses highly tractable by allowing fixed-point arguments, although it
could considerably underestimate the amount of funds to prevent a “domino” effect
of default.

Purpose and Framework
This study offers a framework to evaluate the amount of liquidity—funds available
for settlements—that is necessary to prevent default under “sequential” settlement.
Our aim is to clarify how the interconnected feature of financial obligations could
affect the required amount of funds. For this purpose, we assume an exogenous net-
work of obligations and abstract their formation. We focus on the total amount of
funds necessary to settle all obligations, and investigate how the amount depends
on network topologies. We perform our investigation along with two polar liquid-
ity scenarios. One is assumed as a situation in times of financial distress, by which
funds circulate least efficiently. The other is assumed as a benchmark situation in
times of non-distress, by which funds circulate most efficiently. In our formula-
tion as graph problems, the pair of scenarios amounts to deriving the upper bound
and lower bound of the required amount of funds against possible “orders” of settle-
ments.

Approach and Technique
We characterize each lower bound and upper bound, applying a basic technique to
analyze “flow” networks. Specifically, we decompose a network of obligations on
the basis of cycles. This helps to separate mathematically the relevant “ordering”
factor from the relevant “flow” factor. We refer to the former as the synchroniza-
tion factor, and the latter as the domain factor, for reasons that become clearer
soon. In terms of the interconnection of network, the synchronization factor cap-
tures the interconnected feature of network, while the domain factor—cycles and
the relevant amount of obligations—serves as the reference basis for the
interconnection.

Main Results: Qualitative Aspects
The main contribution of this study is to reveal the qualitative aspect of the syn-
chronization factor with two of our original concepts, arc-twisted and vertex-twisted,
which are formally defined on a directed graph. Specifically, with regard to the
lower bound, the domain factor refers to the efficient recycling of funds within
each domain—a cycle of obligations—without considering the interrelation between
domains, while the synchronization factor, which is characterized by arc-twisted,
refers to the additional amount of funds required that is sourced from the interre-
lation between domains. With regard to the upper bound, the domain factor refers to
the least efficient recycling of funds within a domain without considering the interre-

1 The pioneering work of Eisenberg andNoe (2001) provides an analytical framework, which is adopted for
further investigation by Cifuentes et al. (2005), Gourieroux et al. (2013), Elliott et al. (2014), and Acemoglu
et al. (2015). Glasserman and Young (2016) provide a survey on financial contagion.
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lation between domains, while the synchronization factor, which is characterized by
vertex-twisted, refers to the amount of subtraction that is sourced from the interrelation
between domains.

Thus, the interconnected feature of network is essentially captured by arc-twisted
for the case of the lower bound, and by vertex-twisted for the case of the upper bound.
A natural concern is the relation between the two concepts. In this respect, we show a
simple relation, such that vertex-twisted indicates arc-twisted but not vice-versa. This
result consolidates our findings on the qualitative implications of the interconnected
feature. We illustrate that our characterization with the “twist” concepts provides a
consistent and fundamental perspective on the underlying mechanism for a hub or
other network structures to affect each lower/upper bound.

Results: Quantitative Aspects
We further analyze the quantitative implications of the “twist” concepts for real-world
payment networks. Our approach is to focus on classes of network that capture key
properties of real-world payment networks. The key properties observed in real-world
payment networks have been discussed as a combination of high degree of clustering
and relatively short average path lengths, as highlighted by Soramäki et al. (2007)
with regard to Fedwire, by Rordam and Bech (2009) with regard to Danish interbank
money flows, and by Inaoka et al. (2004) and Imakubo and Soejima (2010) with
regard to BOJ-NET. This pair of properties is typically referred to as a small-world
structure.2 We show that for each lower and upper bound, an increase of obligations
has a non-linear effect on the required amount of funds through the synchronization
factor. This result suggests that appropriate consideration of the synchronization factor
is indispensable in evaluating the funds required for real-world payment networks.

Interbank Settlement Systems
Here, we elaborate on the background of our assumption of “sequential” settlement. A
traditional interbank settlement system used to be a simultaneous-type system called
a designated-time net settlement system, whereby settlements are conducted on a
designated-time basis and the obligations are offset against each other as much as pos-
sible. Against the backdrop of the expanding volume of obligations and technological
advances for real-time transactions, many interbank settlement systems have changed
and now adopt a sequential-type system called real-time gross settlement (RTGS),
which settles obligations on a real-time basis.3 In the RTGS system, obligations are
no longer offset against each other but instead are settled on an individual gross basis.
Although several interbank settlement systems further adopt systems that partially
combine the offsetting service to the RTGS system, they still operate on the basis of
RTGS system.4 Our assumption of “sequential” settlement simulates the RTGS sys-

2 Small-world structures are examined by Watts and Strogatz (1998), Watts (1999), and broadly in subse-
quent literature for various types of networks beyond payment networks.
3 Fedwire changed to RTGS in 1982, the Clearing House Automated Payments System began using it
in 1996, and BOJ-NET adopted it in 2001. The World Bank (2013) documents that 116 of 139 surveyed
countries had adopted RTGS up to 2010.
4 The additional offsetting service to the RTGS system is called a liquidity-saving mechanism. For its
functioning and relevant discussion, see Martin and McAndrews (2008, 2010).
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tem without any offsetting service, and is intended to serve as a benchmark analysis
for applications that incorporate the offsetting service.

Literature and Contribution
In the literature of financial network, a distinctive feature of our two concepts, arc-
twisted and vertex-twisted, is their reference to dynamics. Such existing concepts as
connectivity and concentration are largely static,5 because the main focus of such
research is examination of the consequence of balance-sheet linkage, effectively
assuming “simultaneous” settlement. Few theoretical studies explicitly assume certain
“sequential” settlement to discuss the relevance of network topologies. An exception
is Rotemberg (2011), whose analysis is most relevant to the present study. Rotem-
berg (2011) theoretically examines the lower bound of the required amount of funds
in a different setting. The author assumes “sequential” settlement, which allows an
obligation to be settled in arbitrary installments.6 However, in reality, the unit of set-
tlements is not flexibly adjusted in many interbank settlements.7 In our study, we do
not allow arbitrary installments “ex-post,” that is, the unit of settlement is fixed when
a network of obligations is given; when the given obligations are settled, each obli-
gation needs to be settled at once in each given unit.8 Rotemberg (2011) shows that
multiplicity of cycles could be a source of inefficient circulation of funds in deriving
the lower bound. From the perspective of our characterization, multiplicity of cycles
corresponds to the “domain” factor. The assumption of flexible installments fails to
capture the “synchronization” factor.9 Indeed, the key contribution of our study is to
reveal that the static concept of “domain” factor is insufficient; however, a dynamic
concept regarding the “synchronization” factor is indispensable for examining RTGS
systems. The implications of the dynamic aspect of RTGS systems have also been
examined in simulation-based studies, such as Beck and Soramäki (2001) and Gal-

5 With regard to the analysis of financial contagion, the implications of the “connectedness” or “connec-
tivity” of networks are extensively examined by Allen and Gale (2000), Freixas et al. (2000), Lagunoff
and Schreft (2001),Cifuentes et al. (2005), Nier et al. (2007), Castiglionesi and Navarro (2008), Caballero
and Simsek (2009), Allen et al. (2010), Gai and Kapadia (2010), Battiston et al. (2012a), and Zawadowski
(2013). Simulation studies for examining the contribution of connectivity and concentration are conducted
byNier et al. (2007) and Battiston et al. (2012b). Statistical concepts that refer to concentration are proposed
by Elsinger et al. (2006) and Cont et al. (2013).
6 Rotemberg (2011) examines a class of a Euler graph. Our analysis deals with a general class that encom-
passes that class. Appendix A.7 presents the graph and shows the relevance of his study to ours.
7 One reason implied by our analysis is that paying in multiple installments sometimes does not benefit the
payer (i.e. reduce the cost of financing liquidity), but instead benefits some other banks. This externality
is not endogenized under settlement systems in which the cost of finance is essentially burdened by the
financiers. In major interbank settlement systems, intraday liquidity is served by the central bank with an
explicit fee or on the basis of collateral served in advance, where the financier is burdened with the cost of
finance.
8 Note that “ex-ante” installments can be captured in our framework such that a debt of 10 is given as two
debts of 3 and 7. Then, at the time of settlement, each debt with 3 and with 7 needs be settled at once in the
unit of 3 and 7 for each, respectively.
9 Note that Rotemberg (2011) does not deal with the upper bound. For the case of the upper bound, we
find that even under the assumption of flexible installments, the “synchronization” factor—characterized
by vertex-twisted—is relevant.

123



Liquidity in Financial Networks 257

biati and Soramäki (2011).10 Our theoretical analysis complements these works by
clarifying the source of complications relevant to the dynamics.

Applications of the Framework
Hayakawa (2018) applies our framework to discuss the liquidity issues of introducing
central clearing counterparties (CCPs), and discusses how a CCP’s offsetting service
could affect (i.e. increase or decrease) overall liquidity needs. By understandingCCPs’
offsetting service as the elimination of arcs in the network model, Hayakawa (2018)
reveals potential negative effects of introducing a CCP, and discusses the effects quan-
titatively in relation to network topologies. The study illustrates the usefulness of the
framework in discussing the liquidity issues of settlements from the perspective of
network topologies.

The rest of the paper is structured as follows. Section 2 introduces our model and
mathematical framework. Section 3 provides motivational observations, especially
regarding several example “networks” that are particularly relevant to our analysis.
Section 4 overviews our main results in reference to the relevant theorems, and pro-
vides preliminary analysis. Section 5 shows our main results, formally introducing the
“twist” properties—arc-twist and vertex-twist. Section 6 presents additional results
regarding the quantitative implications of the “twist” properties. Section 7 provides
concluding remarks. The appendix includes proofs of the relevant results.

2 Model and Framework

There are a finite number of banks. We consider two stages for the formation of inter-
bank obligations and their settlements. In Stage 1, debts among banks are exogenously
given. The contracts specify that all relevant obligations be settled in Stage 2. We dis-
cuss the required amount of funds in Stage 2 along with two polar liquidity scenarios
that are intended to capture settlements in each “good time” and “bad time,” as we
elaborate in Sect. 2.3.

We express interbank obligations formed in Stage 1 utilizing a flow network rep-
resentation, which we introduce in Sect. 2.1. Then, the settlements of interbank
obligations in Stage 2 are expressed as a network with additional elements that specify
“orders” and “liquidity inputs,” whichwe introduce in Sect. 2.2. Section 2.3 introduces
our liquidity scenarios and presents our formulation as a pair of graph problems.

2.1 Interbank Obligations: f-network 〈V,A, f〉

We express the obligations formed in Stage 1 utilizing a flow network represen-
tation.11 The obligations are expressed with a flow network (f-network) N f =
〈V , A, f 〉. V specifies a set of vertices, which corresponds to banks. A =
10 Beck and Soramäki (2001)’s simulation study considers the seriousness of gridlock in the context of
gridlock resolution mechanisms. In the perspective of network topology, their study indicates that a cycle
in the network of payments could be a source of ill-functioning of a settlement system.
11 For basic terminologies of flow networks, we follow the textbook usage. See, for example, Ahuja et al.
(1993).

123



258 H. Hayakawa

30 20

10

30
10

va vb

vcvd

30 20

10

25
10

va vb

vcvd 5

Fig. 1 Examples of closed f-networks: graphical representation. Notes: On the left side of the figure,
V = {va , vb, vc, vd }, A = {(va , vb), (va , vc), (vb, vc), (vc, vd ), (vd , va)} , f ((va , vb)) = f ((vb, vc)) =
10, f ((va , vc)) = 20, f ((vc, vd )) = f ((vd , va)) = 30. The right side of the figure shows a situation with
multiple obligations between vc and vd . Each is distinguished as f ((vc, vd , 1)) = 25, f ((vc, vd , 2)) = 5
while the other obligations are the same as on the left

{(v,w, n)|v,w ∈ V , n = 1, 2, . . .} specifies a set of arcs, where each arc (v, v′, k)
shows that v has some amount of obligation to v′, and k is used as an index that distin-
guishes amongmultiple arcs for (v, v′). The indices are not usually mentioned in order
to avoid being notationally cumbersome; however, the multiplicity of the arcs is not
trivial for our analysis, as discussed in the analysis section. Then, flow f : A → R+
expresses the amount of the relevant obligations.

Throughout the study, we confine ourselves to a class of f-networks that are closed.
In words, an f-network 〈V , A, f 〉 is closed when for each v ∈ V , the total amount of
obligations owed by v to the others equals the total amount of claims held by v. We
show the formal definition below. Figure 1 provides examples of closed f-networks.
The left f-network is later used to illustrate our analytical method. The right f-network
is presented simply as a reminder that our framework allows multiple arcs between
the same two vertices in the same direction.

Definition 1 (Closed f-network)
f-network 〈V , A, f 〉 is closed if f Iv = f Ov for every v ∈ V , where f Iv ≡∑
v′∈V

∑
l=1,2,... f ((v

′, v, l)), f Ov ≡ ∑
v′∈V

∑
m=1,2,... f ((v, v′,m)).

In the above Definition 1, f Iv denotes the total amount of claims held by v—the
total amount of funds that should flow into v. Meanwhile, f Ov denotes the total amount
of obligations v owes to the others—the total amount of funds that should flow out of
v. To clarify the definition, we could restate it as follows: for each v ∈ V , the weighted
node input degree (i.e. f Iv ) equals the weighted node output degree (i.e. f Ov ).

Remark
The main reason we confine our focus to the class of closed f-networks is their mathe-
matical tractability in our analysis.Weconsider ourfindings to be essentially applicable
also to f-networks that are not closed, as we discuss in the analysis section. In addi-
tion, the class of closed f-networks serves as a benchmark to examine the implications
of “sequential” settlement, particularly in comparison to “simultaneous” settlement,
since no funds would be required under “simultaneous” settlement for arbitrary closed
f-networks.
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2.2 Settlement of Obligations: fsp-network 〈V,A, f, s, p〉

In Stage 2, the interbank obligations are settled sequentially on a gross basis. Given
interbank obligations 〈V , A, f 〉, we let one-to-one mapping (sequence) s : A →
{1, 2, . . . , |A|} show the relative order of settlements. It states that the obligations
specified by A are settled individually in this order such that obligation a ∈ A with
s(a) = k is settled in k-th order.

In order to evaluate the required liquidity, we assume that funds are input to each
bank only initially in Stage 2, and that lending/borrowing funds between banks is not
allowed. Thus, funds that can be used by a bank for its payments are either those
initially put to the bank, or those the bank has received in the course of settlements.
Along with this assumption, let (potential) p : V → R0+ indicate the amount of
funds put to each bank initially in Stage 2 (e.g. p(v) = 10 indicates v ∈ V initially
holds 10 units of funds.)

We form a different concept of network called the fsp-network N f sp =
〈V , A, f , s, p〉. We define the e-covered (exact covered) property for fsp-networks,
such that for e-covered 〈V , A, f , s, p〉, ∑

v∈V p(v) indicates the total amount of
required funds for 〈V , A, f , s〉. The e-covered property consists of two requirements:
first, there is no shortage of funds at any point of settlement, and second, there are
no redundant funds that are not used for any of the settlements. Before proceeding
to our formal definition, Fig. 2 shows examples of e-covered fsp-networks. For each
f-network 〈V , A, f 〉 in the figure, the order specified by s : A → {1, 2, . . . , |A|} is
shown on the upper right of the amount of corresponding obligation, and each initial
liquidity holding specified by p : V → R0+ is shown in boldface alongside each
vertex. It is easily confirmed for the fsp-network shown on the left that 30 units of
funds put to the vertex on the bottom-left is sufficient to settle all the obligations given
the indicated orders of settlements, and any amount smaller than this falls short of the
required amount for the corresponding settlements. For the right-hand fsp-network, it
is similarly confirmed that the indicated funds are sufficient to settle all obligations,
and any smaller amount of funds for any vertex causes a shortage for the corresponding
settlement.

301 203

102

305
104

0 0

030

301 203

105

302
104

0 10

3030

Fig. 2 Examples of e-covered fsp-networks: graphical representation. Notes: These two fsp-networks
are defined on the same f-network 〈V , A, f 〉 shown on the left side of Figure 1. The left-hand fsp-
network shows 〈V , A, f , s, p〉 with s((vd , va)) = 1, s((va , vb)) = 2, s((va , vc)) = 3, s((vb, vc)) = 4,
s((vc, vd )) = 5, p(va) = p(vb) = p(vc) = 0, p(vd ) = 30. The right fsp-network shows (V , A, f , s′, p′)
with s′((vd , va)) = 1, s′((va , vb)) = 5, s′((va , vc)) = 3, s′((vb, vc)) = 4, s′((vc, vd )) = 2, p′(va) = 0,
p′(vb) = 10, p′(vc) = p′(vd ) = 30. The order specified by s is shown on the upper right of the amount of
corresponding obligation, and each initial liquidity holding specified by p is shown in boldface alongside
each vertex
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We prepare to define covered property, then proceed to our formal definition of
e-covered property. Given fsp-network 〈V , A, f , s, p〉, let t = 0, 1, . . . , |A| be a
period in which obligation a ∈ A with s(a) = t is settled at the beginning of each
period. The aggregate amount of funds received by v ∈ V in period t is denoted as
f Iv,t = ∑

v′∈V
∑

l=1,2,... 1{s((v′,v,l))=t} f ((v′, v, l)), while the aggregate amount paid
to other banks is denoted as f Ov,t = ∑

v′∈V
∑

m=1,2,... 1{s((v,v′,m))=t} f ((v, v′,m)).
We denote pt (v) as the amount held by v ∈ V at the end of period t , by letting
pt (v) = pt−1(v)+( f Iv,t − f Ov,t ) for t = 1, 2, . . . , |A| and p0(v) = p(v). Now, we say
〈V , A, f , s, p〉 is covered if pt (v) ≥ 0 for every v ∈ V and every t = 0, 1, . . . , |A|.
Based on the covered property, the e-covered property is defined as follows.

Definition 2 (E-covered property of fsp-networks)
fsp-network 〈V , A, f , s, p〉 is e-covered (exact covered) if (no shortage): 〈V , A, f ,

s, p〉 is covered, and (no redundancy): There is no other p′ : V → R0+ such that
〈V , A, f , s, p′〉 is covered, p′(v) ≤ p(v) for every v ∈ V , and p′(v′) < p(v′) for
some v′ ∈ V .

In words, the e-covered fsp-network 〈V , A, f , s, p〉 indicates that the amount of
funds initially assigned to each vertex v (i.e. p(v)) is just sufficient to settle all the
obligations owed by v, given the order of the settlements specified by s.

We proceed to clarify the implication of the e-covered property by presenting a
minimization problem (Problem A) and associated lemma.
(Problem A: Minimization Among Covered fsp-Networks)

For a given 〈V , A, f , s〉 where 〈V , A, f 〉 is closed,
min
p

∑

v∈V
p(v),

s.t., 〈V , A, f , s, p〉 is covered.

Lemma 1
Given 〈V , A, f , s〉 where 〈V , A, f 〉 is closed, 〈V , A, f , s, p〉 that attains the value

for Problem A is e-covered and unique.

The result is immediate based on the definition of e-covered. Based on the lemma,
we examine the required amount of funds in terms of the uniquely derived e-covered
fsp-network for a given closed f-network and sequence. When 〈V , A, f , s, p〉 is e-
covered, we call

∑
v∈V p(v) its circulation.

2.3 Liquidity Scenarios and the Relevant Graph Problems

We focus on two polar scenarios for our analysis: one in the good time, and the other
in the bad time. The good time refers to the financial state in which settlements are
executed under the best coordination, and the total required funds are the minimum
possible. By contrast, the bad time refers to the state in which settlements are executed
under the worst coordination, and the total required funds are the maximum possible.
The bad time is meant to represent a period of financial distress, while the good time
is interpreted as a benchmark state for a time of non-distress.
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Formally, the total required funds in each scenario are derived by each of the
following minimization and maximization problems, called min/max settlement fund
circulation problems (MIN- SFC and MAX- SFC).12 For a given closed f-network,
MIN- SFC (MAX- SFC) derives the lower (upper) bound of the total required funds
against every possible “order” of settlement. For the formulation, let S(A) denote the
set of available sequences for given 〈V , A, f 〉.
(MIN- SFC in Original Form)

Given a closed f-network 〈V , A, f 〉,
min

s∈S(A)

∑

v∈V
p(v),

s.t. fsp-network 〈V , A, f , s, p〉 is e-covered.
(MAX- SFC in Original Form)

Given a closed f-network N f = 〈V , A, f 〉,
max
s∈S(A)

∑

v∈V
p(v),

s.t. fsp-network 〈V , A, f , s, p〉 is e-covered.
For example, for the closed f-network shown on the left side of Fig. 1, the left side of

Fig. 2 shows an fsp-network that gives the value derived byMIN- SFC, while the right
side of the figure shows an fsp-network that gives the value derived by MAX- SFC.
Throughout the study, we call the value derived by each MIN- SFC and MAX- SFC
min/max-circulation and denote them as xmin(N f ), xmax (N f ) for the input closed
f-network N f .

Remark on the Formulation
Our particular focus in setting up the problems ofMIN- SFC andMAX- SFC is on ana-
lyzing the implications of the sequential feature of settlements given the level of coor-
dination. In this regard, the good and bad liquidity scenarios are meant to be analytical
scenarios, and there are limitations in applying our approach to real-world scenarios.
For one thing, our formulation ignores the endogenous nature of the timing decision
by banks themselves. In particular, bank-run behavior might spread among financial
institutions with regard to their mutual obligations, which could switch the situation
suddenly from the good to bad liquidity scenario. Meanwhile, in bad scenarios, banks
could simply claim their pending debts,while attempting to postpone their owndebts at
the same time. Such a “simultaneous” claim situation is not captured in our sequential
setting; however, we note that our analysis could still help in discussing the necessary
amount of liquidity that would cease or prevent the “simultaneous” claim situation.

3 Motivational Observations

In this section, we motivate the introduction of our “twist” properties—arc-twisted
and vertex-twisted—and illustrate their relevance to min/max-circulation, referring to
several example f-networks.

12 Hayakawa et al. (2019) show NP-hardness of each MIN- SFC andMAX- SFC for closed f-networks.
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Fig. 3 Notes: V = {va , vb, vc, vd , ve, v f }, A = {(va , vb), (vb, vc), (vc, vd ), (vd , ve),

(ve, v f ), (v f , va), (va , vd ), (vc, v f ), (ve, vb)}, f ((v f , va)) = f ((vb, vc)) = f ((vd , ve)) = 30,
f ((va , vb)) = f ((vc, vd )) = f ((ve, v f ) = 20, f ((va , vd ) = f ((vc, v f )) = f ((ve, vb)) = 10

3.1 Min-Circulation and arc-twisted

For the fsp-network shown on the left side of Fig. 2, we observe that the min-
circulation for the underlying f-network equals the largest obligation in the amount
(i.e. maxa∈A f (a)) for the underlying closed f-network. Actually, the following result
is immediate.

Observation 1 (Lower bound of min-circulation)
For an arbitrary closed f-network N f = 〈V , A, f 〉, we have xmin(N f ) ≥

maxa∈A f (a).

The inequality arises for other f-networks. For example, see Fig. 3, where
xmin(N f ) = 40 > maxa∈A f (a) = 30 for the given N f = 〈V , A, f 〉. We
show that, for this specific example f-network, the additionally required funds
xmin(N f ) − maxa∈A f (a) = 10 sources from the “twist” property of arc-twisted.13

To explain the arc-twisted property informally, for the f-network in Fig. 3, take two
“cycles,” as shown in Fig. 4. We say that the two cycles are in arc-twisted relation,
based on certain inconsistency between the two cycles. The formal definition is shown
in our analysis section. The following results illustrate the relevant inconsistency for
our example f-network.

Observation 2 (Arc-twisted cycles)

i. (Cycle on the left side of Fig. 4) Take a closed f-network N f = 〈V , A, f 〉 where
〈V , A〉 is given as the cycle shown on the left side of Fig. 4.

13 Note that the additionally required funds could also be sourced from another factor, which we could
refer to as “multiplicity of cycles.” This point becomes clearer in our analysis section. Here, we point out
that arc-twisted is one of the possible factors.
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Fig. 4 Notes: This figure shows two cycles included in the f-network shown in Fig. 3

If sequence s starting with s((v f , va)) = 1 attains the min-circulation of N f , then
we have s((vb, vc)) < s((vd , ve)).

ii. (Cycle on the right of Fig. 4) Take a closed f-network N f = 〈V , A, f 〉 where
〈V , A〉 is given as the cycle shown in the right side of Fig. 4.

If sequence s starting with s((v f , va)) = 1 attains the min-circulation of N f , then
we have s((vb, vc)) > s((vd , ve)).

Remember that in the original f-network shown in Fig. 3, each of the three arcs
(v f , va), (vb, vc), and (vd , ve) needs be settled at once, that is, not in any multiple
installments. Thus, Observation 2 implies that an efficient order of funds to circulate
for each cycle cannot be realized at the same time for the original f-network, and this
inconsistency generates the additionally required funds. In our analysis section, we
show how this observation is formally generalized.

Implications of slicing and hub
Here, we further observe that several different changes on the f-network shown in
Fig. 3 serve to eliminate the “additionally required” funds. First, see Fig. 5, where an
arc (vb, vc) for the original f-network is sliced into two arcs. A comparison of the two
f-networks indicates that the “additionally required” funds source from the restriction
such that an arc in the amount of 30 units (e.g. (vb, vc) ) need be settled at once,
whereas when stated from the perspective of the f-network in Fig. 5, the restriction is
interpreted as the sliced arcs (vb, vc, 1) and (vb, vc, 2) needing to be synchronized to
settle.

Figure 6 shows a different way to avoid the additional funds. There, a hub vertex
vg is added to the original f-network. The fsp-network shown on the right side of the
figure attains the min-circulation, indicating that the added hub serves to coordinate
the timing of settlements. These observations indicate that the “twist” property of
arc-twisted is more fundamental in discussing min-circulation than the other concepts
are, such as hub.

The Non-linearity Brought by arc-twisted Cycles
Now, we proceed to observe a notable consequence of the existence of arc-twisted
cycles. For the f-network shown in Fig. 3, we consider an increase in the amount of
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Fig. 5 Slicing. Notes: The figure shows an f-network constructed from the f-network shown in Figure 3, by
letting an arc (vb, vc) be sliced into two
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Fig. 6 Hub. Notes: The figure shows an f-network that constructed from the f-network shown in Fig. 3, by
adding a hub vertex vg such that the vertex is added in the middle of each of (va , vd ), (vc, v f ), and (ve, vb)

to separate one arc into two (e.g. (va , vd ) is separated into (va , vg) and (vg, vd ))

obligations on the basis of a cycle. Suppose that we increase the amount of obligations
on the basis of the cycle shown on the right side of Fig. 4 such that each arc in the cycle
has an additional 5 units of funds, which we show on the left side of Fig. 7. Observe
that the sequence that attains the min-circulation for the original f-network shown in
Fig. 3 also attains the min-circulation for that in Fig. 7, where a corresponding fsp-
network is shown on the right side. However, when we keep increasing the amount on
the basis of the same cycle, at a certain point, the same sequence no longer attains min-
circulation. For example, see the f-network shown on the left side of Fig. 8, where
an amount of 15 units is added instead of 5 units in the previous figure. Now, the
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Fig. 7 Notes: Compared to Fig. 3, flow is increased in the amount of 5 units with respect to each arc in the
cycle (va , vd , ve, vb, vc, v f , va) (e.g. f ((va , vd )) = 10 + 5 and f ((vd , ve)) = 30 + 5))
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Fig. 8 Notes: Compared to Fig. 3, flow is increased in the amount of 15 units with respect to each arc in
the cycle (va , vd , ve, vb, vc, v f , va). The fsp-network shown in the middle of the figure implies that the
sequence that attains the min-circulation for the original f-network shown in Fig. 3 no longer attains the
min-circulation of the f-network shown on the left side of this figure, where the circulation is shown as
70(= 20+ 25+ 25) units. The min-circulation turns to 65 units, for which a corresponding fsp-network is
shown on the right side of the figure

circulation attained for the same sequence is 70 units as shown in the middle of the
figure; however, the min-circulation is smaller in this case, at 65 units, for which a
corresponding fsp-network is shown on the right side of the figure. We summarize
these observations below.

Observation 3 (Non-linearity associated with arc-twisted)
Given f-network N f shown on the left side of Fig. 3, suppose that flow is increased

for the arcs in cycle (va, vd , ve, vb, vc, v f , va) by the amount of m > 0.14 Denote the
derived f-network as Ñ f . Then, we have as follows:

i. if m ≤ 10, then any sequence that attains the min-circulation for N f also attains
the min-circulation for Ñ f , and xmin(Ñ f ) = xmin(N f ) + 2m.

14 The case with m = 5 is shown in Fig. 7, and the case with m = 15 is shown in Fig. 8.
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ii. ifm > 10, then none of the sequences that attain themin-circulation for N f attains
the min-circulation for Ñ f , and xmin(Ñ f ) = xmin(N f ) + 20 + (m − 10).

According to Observation 3, the marginal effect of increasing flow on the cycle
is 2 if m ≤ 10, while it is 1 if m > 10. To observe the intuition, note for the fsp-
network shown in Fig. 3, the funds are “efficiently circulated” on the basis of the cycle
(va, vb, vc, vd , ve, v f , va) shown on the left side of Fig. 4. (i.e. the sequence for the
cycle is monotonically increasing when we start by s((va, vb)) = 1, which is followed
by s((vb, vc)) = 2, s((vc, vd)) = 4, s((vd , ve)) = 5, s((ve, v f )) = 7, s((v f , va)) =
8.) By contrast, the funds are not efficiently circulated on the basis of the cycle shown
on the right side of Fig. 4 (i.e. the sequence for the cycle is never monotonically
increasing when we start by any of the vertices.). The reason that the former cycle—
(va, vb, vc, vd , ve, v f , va)—is “chosen” to attain efficient circulation is that the flow
endowed to the cycle is basically larger than that endowed to the other cycle (e.g.
f ((ve, v f )) = 20 > f ((va, vd)) = 10). The former cycle should be chosen as long
as m ≤ 10 in the notation of Observation 3; but once m > 10, the other cycle should
now be chosen, and thus, sequences that attain the min-circulation need to be changed
accordingly, as illustrated on the right side of Fig. 8. Note that such non-linearity is not
observed for the f-networks shown in Fig. 2, for any pair or set of the cycles included.
Implications of Non-linearity for Interbank Settlements

The observed non-linearity has implications for real-world settlements, specifically
regarding the effect of partial offsetting. In real-world settlements, it is plausible that
offsetting is executed only partially.15 Using the notation in Observation 3, suppose
m > 10 at first, and then, m decreases to track the change of the marginal effect
of offsetting obligations on the basis of the cycle. The observation states that once
m < 10, the marginal effect doubles.

To see the implications of the same observation in a different context, compare two
ways of partial offsetting for the f-network shown in Fig. 3; that is, offsetting on the
basis of the cycle shown on the left side of Fig. 4, or the right side of the figure. Related
to Observation 3, we observe that the marginal effect of offsetting is twice as large for
the right cycle as for the left cycle.

3.2 Max-Circulation and vertex-twisted

As observed for the fsp-network shown on the right side of Fig. 2, the max-circulation
for the underlying f-network is strictly less than the aggregate amount of obligations
(i.e.

∑
a∈A f (a)). Specifically, for the shown f-network, the max-circulation equals∑

a∈A f (a) − maxa∈A f (a). Actually, we obtain the following result.

Observation 4
For an arbitrary closed f-network N f = 〈V , A, f 〉, we have xmax (N f ) ≤∑
a∈A f (a) − maxa∈A f (a).

Again, the inequality arises for other f-networks. For example, see Fig. 9, where
xmax (N f ) = 110 <

∑
a∈A f (a) − maxa∈A f (a) = 140 − 20 for the given N f =

15 In reality, not all the obligations are settled through CCPs. Liquidity saving mechanisms typically work
within a few minutes, indicating that it is possible to offset only a fraction of obligations in a day.
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Fig. 9 Notes: V = {va , vb, vc, vd , ve, v f }, A = {(va , vb), (vb, vc), (vc, vd ), (vd , ve),

(ve, v f ), (v f , va), (vb, v f ), (v f , vd ), (vd , vb)}, f ((va , vb)) = f ((vb, vc)) = f ((vc, vd )) =
f ((vd , ve)) = f ((ve, v f )) = f ((v f , va) = 20, f ((vb, v f ) = f ((v f , vd )) = f ((vd , vb)) = 10

〈V , A, f 〉. We show that the subtracted amount 10(= 120 − 110) is sourced from
the “twist” property, which we term vertex-twisted for the case of max-circulation.
To explain the vertex-twisted property informally, for the f-network shown in Fig. 9,
take the two “cycles” shown in Fig. 10. We say that the two cycles are in vertex-
twisted relation, based on a certain inconsistency arising between the two cycles. The
following observations are relevant to the inconsistency.

Observation 5

i. (Cycle on the left side of Fig. 10) Take a closed f-network N f = 〈V , A, f 〉 where
〈V , A〉 is given as the cycle shown on the left side of Fig. 10.

If sequence s starting with s((v f , va)) = 1 attains the max-circulation of N f , then,
we have s((vd , ve)) < s((vb, vc)).

ii. (Cycle on the right side of Fig. 10) Take a closed f-network N f = 〈V , A, f 〉
where 〈V , A〉 is given as the cycle shown on the right side of Fig. 10.

If sequence s starting with s((v f , va)) = 1 attains the max-circulation of N f , then,
we have s((vd , vb)) > s((vb, v f )).

For the case of max-circulation, the implied order of vertices is relevant. In order
to clarify this point, proceed to Fig. 11, where the direction of the inner cycle is
now reversed. The max-circulation becomes 120 units, where there is no longer a
subtracted amount. Focus on vertices v f and vd ; each has multiple outgoing and
incoming arcs. For the case of v f , we observe that all outgoing arcs—(v f , va) and
(v f , b)—are settled before all incoming arcs—(vd , v f ) and (ve, v f ). The same obser-
vation holds for the case of vd . In words, we could say that the outgoing arcs for
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Fig. 11 Notes: Compared to Fig. 9, the direction of the inner cycle is reversed

the vertex are synchronized to be settled before any incoming arc. This would be an
instruction for the least efficient circulation of funds to be attained; however, Obser-
vation 5 indicates that such synchronization is not fully executable for the f-network
shown in Fig. 9. This is essentially because there is an arc—(v f , vd)—between two
vertices vd and v f . With regard to v f , when all outgoing arcs are settled before all
incoming arcs, (v f , vd) needs be settled before (v f , ve). Then, the instruction is for
(vd , ve) to be settled after (ve, v f ) for the purpose of the least efficient circulation
of funds. Combining these, the instruction is that (v f , vd) is settled before (vd , ve).
Now, we observe inconsistency; with regard to vd , in order for all outgoing arcs to be
settled before all incoming arcs, (vd , ve) needs be settled before (v f , vd). Thus, with
regard to v f , all outgoing arcs cannot be settled before all incoming arcs. This incon-
sistency that arises between the two cycles is formally referred to as vertex-twisted
relation.
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Fig. 12 Notes: Compared to Figure 9, flow is increased in the amount of 5 with respect to each arc in cycle
(vb, v f , vd , vb) (e.g. f ((vb, v f )) = 10 + 5)

Non-linearity Brought by Vertex-Twisted Cycles
Now, we proceed to observe the non-linearity for the case of max-circulation, which
is brought by vertex-twisted cycles. For the f-network shown in Fig. 9, we consider to
increase the amount of obligations on the basis of a cycle. Suppose that we increase
the amount of obligations on the basis of the cycle shown on the right side of Fig. 10
such that each arc in the cycle is given an additional 5 units, which we show on the
left side of Fig. 12. Observe that the sequence that attains the max-circulation for the
original f-network shown in Fig. 9 also attains the max-circulation for that in Fig. 12,
where a corresponding fsp-network is shown on the right side. However, when we
keep increasing the amount on the basis of the same cycle, at a certain point, the same
sequence no longer attains the max-circulation. For example, see the f-network shown
on the left side of Fig. 13, where an amount of 15 units is added instead of 5 units in
the previous figure. Now, the circulation attained for the same sequence is 125 units
as shown in the middle of the figure; however, the max-circulation is smaller in this
case, at 130 units, for which a corresponding fsp-network is shown on the right side
of the figure. We summarize these observations below.

Observation 6 (Non-linearity associated with vertex-twisted)
Given f-network N f shown on the left side of Fig. 9, suppose that flow is increased

for the arcs in cycle (va, vd , ve, vb, vc, v f , va) by the amount of m > 0.16 Denote the
derived f-network as Ñ f . Then, we have:

i. if m ≤ 10, then any of the sequences that attain the max-circulation for N f also
attains the max-circulation for Ñ f , and xmax (Ñ f ) = xmax (N f ) + m.

ii. ifm > 10, then none of the sequences that attain themax-circulation for N f attains
the max-circulation for Ñ f , and xmax (Ñ f ) = xmax (N f ) + 10 + 2(m − 10).

16 The case with m = 5 is shown in Fig. 7, and the case with m = 15 is shown in Fig. 8.
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Fig. 13 Notes: Compared to Fig. 9, flow is increased in the amount of 15 with respect to each arc in cycle
(vb, v f , vd , vb). The fsp-network shown in the middle of the figure implies that the sequence that attains
the max-circulation for the original f-network shown in Fig. 9 no longer attains the max-circulation of the
f-network shown on the left side of this figure, where the circulation is shown as 125(= 45+ 20 ∗ 4) units.
The max-circulation becomes 130 units, for which a corresponding fsp-network is shown on the right side
of the figure

According to Observation 6, the marginal effect of increasing flow on the cycle
is 1 if m ≤ 10, while it is 2 if m > 10. To observe the intuition, note for the fsp-
network shown in Fig. 9 that the funds are least efficiently circulated on the basis
of cycle (va, vb, vc, vd , ve, v f , va), which is shown on the left side of Fig. 10 (i.e.
for each arc except one—(va, vb), initially held funds are used at the timing of the
settlement.). By contrast, the funds are not least efficiently circulated on the basis
of the other cycle (vb, v f , vd , vb) shown on the right side of Fig. 10 (i.e. for each
arc except two—(v f , vd) and (vd , vb), initially held fund is used at the timing of the
settlement. The reason that the former cycle–(va, vb, vc, vd , ve, v f , va)—is chosen to
attain least efficient circulation is that the flow endowed to the cycle is basically larger
than that endowed to the other cycle. The former cycle should be chosen as long as
m ≤ 10 in the notation of Observation 6; but oncem > 10, the other cycle should now
be chosen, and thus, the sequence that attains the max-circulation needs to be changed
accordingly, as illustrated on the right side of Fig. 13. Note that such non-linearity
is not observed for the f-networks shown in Fig. 2, regarding any pair or set of the
cycles included. In the same manner as the case of min-circulation, the observed non-
linearity associated with the max-circulation has implications for partial offsetting in
the context of interbank settlements.

3.3 Arc-twisted and vertex-twisted

We later formally state that arc-twisted indicates vertex-twisted, but not vice versa.
Specifically, the two cycles in Fig. 4 are arc-twisted, and thus, they are also
vertex-twisted. The two cycles in Fig. 10 are vertex-twisted, but they are not
arc-twisted. This result consolidates the observations regarding arc-twisted and
vertex-twisted.
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4 Overview and Preliminary Analysis

4.1 Overview of theMain Results

Since we need to take several steps to present our main results, we provide an overview
in this section. With regard to min/max-circulation, our base results are summarized
as follows.

xmin/max (.) = (“flow” relevant part)
domain factor

+ (“order” relevant part)
synchronization factor

.

Based on the preliminary results provided in Theorems 1, 2, and 3, Theorem 4
presents our formal presentation of the above separation into two parts. The theorem
also shows our characterization of the first part of the equation with the concept of
domain, which refers to the extent that each unit of settlement funds can circulate; a
cycle is shown as the unit for funds to circulate. With regard to the second part of the
equation, which is our main focus, our characterization is presented in Theorem 5 for
min-circulation with our arc-twisted concept, and in Theorem 6 for max-circulation
with our vertex-twisted concept. Theorem7 consolidates ourmain findings by showing
the relation between the “twist” concepts, as mentioned in the last part of Sect. 3.
Further results focusing on the quantitative aspects of the “twisted” properties—non-
linearity in min/max-circulation—are discussed in Sect. 6.

Remark

• Our summary equation implies that a specific change of an underlying network
can be decomposed into two effects. In the discussion paper version of this paper
(Hayakawa 2014), we define a group of network transformations, which includes
the operations of slicing and separation—letting one arc be two by adding a vertex
in the middle of the arc—mentioned in Sect. 3, and present the effects in terms of
the domain and synchronization factors. The following statement summarizes the
relevant results with the symbolic expressionΔtrans f orm , which refers to the extent
to which min/max-circulation is changed by each of our network transformation
operations on the input closed f-network.17

Δtransformx
min/max (.) = (domain effect) + (synchronization effect).

4.2 Preliminary Analysis

We say that an f-network is not connected when we can separate its vertices into two
groups with no arc between them. Throughout this article, without loss of generality
we focus on f-networks that are connected.

Our approach is based on the observation that a closed f-network can be decomposed
into several closed f-networks. For the formal statement, we first define decomposition
of the f-network as follows.

17 Hayakawa (2018) applies the results to investigate the role of CCP.
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Fig. 14 Example of decomposition of an f-network. Notes: N f
1 = 〈V1, A1, f1〉, where V1 = {va , vc, vd },

A1 = {(va , vc), (vc, vd ), (vd , va)}, f1(a ∈ A1) = 20. N f
2 = 〈V2, A2, f2〉, where V2 = {va , vb, vc, vd },

A2 = {(va , vb), (vb, vc)(vc, vd ), (vd , va)}, f2(a ∈ A2) = 10. For each decomposed f-network, the
constant value of flow (i.e. 20 and 10 units respectively) is shown in the center

Definition 3 (Decomposition of f-network)

f-network N f = 〈V , A, f 〉 is decomposed into
{
N f
k = 〈Vk, Ak, fk〉

}

k=1,2,...,K
if

i) V = ∪1≤k≤K Vk , A = ∪1≤k≤K Ak , and
ii) ∀a ∈ A, f (a) = ∑

k∈K ′ fk(a), where K ′ = {
k′′|a ∈ Ak′′

}
.

We simply denote a decomposition of f-network N f as N f = ∑K
k=1 N

f
k . Figure 14

shows an example of decomposition of an f-network.
A specific type of decomposition, which we term closed-cycle decomposition, is the

basis for our analyses. For closed-cycle decomposition, each decomposed f-network
is closed, and consists of one cycle. The decomposition in Fig. 14 is actually a closed-
cycle decomposition. Below, we prepare to define cycle and the relevant concepts,
before proceeding to define closed-cycle decomposition.

Given a multi-arc directed graph 〈V , A〉, we denote the set of vertices included in
A′ ⊆ A as VA′ and the set of arcs that includes v ∈ V as Av . A′ ⊆ A is a path from
v ∈ VA′ to v′ ∈ VA′ if we can order vertices VA′ such that (v, v1, v2, . . . , vk, v

′)where
the consecutive ordered pairs of vertices (v, v1), (v1, v2)..., (vk, v′) constitute A′. The
same arc cannot appear more than once in a path, but the same vertex can. A′ ⊆ A is
a cycle if A′ is a path that starts and ends at the same vertex. We say that a cycle is
punctured if the same vertex appears more than once (except the vertex that appears
both at the start and the end), and is non-punctured otherwise. For a directed graph G,
we denote CG as the set of cycles included in G and refer to it as the cycle set of G.

Our formal definition of closed-cycle decomposition is as follows.

Definition 4 (Closed-cycle decomposition18)
An f-network N f = 〈V , A, f 〉 with G = 〈V , A〉 is closed-cycle decomposed into{

N f
k = 〈Vk, Ak, fk〉

}

k=1,2,...,K
if

i) N f = ∑K
k=1 N

f
k is a decomposition, and

18 Note that a punctured cycle is allowed to constitute a decomposed f-network in closed-cycle decompo-
sition. Figure 17 shows a closed-cycle decomposition where a punctured cycle is included.
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Fig. 15 Example of decomposition of fsp-network

ii) ∀k = 1, 2, . . . , K , each N f
k is closed and consists of one cycle, where the same

cycle does not constitute more than one f-network, that is, for 1 ≤ k, k′ ≤ K ,
〈Vk, Ak〉 �= 〈Vk′ , Ak′ 〉 if k �= k′.

With a slight abuse of notation, we let N f = ∑
c∈C 〈V c, c, f c〉 denote a closed-

cycle decomposition with C ⊆ CG , where f c denotes a constant function.
We have the following result for closed-cycle decomposition.

Theorem 1 (Ford and Fulkerson 1962)
Any closed f-network can always be closed-cycle decomposed.

Note that Theorem 1 does not ensure uniqueness19 of closed-cycle decomposition,
although Fig. 14 shows a case of uniqueness.

We now define decomposition of fsp-networks.

Definition 5 (Decomposition of fsp-networks)

N f sp=〈V , A, f , s, p〉 is decomposed into
{
N f sp
k =〈Vk, Ak, fk, sk, pk〉

}

k=1,2,...,K
if

i. 〈V , A, f 〉 is decomposed into {〈Vk, Ak, fk〉}k=1,2,...,K ,
ii. each sequence sk is consistent with s in the sense that the ordering is preserved,

and
iii.

∑
k pk(v) = p(v) for every v ∈ V .

When a decomposition of fsp-network N f sp = 〈V , A, f , s, p〉 is also a
closed-cycle decomposition of the corresponding f-network such as 〈V , A, f 〉 =∑

c∈C 〈V c, c, f c, 〉, we extend to write 〈V , A, f , s, p〉 = ∑
c∈C 〈V c, c, f c, sc, pc〉.

Figures 15 and 16 show examples of decomposition of an fsp-network.
Observe that in both Figs. 15 and 16, all decomposed fsp-networks are e-covered.

The following Lemma 2 states that it is always possible to perform such decomposition
when the given fsp-network is e-covered.

Lemma 2 (E-covered decomposition)
Given a closed f-network 〈V , A, f 〉, for any e-covered fsp-network N f sp =

〈V , A, f , s, p〉, there exists a decomposition N f sp = ∑
c∈C 〈V c, c, f c, sc, pc〉 such

that 〈V c, c, f c, sc, pc〉 is e-covered for every c ∈ C.

19 Our discussion paper version Hayakawa (2014) investigates the implications of uniqueness of closed-
cycle decomposition for the existence of “twist” properties, which is omitted in this version of the paper.
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Fig. 16 Example of decomposition of fsp-network

Proof See Appendix A.1. ��
We say that N f sp = ∑

c∈C 〈V c, c, f c, sc, pc〉 is an e-covered decompositionwhen
N f sp is e-covered and each decomposed 〈V c, c, f c, sc, pc〉 is also e-covered.

5 Characterization of Min/Max-Circulation

The purpose of this section is to present our characterization of min/max-circulation.
Thefirst step is to rearrange the originalminimization/maximizationproblemsutilizing
closed-cycle decomposition.

Note that in Fig. 15, an e-covered fsp-network that attains the min-circulation
for the underlying f-network is expressed with an e-covered decomposition, where
the min-circulation is read as 30 = 20 + 10. Similarly, Fig. 16 shows the case of
the max-circulation, where the value is read as 70 = 40 + 30. This observation
implies the following procedure to find the min/max-circulation. First, for a given
closed f-network, take a closed-cycle decomposition, and then, let each decomposed
f-network be an e-covered fsp-network. We could recover an fsp-network for the
given f-network by “adding up”the e-covered fsp-networks—the reverse view of fsp-
decomposition. By searching every possible closed-cycle decomposition for the given
closed f-network, we can find an fsp-network that attains the min/max-circulation.

The following twoTheorems 2 and 3 ensure that such a procedure successfully finds
the min/max-circulation. Below, CN f represents the power set of “the set of cycles”
for N f ; the reformulated problems find a set of cycle C ∈ CN f that constitutes a
closed-cycle decomposition such that N f = ∑

c∈C 〈V c, c, f c〉.
Theorem 2 (MIN-SFC in decomposed form)

Given a closed f-network N f = 〈V , A, f 〉, the following problem gives the same
value as xmin(N f ).

min
s∈S(A),C∈C

N f ,{ f c}c∈C
∑

c∈C

∑

v∈V c

pc(v).

s.t. N f =
∑

c∈C
〈V c, c, f c〉 is a closed-cycle decomposition,

〈V c, c, f c, sc, pc〉 is e-covered for every c ∈ C, and

〈V , A, f , s, p〉 =
∑

c∈C
〈V c, c, f c, sc, pc〉
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Proof See Appendix A.2. ��
Theorem 3 (MAX-SFC in decomposed form)

Given a closed f-network N f = 〈V , A, f 〉, the following problem gives the same
value as xmax (N f );

max
s∈S(A),C∈CN f ,{ f c}c∈C

∑

c∈C

∑

v∈V c

pc(v).

s.t. N f =
∑

c∈C
(V c, c, f c) is a closed-cycle decomposition,

〈V c, c, f c, sc, pc〉 is e-covered for every c ∈ C, and

〈V , A, f , s, p〉 =
∑

c∈C
〈V c, c, f c, sc, pc〉 is e-covered.

Proof See Appendix A.3. ��
For each problem in the original form, it is sufficient to search within the e-covered

fsp-networks for a given f-network. Lemma 2 ensures that every such e-covered fsp-
network is decomposed into e-covered fsp-networks on the basis of closed-cycle
decomposition. Thus, essentially, it is sufficient to search within the closed-cycle
decomposition for a given f-network.

We could interpret that a redundant procedure that finds a closed-cycle decompo-
sition is inserted for each problem in decomposed form. The decomposed forms need
be rearranged once again to proceed to our characterization. There, each of the decom-
posed form problems is separated into a decomposition choice part and a sequence
choice part. First, we define a sub-problem for eachMIN- SFC andMAX- SFC, each
of which corresponds to the sequence choice part that is characterized with our “twist”
properties.

In the sub-problems, as shown formally below, a closed-cycle decomposi-
tion 〈V , A, f 〉 = ∑

c∈C 〈V c, c, f c〉 is given. Observe that for each decomposed
f-network 〈V c, c, f c〉, the min-circulation is f c. Now, for each decomposed f-
network, suppose to take a corresponding e-covered fsp-network 〈V c, c, f c, sc, pc〉
such that

∑
v∈V c pc(v) = f c. If we can “add up” the fsp-networks to con-

struct an e-covered fsp-network 〈V , A, f , s, c〉, then, the min-circulation is proved
as

∑
c∈C f c; however, this is not always possible. The sub-problem for the

case of minimization is used to derive the minimum value of the discrepancy
(
∑

c∈C (
∑

v∈V c pc(v) − f c)), which we call the residual. Observe that for the
closed-cycle decomposition shown in Fig. 15, the residual equals zero, as we
easily confirm. The sub-problem for the case of maximization similarly is used
to derive the residual, and again, an example case of zero residual is shown in
Fig. 16.
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(Sub-problem for MIN- SFC)
Given a closed f-network N f and a closed-cycle decomposition {C ∈ CN f ,

{ f c}c∈C },

min{sc∈S(c)}c∈C

∑

c∈C

(
∑

v∈V c

pc(v) − f c
)

s.t. 〈V c, c, f c, sc, pc〉 is e-covered for every c ∈ C, and

〈V , A, f , s, p〉 =
∑

c∈C
〈V c, c, f c, sc, pc〉.

(Sub-problem for MAX- SFC)
Given a closed f-network N f and a closed-cycle decomposition {C ∈ CN f ,

{ f c}c∈C },

min{sc∈S(c)}c∈C

∑

c∈C

(

(|c| − 1) f c −
∑

v∈V c

pc(v)

)

,

s.t. 〈V c, c, f c, sc, pc〉 is e-covered for every c ∈ C, and

〈V , A, f , s, p〉 =
∑

c∈C
〈V c, c, f c, sc, pc〉 is e-covered.

where |c| denotes the number of arcs that constitute cycle c.
We denote the derived value, residual, as Rmin/max (N f ,C, { f c}c∈C ).
Now, we rewrite MIN- SFC and MAX- SFC as follows.

(MIN- SFC in Separated Form)
Given a closed f-network N f = 〈V , A, f 〉,

min
C∈CN f ,{ f c}c∈C

∑

c∈C
f c + Rmin

(
N f ,C,

{
f c

}
c∈C

)

s.t. N f =
∑

c∈C
〈V c, c, f c〉 is a closed-cycle decomposition.

(MAX- SFC in Separated Form)
Given a closed f-network N f = 〈V , A, f 〉,

max
C∈CN f ,{ f c}c∈C

∑

c∈C
(|c| − 1) f c − Rmax

(
N f ,C,

{
f c

}
c∈C

)

s.t. N f =
∑

c∈C
〈V c, c, f c〉 is a closed-cycle decomposition ,

The above separated form is still not well separated in that it does not explicitly
refer to which kind of closed-cycle decomposition is to be chosen. We address this
issue in the next subsection.
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Fig. 17 closed-cycle decomposition and domination. Notes: For the f-network shown on the left, two closed-
cycle decompositions are shown on the right. The lower-right closed-cycle decomposition is dominated by
the upper-right closed-cycle decomposition

5.1 Property of domination andMin/Max-Circulation

In this subsection, we present our characterization for the decomposition choice part
of the separated form MIN- SFC and MAX- SFC. We introduce the concept of dom-
ination that refers to a relation between closed-cycle decompositions for the same
f-network. Before proceeding to the formal definition, we see an example f-network
shown in Fig. 17 to illustrate the concept. Observe that the f-network shown on the left
side of the figure is closed-cycle decomposed into different sets of closed f-networks
shown in the right side. The summation of the flow on each cycle is 30(= 20 + 10)
for the upper decomposition, while it is 40(= 10 + 10 + 10 + 10) for the lower
decomposition. In terms of the smaller value, we say that the lower decomposition is
dominated by the upper decomposition,20 which is formally defined below.

Definition 6 (dominated, undominated21)
Given a directed graph G = 〈V , A〉 and the sets of cycles CG , a set of cycles

C ⊆ CG is dominated by another set of cycles C ′ ⊆ CG (equivalently, C ′ dominates
C) if

i) we can take a closed f-network N f such that N f = ∑
c∈C 〈V c, c, f c〉 =

∑
c′∈C ′ 〈V c′

, c′, f c
′ 〉, and

20 This observation has an implication for discussing how a hub can reduce the min-circulation, as we later
discuss.
21 Note that any punctured cycle dominates the set of its component non-punctured cycles. For example,
see the upper-right of Fig. 17, where a punctured cycle (va , vg, vb, vc, vg, vd , ve, vg, v f , va) dominates a
set of cycles

{
(va , vg, v f , va), (vc, vg, vb, vc), (ve, vg, vd , ve)

}
.
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ii) we have
∑

c∈C f c <
∑

c′∈C ′ f c
′
.

Given the power set of “a set of cycles” C̃ , we further say that a set of cycles C ∈ C̃
is undominated in C̃ if C is not dominated by any C ′ ⊆ C̃ .

For a closed f-network N f = 〈V , A, f 〉, let CN f denote the power set of the set
of cycles for N f . Let Cund

N f ⊆ CN f denote the set of undominated sets of cycles

within CN f . Then, let {C ∈ Cund
N f , { f c}c∈C } denote an undominated closed-cycle

decomposition for N f .
The following Theorem 4 presents our characterization of the decomposition choice

part. Essentially, for each case of min/max-circulation, in choosing closed-cycle
decomposition along with the MIN- SFC/MAX- SFC in separated form, arbitrary
undominated closed-cycle decomposition suffices. This implies that min-circulation
might not be attained with a dominated decomposition. This is actually the case of the
decomposition shown in the lower-right of Fig. 17. It is similarly confirmed for the
case of max-circulation.

Theorem 4 (Min/max-circulation with undominated closed-cycle decomposition)
Given a closed f-network N f = 〈V , A, f 〉, regarding the min-circulation, we have:

i) xmin(N f ) = Fmin(N f ) + minC∈Cund
N f ,{ f c}c∈C R

min(N f ,C, { f c}c∈C ), where

Fmin(N f ) = ∑
c∈C ′ f c for an arbitrary undominated closed-cycle decompo-

sition N f = ∑
c∈C ′ 〈V c, c, f c〉.

Regarding max-circulation, we have:

ii) xmax (N f ) = Fmax (N f ) − minC∈Cund
N f ,{ f c}c∈C R

max (N f ,C, { f c}c∈C ), where

Fmax (N f ) = ∑
c∈C ′(|c| − 1) f c for an arbitrary undominated closed-cycle

decomposition N f = ∑
c∈C ′ 〈V c, c, f c〉.

Proof See Appendix A.4. ��
Note that Fmin(N f ) and Fmax (N f ) indicate that arbitrary undominated closed-

cycle decomposition has the same value.

5.2 Property of arc-twisted andMin-Circulation

As an input for MIN- SFC, take the f-network shown on the left side of Fig. 18,
which is a reprint of Fig. 3. We mention in Sect. 3 that the fsp-network shown on the
right side of Fig. 18 achieves a min-circulation of 40. Now, from the perspective of
closed-cycle decomposition, the min-circulation is derived using the decomposition
shown in Fig. 19. We confirm that the residual is not zero (10 > 0). As the source
of the non-zero residual, we mention certain inconsistency between the two cycles,
which we formally define as arc-twisted relation between cycles. We prepare to define
arc-reverse number.

Arc-Reverse Number
For a given G = 〈V , A〉 together with a sequence s on A, let cycle c ∈ A consist of
arcs (a1, a2, . . . an, an+1 = a1), where ak = (vk, vk+1) for k = 1, 2, . . . , n. Then, the
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Fig. 18 Example f-network to show the property of arc-twisted

arc-reverse number is defined as ratwi (c, s) = ∑n
k=1 1{s(ak )>s(ak+1)}. When there are

multiple ways to index arcs for a cycle and accordingly multiple values of the arc-
reverse number (which is possible when the cycle is punctured), we set the arc-reverse
number as the minimum among them.

Arc-Twisted
We say that cycles in C ⊆ CG are in arc-twisted relation, or simply that they are
arc-twisted, if we cannot take any sequence s on A such that ratwi (c, s) = 1 for every
c ∈ C .We say that the cycles included inC ⊆ CG areminimumarc-twisted when there
are no arc-twisted cycles C ′ ⊂ C . Returning to Fig. 19, the two decomposed cycles
are arc-twisted and minimum arc-twisted. Note that minimum arc-twisted cycles are
not always a pair, as confirmed in Fig. 20.

The following theorem is ourmain result on the relevanceof thearc-twisted property
for the residual part of min-circulation.

Theorem 5 (arc-twisted and Rmin(.))
Given a closed f-network N f and a closed-cycle decomposition, which is charac-

terized by C ∈ CN f and { f c}c∈C , Rmin(N f ,C, { f c}c∈C ) = 0 if and only if C is not
arc-twisted.

Proof When C is not arc-twisted, we can always take a sequence such that the arc-
reverse number for every c ∈ C is 1. This lets us take

∑
v∈V c pc(v) = f c for every

c ∈ C . Conversely, when Rmin(.) = 0, we can always take the arc-reverse number as
1 for all c ∈ C under any sequence that realizes Rmin(.) = 0. ��

5.3 Property of vertex-twisted andMax-Circulation

Let the f-network shown on the left side of Fig. 21, which is a reprint of Fig. 9, be
our input for the MAX- SFC. We mention in Sect. 3 that the fsp-network shown on
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Fig. 19 Closed-cycle decomposition for the f-network shown in Figure 18
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Fig. 20 Examples of three cycles in arc-twisted relation. Notes: For the directed graph on the left, the three
cycles on the right are minimum arc-twisted

the right side of the figure attains the max-circulation as 110. From the perspective of
closed-cycle decomposition, the max-circulation is derived using the decomposition
shown in Fig. 22. We confirm that the residual is not zero (10 > 0). As the source
of the non-zero residual, we mention certain inconsistency between the two cycles,
which we formally define as vertex-twisted relation between cycles. We prepare to
define the vertex-reverse number.

Vertex-Reverse Number
For 〈V , A〉, define the vertex-sequence sv : V → {1, 2, . . . , |V |} as a one-to-one
mapping. For a given 〈V , A〉 together with a vertex-sequence sv on V , let cycle c ∈ A
consist of (v1, v2, . . . , vn, vn+1), where vn+1 = v1. Then, the vertex-reverse number
is defined as rvtwi (c, sv) = ∑n

k=1 1{sv(vk)>sv(vk+1)}. When there are multiple ways to
index the vertices for a cycle and accordingly multiple values of the vertex-reverse
number (which is possible when the cycle is punctured), we set the vertex-reverse
number for the cycle as the minimum among them.

Vertex-Twisted
Cycles inC ⊆ CG are in vertex-twisted relation, or simply that they are vertex-twisted
if we cannot take any vertex-sequence sv such that rvtwi (c, sv) = 1 for every c ∈ C .
Cycles inC ⊆ CG areminimum vertex-twisted when there are no vertex-twisted cycles
C ′ ⊂ C .

Note that although any punctured cycle as in Fig. 23 is vertex-twisted by itself, the
notion of vertex-twisted is not trivial in the sense that cycles that are not punctured
can also be vertex-twisted, as shown in Figs. 22 and 24.

The following Theorem 6 is our main result on the relevance of the vertex-twisted
property for the residual part of max-circulation.
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Theorem 6 (Vertex-twisted and Rmax (.))
Given a closed f-network N f and its closed-cycle decomposition, which is charac-

terized by C ∈ CN f and { f c}c∈C , Rmax (N f ,C, { f c}c∈C ) = 0 if and only if C is not
vertex-twisted.

Proof When C is not vertex-twisted, then from its definition, we can always take
vertex-sequence sv on vertices in C such that the vertex-reverse number is |c| − 1
for all c ∈ C . Denote each set of vertices as Vk = argv∈V sv(v) = k for k =
1, 2, . . . , |V |. Take a sequence on arcs ak ∈ A, which starts from v ∈ Vk such that∑k−1

1 |Vk−1| < s(ak) <
∑k

1 |Vk |. Since there is no vertex-twisted cycle, such a
sequence s lets us take pc such that each decomposed fsp-network is e-covered and∑

v∈V c pc(v) = (|c|−1) f c.What needs to be shown is that the combined fsp-network
with the decomposed fsp-network is e-covered. For each vertex v ∈ V , take any two
out-arcs a′ = (v, v′), a′′ = (v, v′′) ∈ A. Then, there is no in-arc a′′′ = (v′′′, v) ∈ A
such that s(a′) < s(a′′′) < s(a′′). This is true for any two out-arcs. Thus, the combined
fsp-network is e-covered.

For the converse direction, take a sequence s that realizes Rmax (N f ,C, { f c}c∈C ) =
0. Under the sequence s, for each cycle c ∈ C with its set of vertices V c, take a
vertex vc ∈ V c such that s((v, vc)) = argmina∈cs(a) and call it the head-vertex
for c. Then, for every vertex v′ ∈ V c \ vc with its arc (v′, v) ∈ c, there is no arc
a = (v′′, v′) ∈ C such that s(a) < s((v′, v)) since otherwise it would immediately
lead to Rmax (N f ,C, { f c}c∈C ) > 0. This is true for every cycle c ∈ C . Then, we can
naturally define partial order< on v ∈ V c from sequence s such that each head-vertex
is the largest and becomes smaller in the direction opposite to that indicated by the
arcs. We can always take the vertex-sequence to be consistent with the order <, and
under such a vertex-sequence, the vertex-reverse number is 1 for every cycle c ∈ C .
Thus, C is not vertex-twisted. ��
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Fig. 23 Examples of vertex-twisted cycles. Notes: Each directed graph itself constitutes a punctured cycle
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Fig. 24 Example directed graph of two vertex-twisted cycles. Notes: For the directed graph shown on the
left, we can take the two cycles shown on the right, which are vertex-twisted

5.4 Arc-twisted and vertex-twisted

Note that if the cycles in C are arc-twisted, then they are also vertex-twisted as stated
in the following Theorem 7. The opposite is not always true, as is easily confirmed.

Theorem 7 (arc-twisted and vertex-twisted)
For any set of cycles C, C is vertex-twisted if C is arc-twisted.

Proof Suppose that C is not vertex-twisted. Then, by definition, we can take a vertex-
sequence sv on the vertices in C such that the vertex-reverse number is 1 for all
c ∈ C . Take a sequence sc for each c ∈ C such that sc((v, v′)) = sv(v). We have
ratwi (c, sc) = 1 for every c ∈ C . Since we can always take a sequence on the arcs in
C such that the sequence is consistent with all sc, C is not arc-twisted. ��
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Policy Implications
In implementing policies that reduce the required liquidity for settlements, the base
implication of Theorems 5, 6, and 7 is that the effect of each relevant “twist” property
is scenario dependent. For the part of the arc-twisted property, which also indicates
the vertex-twisted property, it would serve to increase the min-circulation but decrease
the max-circulation. Thus, even if there is some policy that effectively “adds” the arc-
twisted property, the implementation of the policy is not always recommended. For the
part of the vertex-twisted property without the arc-twisted property, it would serve to
decrease the max-circulation, while would not increase the min-circulation. Thus, it is
recommended that a policy that adds such a property should always be implemented.

6 Quantitative Implications of the “twist” Properties

In this section, we show the quantitative implications of the “twist” properties in the
context of a real-world payment network by examining certain classes of networks.
First, we show the results associated with clustering, and then, we proceed to show
the results associated with small-world feature.

6.1 Networks with clustered Structure

We consider two classes of f-networks with clustered structure, each of which high-
lights the quantitative implications of the “twist” properties.

6.1.1 Type-1 clustered Structure

First, as a generalization of the f-network shown on the left side of Fig. 18, we construct
type-1 clustered f-network 〈V , A, f 〉 as follows.
– Let V = {v1, v2, . . . , v2n−1, v2n} for some integer n ≥ 3. Let A = A1 ∪ A2 ∪ A3.
– Take arcs of (v2k−2, v2k−1) for k = 1, 2, . . . , n with v0 ≡ vn , and let this set of
arcs be A1. Take f (a) = f1 for a ∈ A1.

– Take arcs of (v2k, v2k−3) for k = 1, 2.., n, with v−1 ≡ vn−1, and let this set of
arcs be A2. Take f (a) = f2 for a ∈ A2.

– Take arcs of (v2k−1, v2k) for k = 1, 2, . . . , n, and let this set of arcs be A3. Take
f (a) = f3 = f1 + f2 for a ∈ A3.

Figure 25 shows the underlying directed graph for a type 1 clustered f-network with
n = 6. Note that the f-network shown in Fig. 18 is an example of type 1 clustered
f-network with; n = 3, A1 = {(va, vb), (vc, vd), (ve, v f )} with f1 = f (a ∈ A1) =
20, A2 = {(va, vd), (ve, vb), (vc, v f )} with f2 = f (a ∈ A2) = 10, and A3 =
{(v f , va), (vb, vc), (vd , ve)} with f3 = f (a ∈ A3) = f (a ∈ A1) + f (a ∈ A2) = 30.

Observation 7
Type-1 clustered f-network 〈V , A, f 〉 is closed.

Furthermore, we have the following closed-cycle decomposition. 〈V , A, f 〉 =
〈V , A1∪ A3, f1〉+〈V , A2∪ A3, f2〉, which we simplify as 〈V , A, f 〉 = 〈V , c1, f1〉+
〈V , c2, f2〉, where c1 and c2 are arc-twisted.
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Fig. 25 Type-1 clustered f-network: n = 6

The following result explicitly shows the quantitative implications of the property
of arc-twisted regarding this class of network.

Theorem 8
For a given type-1 clustered f-network N f = 〈V , A, f 〉 with f1 ≥ f2 in its con-

struction, we have:

i) xmin(N f ) = f1 + (n − 1) f2 = ( f1 + f2) + (n − 2) f2.
ii) Furthermore, for the case f1 > f2, if the above value is realized with sequence s

on A, then ratwi (c1, s) = 1.

Proof See Appendix A.5 ��
The theorem is interpreted as revealing the following two features.22

• Non-proportional feature
For a given type-1 clustered f-network N f with f1 > f2, take another type-1
clustered f-network Ñ f with f1 > f2 + m. Then, we have

i) if f1 > f2 + m, then, xmin(Ñ f ) = xmin(N f ) + (n − 2)m, while
ii) if f1 < f2 +m, then, xmin(Ñ f ) = xmin(N f )+ (n− 2)( f2 − f1)+ (m − f1).

This states that the marginal effect on the min-circulation against an increase in
flow regarding the cycle c2(= A2 ∪ A3) is (n − 2) until m < f1 − f2; but once
m > f1 − f2, the marginal effect turns to 1.

22 These are generalized statements of Observation 3.
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Fig. 26 Type-2 clustered f-network: n = 6

• Regime-change feature
For a given type-1 clustered f-network N f = 〈V , A, f 〉with f1 > f2, let sequence
s∗ on A attain the min-circulation. Take another type-1 clustered f-network Ñ f

with f1 > f2 + m; then, we have

i) if f1 > f2 + m, then, s∗ attains the min-circulation also for Ñ f , while
ii) if f1 < f2 + m, then, s∗ no longer attains the min-circulation for Ñ f .

6.1.2 Type-2 clustered Structure

Now, we construct another class of clustered f-network. It is intended to capture a
key feature of the f-network shown on the left side of Fig. 21, which is introduced as
type-2 clustered f-network 〈V , A, f 〉 as follows.
– Let V = {v1, v2, . . . , vn−1, vn} for some integer n ≥ 3. Let A = A1 ∪ A2.
– Take arcs of (vk, vk+1) for k = 1, 2, . . . , n with vn+1 ≡ v1, and let this set of arcs
be A1. Take f (a) = f1 for a ∈ A1.

– Take arcs of (vk+1, vk) for k = 1, 2, . . . , n with vn+1 ≡ v1, and let this set of arcs
be A2. Take f (a) = f2 for a ∈ A2.

A type-2 clustered f-network consists of two cycles that have the “opposite” direc-
tion in the sense of the associated arcs. Figure 26 shows the underlying directed graph
for a type-2 clustered f-network with n = 6. Although the class might seem fairly
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special, we could generalize the associated results beyond the class, but this is beyond
the scope of this study.23

Observation 8
Type-2 clustered f-network 〈V , A, f 〉 is closed.

Furthermore, we have the following closed-cycle decomposition. 〈V , A, f 〉 =
〈V , A1, f1〉 + 〈V , A2, f2〉, where A1 and A2 are vertex-twisted.

The following result explicitly shows the quantitative implications of the property
of vertex-twisted regarding this class of network.

Theorem 9
For a given type-2 clustered f-network N f = 〈V , A, f 〉 with f1 ≥ f2 in its con-

struction, we have:

i) xmax (N f ) = (n − 1) f1 + f2 = (n − 1)( f1 + f2) − (n − 2) f2.
ii) Furthermore, for the case of f1 > f2, if the above value is realized with sequence

s on A, then ratwi (A1, s) = n − 1.

Proof See Appendix A.6. ��
The theorem is interpreted to reveal the following two features.

• Non-proportional feature
For a given type-2 clustered f-network N f with f1 > f2, take another type-2
clustered f-network Ñ f with f1 > f2 + m; then, we have

i) if f1 > f2 + m, then, xmax (Ñ f ) = xmin(N f ) + m, while
ii) if f1 < f2 +m, then, xmax (Ñ f ) = xmin(N f )+ ( f2 − f1)+ (n− 1)(m − f1).

This states that the marginal effect on the min-circulation against an increase in
flow regarding cycle A2 is 1 until m < f1 − f2; but once m > f1 − f2, the marginal
effect becomes n − 2.

• Regime-change feature
For a given type-2 clustered f-network N f = 〈V , A, f 〉with f1 > f2, let sequence
s∗ on A attain the min-circulation. Take another type-2 clustered f-network Ñ f

with f1 > f2 + m; then, we have

i) if f1 > f2 + m, then, s∗ attains the max-circulation also for Ñ f , while
ii) if f1 < f2 + m, then, s∗ no longer attains the max-circulation for Ñ f .

6.2 Networks with small-world Structure

We construct an f-network with a small-world structure by the rewiring procedure,
originally proposed by Watts and Strogatz (1998) for the construction of their WS

23 Observe that we could transform the f-network shown in Fig. 21 to a type-2 clustered f-network by
merging (v f , va) and (va , vb) into one arc (v f , vb with flow 20, and merging the two other pairs of arcs—
{(vb, vc), (vc, vd )} and (vd , ve) and (ve, v f ) in the same manner. Note that the transformation reduces the
max-circulation proportional to the number of the merge, which is 3∗20 in this case. From this perspective,
the results regarding the class of type-2 clustered f-network can be generalized.
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model. In the face of directionality of an f-network, we rewire in a fully connectivity-
preserving manner, as proposed by Maslov et al. (2003), where both the out-degree
and in-degree are preserved. Furthermore, the closed property is to be preserved.

First, we start with type-1 clustered f-network 〈V , A, f 〉 where f (a) ≥ f (a′) for
every a ∈ A1, a′ ∈ A2 in its construction. Follow the procedure below, for appropriate
ratio p (0 ≤ p ≤ 1).

– Choose |V |
2 p, an odd number of arcs from A2, such that there are no two arcs

whose vertex constitutes an arc.
– Randomly let the chosen arcs be repaired with each other; then, rewire by exchang-
ing the end vertices while preserving each flow (e.g. a pair (va, vb), (vc, vd)

becomes (va, vd), (vc, vb), and the flow for each old pair is preserved for each
new pair).

Figure 27 shows an example of this rewiring procedure. According to the following
Theorem 10, the synchronization factor characterized by the arc-twisted property and
that by the vertex-twisted property are sufficiently preserved by the rewiring.

Theorem 10
For a type-1 clustered f-network N f , denote its rewired f-network with p as N f (p).

Then, xmin(N f (p)) ≥ f1 + f2 + ((n − 2) − np) f2.

Proof Suppose we have already executed rewiring with k pairs. Observe that rewiring
partitions the original cycle formed by c2 into several cycles; here, we denote the
number of cycles as k′. When we further execute rewiring with respect to an additional
pair of arcs, the rewiring occurs either among one of the cycles, or between two of
them. In the former case, one more cycle is added, and the total number of cycles is
k′ + 1. The latter case always lets the two cycles become one, which makes the total
number of cycles k′ − 1. Focusing on how the residual amount is affected by this, in
either case, the min-circulation decreases at most by f2. ��

Next, we similarly rewire type-2 clustered f-network 〈V , A, f 〉 where f (a) ≥
f (a′) for every a ∈ A2, a′ ∈ A2 in its construction. Follow the procedure below, for
appropriate ratio p (0 ≥ p ≥ 1).

– Choose |V |p, an odd number of arcs from A2, such that there are no two arcs
whose vertex constitutes an arc.

– Randomly let the chosen arcs be repaired with each other; then, rewire by exchang-
ing the end vertices while preserving each flow (e.g. a pair (va, vb), (vc, vd)

becomes (va, vd), (vc, vb), and the flow for each old pair is preserved for each
new pair).

Figure 28 shows an example of this rewiring procedure. According to the following
Theorem 11, the synchronization factor characterized by the vertex-twist property is
sufficiently preserved by the rewiring.

Theorem 11
For a type-2 clustered f-network N f , denote its rewired f-network with p as N f (p).

Then, xmax (N f (p)) ≤ (n − 1)( f1 + f2) − ((n − 2) − np) f2.

Proof The proof is shown similarly to that of Theorem 10. ��
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Fig. 27 Example of rewiring for type-1 clustered f-network. Notes: The left network constitutes the type-1
clustered f-network shown in Fig. 25. Rewiring the f-network with p = 1

3 , regarding a pair of arcs (v2, v11)

and (v8, v5), we derive the network shown on the right side of the figure, which includes a pair of rewired
arcs (v2, v5) and (v8, v11)

v1
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Fig. 28 Example of rewiring for type-2 clustered f-network. Notes: The left network constitutes the type-1
clustered f-network shown in Fig. 26. Rewire the f-network with p = 1

3 , regarding a pair of arcs (v2, v1)

and (v5, v4); then, the network shown on the right side of the figure includes a pair of rewired arcs (v2, v4)

and (v5, v1)

6.3 Discussion

For both the rewiring procedures, a clustered structure appropriately defined24 would
only be locally affected, while the average path length would be affected as much
as that in the case of the WS model when n is sufficiently large relative to p. This
implies that a small-world structure would emerge with appropriate p. In this sense,
Theorems 10 and 11 indicate that the effects of the twist properties can be preserved

24 There is an debate about how the clustering structure should be formally captured in the face of direc-
tionality; see Malliaros and Vazirgiannis (2013), who survey the relevant literature.
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under a small-world structure. As it is argued that real-world payment networks have
a small-world structure, our twist properties have significance when applied to real-
world payment networks.

7 Concluding Remarks

In this study, we introduced a graph-theoretic framework intended to capture interbank
settlements in an RTGS system. We analyzed the lower bound and upper bound of
the required liquidity for a given payment network, by offering corresponding min-
imization and maximization graph problems. We showed our characterization for a
general class of payment network by introducing two graph properties—arc-twisted
and vertex-twisted. We further showed that these “twist” properties are sources of the
non-linear effect on the required liquidity against an increase of the amount of obliga-
tion, illustrating the effects for networks with clustered and small-world structures.

In existingmodels of financial networks, liquidity is usually discussed by implicitly
or explicitly assuming simultaneous settlements. This assumption tends to underevalu-
ate overall liquidity needs, considering that sequential settlement is prevalent in reality.
Thus, the types of models in the existing literature are not particularly suitable for a
discussion of liquidity regulations in which a sufficient level of liquidity requirements
is the focus.Our framework enables to discuss liquidity needs explicitly by considering
the sequential nature of settlements, and thus, has potential to contribute significantly
to the issue. It remains for our future work to enrich the model for the sake of those
applications.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix

A.1 Proof of Lemma 2

For an e-covered 〈V , A, f , s, p〉 on a closed 〈V , A, f 〉, we derive a set of e-covered
fsp-networks for some closed-cycle decomposition of 〈V , A, f 〉 by executing the
unbundling procedure for each v ∈ V , which proceeds as follows.

Let AI
v = {

(v′, v)
}
v′∈V and AO

v = {
(v, v′)

}
v′∈V denote the incoming arcs to

vertex v and the outgoing arcs to v, respectively. Note that argmina∈AI
v
s(a) denotes

the arc whose sequence is the smallest within the incoming arcs regarding vertex v.
We similarly use the notation of argmax .

0. Initially, let AI
v,work = AI

v , A
O
v,work = AO

v , fwork = f .
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1. We update them until AI
v,work = AO

v,work = ∅.
TakeaI

min, a
I
max ∈ AI

v,work ,a
O
min ∈ AO

v,work such thata
I
min = argmina∈AI

v,work
s(a),

aI
max = argmaxa∈AI

v,work
s(a), aOmin = argmina∈AO

v,work
s(a).

2a. If s(aI
min) < s(aOmin), then let the arcs be a pair with the same amount of flow

min
{
fwork(aI

min), fwork(aOmin)
}
.

For the center vertex of the paired arc, endow potential 0, and let the sequence on
the pair of arcs be consistent with the original sequence on 〈V , A, f 〉.
Update fwork(aI

min) := fwork(aI
min) − min

{
fwork(aI

min), fwork(aOmin)
}
, and

fwork(aOmin) : fwork(aOmin) − min
{
fwork(aI

min), fwork(aOmin)
}
.

Remove aI
min from AI

v,work if fwork(aI
min) = 0, and remove aOmin from AO

v,work if

fwork(aOmin) = 0.
Go back to step 1 if either AI

v,work or AO
v,work is not empty; otherwise, end the

procedure.
2b. If s(aI

min) > s(aOmin), then let the arcs be a pair with the same amount of flow
min

{
fwork(aI

max ), fwork(aOmin)
}
.

For the center vertex of the paired arc, endow potential min
{
fwork(aI

max ),

fwork(aOmin)
}
, and let the sequence on the pair of arcs be consistent with the

original sequence on 〈V , A, f 〉.
Update fwork(aI

max ) := fwork(aI
max ) − min

{
fwork(aI

max ), fwork(aOmin)
}
, and

fwork(aOmin) := fwork(aOmax ) − min
{
fwork(aI

max ), fwork(aOmin)
}
.

Remove aI
max from AI

v,work if fwork(aI
max ) = 0, and remove aOmin from AO

v,work

if fwork(aOmin) = 0.
Go back to step 1 if either AI

v,work or AO
v,work is not empty; otherwise, end the

procedure.

After the above unbundling procedure for each v ∈ V , we let consecutive arcs be
arbitrarily connected to each other with each same flow and relevant potential so as to
form a closed-cycle decomposition. Then, we can always connect consecutive pairs
by taking an appropriately small unit of flow attached when necessary. Furthermore,
by attaching an appropriate sequence for each derived decomposed f-network that is
consistent with the original sequence, each derived connected fsp-network is to be e-
covered by construction. Figure 30 shows our unbundling procedure for the example
shown in Fig. 29.

A.2 Proof of Theorem 2

Lemma 2 ensures that our search for fsp-networks on the basis of closed-cycle decom-
posed f-networks always includes fsp-networks that realize the min-circulation. What
remains to be shown is that we correctly choose those fsp-networks by minimizing the
circulation for closed-cycle decomposed f-networks. This is ensured by the following
lemma.

Lemma 3
Given a closed f-network N f = 〈V , A, f 〉, for any closed-cycle decomposi-

123



Liquidity in Financial Networks 291

101

20 303

155

202

204

156

(sequential expression of the left)

202
10110

303

155
204

156

10

0

s ↑

Fig. 29 Before the unbundling procedure
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s(aImin) = 2 > s(aOmin) = 1

s(aImin) = 2 < s(aOmin) = 3

s(aImin) = 4 > s(aOmin) = 3

s(aImin) = 4 > s(aOmin) = 3

s(aImin) = 4 < s(aOmin) = 5

Fig. 30 Unbundling procedure for Fig. 29

tion N f = ∑
c∈C 〈V c, c, f c〉, if 〈V c, c, f c, sc, pc〉 is e-covered for every c ∈ C,

and we can take s : V → {1, 2, . . . , |A|} which is consistent with {sc}c∈C , then
〈V , A, f , s, p〉 = ∑

c∈C 〈V c, c, f c, sc, pc〉 is covered.

Proof As long as {sc}c∈C is consistent with s, it is straightforward that combining
covered fsp-networks always gives a covered fsp-network. ��

The lemma states that our search on the basis of closed-cycle decomposed f-
networks never lets us find smaller circulation than the “true” min-circulation.
Combining Lemmas 2 and 3, we end our proof.

A.3 Proof of Theorem 3

Our proof is similar to that for Theorem 2. Lemma 2 ensures that our search for
fsp-networks on the basis of closed-cycle decomposed f-networks always includes
fsp-networks that realize the max-circulation. Since we confine our focus to the cases
in which combined fsp-networks become e-covered, our search on the basis of closed-
cycle decomposed f-networks never lets us reach a larger circulation than the “true”
max-circulation. This ends our proof.
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A.4 Proof of Theorem 4

Lemma 4 provides our proof of the theorem, regarding both min and max-circulation.

Lemma 4 (E-covered decomposition with undominated closed-cycle decomposition)
Given a closed f-network N f = 〈V , A, f 〉, take an arbitrary e-covered fsp-network

N f sp = 〈V , A, f , s, p〉.
Then, we always take some e-covered decomposition N f sp = ∑

c∈C 〈V c, c, f c,
sc, pc〉 with undominated closed-cycle decomposition {〈V c, c, f c〉}c∈C .
Proof For the given N f sp, take an e-covered decomposition {〈V c, c, f c, sc, pc〉}c∈C
with a closed cycle decomposition {〈V c, c, f c〉}c∈C . We consider to take an undom-
inated closed cycle decomposition by transforming the closed cycle decomposition
in a manner stated below. We show that, for the derived undominated closed cycle
decomposition, we can take an e-covered decomposition of the given N f sp.

For a given closed cycle decomposition, we consider transformation such that for a
vertex, taking different pairs of the incoming arcs and the outgoing arcs to form another
closed cycle decomposition. For the sake of our formal statement of the transformation,
we prepare notations; for a vertex v ∈ V , denote AI

v = {
(v′, v)

}
v′∈V , and AO

v =
{
(v, v′)

}
v′∈V .

First, when either AI
v or AO

v is singleton, Lemma 5 ensures that any combination
between AI

v and AO
v that can generate another closed-cycle decomposition maintains

the e-covered property under the same s and p. Now, we proceed to the case in which
each of AI

v and AO
v is not singleton. Under the supposed closed-cycle decomposition,

if any two cycles both commonly include v but have no common arc, thenwe only need
to combine the two cycles into one punctured cycle in order to derive an undominated
closed-cycle decomposition. Lemma 6 ensures that the derived cycles are necessarily
e-covered under the same s and p. Then, suppose that there exists an undominated
closed-cycle decompositionwith someother combination between AI

v and A
O
v for each

v ∈ V . Some repetition of the procedure stated in Lemma 7 ensures that we can always
take some undominated closed-cycle decomposition with the original combination
between AI

v and AO
v . This means that we can take some undominated closed-cycle

decomposition under the same s and p that constitutes the same e-covered fsp-network
for which the original undominated closed-cycle decomposition is another e-covered
decomposition. ��
Lemma 5 (Invariance of e-covered property: singleton AI

v or AO
v )

For a closed f-network N f = 〈V , A, f 〉, take a closed-cycle decomposition
N f = ∑

c∈C 〈V c, c, f c〉 such that it constitutes some e-covered decomposition
for some e-covered N f sp = 〈V , A, f , s, p〉 as N f sp = 〈V , A, f , s, p〉 =∑

c∈C 〈V c, c, f c, sc, pc〉. Then, for any v ∈ V such that either AI
v or AO

v is sin-
gleton, take another closed-cycle decomposition {〈V c, c, f c〉}c∈C ′ by transforming it
such that the combination between AI

v and AO
v is different.

Then, we can always take an e-covered decomposition 〈V , A, f , s, p〉 =∑
c∈C ′ 〈V c, c, f c, sc, pc〉
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Proof Under given closed-cycle decomposition N f = ∑
c∈C 〈V c, c, f c〉, suppose that

AI
v or AO

v is singleton. Then, any sequence s on AI
v ∪ AO

v uniquely determines the
relative order between any pair of arcs a, a′ where a ∈ AI

v and a′ ∈ AO
v . ��

Lemma 6 (Invariance property of e-covered decomposition by letting cycles be punc-
tured)

For a closed f-network N f = 〈V , A, f 〉, take arbitrary e-covered N f sp =
〈V , A, f , s, p〉 and some e-covered decomposition N f sp = ∑

c∈C 〈V c, c, f c, sc, pc〉.
Then, if there exist any two cycles c, c′ ∈ C that constitute a punctured cycle c′′ /∈ C,

we always take another closed-cycle decomposition that includes the punctured cycle,
and it still constitutes an e-covered decomposition for the same 〈V , A, f , s, p〉.
Proof Take some e-covered decomposition N f sp = ∑

c∈C 〈V c, c, f c, sc, pc〉. When
there exist K cycles {ck}k=1,...,K with flow { f ck }k=1,...,K each includes some v ∈ V ,
denote the relevant arcs as AI

v,k ≡ ck ∩ AI
v , A

O
v,k ≡ ck ∩ AO

v .
Take two cycles ck, ck′ ∈ C that constitute a punctured cycle cK+1 /∈ C .

Take another closed-cycle decomposition with cK+1 with some flow f cK+1 ≤
min( f ck , f ck′ ). Let 〈V cK+1 , cK+1, f cK+1 , scK+1 , pcK+1〉 be e-covered under the same
s on A. We always have pcK+1(v) ≤ pck (v) + pck′ (v) from Lemma 8. Suppose that
pcK+1(v) < pck (v) + pck′ (v). Then, for the original decomposition to be e-covered,
the redundant amount somehow needs to be absorbed by some other cycles within Cv

with respect to v. Again, this contradicts Lemma 8with respect to other relevant cycles
not to be transformed. Thus, pcK+1(v) = pck (v) + pck′ (v), which ensures invariance
of the e-covered property under our transformation. ��
Lemma 7 (Invariance of undominated closed-cycle decomposition)

For a closed N f = 〈V , A, f 〉, take an undominated closed-cycle decomposition
N f = ∑

c∈C 〈V c, c, f c〉. For an arbitrary v ∈ V such that |AI
v | > 1 and |AO

v | > 1,
let Cv ⊂ C denote the set of cycles that include v. Let Cv = {c1, c2.., cK } with∑K

k=1 f ck ≡ Fv , and let AI
v,k ≡ ck ∩ AI

v and AO
v,k ≡ ck ∩ AO

v .

Take another combination between AI
v and AO

v by combining some aI
v,k ∈ AI

v,k

and aO
v,k′ ∈ AO

v,k′ , and also combine aI
v,k′ ∈ AI

v,k′ and aOv,k ∈ AO
v,k . Further, take an

arbitrary amount of flow f ′ ≤ min( f ck , f ck′ ) for each combination.
Then, we can always take another undominated closed-cycle decomposition with

this new combination between AI
v and AO

v .

Proof For two cycles ck, ck′ ∈ C where neither is a subset of the other, if they have
some common v ∈ V , we can always take some arc a ∈ ck ∩ ck′ as ensured by
Lemma 9. Take a path from a to aI

v,k , and aO
v,k′ to a, and merge two paths to take a

cycle and denote it as cK+1. Furthermore, take its counterpart path from a to aI
v,k′ ,

and aOv,k to a each , and merge them to take a cycle cK+2. Attach flow f ′ on both
cK+1 and cK+2, and remove the same amount f ′ from each of the original two cycles
ck, ck′ as f ck = f ck − f ′ and f ck′ = f ck′ − f ′. The derived set of closed-cycles
constitutes a new closed-cycle decomposition. From its construction, the sum of flow
for the derived cycles is the same as Fv , which shows that the derived closed-cycle
decomposition is also undominated. ��
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Lemma 8 (Invariance of covered property by merge of vertices)
For a closed 〈V , A, f 〉, take an e-covered 〈V , A, f , s, p〉. Let v, v′ ∈ V merge

into a single v′′ that maintains relevant flow, sequence, and potential, to have another
fsp-network 〈V ′, A′, f ′, s′, p′〉.

Then, 〈V ′, A′, f ′, s′, p′〉 is always covered.
Proof From the definition of the e-covered property, for any v ∈ V , at any point of its
outflow there remains a sufficient amount of funds. It is straightforward that merging
these two vertices preserves the covered property. ��
Lemma 9 (Property of undominated closed-cycle decomposition)

For a closed f-network N f = 〈V , A, f 〉, take an undominated closed-cycle decom-
position N f = ∑

c∈C 〈V c, c, f c〉. Then, we have for any two c, c′ ∈ C where neither
is a subset of the other. Then, V c ∩ V c′ �= ∅ iff c ∩ c′ �= ∅.
Proof It is immediate that V c ∩ V c′ �= ∅ if c ∩ c′ �= ∅. For the opposite part, suppose
that under some undominated closed-cycle decomposition, there exist two cycles c, c′
with 〈V c, c, f c〉 and 〈V c′

, c′, f c
′ 〉 where V c ∩ V c′ �= ∅ but c ∩ c′ = ∅. Then, we

always take another closed-cycle decomposition by letting the cycles combine to

take 〈V c ∪ V c′
, c ∪ c′,min

{
f c, f c

′}〉, which dominates the original closed-cycle

decomposition. This contradicts our supposition. ��

A.5 Proof of Theorem 8

We provide our proof from a rather general perspective, focusing not only on type-1
clustered networks but also on clustered networks in which each cluster forms a tree,
whose definition is stated below. When each cluster is captured by a tree, we show
that a certain monotonicity enables us to examine min-circulation.

A.5.1 Defluent Partition

First, we prepare terminologies in order to formally describe the relevantmonotonicity.
The key terminology is defluent. Monotonicity implied by defluent refers to how flow
bifurcates, which lies in the monotonicity implied by tree with regard to how arcs
connect to each other. Figure 31 helps clarify the following terminologies.

We start by defining tree. First consider a graph that is not directed, whichwe denote
as 〈V , E〉 where each e ∈ E is an unordered pair of vertices denoted as e = {

v, v′}

with some v, v′ ∈ V . We allow multiple edges for the same pair of vertices. We
say that 〈V , E〉 has a cycle if there exists a sequence of vertices such that every two
consecutive vertices are included as a different edge and the same vertex can be shown
more than once in the sequence. For a directed graph 〈V , A〉, we can take its underlying
undirected graph 〈V , E〉 by replacing each ordered pair with an unordered pair. Now,
we call a directed graph 〈V , A〉 a tree if it is connected and its underlying undirected
graph 〈V , E〉 has no cycle. Note that if 〈V , A〉 is a tree, then it has no cycle on the
basis of a directed graph, but the opposite is not necessarily true, since our definition
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Fig. 31 Examples of defluent and relevant notions. Each of the left and right f-networks is defluent. The
underlying directed graph for the left f-network is a trunked tree whose root is va , trunk is (va , vb), and
leaves are vd , ve , and v f . Height is 0 for the leaves, 1 for vc , 2 for vb , and 3 for va . For the right f-
network, the underlying directed graph is not itself a tree, but the directed graph on the left is its trunked
tree representation that is hatcheled on vd by adding v f

of tree does not allow even a cycle on the basis of an undirected graph to exist. For
tree 〈V , A〉, we call each vertex v ∈ V that has no arc that starts at v a leaf.

A tree 〈V , A〉 is called a rooted tree if there is one vertex v ∈ V designated as the
root such that for any other vertex v′ ∈ V \ v, there is a sequence of vertices from
v to v′ where every two consecutive vertices vk, vk′ are included as a different arc as
(vk, vk′) ∈ A.

A tree 〈V , A〉 is called a trunked tree if (1) it is a rooted tree, and (2) there is only
one arc (v, v′) designated as the trunk such that it starts at the root v ∈ V .

For a rooted tree, we define the height of each vertex within the tree. First we
prepare the terminology length of a path. The length of path A′ is the number of arcs
|A′|. Now, for a rooted tree 〈V , A〉, the height of a vertex v ∈ V is the maximum
length of the path to the leaves.

We define tree to obey common usage. Since the definition is too strict for our
purpose, we argue whether 〈V , A〉 has trunked tree representation or not. In order to
define trunked tree representation, we prepare the terminology of hatchel. Directed
graph 〈V , A〉 is hatcheled into 〈V ′, A′〉 when we can take 〈V ′, A′〉 through the fol-
lowing procedure. For every v ∈ V that has no arc that starts at v, when there exist
n > 1 multiple arcs that end at v, add n − 1 vertices. Then, for each of the arcs except
arbitrary ones , replace v with each of the added vertices such that each arc ends at
each different vertex either at v or at some added vertex. For derived 〈V ′, A′〉, any
vertex that has no arc that starts at itself has no two arcs that end at itself.

Now, we say that directed graph 〈V , A〉 has trunked tree representation 〈V ′, A′〉
when (1) 〈V , A〉 is hatcheled into 〈V ′, A′〉, and (2) 〈V ′, A′〉 is a trunked tree. For f-
network 〈V , A, f 〉, when 〈V , A〉 has trunked tree representation 〈V ′, A′〉, 〈V ′, A′, f ′〉
is its associated f-network when (1) f ′(a) = f (a) for any a ∈ A ∩ A′, and (2) for
each replacement a ∈ A with a′ ∈ A′ by the procedure of hatchel, f ′(a′) = f (a).
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Weproceed to definemonotonicity regarding flow bifurcation. 〈V , A, f 〉 is defluent
when (1) 〈V , A〉 has trunked tree representation 〈V ′, A′〉, and (2) for its associ-
ated 〈V ′, A′, f ′〉, for any v ∈ V ′ that is neither root nor leaf, flow is balanced as∑

v′∈V ′ f (v, v′) = ∑
v′∈V ′ f (v′, v).

We argue partialmonotonicity by examining a specific class ofdecomposition called

defluent partition. For N f = 〈V , A, f 〉,decomposition
{
N f
k = 〈Vk, Ak, fk〉

}

k=1,2,...,K
is partition when (1) for every k = 1, 2, . . . , K , 〈Vk, Ak〉 is connected, and (2) for
any two N f

k , N f
k′ , we have Ak ∩ Ak′ = ∅.

Finally, a partition for 〈V , A, f 〉 is a defluent partition when (1) each partitioned
f-network is defluent, and (2) any two partitioned f-networks have no common vertex
that is neither root nor leaf within either of the defluents.

For f-network N f = 〈V , A, f 〉, when we take defluent partition
{
N f
k

}

k=1,2,...,K
,

we obtain the set of edge vertices denoted as V edge(
{
N f
k

}

k=1,2,...,K
) ⊂ V ; each vertex

is the root for the partitioned f-network in the sense that each vertex is the root for
each trunked tree representation.

For any f-network, there exists some defluent partition since a partition into each
arc is itself a defluent partition.

Theorem 12 (Defluent partition)
For a closed f-network N f = 〈V , A, f 〉, take an arbitrary defluent partition{

N f
k

}

k=1,2,...,K
with the set of edge vertices V edge(

{
N f
k

}

k=1,2,...,K
). Then, the fol-

lowing problem attains the same value with xmin(N f ).

mins,p
∑

v∈V
p(v)

s.t., 〈V , A, f , s, p〉 is e-covered, and
p(v) = 0 for every v ∈ V \ V edge

({
N f
k

}

k=1,2,...,K

)

.

Proof For our input N f = 〈V , A, f 〉, take an arbitrary e-covered 〈V , A, f , s, p〉,
which attains the min-circulation xmin(N f ).

For a partitioned f-network N f
k = 〈Vk, Ak, fk〉, denote a set of vertices V i

k with
i = 0, 1, . . . where each V i

k contains vertices that have height i within its rooted tree.
First find p(v) > 0 for v ∈ V 1

k . When we find such v with (v′, v), then we always
take an arc a′ = (v, v′′, n) ∈ A such that s(a′) < s(a) with some n = 0, 1, . . ..
Now take another sequence s′ : A → {1, 2, . . . , A} that lets s′(a′) > s′(a) while
endowing the same ordering with the sequence s for A \a′. Take associated e-covered
〈V , A, f , s′, p′〉; then, we have p′(v) = p(v) − f (a′) and p′(v′′) ≤ p(v′′) + f (a′).
The former is true since there is only one arc that ends at v, while the latter is true
since there is only one arc that starts at v′′. In addition, we have p′(v′′′) = p(v′′′)
for any v′′′ ∈ V \ v, v′′. It leads to

∑
v∈V p′(v) ≤ ∑

v∈V p(v). Furthermore, since∑
v∈V p(v) = xmin p(v), we have

∑
v∈V p′(v) = xmin(N f ).
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Fig. 32 Example for defluent partition. Notes: For the f-network on the left, the three f-networks on the
right constitute its defluent partition with the set of edge vertices

{
vd , v f , vb

}

For each of the vertices within V 1
k , execute this procedure of replacing the sequence.

When completed forV 1
k ,we proceed toV

2
k . For this case,whenwe replace the sequence

regarding vertex v ∈ V 2
k and arc (v, v′) ∈ V , we also maintain the ordering within

each trunked treewith trunk (v, v′) and its leaves so that the potential is different only
within the edge vertices V edge(

{
N f
k

}

k=1,2,...,K
). When finished for V 2

k , we proceed

to V 3
k , V 4

k , . . . until we reach each root . Such replacement of a sequence always
realizes the min-circulation with the associated e-covered fsp-network, while letting
p(v′′) = 0 for every vertex except for root and leaves. By executing the procedure
for every partitioned defluent, we derive the statement in the theorem (Fig. 32). ��

A.5.2 Proof of Theorem 8

We prove the theorem using defluent partition.

Proof For our given f-network with some n, take a defluent partition N f = ∑n
k=1 N

f
k

with N f
k = 〈Vk, Ak, fk〉, which consists of Vk = {v2k−1, v2k, v2k+1, v2k−3}, Ak =

{(v2k−1, v2k), (v2k, v2k+1), (v2k, v2k−3)}, fk(ak) = f (ak) for every ak ∈ Ak , where
we let v−i = v2n−i and v2n+i = vi for i = 0, 1, 2. For our defluent partition, the set
of edges is V edge = {v2k−1}k=1,2,...,n .

From Theorem 12, we only need to examine e-covered 〈V , A, f , s, p〉 where
p(v2k−1) ≥ 0 while p(v2k) = 0 for k = 1, 2, . . . n. Take such a sequence s
and associated e-covered 〈V , A, f , s, p〉; then, take another sequence s′ with its
associated e-covered 〈V , A, f , s′, p′〉 where s′ is derived from s as follows. Let
s′((v2k, v2k+1)) = s′((v2k−1, v2k))+1, and s′((v2k, v2k−3)) = s′((v2k−1, v2k))+2 for
every k = 1, 2, . . . n, while s′ preserves the ordering of s on {(v2k−1, v2k)}k=1,2,...,n .
Observe that it satisfies p′(v2k−1) ≥ 0, p′(v2k) = 0 for k = 1, 2, . . . n. Then, we
have

∑
v∈V p′(v) ≤ ∑

v∈V p(v). It is immediate that given the ordering among
{(v2k−1, v2k)}k=1,2,...,n and p′(v2k−1) ≥ 0, p′(v2k) = 0 for k = 1, 2, . . . n, the
ordering on each (v2k, v2k+1), (v2k, v2k−3) should be set as early as possible for
k = 1, 2, . . . n in order to minimize circulation.
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For such sequence s′, take sequence s′′ and associated e-covered 〈V , A, f , s′′, p′′〉
so that it further satisfies s((v2k−1, v2k)) < s((v2k+1, v2k+2)) while preserving the
ordering within each {(v2k−1, v2k), (v2k, v2k+1), (v2k, v2k−3)} for k = 1, 2, . . . , n.
Note that we have ratwi (c, s′′) = 1. Now we have

∑
v∈V p′′(v) = ( f c + f c

′
) + (n −

2) ∗ f c
′ ≤ ∑

v∈V p(v). This is because if there exists one pair of arcs (v2m−1, v2m)

and (v2m′−1, v2m′) with some m < m′ ∈ {1, 2, . . . , n} such that s′((v2m−1, v2m)) >

s((v2m′−1, v2m′)), then
∑

v∈V p′′(v) + ( f c − f c
′
) ≤ ∑

v∈V p(v). When there exists
more than one such pair, the above relation is still satisfied. Note that when f c = f c

′
,

we have
∑

v∈V p′′(v) = ∑
v∈V p(v), which means that the min-circulation can be

attained with any ratwi (c, s′) ∈ {1, 2, . . . , n}. ��

A.6 Proof of Theorem 9

First, we prove the case of f1 = f2 for type-2 clustered f-network 〈V , A, f 〉 with
|V | = n. We observe that under any e-covered fsp-network 〈V , A, f , s, p〉, p(v) ∈
{0, f1, 2 f1} for any v ∈ V . We show that max-circulation is n f1 in the following steps.
Denote V = {v1, v2, . . . , vn} with vn+1 ≡ v1 as defined in its construction, such that
every two consecutive vertices constitute a cycle by themselves.

Lemma 10
If 〈V , A, f , s, p〉 attains the max-circulation, then, we do not have p(vk) = 2 f1

and p(vk+1) = 2 f1 at the same time for k = 1, 2, . . . , n.

Proof Suppose that p(vk) = 2 f1; then s((vk, vk+1)) < s((vk+1, vk)), which neces-
sarily lets p(vk+1) ≤ f1. ��

For the next Lemma 11, we prepare the following notation. For type-2 clustered
networks, for two vk, vk′ , we denote Vk, Vk′ such that they constitute a partition V =
vk ∪ V1 ∪ vk ∪ V2 and each of V1 and V2 is connected.

Lemma 11
When 〈V , A, f , s, p〉 attains the max-circulation, if there exists vk, vk′ such that

p(vk) = p(vk′) = 2 f1, then, there exists vk′′ ∈ Vk and vk′′′ ∈ Vk′ such that p(vk′′) =
p(vk′′′) = 0.

Proof For p(vk) = 2 f1, both out-arcs need be settled before either of the in-arcs such
that s((vk, vk+1)) < s((vk+1, vk)), and s((vk, vk−1)) < s((vk−1, vk)). As shown in
the previous lemma, p(vk+1) ≤ f1, p(vk−1) ≤ f1. When we also have p(vk′) =
2 f1 with k′ �= k, then, proceeding from both vertices to endow a potential on each
passed vertex as f1, we need to attain some vertex vk′′ both of whose neighbors have
endowed potential f1. Thus, for vk′′ , both in-arcs are settled before both out-arcs,
which necessarily lets p(vk′′) = 0. This completes our proof. ��

Suppose that there are i vertices that are endowed potential 2 f1. Combining Lem-
mas 10 and 11, we know that 0 ≤ i ≤ n

2 . When i = 0, each vertex can be endowed at
most f1, which lets sumv∈V p(v) ≤ n f1. Further suppose that each is actually endowed
with f1 potential. When we let each one vertex be endowed with 2 f1 potential, there
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need to be at least two vertices on both sides that need to be endowed with 0 potential.
We know that this never increases the circulation. This ends our proof for the case of
f1 = f2.
Now, it is almost straightforward to show the case of f1 > f2. The above proof

shows that max-circulation is now attained in the direction with ratwi (A1, s) = n − 1
with xmax (N f ) = (n − 1) f1 + f2.

A.7 Results Relevant to Rotemberg (2011)

We follow the notation of Rotemberg (2011) with regard to its target class of network.
The next corollary shows that Rotemberg (2011) treats one of the simplest classes

of f-network with no arc-twisted cycles.

Corollary 1 (Case of Rotemberg (2011): min-circulation)
For a closed f-network N f = 〈V , A, f 〉 that is in a class of CK

N with flow z 25, we
have xmin

N f = z.

Proof Since CK
N is based on a Euler graph, we can take a cycle c that consists of all

the arcs. Furthermore, since the flow for each arc equals z, we can take a closed-cycle
decomposition with a unique undominated cycle c with flow f (c) = z. Since a Euler
graph has no arc-twisted cycles, the min-circulation is realized with c, and the derived
value is z. ��

The next corollary shows that Rotemberg (2011) treats one of the simplest classes
of f-network with no vertex-twisted cycles.

Corollary 2 (Case of Rotemberg (2011): max-circulation)
For a closed f-network N f = 〈V , A, f 〉 which is in the class of CK

N with flow z,

suppose that N/(K !) is an integer. Then, we have xmax
N f = z

∑K
k=1 k ∗ ( Nk − 1)

Proof When N/(K !) is an integer, there exists no vertex-twisted cycles within Cnp
G

for any associated graph G, where Cnp
G denotes the set of non-punctured cycles for

G. Observe that we can take a set of cycles C ⊆ Cnp
G such that C constitutes a closed

cycle decomposition with constant flow z for each cycle, and |C | = ∑K
k=1 k, for which

there are k number of cycles for each |c| = N
k , for k = 1, 2, . . . , K . Since there is

no vertex-twisted relation between the cycles in Cnp
G , we take a sequence whereby the

circulation for each cycle c with |c| = N
k is z( Nk − 1). Thus, the sequence attains the

circulation stated in this corollary. We easily confirm that the circulation equals the
max-circulation for the given f-network, observing that any combination of the cycles
within C is not dominated by non-punctured cycles. ��
25 We obey the definition of Rotemberg (2011) on CK

N . N subjects indexed by i ∈ [0, 1, . . . , N − 1] are
arrayed in a circle such that N − 1 is followed by firm 0. Each subject i has payment z to subjects i + j for
each j = 1, 2, . . . , K . 2K ≤ N − 1 is assumed. CK

N thus defined has a representation as a f-network with
constant flow z.
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