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Abstract Standard solution methods of DSGE models do not necessarily deliver
minimal state space forms. When the ABCD form is non-minimal, the conditions
in the literature are not necessary for the existence of a VAR representation of the
observables. In this paper we present necessary and sufficient conditions that are valid
in general, and hence can be applied to minimal and non-minimal ABCD forms. If
the state space form is minimal, our conditions coincide with those in the literature.
These results also clarify that it is possible to have unstable eigenvalues together with
a (possibly finite) VAR representation of the observables.
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1 Introduction

Economic shocks of DSGEmodels cannot always be recovered fromVARs. This situ-
ation has been discussed e.g. in Chari et al. (2005), Christiano et al. (2006), Kapetanios
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et al. (2007), Ravenna (2007), and it is related to the non-fundamentalness of economic
models, see Hansen and Sargent (1980), Lippi and Reichlin (1993, 1994) for early
treatments of the problem.

Solutions of linear (or linearized) DSGE models can be expressed in linear state
space form using several solution methods, such as Binder and Pesaran (1997), Uhlig
(1999), Klein (2000), Sims (2001). In the following, we refer to the linear state space
form as the ABCD form. When the number of shocks is equal to the number of
observables and the matrix that loads the former into the latter is non-singular, the
ABCD form is called square.We observe that theABCD formof the solution dynamics
need not be minimal, i.e. it may involve a non-minimal number of state variables. This
is illustrated for example in Komunjer and Ng (2011), who show that the state space
solutions in Christiano et al. (2005), An and Schorfheide (2007), Smets and Wouters
(2007), García-Cicco et al. (2010) are all non-minimal.

In this paperwe investigate population conditions for fundamentalness of theABCD
form and for the existence of a finite VAR representation of the observables.1 Fun-
damentalness is currently checked using the ‘poor man’s invertibility condition’ in
Fernández-Villaverde et al. (2007); applications of this approach can be found in
Leeper et al. (2013), Schmitt-Grohé (2010), Kurmann and Otrok (2011), Sims (2012)
inter alia. The poorman’s invertibility condition consists in the stability of the associate
state matrix, F say, i.e. the state matrix in the system in which the role of inputs and
outputs is interchanged, see Bart et al. (2008). Conditions for the VAR to be of finite
order are given in Ravenna (2007), where a ‘unimodularity condition’ is proposed as a
check. This condition consists in the unimodularity of the matrix polynomial I − Fz,
z ∈ C,2 or equivalently in the nilpotency of F , see Franchi and Vidotto (2013).

When the square ABCD form is minimal, we show that the poor man’s invertibility
condition and the unimodularity condition are proper checks, i.e. they are necessary
and sufficient conditions for fundamentalness. When the ABCD form is non-minimal,
we find that the poor man’s invertibility condition and the unimodularity condition
are not necessary. In other words F can be unstable while the square ABCD form is
fundamental and I − Fz can be non-unimodular while the square ABCD form has a
finite order VAR representation.

Because in current economic practice systems are not always inminimal state space
form, in this paper we present alternative orthogonality conditions that are necessary
and sufficient and which hold in possibly non-minimal square systems. This provides
a check that does not require to transform the system to minimal ABCD form. These
orthogonality conditions involve the eigenvectors associated with eigenvalues of the
associate state matrix F , and correspond to the case where there exist states that are
cancelled in the VAR representation of the observables. For fundamentalness, the
orthogonality conditions must apply to all the unstable eigenvalues, while for the

1 Recall that a square ABCD form is called fundamental if there exist a (possibly infinite order) VAR
representation for the observables with respect to the economic shocks, see Hansen and Sargent (1980),
Brockwell and Davis (1987), Lippi and Reichlin (1993, 1994).
2 A matrix polynomial is called unimodular if its determinant is a nonzero constant, see e.g. Antsaklis and
Michel (2007, p. 283).
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existence of a finite VAR representation, the orthogonality conditions must hold for
every nonzero eigenvalue.

When the orthogonality conditions hold,wefind that the eigenvalues of the associate
state matrix F are also eigenvalues of the state matrix, A say. This implies that when
the eigenvalues of A and F are different, the orthogonality conditions do not hold.
This provides a simplified strategy based solely on eigenvalues of A and F . Finally
we find that if the ABCD form is minimal, the orthogonality conditions coincide
with the poor man’s invertibility condition and the unimodularity condition. This
shows that the present orthogonality conditions are an extension of the conditions in
the literature that apply to general (i.e. not necessarily minimal) linear state space
forms.

Therefore, invertibility of linearized DSGE models should be checked either using
the present orthogonality conditions or by first transforming the state space form to a
minimal representation and then by applying the poor man’s invertibility condition to
theminimal state space form. Similarly, existence of a finiteVAR representation should
be checked either using the present orthogonality conditions or byfirst transforming the
state space form to a minimal representation and then by applying the unimodularity
condition to the minimal state space form, see Franchi (2013) for an illustration on
the Smets and Wouters (2007) model.

The results of the paper employ well-known concepts from systems theory, see e.g.
Kailath (1980), Antsaklis and Michel (2007). The possibility to have cancellations of
the type discussed in this paper in non-minimal state space systems was noticed by
Rosenbrock (1970) inter alia, see his remark after Theorem 1.2, page 38 and Corollary
3, page 115. Here we give explicit algebraic condition on the system matrices that
characterizes this situation. These tools are meant to be used by macro-economists,
who deal with non-minimal state space representations of linearized DGSE models in
practice and who are interested in determining if the observables in their model admit
a VAR representation.

The results in this paper are also related to cointegration.3 The possibility to have
unstable states within a non-minimal state space gives in fact one more way to
incorporate cointegration in DGSE models, by allowing unit-root stochastic trends
in the states that can be canceled in the stable VAR representation of observ-
ables.

The rest of the paper is organized as follows. Section 2 introduces the square
case. Section 3 shows that fundamentalness and the existence of a finite order VAR
can be characterized in terms of an appropriate transfer function. Section 4 presents
the orthogonality conditions. Section 5 specializes results to minimal square ABCD
forms, showing that for minimal state spaces the orthogonality conditions coincide
with the poor man’s invertibility condition and the unimodularity condition. Section 6
concludes. All proofs are collected in the Appendix.

3 Inversions of matrix polynomials are used in the representation theory for non-stationary processes
developed in Johansen (1988, 1996, 2009); see also Franchi and Paruolo (2011a, b). Howlett (1982) focuses
on a similar problem in the context of input retrieval for linear systems.
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2 Square ABCD Forms

Consider an equilibrium dynamics of a linearized DSGE model with representation

xt = Axt−1 + Bwt

yt = Cxt−1 + Dwt (1)

where xt has dimension nx × 1, yt has dimension ny × 1 and wt is a white noise of
dimension nw × 1 with identity covariance matrix. A is called the state matrix and we
refer to (1) as the ABCD form.

The following assumption is maintained throughout the paper.

Assumption 2.1 (Square ABCD form). The matrix D is square and invertible.

In square ABCD forms the number of economic shocks is equal to the number of
observables and the matrix that loads the shocks into the observables is non-singular.
In this case one can substitute wt = D−1(yt − Cxt−1) in the first equation in (1) and
rewrite the square ABCD form in the ‘associate state space form’, see e.g. Ch.2.2 in
Bart et al. (2008),

xt = Fxt−1 + BD−1yt , F = A − BD−1C,

wt = −D−1Cxt−1 + D−1yt , (2)

where the role of input and output of system (1) are interchanged; F is called the
‘associate state matrix’.

The ABCD form is called minimal, see e.g. Ch.6 in Kailath (1980) or Ch.2 in
Hannan and Deistler (1988), if the dimension of xt is as small as possibile. Minimality
holds if and only if the ABCD form is both controllable and observable, i.e. if rank C =
rankO = nx , where

C = (
B AB · · · Anx−1B

)
, O =

⎛

⎜⎜⎜
⎝

C
CA
...

CAnx−1

⎞

⎟⎟⎟
⎠

(3)

are respectively called controllability and observability matrix.
Some remarks are in order.

Remark 2.2 The state matrix A may be stable or unstable.4 Cases with unstable A are
interesting from an economic point of view because they arise from models with unit
roots in the endogenous state variables as well as those with non-stationary exogenous
shocks, as in Chang et al. (2007).

4 A square matrix is called stable when all its eigenvalues are stable, i.e. of modulus strictly less than one;
if it has unstable eigenvalues then it is called unstable.
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Remark 2.3 The ABCD form may be minimal or non-minimal. Non-minimal ABCD
forms are natural outcomes of standard solution methods: for example, Komunjer
and Ng (2011) show that, using gensys and dynare, the ABCD forms in
Christiano et al. (2005), An and Schorfheide (2007), Smets and Wouters (2007),
García-Cicco et al. (2010) are all non-minimal.

3 Transfer Function

In square ABCD forms, it is of interest, see e.g. Fernández-Villaverde et al. (2007),
to characterize situations in which the economic shocks can be recovered from the
infinite history of the observable variables, i.e. cases in which yt admits an infinite
order VAR representation

A(L)yt = ut , A(z) = Iny −
∞∑

j=1

A j z
j , ut = Mwt , (4)

where the sequence {A j }∞j=1 is absolutely summable and M is a non-singular matrix
that links economic shocks and reduced form errors. When (4) holds, (1) is said to
be invertible (and wt fundamental), see Hansen and Sargent (1980), Brockwell and
Davis (1987), Lippi and Reichlin (1993, 1994). Furthermore it is of interest, see e.g.
Ravenna (2007), to have conditions that describe when the VAR representation of yt
has finite order, i.e. when A(z) is a matrix polynomial.

In this section we link the existence of a (possibly finite) VAR representation of yt
to properties of the transfer function from yt to Dwt , T (L)yt = Dwt , implied by the
associate state space form (2), where

T (z) = Iny − C(Inx − Fz)−1BD−1z, z ∈ C. (5)

The relationship between the VAR representation of yt and the transfer function
T (z) is presented next; in the following we say that a function is regular if it is finite
on the unit disc, i.e. for all z ∈ C such that |z| < 1+ δ, for some δ > 0, see Johansen
(2009) for a similar notion of regularity. Remark that the coefficients of the expansion
of a regular function f (z) = ∑∞

j=0 f j z j are geometrically decreasing and hence
absolutely summable.

Proposition 3.1 (Transfer function conditions). The vector of observables yt admits
an infinite order VAR representation if and only if T (z) is regular. Moreover, the VAR
representation is of finite order if and only if T (z) is amatrix polynomial. In either case,
the coefficients of the VAR representation of yt and the mapping between economic
shocks and reduced form errors in (4) are given by A(z) = T (z) and M = D.

The properties of the matrix function T (z) depend on those of (I − Fz)−1 =
adj(I − Fz)/|I − Fz|. The roots of |I − Fz| = 0 are poles of (I − Fz)−1; because
|I − Fz| = 0 if and only if z = λ−1

u , where {λu} are the nonzero eigenvalues of
F , if F is stable then (I − Fz)−1 is regular because minu |λ−1

u | > 1. Hence T (z)
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is regular and, by Proposition 3.1, this implies that yt admits an infinite order VAR
representation. Moreover, if F is nilpotent then I − Fz is unimodular and (I − Fz)−1

is a matrix polynomial; hence T (z) is a matrix polynomial and, by Proposition 3.1,
this implies that yt admits a finite order VAR representation.

Observe that T (z) can be regular even if F is unstable and it can be a matrix
polynomial even if F is not nilpotent. In fact, when F is unstable, (I − Fz)−1 has
poles in the (closed) unit disc and thus it is non-regular, but those singularities may be
absent fromC(I−Fz)−1B due to thepresenceof B andC . In this caseC(I−Fz)−1B is
regular and thus the same holds for T (z). This possibility is illustrated in the following
example, which serves as a running example in the rest of the paper.

Example 3.2 (Running example). This is a special case of the model in Chang et al.
(2007). Let nx = 4, nw = ny = 2 and

A =
(

�1 0
0 I2

)
, B =

( 1
2 I2
I2

)
, C = (

�1 �2
)
, D = �2 + 1

2
I2,

where

�1 =
(

1 1
− 1

2 − 1
2

)
, �2 =

(
1 1
1 1

)
.

Observe that D is non-singular so that the ABCD form is square. Moreover F =
A − BD−1C has eigenvalues {1, 3/5, 0, 0}, and (I − Fz)−1 has a pole at z = 1 and
thus it is non-regular. At the same time T (z) is regular, because

C(Inx − Fz)−1B = 5

4(3z − 5)

(
4z − 6 4z − 6
z − 3 z − 3

)

has no pole at z = 1 (it only has a pole at z = 5
3 ) and hence the expansion T (z) =∑∞

j=0 Tj z j has absolutely summable coefficients. This illustrates that one can have
fundamentalness together with unstable F .

Similarly, one can construct examples in which B and C cancel every pole of
(I − Fz)−1 so that C(I − Fz)−1B is a matrix polynomial, which in turn implies
that the same holds for T (z). This shows that the poor man’s invertibility condition in
Fernández-Villaverde et al. (2007) and the unimodularity condition in Ravenna (2007)
are not necessary conditions for a VAR representation of a square ABCD form. The
next proposition proves that they are sufficient conditions.

Proposition 3.3 (Sufficient conditions). If F is stable, then yt admits an infinite order
VAR representation; the converse does not hold. If F is nilpotent, then yt admits a
finite order VAR representation; the converse does not hold.
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4 Conditions for the Existence of a VAR Representation

In this section we state necessary and sufficient conditions for fundamentalness and
for the existence of a finite order VAR, in the form of orthogonality conditions or rank
conditions. These conditions apply both to minimal and non-minimal square ABCD
forms, and they are based on the idea of pole cancellations in C(I − Fz)−1B in the
matrix function T (z).

We introduce the following notation: letλu , u = 1, . . . , q, be all the distinct nonzero
eigenvalues of F and apply the partial fraction expansion5

(I − Fz)−1 = P(z) + H(z), P(z) =
q∑

u=1

Pu(z), Pu(z) =
mu∑

j=1

Pλu ,mu− j

(1 − λuz) j
,

Pλu ,0 �= 0. (6)

Here H(z) is a matrix polynomial, P(z) is the sum of the principal parts Pu(z) of
(I − Fz)−1 at z = λ−1

u andmu is the order of the pole of (I − Fz)−1 at z = λ−1
u . Note

that zero eigenvalues of F are absent from |I − Fz| and hence they do not appear in
the principal part P(z). A characterization of the pole cancellations in C(I − Fz)−1B
due to the presence of B and C is given in the following Lemma, which define our
orthogonality conditions.

Lemma 4.1 (Orthogonality conditions). T (z) has no pole at z = λ−1
u if and only if

the orthogonality conditions

C Pλu ,mu− j B = 0, j = 1, . . . ,mu, (7)

hold. If the orthogonality conditions hold, then λu is also an eigenvalue of A.

Because Pu(z) fully characterizes the singularity of (I − Fz)−1 at z = λ−1
u , in

order for C(I − Fz)−1B to have no pole at z = λ−1
u , B and C must be such that

CPu(z)B = 0. This requires each coefficient of the principal part to be 0 when pre
and post-multiplied by C and B. Lemma 4.1 also states that if a pole cancellation
occurs for a given eigenvalue of F , then this must also be an eigenvalue of A; this
observation leads to the following necessary conditions.

Proposition 4.2 (Necessary conditions). The vector of observables yt admits an infi-
nite order VAR representation only if each unstable eigenvalue of F is also an eigen-
value of A. Moreover, the VAR representation is of finite order only if each nonzero
eigenvalue of F is also an eigenvalue of A.

The main characterization result is stated next.

5 See e.g. Fischer and Lieb (2012, Ch. III.2).
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Proposition 4.3 (Necessary and sufficient orthogonality conditions). The vector of
observables yt admits an infinite order VAR representation if and only if the orthogo-
nality conditions hold at each unstable eigenvalue of F. Moreover, the VAR represen-
tation is of finite order if and only if the orthogonality conditions hold at each nonzero
eigenvalue of F.

An infinite order VAR representation requires the cancellation of all the poles
associated with the unstable eigenvalues of F ; the VAR has finite order when the
cancellation also involves the stable nonzero eigenvalues. Note that if all eigenvalues
are stable, the first orthogonality condition for invertibility is automatically satisfied
because there are no unstable eigenvalues. Similarly, if F is nilpotent, all eigenvalues
are equal to 0, so that q = 0 in (6) and this implies P(z) = 0; hence also the second
orthogonality condition for the existence of a finite order VAR is automatically satis-
fied. This illustrates that the poor man’s invertibility condition (and the unimodularity
condition) implies the orthogonality conditions in Proposition 4.3 but not viceversa.
That is, in square ABCD forms the former is stronger than the latter, and that the
conditions differ.

An equivalent and more directly implementable rank condition is provided next.6

Proposition 4.4 (Rank conditions). Let λu be a nonzero eigenvalue of F, rank decom-
pose F − λu I = αβ ′, where α, β are nx × r full column rank matrices, and define
α⊥, β⊥ as bases7 of the orthogonal complements of the column spaces spanned by
α and β respectively. Then the orthogonality condition holds at λu if and only if
rank(α′⊥B) < nx − r or rank(Cβ⊥) < nx − r (or both).

In the light of this equivalence one can thus restate the main characterization result
in Proposition 4.3 replacing orthogonality conditions with rank conditions.

Proposition 4.5 (Necessary and sufficient rank conditions). The vector of observables
yt admits an infinite order VAR representation if and only if the rank condition holds
at each unstable eigenvalue of F. Moreover, the VAR representation is of finite order
if and only if the rank condition holds at each nonzero eigenvalue of F.

A MATLAB script that implements this check is available in the Additional Material
to the present paper.

Example 4.6 (Continuation of Example 3.2). We illustrate our results using the run-
ning example, where the eigenvalues of F and A are σF = {1, 3/5, 0, 0} and
σA = {1, 1, 1/2, 0} respectively. Because 3/5 is not an eigenvalue of A, the nec-
essary condition in Proposition 4.2 is not satisfied and one immediately sees that yt
does not have a finite order VAR representation. Because 1 is also an eigenvalue of
A, the necessary condition in Proposition 4.2 is satisfied and we proceed to check the
rank condition for the eigenvalue equal to 1.

6 Here and in the following a′ indicates the conjugate transpose of a, which reduces to transposition for a
real.
7 Hence of full column rank nx − r .
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VAR Representations for DSGE Models 621

Rank-decomposing F − I = αβ ′, where α, β have dimension 4 × 3, and defining
α⊥, β⊥ of dimension 4×1 as bases of the orthogonal complements of col α and col β,
one finds α⊥ = (−3 : −3 : 2 : 1)′ and β⊥ = (0 : 0 : 1 : −1)′. Because

C =
(

1 1 1 1
− 1

2 − 1
2 1 1

)
,

one has Cβ⊥ = 0 and hence the rank condition in Proposition 4.4 is satisfied at the
unstable eigenvalue equal to 1. This correctly indicates, see Proposition 4.5, that the
vector of observables yt has an infinite order VAR representation.

5 Minimal Square ABCD Forms

In this section we treat the special case of square minimal ABCD forms. Minimality
could be directly obtained as a property of the DSGE’s solution or it could be derived
from a non-minimal solution by eliminating irrelevant states, as described e.g. in
Rosenbrock (1970). Here we show that if the square ABCD form is minimal, then the
orthogonality conditions coincide with the poor man’s invertibility condition and with
the unimodularity condition. We conclude this section by illustrating the result via the
running example.

Proposition 5.1 (Equivalence inminimal state space forms). If the square ABCD form
is minimal, then the vector of observables yt admits an infinite order VAR represen-
tation if and only if F is stable. Moreover, the VAR representation is of finite order if
and only if F is nilpotent.

When the ABCD form is minimal, CPu(z)B �= 0 for any eigenvalue and hence no
cancellation is possibile. Then each pole of (I −Fz)−1 is a pole ofC(I −Fz)−1B and
the orthogonality condition for an infinite order VAR holds (trivially) if and only if F
has no unstable eigenvalues. Similarly, it holds (trivially) for a finite order VAR holds
if and only if all eigenvalues are equal to zero. This shows that when the square ABCD
form isminimal, the poorman’s invertibility condition and the unimodularity condition
are equivalent to the orthogonality conditions and thus they become necessary and
sufficient.

Example 5.2 (Continuation of Examples 3.2 and 4.6). We illustrate the last result on
the running example, in which the controllability and observability matrix in (3) are
such that rank C = 4 and rankO = 2. The ABCD form is thus controllable but not
observable, and hence non-minimal.

A minimal representation can be derived as follows; here we use the subscript m
to index quantities in the minimal state space representation. Write C as C = Cmv′,
where

Cm =
(

1 1
− 1

2 1

)
, v′ =

(
1 1 0 0
0 0 1 1

)
,
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and observe that v′A = Amv′, where Am =
( 1

2 0
0 1

)
. Define xm,t = v′xt and

Bm = v′B, pre-multiply the state equation by v′ and write the system as

xm,t = Amxm,t−1 + Bmwt

yt = Cmxm,t−1 + Dwt .

This system isminimal; in fact the controllability and observabilitymatrices of this sys-
tem satisfy rank Cm = rankOm = 2. Obviously,CA j B = Cmv′A j B = Cm A j

mv′B =
Cm A j

m Bm and hence the so-called Markov coefficients of the two systems are equal.
We next apply Proposition 5.1 to this square minimal ABCD form. The eigenvalues

of Fm are {3/5, 0}; hence they are all stable, and the poor man’s invertibility condition
correctly signals that yt has an infinite order VAR representation. The unimodularity
condition does not apply, because Fm has one nonzero eigenvalue. This correctly
signals that the system does not have a finite order VAR representation.

6 Conclusions

Standard solution methods of DSGE models do not necessarily deliver minimal state
space forms.When the ABCD form is non-minimal the poor man’s invertibility condi-
tion in Fernández-Villaverde et al. (2007) and the unimodularity condition in Ravenna
(2007) are not necessary for the existence of a VAR representation of the observables.

In this paper we have presented a check that is valid in the general square case,
and hence can be applied to minimal and non-minimal ABCD forms. This illustrates
that it is possible to have unstable eigenvalues in the state matrix and in the associate
state matrix together with a VAR representation; this is possible because there may
exist irrelevant unstable states that are cancelled in the VAR representation of the
observables. Finally we show that if the state space form is minimal, the orthogonality
condition coincides with the poor man’s invertibility condition and the unimodularity
condition, because irrelevant states cannot exist.

The present results show that invertibility of linearized DSGE models should be
checked either using the present orthogonality conditions or by first transforming the
state space form to a minimal representation and then by applying the poor man’s
invertibility condition to the minimal state space form. Similarly, existence of a finite
VAR representation should be checked either using the present orthogonality condi-
tions or by first transforming the state space form to a minimal representation and then
by applying the unimodularity condition to the minimal state space form.
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Appendix: Proofs

Proof of Proposition 3.1. Observe that A(0) = T (0) = Iny . (Sufficiency.) By def-
inition. (Necessity.) If (4) holds, then wt = M−1A(L)yt and hence T (L)yt =
DM−1A(L)yt , which implies M = D and T (z) = A(z). ��
Proof of Proposition 3.3. If F is stable, then (I − Fz)−1 is regular and so is T (z);
then apply Proposition 3.1. If F is nilpotent, then I − Fz is unimodular, (I − Fz)−1

is a matrix polynomial and so is T (z); then apply Proposition 3.1. ��
Proof of Lemma 4.1. Consider (5) and (6); if CPu(z)B = 0 then C(I − Fz)−1B
has no pole at z = λ−1

u and hence the same holds for T (z). Conversely, assume
T (z) has no pole at z = λ−1

u ; then the same holds for C(I − Fz)−1B and thus

CPu(z)B = 0. Because CPu(z)B = ∑mu
j=1

CPλu ,mu− j B
(1−λu z) j

, one has CPu(z)B = 0 if and
only if CPλu ,mu− j B for j = 1, . . . ,mu .

Next we show that if the orthogonality condition holds, then λu is also an eigenvalue
of A. If the orthogonality condition holds, CPλu ,0B = 0. Write I − Fz = (I −
Fλ−1

u ) + (1− λuz)λ−1
u F and (6) as (I − Fz)−1 = Pu(z) + P−u(z), where P−u(z) =∑q

v=1,v �=u Pv(z) + H(z); then (I − Fz)(I − Fz)−1 = I implies

(I − Fλ−1
u )Pu(z) + (I − Fλ−1

u )P−u(z) + (1 − λuz)λ
−1
u F(I − Fz)−1 = I. (8)

Consider the first term (I − Fλ−1
u )Pu(z) and substitute Pu(z) = ∑mu

j=1
Pλu ,mu− j

(1−λu z) j
; one

finds

(I − Fλ−1
u )Pu(z) = (I − Fλ−1

u )Pλu ,0

(1 − λuz)mu
+

mu−1∑

j=1

(I − Fλ−1
u )Pλu ,mu− j

(1 − λuz) j
.

Because (I − Fλ−1
u )Pλu ,0 is the only term in (8) that loads (1 − λuz)−mu , then (8)

implies (I − Fλ−1
u )Pλu ,0 = 0. Similarly, starting from (I − Fz)−1(I − Fz) = I one

finds that Pλu ,0(I − Fλ−1
u ) = 0. Hence (I − Fλ−1

u )Pλu ,0 = Pλu ,0(I − Fλ−1
u ) = 0,

where Pλu ,0 �= 0. Because λu is an eigenvalue of F , one can write F − λu I = αβ ′,
where α, β are nx × r full column rank matrices, and r = rank(F − λu I ) < nx ;
moreover, because λu �= 0, one finds I − Fλ−1

u = −λ−1
u αβ ′. One then has Pλu ,0 =

β⊥ϕα′⊥ �= 0, where α⊥, β⊥ are bases of the orthogonal complements of the column
spaces spanned by α, β and ϕ �= 0, and hence CPλu ,0B = Cβ⊥ϕα′⊥B = 0. Because
rank(Cβ⊥) = rank(α′⊥B) = nx −r imply ϕ = 0, it must be that rank(Cβ⊥) < nx −r
and/or rank(α′⊥B) < nx − r . Next use the projection identities I = αᾱ′ + ᾱ⊥α′⊥ =
β̄β ′ + β⊥β̄ ′⊥, where ā = a(a′a)−1, and write

A − λu I = F − λu I + BD−1C = αβ ′ + BD−1C = (
α B

) (
Ir 0
0 D−1

)(
β ′
C

)

= (
α ᾱ⊥

)
(
Ir ᾱ′B
0 α′⊥B

) (
Ir 0
0 D−1

) (
Ir 0
C β̄ Cβ⊥

)(
β ′
β̄ ′⊥

)
.
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Because rank(Cβ⊥) < nx − r or rank(α′⊥B) < nx − r , one has that A − λu I is
singular; this shows that λu is an eigenvalue of A. ��
Proof of Propositions 4.2 and 4.3. T (z) is regular if and only if CPu(z)B = 0 for all
unstable eigenvalues and it is a matrix polynomial if and only if CPu(z)B = 0 for all
eigenvalues. The statement then follows from Proposition 3.1 and Lemma 4.1. ��
Proof of Proposition 4.4. (Sufficiency.) If the orthogonality condition holds at λu ,
then CPλu ,0B = 0; because CPλu ,0B = Cβ⊥ϕα′⊥B and ϕ �= 0, it follows that
rank(Cβ⊥) < nx − r and/or rank(α′⊥B) < nx − r , see the proof of Lemma 4.1.
(Necessity.) We first show that if rank(Cβ⊥) < nx − r and/or rank(α′⊥B) < nx − r ,
then λu is non-controllable and/or non-observable; we then apply Kalman’s decom-
position theorem for non-controllable and/or non-observable linear systems.

For the PBH rank test, see e.g. Kailath (1980, Theorem 6.2.6), one has that λu is
controllable if and only if rank(A − λu I : B) = nx and it is observable if and only if
rank(A′−λu I : C ′) = nx . Observe that rank(A−λu I : B) = rank(F−λu I : BD−1);
in fact

(
A − λu I B

) (
Inx 0

−D−1C D−1

)
= (

F − λu I BD−1
)

and similarly one finds that rank(A′ −λu I : C ′) = rank(F ′−λu I : −C ′D−1′). Recall
that F −λu I = αβ ′ and use the projection identities I = αᾱ′ + ᾱ⊥α′⊥ = β̄β ′ +β⊥β̄ ′⊥
to write

(
F − λu I BD−1

) = (
αβ ′ αᾱ′BD−1 + ᾱ⊥α′⊥BD−1

)

= (
α ᾱ⊥

) (
β ′ ᾱ′BD−1

0 α′⊥BD−1

)
,

(
F − λu I
−D−1C

)
=

(
αβ ′

−D−1C β̄β ′ − D−1Cβ⊥β̄ ′⊥

)

=
(

α 0
−D−1C β̄ −D−1Cβ⊥

) (
β ′
β̄ ′⊥

)
.

Similar expressions hold replacing F, BD−1,−D−1C with A, B,C . This shows that
λu is non-controllable and/or non-observable, both for the original ABCD form (1)
and for the associate state space (2).

We next apply Kalman’s decomposition theorem, see e.g. Theorem 6.6 in Antsaklis
andMichel (2007, p. 245), to the associate state space (2), with (A, B,C, D) replaced
by (F,G, H, D−1), G = BD−1, H = −D−1C . From Antsaklis and Michel (eq.
(7.6) 2007, p. 278), one has that the transfer function D−1T (z) has representation
D−1 + H1(I − F11z)−1G1z where F11 has eigenvalues that are both controllable and
observable, and H1,G1 are constructed as C1, B1 in eq. (7.6) of Antsaklis and Michel
(2007). This implies that T (λ−1

u ) is finite, and hence that CPu(z)B = 0 by Lemma
4.1. ��
Proof of Proposition 4.5. Direct consequence of Propositions 4.3 and 4.4. ��
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Proof of Proposition 5.1. (Sufficiency.) See proof of Proposition 3.3. (Necessity.) For
the PBH rank test, see e.g. Kailath (1980, Theorem 6.2.6), one has that if the ABCD
form is minimal then rank(A−λI : B) = rank(A′−λI : C ′) = nx for all λ ∈ C. This
implies, see the proof of Proposition 4.4, that rank(Cβ⊥) = rank(α′⊥B) = nx − r ;
hence CPλu ,0B = Cβ⊥ϕα′⊥B = 0 contradicts ϕ �= 0 and thus the orthogonality
condition cannot hold. This implies that T (z) is regular only if F is stable and it is a
matrix polynomial only if F is nilpotent. Finally apply Proposition 3.1. ��
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