Computer Supported Cooperative Work (2009) 18:393-399 © Springer 2009
DOI 10.1007/s10606-009-9106-y

Software Engineering as Cooperative Work
Editorial

Yvonne Dittrich', Dave W. Randall* & Janice Singer’

'Software Development Group, IT University of Copenhagen, Rued Langgaardsvej 7, DK-2300
Copenhagen S, Denmark (E-mail: ydi@itu.dk); *Department of Sociology Manchester
Metropolitan University, Geoffrey Manton Building off Oxford Road, Manchester M15 6BH,
UK (E-mail: D.Randall@mmu.ac.uk); 3Industrial Research Assistance Program, National
Research Council Canada, Communications Research Centre, 3701 Carling Avenue, Shirley’s
Bay, Ottawa, ON K2H 8S2, Canada (E-mail: janice.singer@nrc-cnre.gc.ca)

Software engineering research (SE) and research on computer supported
cooperative work (CSCW) seem to have had a difficult-even non-existent-
relationship at various times. The reasons might vary, but are likely to include the
fact that, while depending on each other to achieve the common goal of
developing useful software, the methods and the theoretic underpinnings they
depend upon differ considerably. CSCW, as is well-known, is firmly based on a
worldview that stresses the role of human actors in the production of technical
artefacts, and in particular how best to understand the cooperative engagements
that inevitably underpin human activity. This has meant, in turn, that analysis has
largely come from the province of the human sciences. Unsurprisingly, this has
methodological consequences. Although by no means ubiquitous, so-called
‘qualitative’ methods have become accepted to such a degree that they are
entirely unremarkable in the CSCW community. Ethnographers now apply their
trade in a large variety of contexts, and groups involved in the production of
software artefacts have become one of the contexts in which they are increasingly
commonly found.

Software engineering has, in contrast, historically emphasised the nature of the
process entailed in production. We should not forget that there are good reasons
for this. Software development teams became progressively larger and their
coordination more complex. Equally, business demands meant that these
engineering processes became increasingly subject to various forms of account-
ability. Hence the need for strict, controlled processes of documentation became
paramount and resulted in the demand for ‘structure’. In addition, of course, a
worldview that was steeped in engineering and science recognised the primacy of
methods which were ‘objective’ and which produced acceptable generalisations.
Anyone trained in such a background would—quite understandably—have had

394 Yvonne Dittrich et al.

some difficulty coming to terms with the context-specific, seemingly anecdotal,
and frequently hedged conclusions one arguably gets from a more qualitative
orientation.

Nevertheless, from about the early 1990s, something began to change, The
sheer number of scare stories about the failure of software projects, many
involving billions of dollars, led to a recognition that a rigorous engineering-
based approach might be creating problems of its own. Put simply, it was argued
that engineering work tended to be done using a problem-solution matrix that
underestimated the complexity of problems, the dynamic quality of human
understanding of those problems, and the variety of perspectives coming to play
in organisational reality (see e.g. Checkland 1981). These resulting problems
meant that ‘waterfall’ assumptions became increasingly problematic and the
resultant strain began to show. The search for any and all resources with which to
deal with this included a more benevolent view of the qualitative. Ethnographers
and other experts in qualitative approaches became ‘licensed’ to provide
additional data which could be used to support software engineering work, to
such a degree that the recent issue of one of the leading course books on Software
Engineering contains a chapter on the requirements engineering process
recommending work place studies, ethnographically inspired investigations and
interviews (Sommerville 2007). CSCW studies, in short, became in some sense
studies for software engineers (this is not the place to enter debates about how ‘in
some sense’ might be deconstructed—see Dourish 2006; Crabtree et al. 2009).

CSCW research also began to address the design and development of software
as a cooperative work practice itself. Knowing about the complex relation
between plans and situated action, changing the methods for requirements
engineering and giving design recommendations for computer applications and
especially their interfaces might not be enough. To get to terms with the design
side of Computer Supported Cooperative Work, the cooperative practices of
designing and developing software needs to be understood. The ‘working
relationships of technology production and use’ (Suchman 1994) have become a
major subject of research and publication. A special issue of the CSCW journal in
1996 (Schmidt and Sharrock 1996) as well as a number of edited volumes like
Dittrich et al. (2002) and Voss et al. (2008) indicated this growing interest. More
or less at the same time, the understanding of the need for flexibility and support
for continuously ongoing articulation and design in use led to investigation of
programming technologies that allow for an End-User Development (Lieberman
et al. 2006). Software design and development in this way becomes regarded as
embedded in everyday work practice.

In other words, it turned out to be a relatively short step to studies of as well as
for software development. From a small number of studies conducted in the
1990s (see e.g. Button and Sharrock 1994) which were of interest to the CSCW
community but arguably less so elsewhere, we now have a concerted effort to
mobilise qualitative approaches to understand software engineering better and

Software Engineering as Cooperative Work Editorial 395

make some contribution towards an assessment of its problems and putative
solutions, an effort which trades on the methodological insights proffered by
CSCW and cognates but is being made by communities of software engineers as
well.

Of course, reflective practitioners of whatever kind are wont to examine their
practices in order to, if possible, improve it. The traditional understanding of
software development methods and processes has been more and more
problematised by software engineers and designers themselves. They share with
CSCW practitioners a common interest in how software engineering actually
takes place, and how software developers construct and use tools, methods, and
processes to cooperatively develop software that fulfils its purpose. While some
part of this entails a shift to the methodological commitments rehearsed above, it
is also a function of some radical developments in the philosophy of software
development. This has included, from fairly early on, concerns with participatory
design, evolutionary development etc. (Bjerknes et al. 1987; Floyd et al. 1992),
though to more the contemporary developments associated with open source
development, Xtreme programming, agile processes and so on. As, there is a
considerable diversity to be found today in how software is actually developed
and how software development is conceptualised, there is an agreement that one
size does not fit all and that software development methods and processes need to
be devised according to the contingencies and circumstances in which software
development takes place. Given this development, it is certainly not surprising
that they should also be implicated in the qualitative turn. The growing interest in
detailed studies of how development structures, methods and tools are used to co-
construct the process and the product of software development dovetails nicely
with the increased complexity and variegation of those tools and practices.

Regardless, and as indicated, the software engineering community has begun
to engage in a concerted way. At the International Conference on Software
Engineering in 2000 a workshop explored the usage of social science methods for
software engineering research (Sim et al. 2001). Together with the work by
Carolyn Seaman (Seaman), this workshop influenced a growing community of
software engineering researchers complementing existing empirical research with
studies applying qualitative methods. Since then, a number of workshops served
as meeting places at the leading International Conference on Software
Engineering. (John et al. 2005; Cheng et al. 2008; de Souza et al. 2009)
interestingly the first workshop in the Cooperative and Human Aspects of
Software Engineering (CHASE) series took place 2006 at the CSCW conference
in Banff (Cheng et al. 2006). A special issue on Qualitative Software Engineering
Research in one of the leading Software Engineering journals (Dittrich et al. 2007)
indicates another milestone to the successful establishment of this research
discourse as part of software engineering. This Software Engineering research
discourse contains a wide spectrum of qualitative research. Qualitative methods
can be used as means to formulate hypotheses that later can be tested by

396 Yvonne Dittrich et al.

quantitative research. (Seaman 1999) e.g. uses qualitative methods this way.
Others, like (De Souza et al. 2005) use an in depth understanding of software
developers’ work practice to design tools supporting this practice. A recent article
presented at the International Conference on Software Engineering established the
importance of rich data to provide a sound base for understanding Software
Engineering practices (Aranda and Venolia 2009). At the same time, the growing
geographically distribution of software engineering provided new challenges for
the software development processes, method and tool support, resulting in a
growing body of research. Similarly, agile software engineering and open source
development have been the subject of studies aimed at understanding these
relatively new approaches to software development. As the respective communities
increasingly emphasise communication and cooperation rather than (quantitative)
control, qualitative methods often have been chosen as default research methods
for understanding this shift. This special edition of the journal is designed to
showcase a number of the studies which reflect these trends.

In short, and regardless of which community is actually engaged in particular
research endeavours, the analytic preferences associated with the development of
CSCW (and which are to be found now in many communities outside of CSCW
itself, including for instance IS; HCI, and so on) have become appreciably more
accepted elsewhere, not least among software engineers and designers them-
selves. We are arguably at the point where a collaboration predicated on
experiences over a long period of time is at last bearing fruit:

As mentioned above, there is a growing interest in detailed studies into
software development as co-construction. The first article in this special issue,
‘What Counts as Software Process? Negotiating the Boundary of Software Work
through Artifacts and Conversation’ by Cohn et al. explores how an agile
development process is co-constructed within the development team and how the
boundaries of what is inside and what is outside of the process are negotiated in
everyday conversation. In a similar detailed analysis, the second article ‘On The
Roles of APIs in the Coordination of Collaborative Software Development’ by
De Souza et al. addresses how software design methods and guidelines provide
mediation mechanisms for cooperation between sub-teams working with different
parts of the same projects.

The challenges of globally distributed research are at the center of another
cluster of studies that, in recent years, has generated enough critical mass its own
conference on ‘Global Software Development’. Research studies addressing
distributed development are often done with the aim of supporting cooperation
distributed across time and space. The article by Avram et al. shows how the use
of tools enables specific work practices and—on the other hand—how in order to
‘keep the local work flowing’, the tools and practices that support distance
cooperation are patched locally. Computer mediated awareness tools become
increasingly relevant. One of our articles argues for the innovative design of a
tool that can be extended to not only support developers with awareness

Software Engineering as Cooperative Work Editorial 397

information related to code changes, but also related artefacts. Omorania et al.
propose ‘Using Developer Activity Data to Enhance Awareness during
Collaborative Software Development’.

The last three articles in this volume point to a growing interest in cooperation
beyond the project team and individual project. Rooksby et al. address in their
article © ‘Testing in the Wild’ The Social and Organisational Dimensions of
Testing Practices’. In the field material, the influence both of project specific
constituencies as well as cooperation with customers and users. The interaction
and cooperation between software developers and other communities is in the
centre of Segal’s article ‘Software development cultures and cooperation
problems: a field study of the early stages of development of software for a
scientific community’ as well. Here especially the difference in practices and
values of End-User Developers on the one side and professional software
engineers is addressed. Last but not least, Johannessen et al. address the cross-
organisational cooperation between heterogeneous user communities, third
parties and developers around the evolution of a software product. ‘Integration
and generification—Agile software development in the healthcare market’.
Especially these later articles provide a new challenge for the CSCW community
in general: They can be read as accounts of how the cooperation around design,
development and evolution of computer support becomes part of cooperative
work practices in general, both within an organisation and between organisations,
which provides a change in the ‘techno-methodologies’ (Button and Dourish
1998) of software and computer applications.

Thanks to all the reviewers who assured the quality of this Special Issue.
Jorgen Bansler, Technical University of Denmark, Denmark
Wolf G. Bleek, blueCarat AG, Germany

Tone Bratteteig, University of Oslo, Norway

Peter Carstensen, Alexandra Institute, Denmark

Jeffrey Carver, University of Alabama, USA

Daniela Damian, University of Victoria, Canada

Pirjo Elovaara, Blekinge Institute of Technology, Sweden
Sara Eriksén, Blekinge Institute of Technology, Sweden
Erling Havn, Technical University of Denmark, Denmark
Sampsa Hyysalo, University of Helsinki, Finnland

Michael John, Fraunhofer Institute Berlin, Germany

Anne Mari Kanstrup, University of Aalborg, Denmark
Catherine Letondal, Pasteur Institute, France

Wayne G. Lutters, University of Maryland, USA

Gail Murphy, University of British Columbia, Canada

Brad Myers, Carnegie Mellom University, USA

Peter A. Nielsen, University of Aalborg, Denmark

Jacob Nerbjerg, Copenhagen Business School, Denmark
Volkmar Pipek, University of Siegen, Germany

Neil Pollock, University of Edinburgh, UK

Tony Robertson, University of Technology Sidney, Australia
Hugh Robinson, The Open University, UK

Kari Ronkko, Blekinge Insitute of Technology, Sweden

398 Yvonne Dittrich et al.

Anita Sarma, University of California Irvine, USA
Carolyn Seaman, University of Maryland, USA
Helen Sharp, The Open University, UK
Margaret-Anne Storey, University of Victoria, Canada
Bjernar Tessem, University of Bergen, Norway

Mike Twidale, University of Illinois, USA

Gina Venolia, Microsoft Research, USA

Thomas Zimmermann, University of Calgary, Canada.

References

Aranda, J. & Venolia, G. (2009). The secret life of bugs: Going past the errors and omissions in
software repositories. Proceedings of the 31st International Conference on Software Engineering.
Vancouver 2009: IEEE pp. 298-308.

Bjerknes, G., Ehn, P., Kyng, M. (Eds.). (1987). Computers and democracy. Aldershot 1987.

Button, G. & Sharrock, W. W. (1994). Occasioned practices in the work of software engineers. In
Goguen & M. Jirotka (Eds.), Requirements engineering: Social and technical issues. San Diego:
Academic.

Button, G., & Dourish, P. (1998). Technomethodology: Paradoxes and possibilities, Proceedings of
the SIGCHI conference on Human factors in computing systems: common ground, pp. 19-26.
Vancouver.

Checkland, P. (1981). Systems thinking, systems practice. London: Wiley.

Cheng, L.-T., Cox, A., DeLine, R., de Souza, C., Schneider, K., Singer, J., et al. (2006). Supporting
the social side of large-scale software development. Banff: Workshop at the CSCW 06.

Cheng, L.-T., de Souza, C., Dittrich, Y., John, M., Hazzan, O. et al. (Eds.) (2008). Proceedings of
the 2008 international workshop on Cooperative and Human Aspects of Software Engineering
CHASE °08. 30th International Conference on Software Engineering, Leipzig 10-18 May 2008,
ACM.

Crabtree, A., Rodden, T., Tolmie, P., & Button, G. (2009). Ethnography considered harmful.
Proceedings of CHI *09. Boston: ACM.

de Souza, C., Froehlich, J., & Dourish, P. (2005). Seeking the source: software source code as a
social and technical artifact. Proceedings of the 2005 international ACM SIGGROUP conference
on Supporting group work, Sanibel Island, Florida, pp. 197-206.

de Souza, C., Sharp, H., Dittrich, Y., & Singer, J. (2009). Proceedings of the 2009 LCSE Workshop
on Cooperative and human aspects of sofiware engineering (CHASE 2009) 1EEE.

Dittrich, Y., Floyd, C., & Klischewski, R. (Eds.). (2002). Social thinking: Software practice. MIT
Press.

Dittrich, Y., John, M., Singer, J., & Tessem, B. (2007). Editorial for the special issue on qualitative
software engineering research. /nformation and Software Technology, 49(6), 531-539.

Dourish, P. (2006). Implications for design, Proceedings of CHI ’06. Montreal: ACM.

Floyd, C., Ziillighoven, H., Budde, R., & Keil-Slawik, R. (eds). (1992). Software development and
reality construction. Berlin: Springer Verlag.

John, M., Maurer, F., & Tessem, B. (2005). Human and social factors of software engineering:
workshop summary. SIGSOFT Softw. Eng. Notes 30(4)1-6.

Lieberman, H., Paternoé, F., & Wulf, V. (Eds.). (2006). End user development: Empowering people
to flexibly employ advanced information and communication technology. Springer 2006.

Schmidt, K., & Sharrock, W. (Eds.). (1996). Special issue on studies of cooperative design.
Computer Supported Cooperative Work, vol. 5, no.4, 1996.

Software Engineering as Cooperative Work Editorial 399

Seaman, C. (1999). Qualitative methods in empirical studies of software engineering. /EEE
Transactions on Sofiware Engineering, 25(4), 557-572.

Sim, S. E., Singer, J., & Storey, M.-A. (2001). Beg, borrow or steal. Using multidisciplinary
methods in empirical software engineering research. An ICSE 2000 Workshop Report Limerick,
Ireland, 5 June 2000. Empirical Sofiware Engineering, 6(1), 85-93.

Sommerville, 1. (2007). Software engineering. 8th edition, Pearson Education.

Suchman, L. (1994). Working relations of technology production and use. Computer Supported
Cooperative Work, 2(1-2), 21-39.

Voss, A., Hartswood, M., Procter, R., Rouncefield, M., Slack, R. S., & Biischer, M. (2008).
Configuring user-designer relations: Interdisciplinary perspectives. Springer.

	Software Engineering as Cooperative Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

