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Abstract. This paper introduces the collection of the Journal on Machine Learning (ML) and 
the user. It provides a brief history of ML from the 1950’s through to the current time, sketching 
the nature of the kinds of precursor AI techniques used in such things as expert systems right the 
way through to the emergence of ML and its tool sets, including deep learning. It concludes with 
the ‘generative AI’ used in such ML technologies as PaLM and GPT-3. The history highlights 
key changes and developments in ML, the especial importance and limitations of deep learning, 
and the changing attitudes and expectations of users in an environment when ML can and often 
is oversold. The paper then explores the ways CSCW research has addressed the social context of 
organisational systems and how the same can apply for ML tools and techniques. It urges research 
that focuses on the particular ways that ML comes to fit into ‘real world’ collaborative work sites 
and hence speaks to the CSCW cannon.

1 Introduction

The history of machine learning (ML) has been a history of two sides: exagger-
ated hype and unnecessary fears on one, and, on the other, steady, if slow pro-
gress in technology on the other. Any attempt to grapple with ML needs to sepa-
rate these two concerns before it outlines a third concern, the kind of relationship 
CSCW might have with them. It is our view that a new perspective, relevant to 
the issues at hand, needs developing. Such a view will, we argue, owe something 
to CSCW because CSCW is founded on the interactional issues that are some-
times overlooked in the ML literature. However, (and we remain agnostic for the 
moment), it may be that the peculiar features of ML might require some ‘special’ 
treatment.

As we approach these and other possibilities, it is perhaps worth sketching 
what the issues at hand might be. First of all, there is the technology. This has, 
as we say, made steady but slow progress over the years, but is, in many ways, 
relatively straight forward. The basic concept of machine learning was devised in 
the 1950s; the notions behind deep learning a decade later. Computer hardware 
that would make these computational techniques powerful was theoretically con-
ceived in the 1980s but only became practical in about 2010.
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Timelines aside, certain aspects of this development need appreciating. For 
example, ML depend in very large part on innovations in data. Over the past 
twenty year or so, acts by users such as keyboard entries, say, or visual signals 
from a camera, or webs of datum to do with crowd behaviours on the internet, 
have been transformed by engineers who sought out the ‘ML-relevant features’ 
of the phenomena in question. Extracting these features took years in some 
instances, but once done has almost become taken for granted, as Crawford 
(2021). It is also artful, and makes successful ML dependent in human ingenu-
ity (Duboue 2020). Feature extraction (or feature engineering, an alternative but 
perhaps better term for the way data had to be developed), turns around how 
data might map its own internal relationships – identifying similarities between 
instances of data. It is through discovering what the relationships might be and 
hence their potential for interpretation and ‘learning’ that determines for engi-
neers the properties that need storing. Acts by individual users, as a case in point, 
have to be defined as instances of types (or categories) that apply for all users (or 
at least large numbers of users) and not expressions of individuated acts, and it is 
these generic types, a selected ‘ontology’, that allows connections between those 
acts to be made. The work of feature engineers is to identify these types (and 
indeed continue to do so as new sources of data capture emerge).

It is perhaps worth noting as well that these types (which are indexes to the 
sought for patterns) are essentially statements of virtual distance (temporal and 
spatial) as well as calculated notions of likelihood (i.e., the greater the likelihood, 
the ‘nearer’ the interpretation is to the ‘right answer’, whatever the right answer 
might be). The nature of this distance keeps evolving with transfer learning, a 
quite recent development, treating distances as ‘learnt weights’ and taking these 
weights, or ‘’distances as we suggest, from one domain and applying them in 
another to create a new model of whatever is the phenomena in question.

These measures, whatever they might be, are embedded in the essential data 
store of ML systems: the tensor. This is a geometric representation of the data in 
question, describing the relationship between ‘objects’ or properties (e.g. weighted 
colours for images, or scaled distances for shapes in those images). It is thus inno-
vation in data and its ontologies that has allowed the possibilities of AI and ML.

Meanwhile, building on these innovations, we arrive at AI and ML applications 
(or engines) themselves. These consist of various ways of processing data, ways 
which document patterns such that the relationship between that data and new data 
leads to the identification of new instances of the pattern. Crucial here is that these 
newly identified instances can generate further instances or patterns; they can, as 
it were, predict. These applications are best understood as, above all, innovations 
in respect of scale and speed (though the terms used to name these applications 
and their components can evoke startling analogies and metaphors. This feeds the 
ideology around ML (See Shneiderman 2022). The difficulties that can derive from 
language terms used in ML go back a long way (see Macdermott 1976).
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Crucial here are the data volumes available through the world wide web. It is 
these volumes that have driven the development of, for instance, deep learning, 
which can entail the interrogation of vast, dynamically reconstituted data stores. 
Scale also has its problems, needless to say, such as when the identifying of pat-
terns becomes stuck in a maze of different possibilities, and so techniques have to 
be devised that judge between patterns. Another, perhaps greater problem is com-
putational burdens that ML techniques generate. A deep learning algorithm can 
quickly use up all memory on a computer, slow overall processing time and cre-
ate strains for an operating system which will most probably not been designed 
with these burdens in mind. The appeal of techniques like transfer learning is 
less in what they produce than in the economic approach they take to process-
ing. With transfer learning, the prohibitive problem of over straining computers 
through combining deep learning engines can be partly bypassed. Transfer learn-
ing does this through an elegant way of selecting data. And this in some ways 
returns us to the importance of feature engineering—ensuring that tensors are 
apposite for the task at hand.

Of course, this is just to foreshadow what is a quite complex history of a 
diverse set of technological developments and data transformations, but the point 
is that one needs to know something about these matters in any attempt to explore 
the view from CSCW. If ML is so dependent on types of data, for example, what 
does the CSCW view allow one to appreciate about ‘data in action’? Does the 
view tell us anything important about where data comes from or how is it under-
stood at the point of entry? What about data outputs, at the point of use after ML 
processing has taken place? As the reader will know, the CSCW view does say 
a great deal about these matters and hence ought to be useful to understanding 
ML (See also Duboue 2020: 6–15). We shall say something about this later; the 
papers too will speak to these matters.

The point is that there is an ideology around ML, quite separate from matters 
to do with the technology itself, and what it can and cannot do and which has 
to do with ‘truth’ and ‘objectivity’. But in making these arguments, it should be 
clear that CSCW can offer a distinctive (if not the only) lens or perspective on 
ML. This, we suggest, will involve studies of the work that the technologies do, 
and the work that people do with them. We shall conclude our paper by returning 
to this. Indeed, the point of this paper, and hence the collection, is to address and 
explore precisely these issues. The papers selected and presented here examine 
both sides of the issues at hand – the nature of how ML functions (and hence 
questions about the importance of data and such), and, on the other, the expec-
tations of users that are bound up with the hype and the fear. What the papers 
report is that these matters of technology and expectation play out in particular 
ways depending on the context. ML is not all the same, with different ‘engines’ 
sucking in different data and accordingly outputting different ‘insights’; the 
organisational sites in which these variants of technology land are different too. 
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And beyond this, what users expect might vary as well. These are all, in different 
ways, contextual. Before we get to those papers, however, we turn now to look 
in more depth at what ML is, its history, and as part of that, how the views that 
come to surround it have taken the form they have.

2  The Working Of Machines That ‘Learn’

Concerns over our relationship with ‘intelligent’ machinery are not new. On the 
contrary, questions of expectation and how users react to technology given those 
expectations go back to at the least as far as the earliest incarnations of Artificial 
Intelligence (AI). Some of the early ‘experiments’ into the way in which peo-
ple understood computer programs, for instance, threw up results that surprised 
many of those who devised those technologies. Although old news by now, they 
do indicate something important about how the aggregated data associated with 
ML might be understood. Take Weizenbaum’s Eliza, from the early 1960s. When 
Eliza was ‘tested’ by a secretarial user, it was treated as if it was providing sen-
sible, ‘intelligent’ answers (see, e.g., Natale 2019; Bassett 2019, 2021). Another 
example is the Parry system, a chatbot which consisted of a crude simulation 
of paranoid schizophrenia. In the case of Parry, professional psychiatrists, were 
similarly unable to distinguish between it and a human agent at a level better than 
guesswork. Today, we suggest, users might approach ‘natural language’ using 
systems similarly predisposed to find ‘truth’. What one learns is that we can be 
tempted to imply something (possibly several things) about the technologies 
here. This is a consequence of how we ordinarily make sense of situations that 
we ‘read’ as conversational or narrative and is today consequential for the way 
we understand the outputs of, for instance, Chat GPT3. ‘Generative’ AI might 
seem new, but the reactions it creates are not.

3  Framing Claims About Machines That Learn

The hype that surrounds ML can have deep consequences, then, in terms of 
user expectations. It can also have implications for those who have an interest in 
developing the technology – making it easier to justify hyperbole. Much of this 
has come, not very surprisingly, from those with a vested interest in making large 
claims – the companies whose business depends on their technologies seeming to 
be transforming: DeepMind in London, for example, and their parent company, 
Alphabet in Mountain View, near San Francisco. For the most part, the claims 
do not emanate from the engineers working in the area for the simple reason that 
the many of these engineers know better than most the practical limits of the 
technologies in question. Not all, of course. Geoff Hinton, whose team helped 
devise a way of implementing deep learning on graphics chips is notorious for 
the claims he makes, ones that would have even DeepMind blush (for discussion  
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see Marcus and Davis 2019: 43–44). Most often, exaggeration is the hallmark of 
the management guru, the knowledge management ‘expert’, and so on. In a simi-
lar vein, the fear that the machines are ‘taking over’, that their ‘intelligence’ will 
soon exceed our own, is a product of a different kind of guru, one who knows 
and understands very little of the philosophy of mind, or the concept of ‘embodi-
ment’ and how it relates to practical expertise but whose views seem to imply 
that AI is an almost magical invention. Kurtzweil (2013) is an obvious example 
here, but one-time director of AI research at Google, Peter Norvig has stated that 
AI is the most important technology ever invented; under the rubric of AI he also 
includes ML (see Russell and Norvig 2017).

Returning to the technology, the fact remains that we have not seen the pro-
gress that proponents expected. Hinton suggested that all radiologists would 
be out of a job by the turn of the end of the last decade, for example. The fact 
that this has not happened says less about inertia in the named profession as it 
does about the limits of deep learning. In reality, so-called ‘5th generation’ AI 
(which incorporates ML) has been very slow to arrive. Minsky’s observation in 
the 1960s that ‘in twenty years’ machines will be more intelligent than us’ has 
proven very wide of the mark. Through the 60’s and 70’s progress was made in 
the use of expert systems and, above all, in the use of expert systems which sup-
port very special and limited cases of decision-making by human beings but not 
much more. This success was—and continues to be—substantially the case with 
GOFAI (good old-fashioned AI), a rule-based approach to AI, that was predi-
cated on the belief that the rules which govern human behaviour can be made 
visible and formal. Given this, then, machines can (in theory) perform at least as 
well as people in the tasks in question (for a critique of ‘encodingism’, see Bick-
hard and Terveen 1996). This is only the case with narrow, well-defined tasks, 
however. One might suggest that in hindsight this success has been down to a 
kind of feature extraction that had already been done in the contexts in question. 
What we mean is that in certain tightly controlled decision-making contexts, def-
initions of right courses of action had been tested and made by people in those 
contexts. (They still are, wherever expert systems are being currently deployed, 
which still happens even in the age of ML). To put this another way, we are say-
ing that the ‘data’ and its relevant features were defined so that they were formal, 
logical, and hence representable.

The difference between contexts where this definitional work has been done 
and those where human behaviours were (and are) much broader and varied and 
the context of decision making equally so, is a highly significant one. Apart from 
anything else, it is in these contexts that ML is meant to flourish. Besides, it is in 
these contexts that ‘culture’ gets implicated in important ways. As we show below, 
behavioural outcomes are fundamentally determined by cultural matters in all their 
variation and contextual specificity. It is not always possible to reduce these affairs 
to logic. In any case, ML applications do not learn in ways suitable for this cultural 



R. Harper, D. Randall 

heterogeneity, nor, in the case do deep learning ones, do they have any internal sym-
bolic logic to refer to. All they have is pattern recognition engines and the patterns 
in question have to be analogous to the originating patterns in examples used to train 
these engines. This has enormous potential when it comes to prediction, as it allows 
a pattern to be, as it were, foreseen in some given data (or ‘inferred’, the term pre-
ferred by ML engineers), but it also means that deep learning tools are constrained. 
Their capacity to see different patterns is low, if you like, one might even say shal-
low. We shall say more about this.

What is sure is that though there may be limits to their powers, ML techniques 
have been very successful in particular domains. This success derives from inno-
vative combinations of new tools and techniques, including deep learning, and in 
some instances with parts of the symbolic logic approaches of the old AI. Key to 
this has been undertaking these developments on the basis of constraining the set-
ting of use (the field, or domain), as well as limiting outcomes. By reference to par-
ticular case scenarios – the identification of a visual object say, or the meaning of 
a phrase in a body of text—ML researchers have tested different combinations of 
tools and came to determine which generate the closest approximation to ‘right out-
comes’. And as they have done so, so they have also innovated in respect of the data 
used for these architectures to enable those outcomes. The ‘right’ interpretation of 
a spoken or typed phrase in conversation like human computer interaction is meas-
ured in terms of plausibility. It is a best fit, not a perfect or right answer. So, the data 
that goes into a language conversation model includes phrases and their relations to 
words through syntax and grammar all demarcated by ‘best-fit-reasonable-response-
in-conversation’ criteria.

In doing so, ML has avoided the pitfalls of old AI where it became impossible 
to define ‘right’ answers beyond extremely confined scenarios. A way forward for 
ML has been seeking practical outcomes through using ‘best fit’ as target outcomes 
and seeing what happens – i.e., by seeing how acceptable best fit outputs are. It 
turns out these outcomes are often good enough to be useful. Even better, they can 
themselves become a resource for refining outputs. Best fit can get better and better. 
This doesn’t mean that ML (and deep learning in particular) cannot make shocking 
mistakes, but it does mean that by in large outputs are good enough for many tasks. 
In short, the move from epistemic to pragmatic tests has been key to success and 
distinguishes GOFAI from ML and its sub technologies like deep learning.

4  The Machineries of Learning

This naturally leads us to what the machinery in ML is. It is essentially noth-
ing more than a set of techniques for pattern recognition. The trick, if trick it is, 
is that once a set of patterns have been documented inside the application, that 
same application can then find instances of those patterns in new examples of 
data. These examples might be isomorphic with the one first used in the training 
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sets, or ‘like’ or ‘near to’ that first example. The system has learnt what ‘like’ is. 
Like is a synonym for distance and-or nearness in instances of data.

An important point to recognise, however, is that no ML application learns 
without human intervention, even though there are two broad types of ML—
supervised and unsupervised (with variants in-between). The distinction is, in 
fact, rather fuzzy. This is because in the supervised kind, learning examples are 
given to the machine that have been marked up or labelled by a person. These 
labelled patterns (an image of a dog say) are then used as a reference point that 
the application builds up a data base for, with numerous further labelled exam-
ples (of different dogs) being used to create a range of patterns that fall inside the 
sought for target (a dog) and those which are outside. Unsupervised learning pro-
poses outputs which are validated by feature engineers, but have not been speci-
fied beforehand, as with supervised learning.

Between these two broad types there is also Reinforcement Learning, which 
likewise can sometimes be said to be learning without human intervention. This 
approach entails learning on the basis of some very high-level goal, and for the 
machine to attempt to attain this goal over thousands of instances until eventu-
ally it can reach it, learning on the way. In the case of playing Go, DeepMind’s 
AlphaGo played against itself many millions of times before it learned how to 
deliver success – winning at the game against a real opponent. But one needs to 
be reminded that the goal was specified by the designers of the system.

In essence, and leaving aside the role of the human, these sorts of ML applica-
tions see similar shapes, and it is similarity that produces outcomes. Similarity 
is a vague word, of course, implying many dimensions; in ML systems it means 
nearness – near in shape, in colour, in form. How the data stored for this nearness 
is interrogated and new samples added to it is a remarkable piece of computer 
science engineering, focusing essentially on the geometries stored (or expressed) 
in tensors, but this is all that is happening: ML can show that ‘this’ pattern (a pat-
tern that to us is the shape of a dog) looks like or is similar to ‘that’ instance.

Unsupervised learning is when an ML application is given some data sets 
and seeks to identify patterns in that data. But the learning is still fundamentally 
driven by people, as the patterns that the system identifies are sorted and ‘cor-
rected’ by people: outcomes of unsupervised learning are labelled, and it is this 
labelling that allows the ML to learn relevant patterns. Crucial here is the basic 
truth that machines cannot recognise a pattern that is relevant to some enterprise, 
whether it be in science or in everyday life, unless it builds on human under-
standing of what matters (Collins 2018). Any claim that ML can deliver autono-
mous reasoning are egregious, though all too often made by people and compa-
nies who have a stake in inflating the powers of the technology. Sometimes these 
claims seem plausible at first. For example, DeepMind claimed that some of its 
ML for games playing (Go and such) did not entail any manual labelling for the 
stratagems being modelled. But this ignored the prior and much more significant 
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fact that the games were devised by humans in the first place. One might say 
that the ‘nature’ of the games had already been through the process of feature 
engineering avant la lettre. This is not denying that ML systems can uncover 
hitherto unknown patterns, it is to say they can do so by building on patterns that 
the human hand has already uncovered. ML builds on prior human work, to put 
it another way. The apparent appeal of current ML technologies, such as those 
labelled generative AI (e.g., the ChatGPT), also derives in first principles from 
human judgement.

An important innovation in ML was the emergence of deep learning. This 
approach is essentially a way of iteratively rejigging data stores (tensors) such 
that the re-specification of their parameters (their internal geometries) eventually 
outputs a recognised pattern. It does this through a process of back propagation. 
In very simple terms, this entails a system interrogating some new data against 
the model stored in its tensors; if it finds no fit, it alters the parameters of the ten-
sors and tries again, until some features of the sought for pattern begin to emerge. 
When it does so, the system alters its tensors yet again so that their parameters 
are even nearer the emergent pattern. Crucial, though, is that as this happens a 
relationship between that emergent pattern and the sought for one also begins 
to emerge. In each iteration, so the system gets nearer to recognising the pattern 
it is programmed for. The technique has various subtleties, such as for example, 
dividing tensor parameters into smaller or narrower parameters and then seeing if 
patterns thus begin to emerge at this ‘more detailed’ level.

One consequence of back propagation is that deep learning systems can use 
huge amounts of memory, each iteration requiring a store of what was captured 
initially, a store of the new version, and then a way of referencing between each 
layer in which this has been done. Deep learning applications can reach several 
layers, the only limit being computer storage – memory. Though the concept was 
first outlined in the 1960’s, and designs for how it might be done in the 1980’s, it 
was only when engineers recognised that the graphics cards in games-optimised 
machines had the kinds of memory available that deep learning became practical. 
The year 2012 is often mentioned in relation to this (Marcus and Davis 2019).

A further and very important point is that deep learning systems are very 
good at recognising patterns and will keep processing until they do so (in most 
instances) but are massively limited in what they find. The patterns they identify 
have to be close to or of the same kind to the one(s) they were trained for. A deep 
learning system for word sequences will be useless for visual phenomena; a sys-
tem for visual phenomena useless for language, though both use similar operator 
computations on the data (expressed in tensors) and very similar training tech-
niques with data, they have very different high level architectures as what they 
need to output is very different (though of course one might claim that there can 
be artificially created synaesthesia, words are not visual objects as they are is vehi-
cles of meaning, whereas visual objects can be symbols, they are first and foremost 
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objects). Given the processing demands that deep learning applications place on 
hardware, this is a major inhibitor for ML systems that depend on the interrogation 
of multiple and heterogeneous patterns. The very architecture of deep learning in 
effect can keep ML shallow. Some ML advocates argue that this will be solved 
with massively distributed systems that can access huge amounts of processing 
power. Transfer learning will be central to this. We are not so persuaded, however, 
as this seems to presuppose that one distance is like any other (i.e., the thing cap-
tured in the tensors) and that the problem for ML is simply scale. That distances 
might represent different phenomena is immaterial in this view. This view ignores 
the creative transformations of feature engineers make when constituting datum 
suitable for ML processing, a transformation that bypasses questions of epistemic 
incommensurability, as we alluded to in the opening remarks of this paper. This is 
a larger argument, needless to say, which we cannot expand here (but for an intro-
duction to the engineering problems here see Duboue 2020.

Once a system has been trained (whatever the method and irrespective of 
whether it uses a deep learning approach), the architecture for it can be altered. 
When a system is being trained, there is a need for an intensive loop of learn-
ing, but once this has been completed, a system might be needed to process vast 
numbers of instances in real time, and for this a different architecture may be bet-
ter suited. This can mean that the ML applications that people use every day are 
different from those inside development and research contexts in an important 
respect – though the everyday ones continue to learn with new instances, they 
cannot learn other patterns, other new objects to see or identify. They can only 
do what they were taught to do. The architecture of everyday ML is thus recal-
citrant to what users might want – namely for themselves to become the masters 
of learning, the engineers who instruct the ML machine with newly discovered 
‘features’ of whatever is of interest. We shall return to this when we discuss some 
chatbots based on ML, namely Tay and Zo.

At the same time, it is also true to say that, in some instances, especially in 
unsupervised systems, that what a system finds (on the basis of its learning) 
might be obscure at the point of use (or to the user, which amounts to the same 
thing). Deep learning variants of ML are especially vulnerable to this problem, 
sometimes spewing out ‘answers’ that do not make sense. Partly this is because 
the sum of criteria used to identify something include criteria that the user would 
not recognise (nor perhaps even the feature engineer). While a data engineer 
might have selected features for the application to learn, as the system processed 
these examples, it might have added features that the engineer was unaware of. 
Some of these may seem very odd indeed and can lead to errors.

The classic example of this used to illustrate the issues to undergrads 
and business users alike, has to do with wolves. In this, an ML application 
is described as having been taught to recognise wolves from ordinary dogs. 
Through the training, the system starts to rely on the background behind the 
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animal as a criterion for ‘seeing’ a wolf as against a dog. The background it 
searches for is ‘white’, as in snow. This is because the training sets used are 
of wolves in their natural habitat, often a snowy one. The system ‘learns’ that 
snow is therefore a ‘feature’ of wolves. Of course, this is wrong. This feature 
needs to be removed from the learning set – hence the importance of feature 
engineers’ continual involvement in training.

This points to a related concern – not just that classification can be wrong, but 
rather that in the case of ML the system can err one side or another, or can ‘over-
fit’ a new example to old data, as in the case of the wolf in snow, or it can underfit 
– not seeing a wolf for lack of snow. Overfitting and underfitting are fundamental 
matters when systems are being trained, but sometimes continue to occur once 
systems are released. Whatever the particulars, the point is that it is sometimes 
difficult to make some outcomes ‘explainable’. The data engineer who taught the 
machine to select the ‘features’ in question might have long left the scene and the 
machine itself has learnt new criteria. The analogy between this and the obscure 
meaning of data entered into data bases by staff who have long been forgotten 
should be obvious. It is not the technology that makes explainability hard, it is the 
lack of knowledge about purposes expressed in data in the system. With ML, these 
purposes can be made more obscure by some being selected by the machine.

There is one final irony worth mentioning from this oft-taught example of 
wolves-or-dogs-on-snow, however. While it is good as an illustration of the fra-
gility of ML and deep learning in particular, it turns out there is no way of identi-
fying a wolf from a dog of breed with similar form (a husky, say). What defines a 
wolf is not its shape; it is the wolf’s unwillingness to be tamed. Being a wolf turns 
out to be a cultural matter, not a physical one. And this is a fundamental prob-
lem for AI too: such categories are not to be found in visual data or at least not 
without reference to categorisation procedures that are simply too different from 
those used in the type of computation used in ML and in deep learning especially. 
Cultural matters are cast in everyday language which as computer scientist, Drew 
Mcdermott pointed out long ago (1976), is only partial in its references, being 
largely reliant on context. No computer language operates without correct and 
logically consistent references to the things being computed. Computer systems 
cannot reference ‘context’ as this is too large and too vague to act as a reference. 
As Collins notes (2018), humans might understand each other through the cul-
tural practice of understanding context, but computers cannot. This is fundamen-
tal and we shall return to it when we consider generative AI.

5  The Maths in the Learning Machine

It is not always fully appreciated that ML algorithms that do all the above are 
not entirely new, as we have already mentioned. It is even less often noted that 
they frequently depend on very well-known statistical techniques (Blackwell 
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2021; for an excellent introduction to the techniques see Domingos 2017). 
This should hardly surprise, given the pattern seeking purposes of the systems. 
What is without doubt new is the sheer speed with which data can be pro-
cessed. This is partly to do with vastly better data management, and even the 
use of different computer chips that award more space for short term memory 
(i.e., data). It isn’t just a case of innovation in algorithms, as we remarked at 
the outset.

Whatever the type of ML, and at the risk of over-simplification, when target 
data is discrete (i.e., the patterns in question are, as it were, free standing), the 
algorithms in question will involve classification methods – is the pattern A or B? 
When the target data is continuous (when the pattern is a trend, a vector between 
two points—and sometimes without start or end points), the algorithms will 
involve regression analysis of some kind. At their simplest, classification in these 
cases can be done through linear regression models. They are generally thought 
to be less accurate than some other techniques since all they are really doing is 
taking a series of data points and identifying something that looks like a trend 
between them. Of course, the more kinds of data that are being analysed, the 
more complex the regression problem. Logistic regression, the most commonly 
used technique, is used to provide an apparently ‘objective’ result, which here 
basically means a binary, ‘yes/no’ outcome (regardless of the number of vari-
ables used to produce the outcome). More complex techniques involve such tech-
niques as Support Vector Machines (SVMs), algorithms which essentially draw 
boundaries, called hyperplanes, between data points so that they fall on different 
sides of a demarcated boundary. They are particularly useful with limited num-
bers of data points and are regarded as being rapid.

Other familiar techniques include decision trees which rely on a dendritic 
(tree-like) set of branches to model possible outcomes deriving from a specific 
problem. Decision trees have relatively limited value because they presuppose 
that the structure of a ‘decision-making process’ is both linear and (at least to a 
degree) generally applicable. (Early critics of expert systems recognised this as a 
problem of context).

A more complex procedure is called the random forest. Its advantage is that it 
can be applied to N-number of variables and is called a ‘forest’ because it con-
sists of several decision trees. Each tree describes local conditions. The random 
forest relies fundamentally on cheap computer memory. It works by collecting 
data until it (hopefully) finds all plausible statistical combinations’ and then eval-
uates between them to find the most likely, given the known end point. It does 
this also statistically.

A further method is the so-called naïve Bayesian algorithm which uses con-
ditional probabilities to predict classes. It is used in applications such as weather 
forecasting and fraud detection. As with all statistical techniques, underpin-
ning the result is a degree of ‘subjectivity’ (a rather unhelpful term, as we will 
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argue below). To take Bayesian statistics as an example, prior probabilities can 
be understood as a mathematical expression of expectations (see Harper et  al 
2016) and hence as embodying judgements. The adding of ‘information’ does not 
change this, for what qualifies as relevant information is also a matter of judge-
ment. As Harper et al. put it,

“The general proposition goes like this: We can begin with a statistical fact 
of some kind and describe a probability for it. This is called the prior prob-
ability (but this need not be objectively derived ... it might be a guess, a 
belief, or an ‘expert opinion’). We might subsequently run a test, or collect, 
or get access to some other evidence. With this, we can update our statisti-
cal analysis on the basis of this second tranche of information. It is impor-
tant to bear in mind that the updated statistical probability (usually called 
a conditional probability) still depends on the prior probability but is now 
improved on the basis of the new evidence.” (2016: p163)

The obvious point to be made about all such algorithms and not just the Bayes-
ian is that they are techniques for reducing immense diversity and complexity into 
manageable relationships about values or distinctions visible in the data. These 
relationships may or may not be complex but consist of various ways of conceiv-
ing of nearness and its opposite, distance. This is not simply a geometric concern 
as it can be temporal, and indeed any combination of vectors can be involved. Dis-
tance is multi-varied, and hence is as complex as the pattern in question.

6  The Epistemologies of Inputs and Outputs

Whatever technique is deployed, a fundamental epistemological assumption 
underpins all. This is that the outcomes, derived statistically, have some kind of 
special status, that it is ‘objective’, say, or has scientific status – a known fact. 
The language used for them implies as much: they are the ‘objective function(s)’. 
What they are also is predictive, and this is enormously useful. By predicting 
where patterns will show themselves, or perhaps we should say by showing what 
might be the consequence if a pattern were to show itself, ML systems can be 
very useful. Indeed, the word ‘oracular’ is sometimes used to describe them. 
However, it is no great discovery that the reliability of these outcomes depends 
on the initial assumptions upon which calculation is to be made, or on what is 
sometimes called the ‘ground truth’.

Where the ground truth consists of data which is, for all practical purposes, 
objective, this would not appear to be too much of a problem. How often this is 
true, however, is debatable. The reality, as a number of observers have pointed 
out (most famously Crawford 2021), is that so-called ground truth can, in prac-
tice, rely on the labelling work done by an army of workers in the background 
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– the feature engineers and feature extractors we mentioned at the outset. And 
these might be making decisions that are contentious.

Take the example of ground truth about ‘people’. If height and weight are the 
variables in question, there would appear to be little problem in doing the ‘feature 
extraction’ from a set of images of ‘people’. If ‘race’ and ‘gender’ are the features 
in question, one can see how problems such as racial bias or gender stereotyping 
might easily insert themselves in the labelling process.

The same potential problem of agreeing what is relevant or suitable feature is 
evident if one considers assessments of risk to child welfare, propensity to com-
mit crimes, emotional state, and on and on. The fact is that in all of these exam-
ples, the features selected in various instantiations have been disputed (see e.g. 
Jackson 2018; Berk et al. 2021; Asaro 2019 Li and Deng 2022).

The use of various statistical methods to solve the problem of choosing the 
right ground truth (and hence ‘interpretation’, to undermine that notion of truth 
somewhat) given many alternatives is effectively a judgemental one. As Black-
well puts it,

“Random forests, neural networks, genetic algorithms - despite their evoca-
tive names, all are simply strategies for finding the most effective simple 
explanations within a hugely varying and obscured set of possibilities, 
while avoiding the ‘local maximum’ of an explanation that accounts for 
some variations, but not others more distant” (Blackwell 2017: 6).

Rather than a scientific or objective truth, what is produced is a ‘best fit’, 
expressed numerically. What should be clear is that what is best fit for one com-
munity (or set of users) may not be best for another. It all depends in what best fit 
is, and this is irrespective of the statistics used to define it.

7  Learning in Action

Nevertheless, even though they might be only a best fit, ML applications have 
made enormous progress in dealing with things that can be readily rendered 
mathematically, these contentious issues notwithstanding. To say again, most 
of the progress is a function of processing power, data storage and the finesse 
of labelling in the learning routines rather than the deployment of radically 
new algorithms. Even so, progress in facial recognition, in animal recognition, 
in game playing, and so on, has been remarkable. The reason for this is that 
best fit is relatively easy to engineer for these kinds of phenomena. It is not 
just that the data upon which outcomes are predicated is amenable to reduc-
tion to mathematics and hence the feature extraction work we mention above 
(width of nose; height of forehead; shape of ears, etc.) as that what counts 
as good enough in particular instances is also easy to define. Take faces: to 
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identify a face as very close to a reference face is much easier to do than to 
say that a new example must be the same (i.e., mathematically isomorphic) as 
a prior one. In many ways, best fit in the areas where ML has been successful 
is not just a solution for these machines and what they are engineered to do, 
but for what people do in their everyday practices as well – faces do change 
daily, after all, depending not just on physics – light and shade, but mood and 
intent. A married couple do not find themselves in paroxysm of doubt when 
they wake up beside someone whose face no longer matches the one they mar-
ried. They judge their partner in the round, and not by the fixed geometry of 
a head shape. This also nicely illustrates once again the limits of ML – it can 
be good at recognising faces but is not able to map the larger culturally framed 
context which makes faces only one measure of individual, whether they be 
husband or wife. This is a further example of cultural context and beyond the 
competence of ML.

As illustrative of how ML can be successful and what notions of best fit 
might look like, we now turn to two applications, largely because they are in 
very common use. The first is that of text and text translation and the second, 
recommender systems.

Textual analysis and its subset, natural language processing, has made huge 
strides in recent years. It is not so long ago that the attempts of Google Trans-
late to offer translations were regarded as risible. In the context of European 
languages, at least, they have become surprisingly reliable by which we mean 
they have been good at offering ‘best fit.’ But as we say, best fit solutions in 
Google translate (and many other tools of similar order) offer what people find 
helpful. The language offered in translation may not be eloquent but, for most 
purposes, it does the job. (We should remember that there is no such thing as a 
‘perfect’ translation anyway).

ML from text, or text mining, leverages text from a wide range of sources. 
It might include text found on social networks, in digital libraries, in news 
sources or in a variety of web-based resources – web pages being the most 
obvious. The techniques here treat text not as ‘bags of single words’ (and 
hence matchable to single words in other languages), so much as ‘bags of 
words and word sequences’, thus predicting what words are likely to follow 
any given input, or context of word sequences.

In most instances, these use of ML applications in language contexts (trans-
lation being a prime example) are relatively uncontroversial, though in other 
cases there can be controversy. They are used to identify news feeds, for exam-
ple, and in sentiment analysis in political contexts. Facebook, unsurprisingly 
sees only benefit from these uses:

“Designing a personalized ranking system for more than 2 billion people 
(all with different interests) and a plethora of content to select from presents 
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significant, complex challenges. This is something we tackle every day with 
News Feed ranking. Without machine learning (ML), people’s News Feeds 
could be flooded with content they don’t find as relevant or interesting, 
including overly promotional content or content from acquaintances who 
post frequently, which can bury the content from the people they’re closest 
to. Ranking exists to help solve these problems ... We use ML to predict 
which content will matter most to each person to support a more engaging 
and positive experience.” https:// engin eering. fb. com/ 2021/ 01/ 26/ ml- appli 
catio ns/ news- feed- ranki ng/)

This is done through a series of ranking algorithms which, more or less, ana-
lyse ‘likes’, their frequency and recency and, again, uses best fit.

Critics of such systems point to the way they create ‘filter bubbles’ (see Sun-
stein 2004; Pariser 2011; Flaxman et  al.  2016; Bruns 2019; Chitra and Musco 
2020; Dahlgren 2021) and can act as echo chambers or amplifiers of opinion. 
Pariser, famously, argued that algorithms of this kind create "a unique universe 
of information for each of us, which fundamentally alters the way we encounter 
ideas and information" (Pariser 2011:12).

Others, like Bruns (2019), are more sceptical. Bruns sees the ‘moral panic’ 
over filter bubbles as expressing a form of technological determinism held by 
those panicking. As he puts it,

“A moral panic about social media in themselves, then, independent of how 
and by whom they are used, is no more warranted than one about TV, radio, 
or the printing press. We would fall for technological determinism: a belief 
that social media, however platforms might be designed and however citi-
zens might use them, inevitably promote echo chambers and filter bubbles. 
As we will see, there is no evidence to support such an argument ... We 
cannot absolve ourselves from the mess we are in by simply blaming tech-
nology” (Bruns 2019: 39).

Dubois and Blank (2018) continue this line of argument in the context of 
political opinion:

“Whatever may be happening on any single social media platform, when 
we look at the entire media environment, there is little apparent echo cham-
ber. People regularly encounter things that they disagree with. People check 
multiple sources. People try to confirm information using search. Possibly 
most important, people discover things that change their political opinions. 
Looking at the entire multi-media environment, we find little evidence of 
an echo chamber. This applies even to people who are not interested in poli-
tics.” (Dubois and Blank (2018):740)

https://engineering.fb.com/2021/01/26/ml-applications/news-feed-ranking/
https://engineering.fb.com/2021/01/26/ml-applications/news-feed-ranking/
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In short, understanding the relationship between how algorithms generate text 
related content and how people interact with the resulting ‘texts’ (from prosaic 
Google Translate instances to the sharing of news feeds through to the directing 
of political activity on the basis of those feeds) is at once a computational and a 
social matter and any claim to privilege one over the other needs care.

The same could be said about recommender systems, the second of our illus-
trations. The term, ‘recommender system’ was first coined by Resnick and Var-
ian (1997). Since then, recommender systems have achieved a certain notoriety 
since they have implications in respect of advertising pressure and privacy; they 
can also come across as black box-like, with users feeling they have little control 
over what is recommended to them. They can have what is called an ‘anchoring 
effect’ with individuals finding themselves stuck in the space the recommender 
tools offer them (see, e.g., Adomavicius et al. 2013).

What is sure is that recommender systems are pervasive. Applications have 
been designed which include, for instance, effects on consumer preference 
(Zhang 2011), music preferences (Gunawan and Suhartono 2019; Moscato 
et al. 2020), movies (Ghosh et al. 1999; Cosley et al. 2003; Geetha et al. 2018; 
Walek and Fojtik 2020; Afoudi et al. 2021), health awareness (Ge et al. 2015), 
nutrition (Franco 2017), tourism (Nilashi et al. 2017, 2019; Brodeala 2020), and, 
reminding us of the interconnection with text based applications, in news feeds 
too (Fortuna et al. 2010). By no means all rely on ML but a progression towards 
these sorts of solutions is discernible (see for instance Mahata et al. 2016, on ML 
for movie preferences. Valdez and Ziefle (2019) note the different technical strat-
egies that can be used by recommender systems).

Be that as it may, Spano and Boratta highlight some of the usability problems 
associated with these systems.

“From the user’s point of view, recommender systems remain a black box 
that suggests content, but the users hardly understand why some items are 
included in the list. The relevance of this issue has increased in recent years, 
as the introduction of approaches based on latent features (such as Matrix 
Factorization or Deep Learning) has made it very hard to connect user pref-
erences with the recommended items. Providing the users with an under-
standable representation of how the system represents them and allowing 
them to control the recommendation process would lead to benefits in how 
the recommendations are perceived and in the capability of the system to be 
persuasive. Such transparency is one of the multiple (and usually conflict-
ing) requirements of recommender systems.” (Spano and Boratto 2019: 2)

How users interact with these systems, then, is becoming the subject of 
increased attention. What is sure, however, is that recommendation and the 
algorithms that deliver them have no ethical viewpoint themselves even if the 
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consequences of their recommendations might be consequential. Thus, as and 
when ‘ground truth’ points towards preferences for certain kinds of output, rec-
ommender systems will ensure more of that output is presented to the user what-
ever that output. Privacy concerns make this controversial enough, but the pros-
pect that the user can be led to deep fake imagery, to violent content, to terrorist 
instruction, to radical religious proselytising and similar is more worrying. This 
is especially so when social media companies have been extensively criticised for 
not monitoring content (or removing it) in an adequate fashion such that these 
possibilities remain common.

As it happens, social media companies, at least in the USA, have no legal 
responsibility for their  3rd party online content after the so-called Cox-Wyden 
clause, or Sect.  230 of the Communications Decency Act (see Kosseff 2019). 
Kosseff is a defender of the broad purpose of Sect. 230, defending the argument 
that removing it would have a ‘chilling effect’ on the internet, but nonetheless 
concedes that strict interpretation entails “systematic problems that affected 
thousands or millions: trolling and revenge pornography, terrorist recruitment 
via social media, and the pervasive use of classified websites by sex traffickers.” 
(p.209). Perhaps what we might learn from this is that, where in the early days of 
the internet, most situations were clearly delineated in law, the advent of AI and 
ML has made the role of technology on the web and elsewhere much more dif-
ficult to map out both in terms of law and the unintended social consequences of 
the technology in question.

8  AI, ML, the Social and the Cultural

If the position outlined above on ‘ground truth inputs’ and the ‘objective func-
tion’ outputs of ML is followed to its logical conclusion, then a space opens 
up for an agenda which places the social and cultural at the centre of investiga-
tion. Blackwell (2021) makes exactly that point at least in respect of an appeal 
to qualitative investigation. He argues that AI and ML are founded on presump-
tions about notions of a general intelligence, one which is discoverable through 
the algorithms of the kind we have been discussing (See Russell (2019) for 
such claims). Those with a Wittgensteinian persuasion have long critiqued this 
assumption, viewing it as founded in a ‘primitive cognitivism’ which holds that 
the outcomes generated by such processes are assumed to have a universal qual-
ity (see, e.g., Coulter 1987; Button et al. 1995). Blackwell is clear that assump-
tions of this kind are unwarranted and that the investigation of local particulari-
ties ought to be part of the agenda for ML. Doing so will highlight questions 
about epistemological categories and their cultural siting. Key here are notions of 
the ‘objective’ and the ‘subjective’. We allude, above, to Wittgenstein as a source 
of an alternative view that does not accept this duality. In his thinking, the mean-
ings of any action, their objectivity or their subjectivity, are not derived from 
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internal mental processes but are intersubjectively accomplished; i.e., through 
performance with others. It is through interaction that what is treated as objective 
comes to be agreed and identified, and likewise, it is through interaction what 
is subjective and only that (and hence, for example just one person’s point of 
view) is established. In either case, they are knowable phenomena – neither hid-
den from view, ‘inside a head’ say. Hence, the way that ML defines and opera-
tionalises the objective and subjective, what might count as the status of inputs as 
ground truths and outputs as objective functions may be misleading. Both inputs 
and outputs are cultural outcomes, built on cultural practices, and each known, 
but treated differently. We shall be coming back to this in our conclusions.

For now, though, the point is that to say they are cultural or cultural practices 
does not end what might want to say in regard to the connection between ML and 
the cultural. In being cultural, a whole range of new questions as to what aspect 
of ‘the cultural’ matters, how they are understood and what methods are used to 
document or ‘model’ them.

For example, many institutions, researchers, and opinion leaders have recently 
promoted the notion that ML systems should be human-centred. If so, then one 
needs to ask what is meant by the term human-centred? Does it mean based on 
mathematical models of the behaviour? Would such models encompass the cul-
tural, and if so, how? Not least, as any social scientist would acknowledge, the 
term ‘culture’ is itself rather problematic. Is the ‘cultural’ simply descriptive of 
patterns of behaviour in which case it can be discarded and even replaced with 
machinic descriptions that list only behaviours or does it incorporate theoreti-
cal assumptions about those patterns? Does it—and this is foundational to some 
perspectives at least—embody assumptions about ‘motive’ or ‘purpose’? Are 
motive and purpose treated as just labels for action and so can be ignored? Are 
they subjective, and need replacing by the objective? If so, does that mean that 
human-centred ML ends up ‘behaviourising’ culture in its attempts to seek the 
objective in its conversions of ground truths into objective functions? One can 
put this more simply: does the modelling implied in human-centred ML simply 
map actions, and fail to trace the motives or purposes that those acts express? In 
this view use of, say, the web is simply a question of movement between websites 
or pages, and the reasons for those movements are treated simply as an expres-
sion of the vector. A user is not what they think, nor are they endowed with cul-
tural knowledge that needs getting inside to understand (the essential problem of 
anthropology, of course); they are only what they do. This makes the modelling 
easy as users are nothing more than their digital footprint but seems to take the 
cultural out of their actions.

This has all sorts of consequences, needless to say, one being that what we 
ordinarily understand as a person, a creature with purposes and motives, will 
not be the same as a user as understood by machines. This user simply ‘acts’. If 
so, what is the relationship between how a person understands themselves when 
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they engage with ML tools and technologies if those technologies convert their 
actions into ‘user behaviour’? Is there a confused dialogue between the human 
and their virtual self, the user? (See Harper, forthcoming on this point. See, also 
Hilderbrant 2006, a legal scholar who foreshadowed these concerns twenty years 
ago when thinking about what future legislation about digitally mediated behav-
iour might look like. This was well before the advent of widespread ML tech-
nologies where this behaviourism seems commonplace).

There are important questions here. Although there is no consensus about 
what human-centred ML means, it commonly refers to a set of principles which 
hold that ML systems ought to be focused on how people collaborate so as to 
support and augment their practices. Humans, in this view, are central to the 
business of determining how and in what ways ML systems should be used but 
the requirements implied in any notion of being human-centred are wide, and as 
we have just seen might entail different notions of understanding what a human is 
meant to be.

At first glance these issues might seem to be merely about nomenclatures and 
how people are conceived of differently in different Human centred ML archi-
tectures. In this view, the human in explainable ML is different to the one in ML 
Fairness, just as they are in human-centred data science (HCDS), computational 
creativity or human-ML co-creation. This is to name only some of the variants 
(for a review see, Shniederman 2022). It should be apparent though, that for each 
of these labels, the problem of meeting them with ML applications is likely to be 
much more complex than with systems with identifiable rules, as was the case with 
GOFAI applications. For there, the human was cast as an actor behaving in pre-
dictable logical ways. In contrast, with these new terms, each takes a slanted view 
on something immensely more complex than just the human-as-user: they want to 
factor in culture. Each subsumes answers to questions about what cultural practice 
might entail, how it is understood in relation to the individual (the user, say, or the 
subject, etc.) and how that is ‘expressed’ as features in ML data sets. And what 
makes this worse is that this is expressed in both the input and the output data.

Doing so is not straightforward. The gathering of categories and their deploy-
ment can occur in several ways in ML. As we saw earlier, supervised systems 
require data to be entered into them; unsupervised systems process new data and 
seek to learn from that. Even though the latter always involve some labelling in 
the development, once released into the field both function autonomously. What 
would this entail in any of the above systems – in human-centred ML; or in ML 
Fairness?; and so on. How do autonomous systems ‘solve’ what is meant by the 
human in the system? Do they come to mimic that human and use that mimicry 
as the basis of what they understand as the human? This would seem a little odd. 
Or do they allow people to participate in the shaping of how the human is under-
stood from the view of the machine? Does autonomy mean human driven learn-
ing sets?
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9  Machines that Generate Outputs

One way of answering this is by looking at what autonomy might look like with 
the latest form of ML, so-called generative systems. To look at these, we return 
once again to machines that speak or are otherwise generative.

We started our discussions with remarks about Eliza and Parry; speech 
machines (or ‘bots’, though neither were called that at the time) that did not inter-
actively develop their speeches, simply offering words and phrases from a table 
of prior responses. Today ML technologies allow speech engines to ‘interact’. 
What does this look like?

Let us begin with a bot from some years ago (2016) but which enables us to 
see the link between Eliza and more recent instantiations, most famously, GPT-3. 
Microsoft’s Tay (‘Thinking About You’) was introduced and made accessible to 
users via a web portal. Tay was a speech bot that was designed to respond to any 
conversational turn on the basis of learning the language found in social media 
and the web more generally. It took data from these sites and developed its ‘pow-
ers’. However, it was removed after 16 h. What it learnt to do was not approved 
of. In this time, it/she/he had become infected with racist and sexist sentiments. 
The Tay speech bot (or application) was intended to replicate as far as possible 
the speech patterns of a 19-year-old girl from the US. It ended up speaking like a 
deeply offensive person, not someone that Microsoft’s engineers thought accept-
able and certainly not like the well-mannered by syntactically curious teenager 
they had in mind (a ‘Millennial’ was the category referred to in the PR).

The bot was subsequently replaced by a newer version, called Zo. In turn, Zo 
faced criticism for other (almost diametrically opposed) reasons. Stuart-Ulin 
(2018) describes Zo as follows:

“Zo is programmed to sound like a teenage girl: she plays games, sends 
silly gifs, and gushes about celebrities. As any heavily stereotyped 13-year-
old girl would, she zips through topics at breakneck speed, sends you sense-
less internet gags out of nowhere, and resents being asked to solve math 
problems.”

She goes on:

“But there’s a catch. In typical sibling style, Zo won’t be caught dead mak-
ing the same mistakes as her sister. No politics, no Jews, no red-pill para-
noia. Zo is politically correct to the worst possible extreme; mention any 
of her triggers, and she transforms into a judgmental little brat. Zo [would] 
not engage in any discussions of issues that had to do with, for instance, 
Islam or conflict in the Middle East. Jews, Arabs, Muslims, the Middle 
East, any big-name American politician—regardless of whatever context 
they’re cloaked in, Zo just doesn’t want to hear it. For example, when I 
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say to Zo “I get bullied sometimes for being Muslim,” she responds “so i 
really have no interest in chatting about religion,” or “For the last time, pls 
stop talking politics…its getting super old,” or one of many other negative, 
shut-it-down canned responses. By contrast, sending her simply “I get bul-
lied sometimes” (without the word Muslim) generates a sympathetic “ugh, i 
hate that that’s happening to you. what happened?”

Zo, like Tay, was also subsequently withdrawn from the web, though it took a 
little bit longer before this happened – some months, not hours.

For both Tay and Zo, there is an obvious point to be made about machines 
that learn, though we need to be careful as we unpack this. It is clear that the 
behaviour of the applications was a product of what each modelled and then used 
to craft output. The models included learning sets from the Twitter social media 
platform and from interactions with users via that platform. In this learning pro-
cedure, both Tay and Zo relied on the heterogeneous but essentially orthodox 
(i.e., commonly used) NLP techniques that include Bayesian inference engines to 
determine best fit phrases in conversational systems. Though the ground ‘priors’ 
might have been deduced from data and then the data subject to deep learning 
processes to produce the objective functions (i.e., the outputs), nevertheless, the 
data in all its dimensions was socially constructed: built on language learning 
sets taken from ‘real’ users (Twitter users) while the new data outcomes were 
generated through gathered real time dialogues. The outcome of these learning 
procedures cannot bring into doubt the nature of these sources. The input was the 
language of social media users; the outputs were the languages of social media 
users too. But the media was Twitter, and hence consisted of a language that not 
all communities outside of that particular social media would did find equally 
acceptable.

Now this is where we need some care. Whether or not the applications did 
a good job of learning from this data, what they did learn was, in effect, cul-
tural practices – a particular type of language use. This reflected what we suggest 
might be a particular community’s practice. As it happens this community likes 
colourful language; it also mocks ‘wokism’. Other communities might have dif-
ferent practices. We do not want to explore what a community might be at the 
moment, suffice to say that twitter users might be thought of as a ‘new public’ 
type community, one emerging around new digital platforms and socially sensi-
tive topics. Other communities may have quite different provenances – based on 
location, say, or religion, language, even sport. In each case, their practices will 
entail different topics and these will lead, in all likelihood, to different manners 
about language and attitudes to political correctness. Definitional matters aside, 
what we can say is that the Tay and Zo bots were out of their depth in the par-
ticular cultural practice and its associated manners and attitudes – not in being 
incapable of mimicking these but in not ‘knowing’ whether they were (or were 
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not) appropriate. In a sense, while they could certainly model aspects of the prac-
tices of the community, the bots could not act autonomously with these elements 
as if they were a competent member of the community. Their use of the language 
was especially not acceptable to the community – or rather, it was not acceptable 
to both those on the inside of the twitter community and those on the outside, 
looking on. And one might say that this was not because of what the bots said in 
this language but because of what they were, the bots. The reaction of the Twitter 
community was that bots have no right to speak offensively, whereas people do, 
especially themselves, twitter users. In other words, culture is not just a question 
of what is done, but who or what is doing it.

There is another important point. Leaving aside whether the ML technologies 
inside Tay and Zo did a good job, and leaving aside too, the morality of this 
culture, what is also evident is that those in this culture, twitter users, seemed 
to know enough about ML that they were able to intentionally make a mock-
ery of it. Consider: it was they, after all, who in effect offered up training set 
data that supplemented the basic sets used to teach Tay and which, in combina-
tion, resulted in Tay being seen as a machinic imbecile; an offensive one to boot. 
Twitter users knew about what feature engineers do and exploited that knowledge 
when providing features that would lead Tay astray.

How different these ‘users’ were to the secretaries who were dazzled by Eliza, 
or the psychiatrists fooled by Parry! We learn, in other words, that with Tay and 
Zo, and despite the persistent ideological claims surrounding AI and ML, that 
certain parts of our society have become clued up enough not to be fooled by 
these claims. They see ML as a form of machinic processing where the learning, 
if that is the right word, is limited by its inputs and its mechanisms for calculating 
outputs. More, it has no capacity to judge the role of that learning in the larger 
contexts in which it is used – in terms of culture. We learn, too, from the reaction 
that the public to the ‘performances’ of Tay and Zo (and indeed Microsoft’s deci-
sion to remove them from Twitter) that many of the public did not think these 
technologies had the capacity to judge the moral adequacy of the language they 
processed either. Some features of their language outputs might have been ok 
for human users to deploy, but other parts would not, the public seemed to feel. 
Why? It seemed that the public thought a machine cannot judge – these machines 
certainly. In their view, these AI technologies were (are) morally bereft; that is, 
incapable of making moral judgements about vocabulary or acceptable topics in 
talk. That they could not manage these concerns opened a space for the same 
public to mock these technologies for being so ill adept.

We might not agree with the mockery but perhaps we ought to agree with 
the judgement, certainly in the case of these two instances. The absence of any 
cultural framing that would make these speech bots ‘know’ the difference in the 
contexts of language use and the appropriate use of attitudes surely attests to the 
accuracy of this judgement. Their failures underline the potential limits of ML. 
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Social media can encourage colourful language; interacting with a speech bot is 
not a place for such language; social media, especially Twitter, is a place where 
extreme sensitivity to the relationship between topic and politics is to be found. 
What Microsoft’s Tay and Zo bots showed is that ML might not learn what ought 
to be learned, and that left to their own, ML tools can take us, their users, to 
places we don’t want to go. As they do so, they remind us, too, that the term 
‘intelligent’ is not always what comes to mind when we think about ML tech-
nologies – indeed, these technologies can evoke quite the opposite.

10  From Inferred Response to Generative AI

Tay and Zo were released some years ago. What has happened since? One par-
ticular and much celebrated current claim holds that a ‘generalised’ form of 
AI is about to appear (Russell 2019). GAI is the new acronym for this (though 
sometimes AGI). Key this is ML and two new techniques – ensemble learning, 
which in effect pools outputs from different ML techniques that might be suitable 
for different aspects of the modelling task but which can be brought together at 
a higher more abstract level. And the other is Transfer learning (Vaswani et  al 
2017). This is a different technique made up of the outputs of self-attention mod-
elling operating within a learning model, outputs which can be applied to a dif-
ferent model – hence transferring learning from one to another. When brought 
together, this can lead to even higher-level models. These are now being called 
foundation models (Bommasani et al. 2022). The resulting outputs (or models) 
are of sufficient generality to allow some to think that general artificial intelli-
gence is about to appear enabled by ML, as we say.

This might not be the right way of conceiving it, however. For, what they do 
is allow the recognition of more patterns in particular kinds of data and these can 
be sorted to identify patterns that are, as if were, at a higher level. Before founda-
tion models, in the case of natural language processing, the modelling that was 
possible could only be used to understand certain phrases and words; with trans-
fer learning and foundation models much more elaborate language models (and 
hence outputs) can be made. This can be reflected when a ‘prompt’, which we 
can conceive of as a natural language category (bear in mind this is a simplified 
account of what happens), is thrown into the transfer-derived model(s) and an 
‘emergent’ output appears, echoing, or rather modelling, that very prompt. That 
prompt has to accord with a pattern in the foundation model, but if it does, then 
the foundation model can link that to a variety of other related patterns or models 
and this can point to various new ‘next words/phrases’ or, if you like, ‘next con-
cepts’. Thereby an apparently simple prompt as an input can lead to an apparently 
complex output.

A good example of this, and close to the Tay and Zo bots in being speech 
based (as foundation models can be of other data types too, such as vision), can 
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be found in interaction with GPT-3 (Generative Pre-trained Transformer—3, the 
number being the ‘generation’) and a more recent instantiation, chatGPT. Focus-
ing on GPT-3 for the purposes of discussion, this is a language engine that takes 
an initial prompt provided by some input text from a user to create an extended 
and richer textual response (https:// en. wikip edia. org/ wiki/ GPT-3). The technol-
ogy includes some new foundation models, based on huge numbers of param-
eters, built on ensemble and transfer learning.

At first glance, GPT-3 certainly does seem to offer dazzling and sometimes 
unexpected responses to a prompt. Putting it simply and using everyday lan-
guage to describe the technologies functioning rather than computational 
terms, it works as follows. If one takes a written story as an example of a 
pattern, the GPT-3 engine has models of stories as well as models of phrases, 
words, sentences. These are derived from learning, so what these models 
look like might not accord with how a person would imagine a story and its 
words to be – for GPT-3, they are mathematical for one thing, and constructed 
on notions of likelihood and proximity in observable patterns, and not such 
things as purpose, or popularity or sentimental value which might resonate 
more with an individual’s notion of what stories ‘are’ and the words that make 
them up. Be that as it may, one might say that the inference engine, GPT-3, 
maps narrative arcs along with everyday phrases such that both are used to 
determine (predict) the meaning of particular words or phrases offered in sto-
ries. It works in both directions, if you like. It takes outputs and sends them 
back to inputs and from inputs renews its outputs and eventually this allows 
it to produce phrases, stories with narrative arcs that allow it to model, i.e., 
predict, new words and stories. It uses these to respond to a user input, the 
prompt mentioned above.

So, for example, from the view of GPT-3, the word ‘fairy’ will have one 
meaning as it is understood in terms of a fairy story (and the word story will 
itself be referenced to noun instances like fairy in such stories), while the use 
of another very similar word, ‘Fairey’, will have a different meaning. The lat-
ter has a meaning deriving from the history of airframe manufacturers; so 
too will particular terms and phrases. Hence, GPT-3 will respond to a phrase 
about the former differently than to a phrase about the latter. In either case, 
GPT-3 will produce many lines of text as an output. And this text output will 
not simply echo or mirror the text input (as would a deep learning system) as it 
will include terms that are apparently related. A story about fairies may elicit 
a response about bedtime stories, for example, as these might be judged as 
related to fairies in the foundational model, or at least might be outputs gener-
ated by the system (hence the term, generative). As it happens, using the word 
Fairey in the GPT-3 platform results in the word being ‘auto corrected’ to fairy, 
there apparently not being a sufficiently frequent record of the Fairey Aircraft 
Company on the GPT-3’s data sets.

https://en.wikipedia.org/wiki/GPT-3
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11  AI and ML in Search of a Perspective

As we say, some think GPT-3 is ‘intelligence’ because of its capacity to generate 
text in these ways. Geoff Hinton, mentioned several times, seems to think its use 
of ‘vector techniques’ to frame meaning is the major step to ML if not the last, 
key step. To say vectors is just another way of conceiving of transfer learning 
procedures. Either way, Hinton and others think something big is happening.

It is at this point that we want to return to our opening remarks. We suggested 
that CSCW might well offer a relevant view for ML as it encourages research 
that looks at all aspects of the social context of technology use, and, in the case 
of ML, that means looking at input and outputs, at learning regimes and training 
sets, at claims about objective functions and ground truth, and placing insights 
about all these matters in reference to contexts of use. We have begun to point 
to CSCW papers that have begun such enquiries; the ones that follow in this col-
lection do the same. But we also mentioned that it might be that ML needs a 
perspective of its own. We have alluded throughout to how ordinary language 
can shape the way people understand technology. The technology itself also 
participates in this shaping, needless to say. Somehow, in use, GPT-3 seems to 
express something; it does so in its outputs. These are evidently more than the 
stuff derived from a ‘phrase engine’, as seemed to be the case with Tay and Zo. 
The way GPT-3 seems to deploy narrative-like structures to meld common place 
terms in its bulky text(s) suggests something creative. Indeed, that it produces 
text like a tide can seem persuasive of something radical being present. Oddly, 
though, GPT-3 nearly always seems to give itself away. The combinations it 
presents have incongruities; they often include facts that seem egregious; occa-
sionally, the ‘shape’ in a text that ought to reflect some purposes at hand seems 
wrong—mishappen somehow. All these serve to alert the user to something seen 
before with computational tools: what one might summarise as a lack of cultural 
knowledge that, if present, would not have allowed these strangenesses to appear. 
These errors would not occur, one says to oneself, ‘if the technology knew about 
the context, the why I am here, and what I am doing’. Many inside the ML com-
munity argue that the use of huge data sets for GPT-3 will deliver powers that 
equate to this knowledge. Surely, they seem to think, if all the materials on Wiki-
pedia, all the language models available, and even better tools for ‘fine tuning’ 
foundation models are brought together then GPT- (number ‘X’) will pass the 
Turing test. Indeed, one might not be surprised that many organisations with very 
large computational resources are now planning to undertake such activities as 
they think it will provide them with new opportunities. These are the ‘platform 
capitalists’ – the Googles, the Apples, the Alibaba’s and, of course, Microsoft 
which has bought exclusive rights to the internals of GPT-3, all of whom seem to 
have been taken over by what seems to be the credo surrounding contemporary 
ML. We mentioned Norvig as one of those behind this earlier on – for a while he 
led Google’s research division in Mountain view. We need to wait and see.
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GPT-3 is only now being used and hence there are few if any academic inves-
tigations of it. One might suggest, though, that prior research that have iden-
tified the limits of ML would likely apply to GPT-3 too. The most important 
have sought to distinguish between the way that ML patterns natural language 
but does not—and in their view cannot – pattern meaning. The distinction 
here has to do with how people locate the meaning behind a word, a phrase, or 
even larger text, through reference to matters external to the words themselves. 
Key here are the purposes of persons. Hence, in the case of GPT-3 offering a 
response to a prompt about fairies, users of the same will seek to identify what 
the purposes behind that response might be in terms of a person’s intentions – as 
that is the only way meaning is constituted (Harper et al. 2019). What they find 
with the oddities that GPT-3 presents, is an intimation that there are no pur-
poses; from this they deduce that GPT-3 is like prior incarnations of AI, not a 
substitute for a real person. On the contrary, in this absence, they come to see 
that GPT-3 ‘means’ nothing.

For most users, this is not a concern; only a moment when they confirm their 
understanding of what they are dealing with is a machine, not a person. We might 
remind ourselves of how different this is from users of Eliza and Parry who came 
to think it was a person they were dealing with. The lesson is not that the tech-
nology has got better, however; it is that people’s knowledge and expectations 
have altered: today, users may engage with tools like GPT-3 not to come to the 
conclusion that a person is now equalled by a machine, but with a view to dis-
covering whether or not the information conveyed is reliable. While there was 
an initial rush in the media to wonder at the apparent power of the application, it 
was quickly followed by scepticism when its limits became apparent.

It is important to note that this does not mean that technologies like GPT-3 
lack potential use. On the contrary. If they know what the technology offers, they 
can still use it. How useful it will turn out to be, for whom and in what contexts 
is very much the kind of question we might expect CSCW commentators to be 
answering. Currently, potential use is hidden and muddied by ML engineers who 
seem obsessed with passing some version of the Turing test. But it seems to us 
that ordinary people have long since moved on from this concern. As we say, 
there are, as yet, no good scientific studies of use, but we do think that they are 
likely to uncover what we have just foreshadowed – that the tool is very useful, 
but to be understood in terms of how it works and hence what it does – offering 
frequency-based responses to queries.

What we are pointing towards is not what the technology does, but the claims 
made about it. Bender and Koller (2020) argue that this is a fundamental problem 
for the ML community. Its insistence on justifying its hype can—and indeed in 
their view often does—led to dismay and even rejection by users. It has done so 
in the past and will in the future with technologies like generative AI ones. They 
urge computer scientists to recognise that a system trained in natural language 
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alone, like GPT-3, does not include the learning about the relation between 
that language and meaning, as this is external to language. There is a difference 
between patterning the form of language and the way language is used, what it 
means. As they put it:

“What’s interesting [ ] is not that the tasks are impossible, but rather what 
makes them impossible: what’s missing from the training data. [ ] a system 
trained only on the form of [ ] English has no way learn the [ ] respective 
relations [that makes] a sentence meaningful.” (2020: 5190).

Their distinction between form and meaning is not one that points to the hope 
that meaning can be modelled. They go on to say:

“The process of acquiring a linguistic system, like human communica-
tion generally, relies on joint attention and intersubjectivity: the ability 
to be aware of what another human is attending to and guess what they 
are intending to communicate. [as a case in point] Human children do not 
learn meaning from form alone and we should not expect machines to do so 
either.” (2020: 5190)

Bender and her colleagues are linguists, and it may be that this provenance 
results in their arguments being dismissed by those inside the world of ML. In a 
more recent paper Bender and Gebru (2021) suggested that deep learning speech 
engines can be said to behave like ‘stochastic parrots’. Though their argument 
is about reducing the hype around deep learning, the term seems to have stung, 
and at the current time one can often hear ML researchers asserting at the com-
mencement of their talks that their inference engines are not such parrots. So, let 
us end our enquiries by recalling a dyed in the wool computer scientist and AI 
researcher, Drew Mcdermott. This was long ago (1976) but echoes Bender and 
her colleagues. Mcdermott was one-time head of computer science at Yale. He 
observed that a key problem in artificial intelligence is the notion that its lan-
guage models will one day be complete. Thinking that they might eventually be 
so betrays a fundamental misunderstanding, he explained. Natural language is not 
itself complete. Its meanings, its utility, its applicability, is crucially expressed 
in contexts; in the doings of people in the communities they make. The refer-
ences that give language life are outside of language; they are to be found in the 
contexts of use. This is not to say one cannot model language terms themselves, 
but this ultimately misses a crucial thing: the situated purposes of language. This 
is, of course, Wittgenstein’s argument, though Mcdermott presents it in the style 
of any ‘ordinary language’ philosopher – Austin, Ryle, Searle. The point is that, 
however great in scale, however refined foundation models maybe, computer 
versions of language based on today’s ML technologies will not ever have this 
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reference. The cultural contexts will be always beyond them. They are outside the 
datum. This does not mean that the models will have no use or will not deserve to 
be esteemed for the things people can do with them. Far from it. It is just that the 
way that some describe these models, the claims they make and even some of the 
mnemonics used to describe their functioning, can mislead and tempt some into 
thinking that context is included or evoked in ways that makes meaning com-
plete. It may be, for example, that some forms of ‘generative AI’ are more cultur-
ally dependent than others. The media, thus far, have paid little or no attention to 
the possibilities offered by foundation models in relation to, say, computer pro-
gramming. Although the jury is still out with regard to just far ML will be able to 
replace human programmers, efforts are underway to benchmark code generation 
(see e.g. Ruchir et al. 2021).

The perspective that is required for ML, then, is one on itself and the claims 
that attend it. When seen for what they are, the prospects for ML and for all their 
derivatives including foundation models, is quite different indeed from how 
they are sometimes presented and also, as we have just seen, even how they are 
labelled. It is not passing the Turing test that should be the aspiration, as it is 
offering machinic tools for jobs to do. Designing these to give the impression 
they are human-like is both impossible theoretically and distracting practically. 
In short, the answer to the question posed at the outset of this paper is that the 
future of ML will be achieved partly when there is a change of perspective within 
ML. CSCW might help here as it is interested in what is done with ML, and part 
of doing so might entail enquires into the belief systems in the places that invent 
ML tools and technologies. It could also be that examination of the culture of 
feature engineering is a proper topic for HCI too.

12  The View from CSCW

Fortunately, dealing with culture when technologies are used is business of 
CSCW. Though CSCW researchers have looked at many different technolo-
gies and many different circumstances with many different types of users, the 
approach speaks naturally to what is done with AI and ML, not claims about the 
technologies. Given this, we make the following recommendations.

Firstly, CSCW researchers might look at the way in which data is entered 
into ML systems and at how users make sense of system outputs. These are, 
in a sense, sides of the same coin. Questions which have to do with how one 
represents data outputs in such a way that they are made understandable are 
relevant to how data is engineered prior to being used in learning just as they 
are with what derives from learning – what comes out.

This, of course, cannot be an entirely technical matter. CSCW is founded 
on socio-technical assumptions. It follows that we might take our lead from 
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Garfinkel (1967) by showing how accounting for decisions which go into feed-
ing data into systems to produce a ‘ground truth’ are accountable matters, mat-
ters worthy of careful investigation, just as are the ways that objective func-
tions are accountable too. In this view, explanations are not generalised, as 
seems to be thought by the ML community, but designed to be appropriate 
for some task at hand – they lead to subsequent action. The question is what 
action, why and with what consequences – from inputs through to outputs. 
This subtly shifts the problem of ‘explainability’ since it is no longer a prop-
erty of the machinery alone but one of the interactions between the system 
and its users. In other words, explanation has to do with the need for account-
ability of some system to particular individuals and particular groups given 
the actions they are engaged in. Representing is not an abstract concern, in this 
view, but one of applicability to organisational matters, a matter of recipient 
design. Organisational members will have particular aims and objectives and 
the shaping of inputs and outputs will necessarily have to be posed in a form 
that is relevant to what an organisation needs and what it does. This, in turn, 
raises questions about appropriate ways of visualising machine inputs and out-
puts. Rendering them in such a way that organisational members can make 
sensible decisions is an entirely non-trivial matter.

Second, this, in turn, suggests an opportunity for CSCW researchers to 
investigate a closely related issue—that of the tools and techniques that are 
common to ML and which might need to be understood to make these render-
ings accountable. Guidotti et  al. (2018), in a well-known paper, have argued 
that many systems designed to support decisions typically hide their internal 
logic. That is, they constitute yet another ‘black box’ technology. As they say,

“The applications in which black box decision systems can be used are 
various, and each approach is typically developed to provide a solution 
for a specific problem and, as a consequence, delineating explicitly or 
implicitly its own definition of interpretability and explanation.” (Gui-
dotti et al. 2018: 1)

They go on, much as Blackwell and others have asserted, that.

“This enormous amount of data may contain human biases and prejudices. 
Thus, decision models learned on them may inherit such biases, possibly 
leading to unfair and wrong decisions.” (Guidotti et al. 2018:1)

Their paper is a thorough examination of the ways in which different tools and 
techniques inside the black box of an ML application can provide ‘explanations’. 
They also draw attention to the fact that, in Europe at least, GDPR regulations 
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give individuals the right to obtain data ‘meaningful of the logic involved’ (p2) 
and so this might also be something required, not just a nice thing to have.

Guidotti et  al. pose, a set of interesting and difficult questions that CSCW 
researchers might examine in particular:

“What does it mean that a model is interpretable or transparent? What is an 
explanation? When a model or an explanation is comprehensible? Which 
is the best way to provide an explanation and which kind of model is more 
interpretable? Which are the problems requiring interpretable models/predic-
tions? What kind of decision data are affected? Which type of data records is 
more comprehensible? How much are we willing to lose in prediction accu-
racy to gain any form of interpretability?” (Guidotti et al. 2018: 3)

The point here, is that tools themselves can only be assessed in relation to 
‘explainability’ if one has some sense of the capacity of human beings to make 
sense of their outputs in terms of what they do. If ‘explainability’ refers to the 
capacity of machinery to provide meaning in understandable terms to a human 
being, then obvious questions arise as to what person, when, in what circum-
stances, and so on. Some CSCW studies have already shown the way, notably in 
the healthcare arena (see Ontika et al. 2022; Park et al. 2019; Ploug and Holm 
2020) but as yet we would argue relatively little attention has been paid to the 
work that goes into understanding AI and ML. There is clearly scope for much 
work to take place in a wide range of domains.

Allied to this, and third, CSCW researchers might investigate the organisational 
contexts in which ML technologies are interpreted, decisions are implemented, by 
whom, and for why. Organisational expertises and how they are (or are not) shared 
are just as relevant in the context of ML as they are in other technologically ena-
bled contexts. What organisational ends are being met with data outputs? What 
is being done, organisationally, with data inputs? How do people who have had 
no part in the training of an algorithm judge whether its outputs are to be trusted 
and, even more importantly in the contexts of ML, what they do about them given 
the demands of an organisation? Bittner’s notion of organisational compliance is 
brought to mind, updated for the age of ML (Bittner 1965). This points to other 
related consequences, intended and unintended, of the decisions made at various 
levels throughout an organization, the community and at a wider societal level.

13  Conclusion

How one goes about judging whether these topics are examined effectively 
is (obviously) very much at the heart of scientific inquiry, and not just CSCW. 
CSCW, with its interest in contexts of use and its resolute focus on cooperation 
and coordination on the part of user communities, is ideally situated, we feel, to 
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examine how, in practice, ML technologies get deployed in the real world. In any 
event, the four manuscripts in this collection represent what we consider to be 
good examples of where CSCW is in relation to machine learning, addressing the 
issues we outline above.

This collection investigates reputation systems (a version of recommender tech-
nologies discussed above). The specific context the authors examine is that of peer-
to-peer car sharing and how trust is arrived at. They find, on the basis of several 
‘problem centred’ interviews, that systems which provide algorithm-based scoring 
do deliver increased levels of trust. But they also show that trust is partly a matter 
of what the technology outputs and how ‘users’ understand how it processes data 
to make outputs. Users want to know how conclusions are made if they are to act 
on those conclusions. Accountability here does mean looking inside the black box.

This collection also tackles the way in which algorithmic systems develop by 
examining how and when designers intervene. Authors make the important point 
that design decisions around algorithmic development entails a great deal more 
than technical competence. It entails binding technological design alternatives to 
real world contexts, where these contexts are irremediably organisational.

Open-source intelligence (OSINT) technologies is also explored, looking at the 
role of values and value conflicts and the way in which they emerge in the application 
and development of ML- based OSINT technologies. A combination of methods is 
deployed, including a systematic review of the technical literature, a series of semi-
structured interviews, and a focus group. The context here of cyber security incident 
response operators can seem a long way from everyday organisational action, but 
that is precisely what OSINT technologies are designed for: when the everyday goes 
wrong, and it can do so on any given day. That is why questions of trust matter.

Finally, a different tack is taken, focusing more on the in-situ evaluation by 
end users of a ML algorithm by the people who might rely on it but who equally 
know the kinds of data that it is using to infer. The context is that of sales plan-
ning, where ML is used to leverage a variety of different input parameters. This 
study of a bakery company demonstrates the many challenges involved in mak-
ing a ML algorithm understandable, trustable and therefore useful to the different 
parties in the organisation are not uniquely to do with ML (or indeed any form of 
AI) as they are to do with the relationship between technology and everyday rea-
soning. Shifting the role of persons and technology into different relations with 
the processes at hand can have all sorts of perturbations and can lead to the repu-
tation of technology being diminished not enhanced.
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