
Constraints (2015) 20:155–182
DOI 10.1007/s10601-014-9173-7

Dominance breaking constraints

Geoffrey Chu ·Peter J. Stuckey

Published online: 2 October 2014
© The Author(s) 2014. This article is published with open access at SpringerLink.com

Abstract Many constraint problems exhibit dominance relations which can be exploited
for dramatic reductions in search space. Dominance relations are a generalization of sym-
metry and conditional symmetry. However, unlike symmetry breaking which is relatively
well studied, dominance breaking techniques are not very well understood and are not com-
monly applied. In this paper, we present formal definitions of dominance breaking, and a
generic method for identifying and exploiting dominance relations via dominance breaking
constraints. We also give a generic proof of the correctness and compatibility of symmetry
breaking constraints, conditional symmetry breaking constraints and dominance breaking
constraints.

Keywords Dominance · Symmetry breaking · Nogood learning

1 Introduction

In a constraint satisfaction or optimization problem, dominance relations describe pairs of
assignments where one is known to be at least as good as the other with respect to satisfi-
ability or the objective function. When such dominance relations are known, we can often
prune off many of the solutions without changing the satisfiability or the optimal value of
the problem. Many constraint problems exhibit dominance relations which can be exploited
for significant speedups (e.g., [2, 7, 15, 19, 24, 28, 32, 33]).

An earlier version of this paper was published in 2012 [5]

G. Chu (�) · P. J. Stuckey
Department of Computing and Information Systems, University of Melbourne, Melbourne, Australia
e-mail: gchu@csse.unimelb.edu.au

P. J. Stuckey
e-mail: pjs@csse.unimelb.edu.au

G. Chu · P. J. Stuckey
National ICT Australia, Victoria Laboratory, Melbourne, Australia

mailto:gchu@csse.unimelb.edu.au
mailto:pjs@csse.unimelb.edu.au

156 Constraints (2015) 20:155–182

Dominance relations are a generalization of symmetry and conditional symmetry and
offer similar or greater potential for reductions in search space. Unlike symmetries how-
ever, dominance relations are not widely exploited. Dominance relations can be hard to
identify, and there are few standard methods for exploiting them. It is also often hard to
prove that a particular method is correct, especially when multiple dominance relations
are being exploited simultaneously. These issues have been overcome in the case of sym-
metry, which is why symmetry breaking is now standard and widely used. Dominance
relations have been successfully applied in a number of problems, but their treatment is
often highly problem specific and yields little insight as to how they can be generalized. In
this paper, we seek to advance the usage of dominance relations by making the following
contributions:

– We describe a generic method for identifying and exploiting a large class of dominance
relations using dominance breaking constraints.

– We show that our method naturally produces symmetry breaking and conditional sym-
metry breaking constraints as well (since they are simply special cases of dominance
breaking).

– We give a generic theorem proving the correctness and compatibility of all symmetry
breaking, conditional symmetry breaking and dominance breaking constraints defined
by our method.

The layout of the paper is as follows. In Section 2, we give our definitions. In Section 3,
we describe our method of identifying and exploiting dominance relations using dominance
breaking constraints. In Section 4, we describe how our method can be extended to generate
symmetry and conditional symmetry breaking constraints as well. In Section 5 we discuss
how dominance breaking interacts with search. In Section 6, we discuss related work. In
Section 7, we provide experimental results. In Section 8, we conclude and discuss future
work.

2 Definitions

In this section, we present our notations and definitions.

2.1 Constraint programming

To facilitate rigorous proofs in the later sections, we will give our own definitions of vari-
ables, domains, constraints, constraint problems and dominance relations. These are slightly
different from the standard definitions but are equivalent to them in practice.

Let ≡ denote syntactical identity, ⇒ denote logical implication and ⇔ denote logical
equivalence. We define variables and constraints in a problem independent way. A variable
v is a mathematical quantity capable of assuming any value from a set of values called the
default domain of v. Each variable is typed, e.g., Boolean or Integer, and its type determines
its default domain, e.g., {0, 1} for Boolean variables and Z for Integer variables. Given a
set of variables V , let �V denote the set of valuations over V where each variable in V is
assigned to a value in its default domain. A constraint c over a set of variables V is defined
by a set of valuations solns(c) ⊆ �V . Given a valuation θ over V ′ ⊃ V , we say θ satisfies
c if the restriction of θ onto V is in solns(c). Otherwise, we say that θ violates c. A domain
D over variables V is a set of unary constraints, one for each variable in V . In an abuse of
notation, if a symbol A refers to a set of constraints {c1, . . . , cn}, we will often also use the

Constraints (2015) 20:155–182 157

symbol A to refer to the constraint c1 ∧ . . . ∧ cn. This allows us to avoid repetitive use of
conjunction symbols.

A Constraint Satisfaction Problem (CSP) is a tuple P ≡ (V,D, C), where V is a set
of variables, D is a domain over V , and C is a set of n-ary constraints. A valuation θ over
V is a solution of P if it satisfies every constraint in D and C. The aim of a CSP is to
find a solution or to prove that none exist. In a Constraint Optimization Problem (COP)
P ≡ (V,D, C, f), we also have an objective function f mapping �V to an ordered set,
e.g., the set of integers Z or the set of real numbers R, and we wish to minimize or max-
imize f over the solutions of P . In this paper, we deal with finite domain problems only,
i.e., where the initial domain D constrains each variable to take values from a finite set
of values.

Propagation based solvers (see e.g [37]) solve CSPs and COPs by interleaving tree
search with inference. A propagator pc for constraint c is a function mapping domains to
domains s.t. c ∧ D ⇔ c ∧ pc(D), i.e., it performs inference based on c and the current
domain D, pruning away any variable/value pairs that cannot be taken given c and D. Solv-
ing a CSP begins with the original problem at the root of the search tree. At each node
in the search tree, we execute all the propagators until the domain reaches a fixed point.
If some variable’s domain becomes empty, then the subproblem has no solution and the
solver backtracks. If all the variables are assigned and no constraint is violated, then a solu-
tion has been found and the solver can terminate. If inference is unable to detect either
of the above two cases, then the solver divides the problem into a number of more con-
strained subproblems and searches each of those in turn. Typically this involves picking a
variable x and branching on its values, e.g., trying x = v for some value v in one child
node and x 	= v in the other child node, or trying x ≤ v in one child node and x > v in
the other.

CP solvers solve a minimization COP (V, D,C, f) by simply solving the CSP (V,D, C)

to find a solution θ , and then solving the CSP (V, D,C ∧ f < θ(f)) to find a new (better)
solution θ . They repeat this until the final CSP has no solution in which case the last solution
found is optimal.

One of the principal advantages of constraint programming is the ability to model directly
with complex global constraints, that implement efficient propagators. Table 1 gives the
definitions of a number of global constraints which we will use in this paper.

Later on we shall be interested in properties of constraints in order to simplify their
handling. A property of interest is monotonicity

Table 1 Definitions of standard global constraints. In an abuse of notation, we consider false as 0 and true
as 1

Name and Arguments Definition

at least([x1, . . . , xn], v, y) (
∑n

i=1 xi = v) ≥ y

at most([x1, . . . , xn], v, y) (
∑n

i=1 xi = v) ≤ y

among([x1, . . . , xn], v, y) (
∑n

i=1 xi = v) = y

all diff ([x1, . . . , xn]) ∀1 ≤ i < j ≤ n, xi 	= xj

inverse([x1, . . . , xn], [y1, . . . , yn]) ∀1 ≤ i, j ≤ n, xi = j ⇔ yj = i

gcc([x1, . . . , xn], [v1, . . . , vm], [y1, . . . , ym]) ∀1 ≤ k ≤ m, (
∑n

i=1 xi = vk) = yk

element([x1, . . . , xn], z, y) y = xz

table([x1, . . . , xn], [[v1,1, . . . , v1,n], . . . , [vm,1, . . . , vm,n]]) ∃k,∀1 ≤ i ≤ n, xi = vk,i

158 Constraints (2015) 20:155–182

Definition 1 We say that an argument xi in a constraint c(x1, . . . , xn) is monotonically
increasing (resp. decreasing) w.r.t. c iff increasing (resp. decreasing) its value while keeping
the other arguments fixed never cause c to go from satisfied to unsatisfied.

Example 1 The constraint 3x1 + 4x2 − 5x3 ≤ 8 is monotonically increasing in x3 and
monotonically decreasing in x1 and x2. Similarly at most([x1, . . . , xn], v, y) is mono-
tonically increasing in y, but neither monotonically increasing nor decreasing on any
of the xi .

We shall be particularly interested later in the paper on COPs with lexicographic objec-
tive functions. To fit this transparently into the usual COP definition we assume a function
lex : Zn → Z such that lex(v1, . . . , vn) < lex(v′

1, . . . , v
′
n) ⇔ (v1 < v′

1)∨(v1 = v′
1 ∧v2 <

v′
2) ∨ . . . ∨ (∧n−1

i=1 vi = v′
i ∧ vn < v′

n).

2.2 Dominance

We define dominance relations over full valuations. We assume that all objective func-
tions are to be minimized, and consider constraint satisfaction problems as constraint
optimization problems with f (θ) = 0 for all valuations θ .

Definition 2 A dominance relation ≺ for COP P ≡ (V,D, C, f) is a transitive and
irreflexive binary relation on �V such that if θ1 ≺ θ2, then either: 1) θ1 is a solution of P

and θ2 is a not a solution of P , or 2) both θ1 and θ2 are solutions of P and f (θ1) ≤ f (θ2),
or 3) both θ1 and θ2 are not solutions of P and f (θ1) ≤ f (θ2).

If θ1 ≺ θ2, we say that θ1 dominates θ2. Note that we require our dominance relations to
be irreflexive. This means that no loops can exist in the dominance relation, and makes it
much easier to ensure the correctness of the method. The following theorem states that it is
correct to prune all dominated assignments.

Theorem 1 Given a finite domain COP P ≡ (V,D, C, f), and a dominance relation ≺
for P , we can prune all assignments θ such that ∃θ ′ s.t. θ ′ ≺ θ , without changing the
satisfiability or optimal value of P .

Proof Let θ0 be an optimal solution. If θ0 is pruned, then there exists some solution θ1

s.t. θ1 ≺ θ0. Then θ1 must be a solution with f (θ1) ≤ f (θ0), so θ1 is also an opti-
mal solution. In general, if θi is pruned, then there must exist some θi+1 s.t. θi+1 ≺ θi

and θi+1 is also an optimal solution. Since ≺ is transitive and irreflexive, it is impos-
sible for the sequence θ0, θ1, . . . to repeat. Then since there are finitely many solutions,
the sequence must terminate in some θk which is an optimal solution and which is
not pruned.

Theorem 1 relates to finite domain COP’s. However, the proof for Theorem 1 generalizes
trivially to the case of infinite domain COP’s with finitely many solutions as well. On the
other hand, it does not hold for infinite domain COP’s with infinitely many solutions. E.g.,
consider P ≡ ({x}, {x ∈ Z},∅, x). We could define ≺ such that ∀θ1, θ2, θ1 ≺ θ2 iff θ1(x) <

θ2(x). Since every possible valuation is dominated by something, pruning all dominated
valuations ends up pruning all possible solutions. In this paper, we consider only finite
domain problems, so Theorem 1 holds for the problems we consider.

Constraints (2015) 20:155–182 159

Several previous definitions of dominance (e.g., [10, 22]) relate search nodes rather than
valuations. We can extend a precedence relation ≺ over valuations to relate search nodes in
the obvious way.

Definition 3 Let D1 and D2 be the domains from two different search nodes. If ∀θ2 ∈
solns(D2), ∃θ1 ∈ solns(D1) s.t. θ1 ≺ θ2, then we define D1 ≺ D2.

Clearly if D1 ≺ D2, Theorem 1 tells us that we can safely prune the search node with D2.
We call the pruning allowed by Theorem 1 dominance breaking in keeping with symmetry
breaking for symmetries.

Example 2 Consider a simple problem with domain xi ∈ {1, . . . , 10}, constraint
all diff ([x1, . . . , x10]) and objective function

∑10
i=1 i ∗xi to be minimized. The search node

n given by the decisions x1 = 2, x2 = 1 dominates the search node n′ given by the decisions
x1 = 1, x2 = 2, as no matter how we label the remaining variables in n′, the correspond-
ing assignment in n with the same values for x3, . . . , x10 will always have a better objective
value since 1 ∗ 2 + 2 ∗ 1 < 1 ∗ 1 + 2 ∗ 2.

Dominance relations can be derived either statically before search or dynamically during
search in order to prune the search space. It is easy to see that static symmetry break-
ing (e.g., [9, 13]) is a special case of static dominance breaking. For example, consider
the lex-leader method of symmetry breaking. Suppose S is a symmetry group of prob-
lem P . Suppose l(θ) is the lexicographical function being used in the lex-leader method.
We can define a dominance relation: ∀σ ∈ S, ∀θ, σ(θ) ≺ θ if l(σ (θ)) < l(θ). Then
applying Theorem 1 to ≺ gives the lex-leader symmetry breaking constraint (i.e., prune all
solutions which are not the lex-leader in their equivalence class). Similarly, dynamic sym-
metry breaking techniques such as Symmetry Breaking During Search [18] and Symmetry
Breaking by Dominance Detection [10, 14] are special cases of dynamic dominance break-
ing. Nogood learning techniques such as Lazy Clause Generation [11, 30] and Automatic
Caching via Constraint Projection [6] are also examples of dynamic dominance breaking.
We will discuss these two methods in more detail in Section 6.

Just as in the case of symmetry breaking (see e.g. [12]), it is generally incorrect to simul-
taneously post dominance breaking constraints for multiple dominance relations. This is
because dominance relations only ensure that one assignment is at least as good as the other
(not strictly better than), thus when we have multiple dominance relations, we could have
loops such as θ1 ≺1 θ2 and θ2 ≺2 θ1, and posting the dominance breaking constraint for
both ≺1 and ≺2 would be wrong. We have to take care when breaking symmetries, condi-
tional symmetries and dominances that all the pruning we perform are compatible with each
other. As we shall show below, one of the advantages of our method is that all the symme-
try breaking, conditional symmetry breaking and dominance breaking constraints defined
by our method are provably compatible.

Dominance breaking constraints can be particularly useful in optimization problems,
because they provide a completely different and complementary kind of pruning to the
branch and bound paradigm. In the branch and bound paradigm, the only way to show that
a partial assignment is suboptimal is to prove a sufficiently strong bound on its objective
value. Proving such bounds can be highly expensive, especially if the model does not prop-
agate strong bounds on the objective. In the worst case, further search is required, which
can take an exponential amount of time. On the other hand, dominance breaking can prune
a partial assignment without having to prove any bounds on its objective value at all, since

160 Constraints (2015) 20:155–182

it only needs to know that the partial assignment is suboptimal. Once dominance relations
expressing conditions for suboptimality are found and proved, the only cost in the search is
to check whether a partial assignment is dominated, which can often be much lower than
the cost required to prove a sufficiently strong bound to prune the partial assignment.

3 Identifying and exploiting dominance relations

3.1 Overview of method

We now describe a generic method for identifying and exploiting a fairly large class of
dominance relations using dominance breaking constraints. The idea is to use mappings
σ from valuations to valuations to construct dominance relations. Given a mapping σ , we
ask: under what conditions does σ map a solution to a better solution? If we can find these
conditions, then we can build a dominance relation using these conditions and exploit it by
posting a dominance breaking constraint. More formally:

Step 1 Choose a set S of mappings σ : �V → �V which are likely to map solutions to
better solutions.

Step 2 For each σ ∈ S, find a constraint scond(σ) s.t. if θ ∈ solns(C ∧ D ∧ scond(σ)),
then σ(θ) ∈ solns(C ∧ D).

Step 3 For each σ ∈ S, find a constraint ocond(σ) s.t. if θ ∈ solns(C ∧ D ∧ ocond(σ)),
then f (σ(θ)) < f (θ).

Step 4 For each σ ∈ S, post the dominance breaking constraint db(σ) ≡ ¬(scond(σ) ∧
ocond(σ)).

The constraints scond(σ) ensure that σ maps solutions to solutions, while ocond(σ)

ensures that σ maps valuations to better valuations. Finally db(σ) ensures that solutions
that are dominated are eliminated.

The following theorem proves the correctness of this method.

Theorem 2 Given a finite domain COP P ≡ (V,D, C, f), a set of mappings S, and
for each mapping σ ∈ S constraints scond(σ) and ocond(σ) satisfying: ∀σ ∈ S, if
θ ∈ solns(C ∧ D ∧ scond(σ)), then σ(θ) ∈ solns(C ∧ D), and: ∀σ ∈ S, if θ ∈
solns(C ∧ D ∧ ocond(σ)), then f (σ(θ)) < f (θ), we can add all of the dominance break-
ing constraints db(σ) ≡ ¬(scond(σ) ∧ ocond(σ)) to P without changing its satisfiability
or optimal value.

Proof Construct a binary relation ≺ as follows. For each σ , for each θ ∈ solns(C ∧ D ∧
scond(σ) ∧ ocond(σ)), define σ(θ) ≺ θ . Now, take the transitive closure of ≺. We claim
that ≺ is a dominance relation. It is transitive by construction. Also, by construction, θ ∈
solns(C∧D∧scond(σ)∧ocond(σ)) guarantees that σ(θ) is a solution and that f (σ(θ)) <

f (θ). Thus ∀θ1, θ2, θ1 ≺ θ2 implies that θ1 and θ2 are solutions, and that f (θ1) < f (θ2).
This means that ≺ is irreflexive and satisfies all the properties of a dominance relation, thus
by Theorem 1, we can prune any θ ∈ solns(C ∧ D ∧ scond(σ) ∧ ocond(σ)) for any σ

without changing the satisfiability or optimality of P . Thus it is correct to add db(σ) for
any σ to P .

Note that there are no restrictions on σ . It does not have to be injective or surjective.
The db(σ) are guaranteed to be compatible because they all obey the same strict ordering

Constraints (2015) 20:155–182 161

imposed by the objective function f , i.e., they prune a solution only if a solution with strictly
better f value exists. Of course not every db(σ) will be valuable to add to the problem,
db(σ) may be equivalent to true or a complex constraint implemented by reification which
barely prunes.

We illustrate the method with two simple examples before we go into more details.

Example 3 Consider the Photo problem. A group of people wants to take a group photo
where they stand in one line. Each person has preferences regarding who they want to stand
next to. We want to find the arrangement which satisfies the most preferences.

We can model this as follows. Let xi ∈ {1, . . . , n} for i = 1, . . . , n be variables where xi

represents the person in the ith place. Let p be a 2d integer array where p[i][j] = p[j][i] =
2 if person i and j both want to stand next to each other, p[i][j] = p[j][i] = 1 if only one
of them wants to stand next to the other, and p[i][j] = p[j][i] = 0 if neither want to stand
next to each other. The only constraint is: all diff ([x1, . . . , xn]). The objective function to
be minimized is given by: f = −∑n−1

i=1 p[xi][xi+1].
Step 1 Since this is a sequence type problem, mappings which permute the sequence in

some way are likely to map solutions to solutions. For simplicity, consider the set of
mappings which flip a subsequence of the sequence, i.e., ∀i < j, σi,j maps xi to xj , xi+1

to xj−1, . . ., xj to xi and each other variable to itself.
Step 2 We want to find the conditions under which σ maps solutions to solutions. Since

all of these σ are symmetries of C ∧D, we do not need any conditions and it is sufficient
to set scond(σi,j) ≡ true.

Step 3 We want to find the conditions under which f (σi,j (θ)) < f (θ). If we compare the
LHS and RHS, it is clear that the only difference is the terms p[xi−1][xj], p[xi][xj+1]
on the LHS and the terms p[xi−1][xi], p[xj][xj+1] on the RHS. So it is sufficient to set
ocond(σi,j) ≡ p[xi−1][xj] + p[xi][xj+1] > p[xi−1][xi] + p[xj][xj+1].

Step 4 For each σi,j , we can post the dominance breaking constraint:

¬(p[xi−1][xj] + p[xi][xj+1] > p[xi−1][xi] + p[xj][xj+1]).
These dominance breaking constraints ensure that if some subsequence of the assignment
can be flipped to improve the objective, then the assignment is pruned.

Example 4 Consider the 0-1 knapsack problem maximizing the value of items chosen from
a set S within a weight limit W . Then xi, i ∈ S are 0-1 variables, and we have constraint∑

i∈S wixi ≤ W and we have objective f = − ∑
i∈S vixi , where wi is the (constant) weight

of item i and vi is the (constant) price of item i.

Step 1 Consider mappings which swap the values of two variables, i.e., ∀i < j, σi,j swaps
xi and xj .

Step 2 A sufficient condition for σi,j to map the current solution to another solution is:
scond(σi,j) ≡ wixj +wjxi ≤ wixi+wjxj . Rearranging, we get: (wi−wj)(xi−xj) ≥ 0.

Step 3 A sufficient condition for σi,j to map the current solution to an assignment with
a better objective value is: ocond(σi,j) ≡ vixj + vjxi > vixi + vjxj . Rearranging, we
get: (vi − vj)(xi − xj) < 0.

Step 4 For each σi,j , we can post the dominance breaking constraint: db(σi,j) ≡
¬(scond(σi,j) ∧ ocond(σi,j)). After simplifying, we have db(σi,j) ⇔ xi ≤ xj if
wi ≥ wj and vi < vj , db(σi,j) ⇔ xi ≥ xj if wi ≤ wj and vi > vj , and db(σi,j) ⇔ true
for all other cases.

162 Constraints (2015) 20:155–182

These dominance breaking constraints ensure that if one item has worse price and
greater or equal weight to another, then it cannot be chosen without choosing the other
also.

3.2 Step 1: Finding appropriate mappings σ

In general, we want to find σ ’s such that scond(σ) and ocond(σ) are as small and sim-
ple as possible, as this will lead to dominance breaking constraints that are easier to
propagate and prune more. So we want σ such that it often maps a solution to a bet-
ter solution. Mappings σ which are symmetries or almost symmetries of the problem
make good candidates, since their scond(σ) will be simple, and all else being equal,
there is a 50 % chance that it will map the solution to one with a better objective
value.

We can try all the common candidates for symmetries. For example, if the vari-
ables or the values represent the same type of thing, we can try swapping them. E.g.,
if xi represents truck i’s load, we could try swapping these variables. Or if xi ∈
{1, . . . , 10} where each value represents a different room, we could try swapping the
values (rooms). Many problems are representable as 2 dimensional matrices (see for exam-
ple [12]) where each row represents one thing and each column represent another. In
such problems, we can try swapping two rows or two columns in the matrix. Another
common type of combinatorial problem is a sequencing problem where we are trying
to find an order of a certain set of things which satisfies some constraints or opti-
mizes some objective. In such sequence type problems, we can try flipping or moving a
subsequence.

Mappings which are likely to map an assignment to one with better objective value are
also good candidates, since their ocond(σ) will be simple. For example, in scheduling prob-
lems minimizing makespan, we can try shifting items forward in the schedule. There may
also be problem specific σ ’s that we can try. Table 2 shows a list of standard mappings we
can try.

3.3 Step 2: Finding scond(σ)

First, we need to define how constraints are mapped under arbitrary mappings from
valuations to valuations.

Table 2 Standard mappings we can try with the method

Mapping Effect

var permπ , π a permutation maps xi to xπ(i)

var swapi,j swaps xi and xj

row swapi,j swaps xi,k with xj,k for all k

col swapi,j swaps xk,i with xk,j for all k

shift sub seqi,j,k where i < k maps xm to xm+k−i for i ≤ m ≤ j , maps xm

to xm−j−1+i for j + 1 ≤ m ≤ k + j − i

flip sub seqi,j maps xk to xj+i−k for i ≤ k ≤ j

val permV ′,π , V ′ ⊆ V , π a permutation maps the value v to π(v) on all vars in V ′

shift val V ′, i increase the value of all xk ∈ V ′ by i

Constraints (2015) 20:155–182 163

Table 3 σ and c such that σ maps c to itself

σ c

var permπ y = (≥,≤)f (x1, . . . , xn), where π(y) = y, ∀i, ∃j, π(xi) = xj ,

f is a symmetric function, e.g., min, max, and, or, sum

val permV ′,π xi = (=)xj where xi , xj ∈ V ′

val permV ′,π among([x1, . . . , xn], v, y), where xi , v ∈ V ′, y /∈ V ′

val permV ′,π element([x1, . . . , xn], z, y), where y, xi ∈ V ′, z /∈ V ′

val permV ′,π table([x1, . . . , xn], [[z1,1, . . . , z1,n], . . . , [zm,1, . . . , zm,n]]), where xi , zi,j ∈ V ′

Definition 4 Given a mapping σ : �V → �V , we can extend σ to map constraints to
constraints as follows. Given a constraint c, σ(c) is defined as a constraint over V such that
θ satisfies σ(c) iff σ(θ) satisfies c.

While it is easy to define σ(c), σ(c) may or may not be a simple logical expression.

Example 5 We illustrate a number of constraints σ(c) that result from applying a mapping
σ to constraint c:

– Suppose c ≡ x1+2x2+3x3 ≥ 10, and σ swaps x1 and x3, then σ(c) ≡ x3+2x2+3x1 ≥
10.

– Suppose c ≡ (x1, x2) ∈ {(1, 1), (2, 3), (3, 1)}, and σ permutes the values (1, 2, 3) to
(2, 3, 1) on x1 and x2, then σ(c) ≡ (x1, x2) ∈ {(3, 3), (1, 2), (2, 3)}.

– Suppose c ≡ x1 +2x2 ≥ 5 and σ swaps the values 1 and 2, then σ(c) ≡ (x1 = 1∧x2 =
1) ∨ (x1 = 2 ∧ x2 = 1) ∨ (x1 	= 1 ∧ x1 	= 2 ∧ x2 	= 1 ∧ x2 	= 2 ∧ x1 + 2x2 ≥ 5) which
does not simplify at all.

In general, σ can either map c to itself, map it to another easily expressible constraint,
or map it to something very complicated. Table 3 shows σ and c’s where σ maps c to itself.
Table 4 shows σ and c’s where σ maps c to something different but still easily expressible.
Any constraint built up from the above primitive constraints maps in the obvious way, i.e.,
σ(c1 ∧ . . .∧ cn) ⇔ σ(c1)∧ . . .∧σ(cn). So for example, we can also map at least, at most,
all diff and gcc (which are built from among), or the regular constraint [31] (which can be
built from table), under arbitrary value permutations. Many constraints do not map to nice
expressions under value permutations, e.g., linear constraints, multiplication constraints or
division constraints. For such constraints, σ(c) cannot easilysbe expressed or propagated.

Table 4 σ (c) for various σ and c

σ c σ (c)

var permπ any constraint c(xi1 , . . . , xin) c(xπ(i1), . . . , xπ(in))

val permV ′,π xi = (=)v where xi ∈ V ′ xi = (=)π(v)

val permV ′,π among([x1, . . . , xn], v, y), where xi ∈ V ′, y /∈ V ′ among([x1, . . . , xn], π(v), y)

val permV ′,π element([v1, . . . , vm], z, y), where y ∈ V ′, z /∈ V ′ element([π(v1), . . . , π(vn)], z, y)

val permV ′,π table([x1, . . . , xn], [[v1,1, . . . , v1,n], . . . , table([x1, . . . , xn], [[π(v1,1), . . . , π(v1,n)],
[vm,1, . . . , vm,n]]) . . . , [π(vm,1), . . . , π(vm,n)]])

164 Constraints (2015) 20:155–182

Example 6 The constraint c ≡ at least([x1, . . . , xn], v, y) can be defined as
among([x1, . . . , xn], v, z) ∧ z ≥ y. Hence if σ is val permV ′,π where xi ∈ V ′ and y 	∈ V ′
we can define σ(c) as among([x1, . . . , xn], π(v), z) ∧ z ≥ y.

We can now calculate scond(σ) with the help of the above definition. Note that
while σ(c) is uniquely defined, scond(σ) is only a sufficient condition for something to
hold, thus there is plenty of leeway for us to pick between different options. We require
scond(σ) to be a constraint such that scond(σ) ∧ C ∧ D ⇒ σ(C ∧ D). We can con-
struct scond(σ) in a piecewise fashion by considering each constraint in the problem in
turn. Let scond(σ, c) be a constraint such that C ∧ D ∧ scond(σ, c) ⇒ σ(c). Then we
can construct scond(σ) as ∧c∈C∧Dscond(σ, c). Naively, we can set scond(σ, c) = σ(c).
This is clearly correct. However, we can make use of the existing constraints C ∧ D to
simplify scond(σ, c) in order to get a stronger (more general) or simpler (faster to propa-
gate) condition. One special case is subsumption. For each c ∈ C ∧ D, if σ(c) is already in
C ∧ D, then we can simply set scond(σ, c) = true, since C ∧ D already unconditionally
implies σ(c).

Example 7 Suppose C ≡ {x1 	= x2, x2 	= x3, x3 	= x1, x1 	= x4}, and σ swaps x1 and x2.
σ(x1 	= x2) = x1 	= x2, which is already in C. σ(x2 	= x3) = x1 	= x3 which is already in
C. σ(x3 	= x1) = x3 	= x2 which is already in C. σ(x1 	= x4) = x2 	= x4 which is not in C.
So we can set scond(σ) = true ∧ true ∧ true ∧ x2 	= x4.

This is the reason why σ ’s which are symmetries or almost symmetries of the prob-
lem make good candidates for the method, as most or all of the σ(c) are already in
C ∧ D and thus we will have a simple scond(σ). If σ(c) is not subsumed by C ∧ D,
we can still potentially simplify it using C ∧ D. The simplest case here is to use c itself
to simplify scond(σ, c), i.e., we want to find scond(σ, c) such that c ∧ scond(σ, c) ⇒
σ(c). There is a potential trade off between strength and speed. Simpler scond(σ) could
be propagated faster, but may be weaker in terms of what can ultimately be pruned by the
dominance breaking constraint.

Example 8 Consider c ≡ x1 + x2 + x3 ≤ 3. Suppose σ swaps x3 with x4. One
possible scond(σ, c) is simply σ(c) which is x1 + x2 + x4 ≤ 3. Alternatively,
another sufficient condition is x4 ≤ x3, since x1 + x2 + x3 ≤ 3 ∧ x4 ≤ x3 ⇒
x1 + x2 + x4 ≤ 3. The first condition is stronger (more general), but may cost

Table 5 Possible scond(σ, c) for various σ and c

σ c scond(σ, c)

swap x1 and xk c(x1, . . . , xn), c an arbitrary constraint x1 = xk

swap x1 and xn+1 c(x1, . . . , xn), x1 monotonically increasing in c x1 ≤ xn+1

swap x1 and xn+1 c(x1, . . . , xn), x1 monotonically decreasing in c x1 ≥ xn+1

swap x1 and x2 c(x1, . . . , xn), x1 mono inc, x2 mono dec in c x1 ≤ x2

swap y1 and y2 y1 = f (x1, . . . , xn), f a function y1 = y2

swap x1 and x2
∑n

i=1 aixi ≤ k (a1 − a2)(x1 − x2) ≥ 0

swap x1 and xn+1 element([x1, . . . , xn], i, y) i = 1 → x1 = xn+1

swap x1 and x2 element([x1, . . . , xn], i, y) (i = 1 ∨ i = 2) → x1 = x2

Constraints (2015) 20:155–182 165

more to propagate. The second condition is weaker (less general), but may be faster to
propagate.

Simplifications are important from a practical point of view, as we may be posting many
dominance breaking constraints, and having many extra reified propagators to propagate
σ(c) may be far too costly. Table 5 gives some possible simplifications. This table is by no
means exhaustive.

Note that depending on the values of the constants in the problem, the expression shown
in the table will simplify even further. For example, on the sixth line, if a1 − a2 > 0, then it
simplifies to x1 ≥ x2.

3.4 Step 3: Finding ocond(σ)

We assume that the objective function f (θ) is defined over all assignments (not just
solutions). We first give a few definitions.

Definition 5 Given a function σ mapping assignments to assignments, we extend σ to
map functions over assignments to functions over assignments as follows: ∀θ, σ(f)(θ) =
f (σ(θ)).

Definition 6 Given two functions mapping assignments to the reals f and g, we use f < g

to denote a constraint such that: θ satisfies f < g iff f (θ) < g(θ).

For each σ , we want to find a sufficient condition ocond(σ) so that if a solution satisfied
ocond(σ), then σ maps it to an assignment with a strictly better objective value. A necessary
and sufficient condition is: C ∧ D ∧ ocond(σ) ⇒ σ(f) < f . For sum type objective
functions, we can typically just set ocond(σ) ≡ σ(f) < f . For example, in both the Photo
and Knapsack examples above, we simplified the constraint σ(f) < f . Depending on the
mapping, many terms may be unchanged and can be eliminated, leading to a relatively
simple ocond(σ). For max/min type objective functions, besides finding an exact condition,
we can also find a sufficient condition ocond(σ) by piecewise comparison of each term in
the max/min expression. For example, if f ≡ min(x1, . . . , xn), and f ′ ≡ min(x ′

1, . . . , x ′
n)

we could set ocond(σ) ≡ ∧(x ′
i < xi), or, given some mapping π from [1..n] to itself which

depended on σ , we could set ocond(σ) ≡ ∧(xπ(i) < xi).

3.5 Step 4: Posting the dominance breaking constraint

Once we have found scond(σ) and ocond(σ), we can construct the dominance break-
ing constraint db(σ) ≡ ¬(scond(σ) ∧ ocond(σ)) and simplify it as much as possible.
If it is simple enough to implement efficiently, we can add it to the problem. If not,
we can either weaken it into a simpler form, or simply ignore it, as it is not required
for the correctness of the method. It is quite common that the dominance breaking con-
straint for different σ ’s will have common subexpressions. Taking advantage of common
subexpressions improves propagation for CP [36], and we can use this to make the imple-
mentation of the dominance breaking constraints more efficient. For example, in the
dominance breaking constraints for the Photo problem given in Example 3, the expression
p[xi−1][xi] will appear in the dominance breaking constraint for multiple values of j , so
common subexpression elimination will be able to replace these with a single intermediate
variable.

166 Constraints (2015) 20:155–182

4 Generating symmetry and conditional symmetry breaking constraints

The method described so far only finds dominance breaking constraints which prune a solu-
tion when its objective value is strictly worse than another. We can do better than this, as
there are often pairs of solutions which have equally good objective value and we may
be able to prune many of them. Exploiting such sets of equally good pairs of solution is
called symmetry breaking and conditional symmetry breaking. We show that with a slight
alteration, our method will generate dominance breaking constraints that will also break
symmetries and conditional symmetries.

We modify the method as follows. We add in a Step 0, and alter Step 3 slightly.

Step 0 Choose a refinement of the objective function f ′ with the property that
∀θ1, θ2, f (θ1) < f (θ2) implies f ′(θ1) < f ′(θ2).

Step 3* For each σ , find a constraint ocond(σ) s.t. if θ ∈ solns(C ∧D ∧ocond(σ)), then
f ′(σ(θ)) < f ′(θ).

The following theorem shows the correctness of the altered method.

Theorem 3 Given a finite domain COP P ≡ (V,D, C, f), a refinement of the objective
function f ′ satisfying ∀θ1, θ2, f (θ1) < f (θ2) implies f ′(θ1) < f ′(θ2), a set of mappings
S, and for each mapping σ ∈ S constraints scond(σ) and ocond(σ) satisfying: ∀σ ∈ S, if
θ ∈ solns(C∧D∧scond(σ)), then σ(θ) ∈ solns(C∧D), and: ∀σ ∈ S, if θ ∈ solns(C∧D∧
ocond(σ)), then f ′(σ(θ)) < f ′(θ), we can add all of the dominance breaking constraints
db(σ) ≡ ¬(scond(σ)∧ocond(σ)) to P without changing its satisfiability or optimal value.

Proof The proof is almost identical to that of Theorem 2 by simply replacing f by f ′. The
critical difference arises in proving that ≺ is a dominance relation. Now ∀θ1, θ2, θ1 ≺ θ2
implies that θ1 and θ2 are solutions, and that f ′(θ1) < f ′(θ2) and hence also f ′(θ1) ≤
f ′(θ2). By the definition of f ′, f (θ2) < f (θ1) ⇒ f ′(θ2) < f ′(θ1) and indeed also the
contrapositive f ′(θ2) ≥ f ′(θ1) ⇒ f (θ2) ≥ f (θ1), and thus f ′(θ1) ≤ f ′(θ2) ⇒ f (θ1) ≤
f (θ2). Clearly then f (θ1) ≤ f (θ2). Since f ′(θ1) < f ′(θ2) it follows that ≺ is irreflexive
and since f (θ1) ≤ f (θ2) it satisfies all the properties of a dominance relation.

The db(σ) are guaranteed to be compatible because they all obey the same strict ordering
imposed by the refined objective function f ′. That is, they prune a solution only if a solution
with strictly better f ′ value exists. Theorem 3 is useful because it is generally quite difficult
to tell whether different symmetry, conditional symmetry or dominance breaking constraints
are compatible. There are lots of examples in the literature where individual dominance
breaking constraints are proved correct, but no rigorous proof is given that they are correct
when used together (e.g., [7, 15, 17]). The symmetry, conditional symmetry or dominance
breaking constraints defined by our method are guaranteed to be compatible by Theorem 3,
thus the users of the method do not need to prove anything themselves.

The most common type of objective refinement is a lexicographical tie breaking using
additional properties of the solutions. We set f ′ = lex(f,p1, . . . , pn),1 where pi : �V →
Z are some additional properties. f ′ orders the solutions first by their objective value, then
tie breaks by the value of p1, then tie breaks by the value of p2, etc. Clearly, f (θ1) < f (θ2)

implies f ′(θ1) < f ′(θ2) so it is a refinement. Recall that we want to set ocond(σ) ≡

1We write f ′ = lex(f, p1, . . . , pn) as shorthand for f ′(θ) = lex(f (θ), p1(θ), . . . , pn(θ)).

Constraints (2015) 20:155–182 167

σ(f ′) < f ′. In general, we have σ(lex(f,p1 . . . , pn)) < lex(f,p1, . . . , pn) ⇔ (σ(f) <

f) ∨ (σ(f) = f ∧ σ(p1) < p1) ∨ . . . ∨ (σ(f) = obj ∧ ∧n−1
i=1 σ(pi) = pi ∧ σ(pn) < pn).

Thus ocond(σ) will be the disjunction of a number of terms. The first of these (σ(f) < f)
will result in a term in the dominance breaking constraint expressing strict improvement in
the objective. The remaining terms (σ(f) = obj ∧ ∧k−1

i=1 σ(pi) = pi ∧ σ(pk) < pk) will
result in terms expressing (conditional) symmetry breaking.

Note that for many mappings σ and refined objectives f ′ = lex(f,p1, . . . , pn), the sym-
metry breaking part is well studied and there exist standard ways to model and propagate
them. In such cases, we can just directly reuse the existing symmetry breaking constraints
rather than manually recreating it. To be more precise, if we already have a standard
lex-leader symmetry breaking constraint sb(σ) implementing ¬(σ(lex(p1, . . . , pn)) <

lex(p1, . . . , pn)), then we can set ocond(σ) ≡ f ′ < f ∨ (f ′ = f ∧ ¬(sb(σ)). Then
db(σ) ≡ ¬(scond(σ) ∧ f ′ < f) ∧ (scond(σ) ∧ f ′ = f → sb(σ)). The first term is the
strict dominance breaking constraint. The second term is a conditional symmetry breaking
constraint making use of the standard symmetry breaking constraint. We now illustrate the
altered method with some examples.

Example 9 Consider the Photo problem from Example 3. Suppose that in Step 0, instead of
setting f ′ = f , we set f ′ = lex(f, x1, . . . , xn). Now, consider what happens in Step 3*.
We have ∀i < j ,

ocond(σi,j) ≡ σi,j (f
′) < f ′

⇔ σi,j (lex(f, x1, . . . , xi, . . . , xj , . . . , xn)) < lex(f, x1, . . . , xi, . . . , xj , . . . , xn)

⇔ lex(σi,j (f), x1, . . . , xj , . . . , xi, . . . , xn) < lex(f, x1, . . . , xi, . . . , xj , . . . , xn)

⇔ lex(σi,j (f), xj , xi) < lex(f, xi, xj)

⇔ σi,j (f) < f ∨ (σi,j (f) = f ∧ xj < xi) ∨ (σi,j (f) = f ∧ xj = xi ∧ xi < xj)

⇔̃ σi,j (f) < f ∨ (σi,j (f) = f ∧ xj < xi)

⇔ (p[xi−1][xj] + p[xi][xj+1] > p[xi−1][xi] + p[xj][xj+1]) ∨
(p[xi−1][xj] + p[xi][xj+1] = p[xi−1][xi] + p[xj][xj+1] ∧ xj < xi)

The first equivalence follows from definition of f ′. The second holds by definition of σi,j .
The third equivalence by the properties of lex. The fourth equivalence from the definition
of lex. The fifth (pseudo-)equivalence holds since C → xi 	= xj so the resulting constraint
is still a correct ocond . The last equivalence holds by replacing f by its definition and
eliminating shared terms.

Compared to the ocond(σ) when we used f instead of f ′, there is an addi-
tional term (p[xi−1][xj] + p[xi][xj+1] = p[xi−1][xi] + p[xj][xj+1] ∧ xj < xi

which says that we can also prune the current assignment if the flipped version has
equal objective value but a better lexicographical value for {x1, . . . , xn}. Thus db(σi,j)

not only breaks dominances but also includes a conditional symmetry breaking con-
straint. Similarly, consider σ1,n. Because it is a boundary case, the terms in σ(f) and
f all cancel and we have ocond(σ1,n) ≡ xn < x1, so db(σ1,n) ≡ x1 ≤ xn which is simply
a symmetry breaking constraint.

Example 10 Consider the Knapsack problem from Example 4. In Step 0, we can tie break
solutions with equal objective value by the weight used, and then lexicographically, i.e.,
f ′ = lex(f,

∑
wixi, x1, . . . , xn). In Step 3*, we have: ∀i < j , ocond(σi,j) ≡ σ(f ′) <

f ′ ⇔ ((vi − vj)(xi − xj) < 0) ∨ ((vi − vj)(xi − xj) = 0 ∧ (wi − wj)(xi − xj) >

0) ∨ ((vi − vj)(xi − xj) = 0 ∧ (wi − wj)(xi − xj) = 0 ∧ xj < xi). In Step 4, after
simplifying, in addition to the dominance breaking constraints we had before, we would

168 Constraints (2015) 20:155–182

also have: db(σi,j) ⇔ xi ≤ xj if wi > wj and vi = vj , db(σi,j) ⇔ xi ≥ xj if wi < wj

and vi = vj , and db(σi,j) ⇔ xi ≤ xj if wi = wj and vi = vj which is a symmetry
breaking constraint.

We can also apply the altered method to satisfaction problems to generate symmetry and
conditional symmetry breaking constraints.

Example 11 The Black Hole Problem [17] seeks to find a solution to the Black Hole
patience game. In this game the 52 cards of a standard deck are laid out in 17 piles of 3, with
the Ace of spades starting in a “black hole”. Each turn, a card at the top of one of the piles
can be played into the black hole if it is numbered ±1 from the number of the card that was
played previously, with king wrapping back around to ace. The aim is to play all 52 cards.
We can model the problem as follows. Let the suits be numbered from 1 to 4 in the order
spades, hearts, clubs, diamonds. Let the cards be numbered from 1 to 52 so that card i has
suit (i − 1)/13 + 1 and number (i − 1) mod 13 + 1, where 11 is jack, 12 is queen and 13 is
king. Let li,j be the j th card in the ith pile in the initial layout. Let xi be the turn in which
card i was played. Let yi be the card which was played in turn i. We have:

x1 = 1 (1)

inverse(x, y) (2)

xli,j < xli,j+1 ∀1 ≤ i ≤ 17, 1 ≤ j ≤ 2 (3)

(yi+1 − yi) mod 13 ∈ {−1, 1} ∀1 ≤ i ≤ 51 (4)

We now apply our method. Since cards which are nearer to the top of the piles are much
more likely to be played early on, we choose a lexicographical ordering which reflects this.
We define f ′ = lex(xl1,1, . . . , xl17,1, . . . , xl1,3, . . . , xl17,3). An obvious set of mappings that
are likely to map solutions to solutions is to swap cards of the same number in the sequence
of cards to be played. Consider σi,j for i − j mod 13 = 0, i 	= 1, j 	= 1 where σi,j swaps
xi and xj , and swaps the values of i and j among {y1, . . . , y52}.

Now we construct scond(σi,j). For each constraint c in the problem, we need to find a c′
such that C∧D∧c′ ⇒ σi,j (c) and add it to scond(σi,j). Clearly, the domain constraints and
the constraints in (1), (2) and (4) are all symmetric in σi,j , so we do not need to add anything
for them. However, there will be some constraints in (3) which are not symmetric in σi,j .
For example, suppose we wished to swap i = 3(3♠) and j = 16(3♥), and they were in
piles: (2♠, 3♠, 5♣) and (1♦, 3♥, 6♦), where 3♠ is in a lexicographically earlier pile than
3♥. The constraints in (3) which are not symmetric in σi,j are those involving 3♠ or 3♥, i.e.,
x2♠ < x3♠, x3♠ < x5♣, x1♦ < x3♥ and x3♥ < x6♦. Their symmetric versions are x2♠ <

x3♥, x3♥ < x5♣, x1♦ < x3♠ and x3♠ < x6♦ respectively, so we can set scond(σ3♠,3♥) ≡
x2♠ < x3♥ ∧ x3♥ < x5♣ ∧ x1♦ < x3♠ ∧ x3♠ < x6♦. To construct ocond(σi,j), we can
set ocond(σi,j) ≡ σi,j (f

′) < f ′. For this example, we have ocond(σ3♠,3♥) ≡ x3♥ < x3♠.
Combining, we have db(σ3♠,3♥) ≡ ¬(x2♠ < x3♥ ∧ x3♥ < x5♣ ∧ x1♦ < x3♠ ∧ x3♠ <

x6♦∧x3♥ < x3♠). We can use the constraints in the original problem to simplify this further.
Since x3♠ < x5♣ is an original constraint and x3♥ < x3♠ ∧ x3♠ < x5♣ ⇒ x3♥ < x5♣, we
can eliminate the second term in db(σ3♠,3♥). Since x1♦ < x3♥ is an original constraint and
x1♦ < x3♥ ∧ x3♥ < x3♠ ⇒ x1♦ < x3♠, we can eliminate the third term in db(σ3♠,3♥).
The result is db(σ3♠,3♥) ⇔ ¬(x2♠ < x3♥ ∧ x3♠ < x6♦ ∧ x3♥ < x3♠). The other cases are
similar.

Constraints (2015) 20:155–182 169

Although the conditional symmetry breaking constraints derived in Example 11 are iden-
tical to those derived in an earlier paper on conditional symmetry breaking [17], our method
is much more generic and can be applied to other problems as well. Also, no rigorous
proof of correctness is given in that paper, whereas Theorem 3 shows that these condi-
tional symmetry breaking constraints are compatible. In this problem it is quite possible to
derive multiple incompatible conditional symmetry breaking constraints which are individ-
ually correct. For example, suppose in addition to (2♠, 3♠, 5♣) and (1♦, 3♥, 6♦), we had
a third pile (2♥, 3♦, 7♠), then the following conditional symmetry breaking constraints are
all individually correct: ¬(x2♠ < x3♥ ∧ x3♠ < x6♦ ∧ x3♥ < x3♠), ¬(x2♥ < x3♠ ∧ x3♦ <

x5♣ ∧x3♠ < x3♦), ¬(x1♦ < x3♦ ∧x3♥ < x7♠ ∧x3♦ < x3♥), but they are incompatible. For
example, no matter which permutation of 3♠, 3♥, and 3♦ is applied, the partial solution
1♠, 2♥, 1♦, 2♥, 3♠, 4♠, 3♥, 4♦, 3♦ is pruned by one of the three conditional symmetry
breaking constraints. Our method will never produce such incompatible sets of dominance
breaking constraints.

Example 12 The Resource Constrained Project Scheduling Problem (RCPSP) [4] is as fol-
lows. We have n tasks and m renewable resources. Each task i has a duration pi and
consumes ri,j units of resource j per time unit during its execution. Each resource i sup-
plies a constant amount Ri of resource per time unit during the planning period. There
are precedence constraints between certain pairs of tasks. The problem is to minimize the
makespan of the schedule subject to the resource constraints and precedence constraints.
Let si ∈ {0, . . . , T } be the start time of task i where T is the scheduling horizon. Let P be
the set of precedences. Then the problem can be stated as follows:

Minimize max(si + pi)

Subject to si + pi ≤ sj ∀(i, j) ∈ P

cumulative(s,p, [rj,i | 1 ≤ j ≤ n], Ri) ∀1 ≤ i ≤ m

A well known dominance rule for this problem is that each task must start at the end time
of another task, otherwise, it can be shifted forward in time for a possibly better solution.
We show that it is straightforward to derive a dominance breaking constraint for this using
our method. Let f ′ = lex(f, s1, . . . , sn), i.e., we tie break the objective function by the
start times of the tasks, preferring schedules where they start earlier. Consider a mapping
σi , where we take task i and shift it one time unit earlier. Clearly, f (σi) < f is always true,
so we can set ocond(σi) ⇔ true.

Now we construct scond(σi). For each constraint c in the problem, we need to find a c′
such that C ∧D∧c′ ⇒ σi(c) and add it to scond(σi). Suppose our current solution is θ and
task i starts at si . σi maps si to si −1. The domain constraints are all symmetric in σi except
for those on si . We have σi(si ≥ 0) ≡ si ≥ 1. Since we already have si ≥ 0, we can simply
add c′ ≡ si 	= 0 to scond(σi). Consider the cumulative constraint for resource k. If task i

does not use resource k, then σi(θ) is always a solution of c. If task i does use resource k,
then a sufficient condition for σi(θ) to be a solution of c is that none of the tasks which use
resource k end at exactly si . So we can set c′ ≡ ∧{j |rj,k>0}si 	= sj + pj . Now consider one
of the precedence constraints. If it does not involve task i, or if task i is the predecessor,
then σi(θ) is always a solution of c. If task i is the successor, and task j is the predecessor,
then σi(θ) is a solution of c iff sj + pj 	= si . So we can set c′ ≡ si 	= sj + pj . Let Ti be
the set of tasks which either share a resource with task i, or is a predecessor of task i. Then,
collecting all the terms together, we have: scond(σi) ≡ si 	= 0 ∧ ∧j∈Ti

si 	= sj + pj . So:

db(σi) ≡ ¬(scond(σi) ∧ ocond(σi)) ⇔ si ∈ {0} ∪ {sj + pj | j ∈ Ti}.

170 Constraints (2015) 20:155–182

This is simply an element constraint and can be implemented in a straightforward manner.

Example 13 The Nurse Scheduling Problem (NSP) is to schedule a set of nurses over a time
period such that work and hospital regulations are all met, and as many as possible of the
nurses’ preferences are satisfied. There are many variants of this problem in the literature
(e.g., [1, 27]). We pick a simple variant to illustrate our method. Each day has three shifts:
day, evening, and overnight. On each day, each nurse should be scheduled into one of the
three shifts or scheduled a day off. For simplicity, we can consider a day off to be a shift
as well. We number the shifts as day: 1, evening: 2, over-night: 3, day-off: 4. Each shift
besides day-off requires a minimum number ri of nurses to be rostered. Nurses cannot work
for more than 6 days in a row, and must work at least 10 shifts per 14 days. Each nurse i has
a preference pi,j for which of the four shifts they wish to take on day j . The objective is to
maximize the number of satisfied preferences. Let n be the number of nurses and m be the
number of days. Let xi,j be the shift that nurse i is assigned to on day j . Then the problem
can be stated as follows:

Maximize
n∑

i=1

m∑

j=1
(xi,j = pi,j)

Subject to
at least ([xk,j | 1 ≤ k ≤ n], i, ri) ∀1 ≤ i ≤ 3, 1 ≤ j ≤ m

at least ([xi,j | k ≤ j < k + 7], 4, 1) ∀1 ≤ i ≤ n, 1 ≤ k ≤ n − 6
at most ([xi,j | k ≤ j < k + 14], 4, 4) ∀1 ≤ i ≤ n, 1 ≤ k ≤ n − 13

We now apply our dominance breaking method. Firstly, we can potentially get some
symmetry or conditional symmetry breaking in by refining the objective function to f ′ =
lex(f, x1,1, x2,1, . . . , xn,m). Let us consider mappings which are likely to map solutions to
solutions. An obvious set of candidates are mappings which swap the shifts of two nurses
on the same day, i.e., mappings σi1,i2,j which swap xi1,j and xi2,j .

We wish to calculate scond(σi1,i2,j). For each c ∈ C∪D, we need to find c′ such that C∧
D ∧ c′ ⇒ σi1,i2,j (c). It is easy to see that the constraints in (5) are all symmetric in σi1,i2,j ,
so we do not need to add anything to scond(σi1,i2,j). The constraints at least([xi1,j

′ | k ≤
j ′ < k + 7], 4, 1) in (5) are symmetric in σi1,i2,j if k + 7 ≤ j or k > j . For j − 7 < k ≤ j ,
they will be satisfied by σ(θ) iff: xi1,j 	= 4 ∨ xi2,j = 4 ∨ at least([xi1,j

′ | k ≤ j ′ <

k + 7, j 	= j ′], 4, 1). Similarly, the constraints at most([xi1,j | k ≤ j < k + 14], 4, 4) in (5)
are symmetric in σi1,i2,j if k + 14 ≤ j or k > j . For j − 14 < k ≤ j , they will be satisfied
by σ(θ) iff: xi1,j = 4 ∨ xi2,j 	= 4 ∨ at most([xi1,j

′ | k ≤ j ′ < k + 14, j 	= j ′], 4, 3). Since
the at least and at most conditions are probably too expensive to check, we can simply
throw them away. We lose some potential pruning, but it is still correct, since we had a
disjunction of conditions. So we add xi1,j 	= 4 ∨ xi2,j = 4 and xi1,j = 4 ∨ xi2,j 	= 4
to scond(σi1,i2,j). Calculating σ(f ′) > f ′ is straightforward. We simply try each pair of
values for xi1,j and xi2,j and see if swapping them improves the refined objective function.
For example, suppose i1 < i2, pi1,j = 4, pi2,j = 2, then

ocond(σi1,i2,j) ≡ σ(f ′) < f ′ ⇔ (xi1,j , xi2,j) ∈ {(1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 4)}.
And finally

db(σi1,i2,j) ≡ ¬(scond(σi1,i2,j)∧ocond(σi1,i2,j)) ⇔ (xi1,j , xi2,j) /∈ {(2, 1), (2, 3), (3, 1)},
which is a table constraint encapsulating both dominance breaking and symmetry breaking
constraints.

Constraints (2015) 20:155–182 171

5 Interaction with search

It is well known that static symmetry breaking constraints can conflict with the search
heuristic [16], leading to little speedup or even an overall slow down. Since dominance
breaking constraints are a direct generalization of symmetry breaking constraints, the same
issues are pertinent. Clearly, if we refine the objective function using a lexicographical
ordering which is contradictory to the order in which the search strategy would like to
search, the symmetry breaking and conditional symmetry breaking constraints defined by
our method will conflict with the search strategy in the same way that symmetry break-
ing constraints does in static symmetry breaking. The solution in both cases is to pick a
lex ordering that is as closely aligned to the search strategy as possible. For example, if
the search is a fixed order search on [v1, . . . , vn] where the value ordering is from small-
est to largest, then f ′ = lex(f, v1, . . . , vn) is a good refinement. If the search tries values
from largest to smallest, then we should use f ′ = lex(f,−v1, . . . ,−vn). If the search
uses a dynamic variable ordering, then it may not be possible to pick a refinement which is
completely consistent with the search strategy.

While the symmetry and conditional symmetry breaking constraints defined by our
method may suffer from the already well known conflict with the search strategy described
above, a new possibility for conflict arises between the exploitation of strict dominances and
the branch and bound framework often used for solving optimization problems. Dominance
breaking constraints attempt to prevent the solver from searching any dominated subtree
whatsoever. However, while dominated solutions may not be optimal, they may neverthe-
less allow additional pruning in a branch and bound framework if they improve the current
best solution. Consider a situation where we have a relatively bad search heuristic. It may
have ordered the search tree such that the first 1000 solutions it encounters are all bad, dom-
inated solutions, and it does not encounter a good, non-dominated one until the 1001st one.
In contrast, a search without dominance breaking constraints will find these bad solutions
and use them for branch and bound. So while it does not benefit from the additional pruning
of the dominance breaking constraints, it has compensation in the form of a better bound for
performing branch and bound in that part of the search. A search with dominance breaking
constraints on the other hand, will enjoy the additional pruning from dominance breaking
constraints, but will never find any of those first 1000 dominated solutions. This means that
for that stretch of search, it had no bound on the objective with which to perform branch
and bound and is missing out on some potential pruning. The end result is that it may spend
a large amount of time with no solution at all, although once it does find a solution, it tends
to be a very good one. In pathological cases, it is entirely possible that with dominance
breaking constraints, the solver will not find any solution within the time out at all, whereas
without dominance breaking constraints, it will at least find some bad solutions. Thus dom-
inance breaking constraints are not necessarily beneficial, especially in an any-time context
where you want to find good solutions fast. We illustrate this kind of conflict experimentally
in Section 7.

Note that this new type of possible conflict between exploiting strict dominances and
the branch and bound framework is fundamentally different from the possible conflict
between lexicographical symmetry breaking constraints and the search strategy. In the lat-
ter type of conflict, the conflict is caused by the user artificially deciding which solution
among a set of equally good, fully symmetric solutions to accept and which to prune, such
that that choice conflicts with the order in which the search normally finds those solu-
tions. Such a conflict can be resolved by using a good lexicographical ordering which is
consistent with the search strategy, by dynamically changing the lexicographical ordering

172 Constraints (2015) 20:155–182

during search [20], or by using dynamic symmetry breaking techniques such as SBDS [3,
18] or SBDD [10, 14] which determine the ordering dynamically. However, the new kind
of conflict identified here is caused by the order between pairs of dominated solutions
where one has a strictly better objective value than the other. If the search tends to find
the better one of each pair of dominated solutions first, it will tend not to conflict with
the strict dominance breaking. On the other hand, if it consistently finds the worse one of
each pair first, it will tend to conflict with the dominance breaking. This is because the
dominance breaking constraints may prune off this worse solution that it encounters first,
even though it is possible that this solution is better than the current best and can help
the branch and bound to prune more. Thus the conflict is caused directly by the search
strategy ordering the solutions badly, and is not caused by some inappropriate choice of
ordering by the user when generating the dominance breaking constraints. Changing the
lexicographical ordering used for the refinement phase either statically or dynamically will
not fix this conflict. Nor will any direct extension of SBDS or SBDD that we can think of.
Instead, the best way to avoid the conflict is simply to use a good search strategy, since a
good search strategy will order the good solutions first and will tend not to conflict with the
dominance breaking.

If a good search strategy cannot be found, an alternative method called dominance jump-
ing [8] can be used to resolve the conflict instead. The basic idea behind dominance jumping
is that whenever the current subtree is pruned by a dominance breaking constraint db(σ),
we actually know exactly where the better subtree that dominates the current one is. If D

is the domain of the current subtree, and db(σ) prunes the current subtree (every solution
of θ in D is dominated by σ(θ)), then σ(D)2 leads to a subtree that dominates the current
one. The dominance jumping method modifies the search so that instead of simple failing
when db(σ) is violated and backtracking and continuing with the depth first search, the
search immediately jumps to the subtree reached by σ(D). What this means is that even if
the search is bad and has ordered a dominated solution first, once that dominated subtree
is encountered, the search will simply jump to the better subtree containing a dominating
solution. Thus we can find those dominating solutions quickly and enjoy the full benefits of
branch and bound while still avoiding searching any dominated subtrees.

One might think that if a good search heuristic is used, then dominance breaking con-
straints may be useless, because the search never gets to the dominated solutions in the
first place. However, this is not true. If a good search heuristic is used, the first parts
of the search tree that are explored may contain few or no dominated solutions, mean-
ing that dominance breaking constraints provide little benefit there. However, a complete
search must eventually also search the bad parts of search tree to prove that no better
solution exists. These parts of the search tree may contain lots of dominated solutions,
and dominance breaking constraints can be highly useful there, as they provide a com-
pletely complementary pruning scheme to branch and bound, and can often prove that
a bad subtree is bad exponentially faster than pure branch and bound can. We illustrate this
with the following example.

Example 14 In the knapsack problem, suppose we have v1 = 2, w1 = 1, vi =
1, wi = 1 for i = 2, . . . , 100 and W = 50. Any decent search heuristic will quickly
lead us to an optimal solution of profit 51. However, even after the optimal solution is

2The dominance jumping method relies on σ being extendible to map domains to domains, which is true for
almost all σ considered in practice.

Constraints (2015) 20:155–182 173

found, branch and bound cannot immediately detect that the partial assignment x1 = 0
is suboptimal (unless we use a global propagator like a knapsack propagator or a lin-
ear programming propagator). In fact, it will still spend an exponential amount of time
down the x1 = 0 branch to prove no solution better than 51 exists. However, the
dominance constraints will enforce x1 ≥ xi for i = 2, . . . , 100, so as soon as we
try x1 = 0, propagation will detect failure.

In general, dominance constraints can allow us to detect local suboptimalities and prune
a subtree even if that suboptimality is not enough to immediately make the bound on the
objective value sufficiently bad for branch and bound to prune it.

6 Related work

There have been many works on problem specific applications of dominance relations,
e.g., the template design problem [33], online scheduling problems [19], the Maximum
Density Still Life problem, Steel Mill Design problem and Peaceable Armies of Queens
problem [32], the Minimization of Open Stacks problem [7], and the Talent Scheduling
Problem [15]. However, the methods used are typically highly problem specific and offer
little insight as to how they can be generalized and applied to other problems. The imple-
mentations of these methods are also often quite ad-hoc (e.g., pruning values from domains
even though they do not explicitly violate any constraint), and it is not clear whether they
can be correctly combined with other constraint programming techniques, such as restarts
or nogood learning. Many of these methods alter the search in order to implement domi-
nance breaking. They can be seen as performing a somewhat non-rigorous propagation of
a dominance breaking constraint directly in the search engine in order to remove possi-
ble values for the next decision variable, rather than a proper propagation of a dominance
breaking constraint in the propagation engine. For example, in the Photo problem, instead
of propagating db(σi,j) ≡ p[xi−1][xj] + p[xi][xj+1] ≤ p[xi−1][xi] + p[xj][xj+1] in the
propagation engine, they would not propagate it, but would wait till they are about to label
xj+1 and then use those dominance breaking constraints to figure out which values of xj+1
do not need to be searched. The result is a solver that is not very rigorous because it is
technically no longer a complete search. The dominance breaking constraint used is rarely
explicitly stated, and it is rarely formally proved that such solvers are actually correct. This
is particularly problematic when multiple dominances and symmetries are being exploited
simultaneously, as then the correctness of the solver is not obvious at all. In contrast, our
new method rests on a much stronger theoretical foundation and is completely rigorous.
Since our method simply adds constraints to the problem, the modified problem is a per-
fectly normal constraint problem and it is correct to use any other constraint programming
technique on it. Another important advantage of our method is that we are able to use any
search strategy we want on the modified problem. This is not the case with many of the
problem specific dominance breaking methods as they rely on specific search orders.

There are a small number of works on generic methods for detecting and exploiting dom-
inance relations. Machine learning techniques have been proposed as a method for finding
candidate dominance relations [38]. This method works by encoding problems and can-
didate dominance relations into forms amenable to machine learning. Machine learning
techniques such as experimentation, deduction and analogy are then used to identify poten-
tial dominance relations. This method was able to identify dominance relations for the 0/1
knapsack problem and a number of scheduling problems. However, the main weakness of

174 Constraints (2015) 20:155–182

this method is that it only generates candidate dominance relations and does not prove their
correctness. Each candidate has to be analyzed to see if it is in fact a dominance relation.
Then the dominance relation has to be manually proved and exploited.

Recently, several generic and automatic methods have been developed for exploiting cer-
tain classes of dominance relations. These include nogood learning techniques such as Lazy
Clause Generation [11, 30] and Automatic Caching via Constraint Projection [6]. Both of
these can be thought of as dynamic dominance breaking, where after some domain D1 is
found to fail, a nogood (constraint) n is found which guarantees that if D2 violates n, then
D2 is dominated by D1 and must also fail. The nogood n is posted as an additional redun-
dant constraint to the problem. Lazy Clause Generation derives this n by resolving together
clauses which explain the inferences which led to the failure. Automatic Caching via Con-
straint Projection derives n by finding conditions such that projection of the subproblem
onto the subset of unfixed variables yield a more constrained problem. These methods are to
a large extent complementary to the method presented in this paper. None of these methods
exhausts all possible dominances occurring in a problem, and there are dominances which
can be exploited by one method but not another. Thus we can often use them simultaneously
to gain an even greater reduction in search space.

7 Experimental results

In this section, we present experimental results showing the utility and also the limitations
of dominance breaking constraints.

7.1 The utility of dominance breaking constraints

We now give some experimental results for our method on a variety of problems. Note that
the aim of our method is to accelerate the solving of an arbitrary model, not necessarily that
of the best model, hence improving the state of the art on these problems is not the current
aim. We compare using no dominance breaking or symmetry breaking constraints (base),
with using symmetry breaking constraints only (sym), and using the dominance breaking
constraints defined by our new method (dom). Note that the dominance breaking constraints
defined by our method exploit full symmetries, conditional symmetries and strict domi-
nances and hence are a superset of the symmetry breaking constraints. Note also that many
problems only have conditional symmetries or strict dominances and do not exhibit any full
symmetries. We have already discussed how our approach to dominance breaking applies
to the Photo Problem, Knapsack Problem, Black Hole Problem, and Nurse Scheduling. For
these problems, we generate random instances of several different sizes, with 10 instances
of each size. We also give experimental results for four further problems:

Photo Problem. This problem has full symmetries, conditional symmetries and strict dom-
inances as described in Example 3 and 9. We use a search strategy where we label the xi in
order. To label xi , we try the available value with the highest p[xi−1][xi] first.

Black Hole Problem. This problem has conditional symmetries as described in Example
11, but no full symmetries or strict dominances. We use a search strategy where out of the
legally playable cards, we pick the one that is in the largest pile.

Constraints (2015) 20:155–182 175

Knapsack Problem. This problem has symmetries and strict dominances as described in
Example 4 and 10. We use a search strategy where we pick the unfixed xi with the highest
vi/wi and set it to 1 first.

Nurse Scheduling Problem. This problem has conditional symmetries and strict domi-
nances as described in Example 13. It can also have instance specific full symmetries if for
example two nurses have exactly the same preferences for all days in the scheduling period,
in which case they become interchangeable. However, this does not occur in any of our
instances. We use a search strategy where we label day by day, nurse by nurse within each
day, and try to assign each nurse to the shift they most prefer.

RCPSP. The resource constrained project scheduling problem (RCPSP) [4] schedules n

tasks using m renewable resources so that ordering constraints among tasks hold and
resource usage limits are respected. A standard dominance rule for this problem, used in
search, is that each task must start at time 0 or when another task ends, since any schedule
not following this rule is dominated by one constructed by shifting tasks earlier until the rule
holds. We use the instances from the standard J60 benchmark set [34] which are non-trivial
(not solved by root propagation) and solvable by at least one of the methods we compare.
This problem has conditional symmetries and strict dominances. If a task can be shifted
forward in the schedule, but it does not reduce the makespan, then this is a conditional sym-
metry. If shifting it forward does reduce the makespan, then it is a strict dominance. There
may also be instance specific full symmetries if for example two tasks have exactly the same
resource requirements, duration and precedence constraints. However, no such instance spe-
cific symmetries occur in the J60 benchmarks we are using. We use a search strategy where
we find the unfixed task with the earliest possible start time and set its start time to that
earliest time.

Talent Scheduling Problem. In the Talent Scheduling Problem [15], we have a set of scenes
and a set of actors. Each actor appears in a number of scenes and is paid a certain amount
per day they are on location. They must stay on location from the first scene they are in
till the last scene they are in. The aim is to find the schedule of scenes x1, . . . , xn which
minimize the cost of the actors. We set f ′ = lex(f, x1, . . . , xn). We consider mappings
which take one scene and move it to another position in the sequence. We generate 10
random instances of size 14, 16, and 18 scenes and 8 actors. This problem has conditional
symmetries and strict dominances. Moving a scene to another position in the sequence may
increase, maintain or decrease the total cost of hiring the actors. If it maintains the cost, it is
a conditional symmetry. If it increases or decreases the cost, it is a strict dominance. There
may also be instance specific full symmetries if for example two scenes require the exact
same set of actors, in which case swapping the position of those scenes is a full symmetry.
However, no such instance specific symmetries occur in our instances. We use a search
strategy where we label day by day, and we pick the scene with the lowest score where the
score is calculated as follows. For each actor who is on-site but not in the scene, we add the
actor’s cost to the score. For each actor who is not on-site but is in the scene, we add the
actor’s cost to the score.

Steel Mill Problem. In the Steel Mill Problem (CSPLIB problem number 38, originally
presented in Kalagnanam et al. [23]), we have a set of orders to be fulfilled and the aim is
to minimize the amount of wasted steel. Each order i has a size and a color (representing
which path it takes in the mill) and is to be assigned to a slab xi . Each slab can only be

176 Constraints (2015) 20:155–182

used for orders of two different colors. Depending on the sum of the sizes of the orders on
each slab, a certain amount of steel will be wasted. We set f ′ = lex(f, x1, . . . , xn) and try
mappings where we take all orders of a certain color from one slab, and all orders of a certain
color from another slab, and swap the slabs they are assigned to. We generate 10 random
instances of size 40 and 50. This problem has full symmetries, conditional symmetries and
strict dominances. All the slabs are interchangeable, leading to a full symmetry on the slabs.
Conditional symmetries arise when the orders of a certain color from one slab has the same
total size as the orders of a certain color from another slab, in which case they can be
exchanged without changing the objective value. Strict dominances can occur when the
orders of a certain color from one slab has a different total size than the orders of a certain
color from another slab, in which case we may be able to swap them and use a smaller slab
for one of them, leading to less wasted steel. We use a search strategy where we label the
slabs one by one. For each slab, we first set its wastage to the lowest allowed value, and
then we go through each order and try to add it to the slab.

PC Board Problem. In the PC Board Problem [25], we have n × m components of var-
ious types which need to be assigned to m machines. Each machine must be assigned
exactly n components and there are restrictions on the sets of components that can go on
the same machine. Each type of component gains a certain utility depending on which
machine it is assigned to and the goal is to maximize the overall utility. We set f ′ =
lex(f, x1,1, x1,2, . . . , xn,m) where xi,j is the type of component assigned to the j th spot on
the ith machine. We consider mappings which swap two components on different machines.
We generate 20 random instances of size 6 × 8. This problem has conditional symmetries
and strict dominances. If two components can be swapped without violating the restrictions
on which sets of components can go on the same machine, then depending on where two
components are currently assigned to, swapping them may increase, maintain or decrease
the utility. If the utility remain the same, it is a conditional symmetry. If the utility increases
or decreases, it is a strict dominance. We use a search strategy where we label one machine
at a time. For each machine, we pick the allowed component which has the highest utility
in that machine and assign it there.

The experiments were performed on Xeon Pro 2.4GHz processors using the CP solver
CHUFFED. For each set of benchmarks, we report the geometric mean of time taken in
seconds and the number of failed nodes. Table 6 compares the original problem with no
symmetry breaking or dominance breaking of any form (base), with symmetry breaking
constraints only (sym), with dominance breaking constraints constructed using our method
(dom) Note that since as described above, some of the problem classes only have strict dom-
inances or conditional symmetries and has no full symmetries, for those problem classes,
symmetry breaking constraints cannot be applied and base and sym will be identical. A
timeout of 900 seconds was used. Table 7 shows the results when we use a learning solver
on each of the variants of the problem: the original with Lazy Clause Generation (base+lcg),
with symmetry breaking constraints and Lazy Clause Generation (sym+lcg) and with domi-
nance breaking constraints and Lazy Clause Generation (dom+lcg). Fastest times and lowest
node counts across both tables are shown in bold. All the instances tested are available in
MiniZinc [29] format at www.cs.mu.oz.au/∼pjs/dominance/.

By comparing dom with base and dom+lcg with base+lcg in Tables 6 and 7, it is clear
that adding dominance breaking constraints can significantly reduce the search space on
a variety of problems, leading to large speedups which tend to grow exponentially with
problem size. By comparing dom with sym and dom+lcg with sym+lcg, we can see that
dominance breaking is doing a lot more pruning than pure symmetry breaking. In many of

www.cs.mu.oz.au/~pjs/dominance/

Constraints (2015) 20:155–182 177

these problems, there are few or no full symmetries to exploit, but there are many conditional
symmetries or strict dominances which can be exploited for significant speedup using our
dominance breaking constraints. Although we only compared against symmetry breaking
constraints here, other symmetry breaking methods such as SBDS [18] or SBDD [10] are
also incapable of exploiting conditional symmetries or strict dominances (despite the word
“dominance” appearing in the name of the SBDD method). The speedup here between the
dominance breaking and symmetry breaking is caused by the exploitation of the conditional
symmetries and strict dominances which no pure symmetry breaking method can exploit.

Dominance breaking constraints are also orthogonal to nogood learning techniques such
as Lazy Clause Generation, and can be combined with it for additional speedup (e.g., Photo,
Steel Mill, Talent Scheduling, Nurse Scheduling, PC Board). In some cases (e.g., Knap-
sack, Black Hole), even though adding LCG on top of our method can reduce the node
count further, the extra overhead of LCG swamps out any benefit. In other cases (e.g.,
RCPSP), adding our dominance breaking constraints on top of LCG actually increases the
run time and node count. In this problem, the dynamically derived dominances from LCG
are stronger than the static ones that our method derives. Adding the dominance breaking
constraints interferes with and reduces the benefit of LCG. In general however, our dom-
inance breaking constraints appears to provide significant speedups over a wide range of
problems for both non-learning and nogood learning solvers.

7.2 Conflict between dominance breaking constraints and search

In the next set of experiments, we illustrate what happens when the dominance breaking
constraints conflict with the search strategy as described in Section 5. We will use the Steel

Table 6 Comparison of the original model and the model augmented with symmetry breaking and
dominance breaking constraints

Problem Base Sym Dom

Time Nodes Time Nodes Time Nodes

Photo-14 1.09 57773 0.76 43785 0.90 10967

Photo-16 8.38 441574 7.34 383242 4.00 43373

Photo-18 60.68 2828622 49.7 2320255 22.09 206507

Knapsack-20 0.01 340 0.01 322 0.01 15

Knapsack-30 0.17 46422 0.15 41386 0.01 91

Knapsack-50 602 1 × 108 605 1 × 108 0.01 684

Knapsack-100 900 1 × 108 900 1 × 108 0.40 54705

Black-hole 5.18 77542 5.18 77542 0.08 607

Nurse-15-7 900 9 × 107 900 9 × 107 900 8 × 107

Nurse-15-14 900 8 × 107 900 8 × 107 900 8 × 107

RCPSP 358.95 2779652 358.95 2779652 279.74 781399

Talent-Sched-14 1.66 39479 1.66 39479 0.42 10122

Talent-Sched-16 16.08 349704 16.08 349704 2.33 51993

Talent-Sched-18 252.05 5557959 252.05 5557959 13.88 299043

Steel-Mill-40 60.64 1 × 106 65.7 1 × 106 22.00 451636

Steel-Mill-50 379.21 7 × 106 384.18 7 × 106 231.95 3 × 106

PC-board 547.93 4 × 107 547.93 4 × 107 412.29 1 × 107

178 Constraints (2015) 20:155–182

Mill problems of size 50 used in the previous experiment. However, instead of using a
good search strategy, we are going to use increasingly bad search strategies to see what
sort of interaction there is between the search and the dominance breaking constraints. A
reasonably good search strategy is to label one slab at a time, and for each slab, first set
its wastage variable to its lower bound, and then decide which orders to put on it. To make
the search strategy worse, we can force it to pick some suboptimal values of the wastage
variable to try first. Let follow-x % denote the search strategy where we pick a value at the
xth percentile of goodness for the wastage variables. So for example, follow-100 % will try
setting the wastage variable to its lower bound first, follow-0 % will try to set the wastage
variable to its upper bound first, and follow-50 % will try to set it to the median value in its
domain first, etc. Thus the search strategy gets increasingly worse as the follow percentage
drops. We compare using no symmetry breaking or dominance breaking (base) with using
dominance breaking (dom). The lexicographical ordering used for the symmetry breaking
part of the dominance breaking constraints is chosen so that it does not conflict with the
search strategy. Thus any conflict that occurs is due to the interaction between the search and
the strict dominance part of the dominance breaking constraints. We show the proportion
of instances solved to optimality (opt. %), the proportion of instances where at least one
solution was found (sat. %), the geometric mean of the time to find the first solution (sat.
time) and the arithmetic mean of the best solution found among the instances where at least
one solution was found (val.).

It can be seen from Table 8 that when a good search strategy is used, dominance breaking
constraints are highly effective, allowing many more instances to be solved to optimality.
However, as the search strategy gets worse, several things occur. First, it takes longer and
longer for a first solution to be found when using dominance breaking constraints, whereas

Table 7 Comparison of the original model and the model augmented with symmetry breaking and
dominance breaking constraints using learning

Problem Base+lcg Sym+lcg dom+lcg

Time Nodes Time Nodes Time Nodes

Photo-14 0.30 5791 0.22 4588 0.25 1962

Photo-16 6.49 44325 4.46 40221 1.40 8960

Photo-18 19.73 138926 15.66 117132 6.25 24523

Knapsack-20 0.01 336 0.01 318 0.01 11

Knapsack-30 0.85 45733 0.77 40770 0.01 65

Knapsack-50 900 2 × 107 900 2 × 107 0.01 507

Knapsack-100 900 1 × 107 900 1 × 107 1.05 37571

Black-hole 0.97 2767 0.97 2767 0.09 347

Nurse-15-7 1.72 55217 1.72 55217 0.91 24258

Nurse-15-14 483.29 7 × 106 483.29 7 × 106 140.95 1 × 106

RCPSP 4.07 7890 4.07 7890 32.84 32770

Talent-Sched-14 0.45 4983 0.45 4983 0.27 3189

Talent-Sched-16 3.71 27186 3.71 27186 1.28 12336

Talent-Sched-18 26.25 128810 26.25 128810 4.28 31829

Steel-Mill-40 16.31 75293 19.2 82932 4.53 27225

Steel-Mill-50 249.39 714451 250.8 646581 32.24 129788

PC-board 20.28 156933 20.28 156933 7.51 64320

Constraints (2015) 20:155–182 179

Table 8 Comparing the effectiveness of dominance breaking constraints as the search strategy goes from
good to bad on the Steel Mill problem

Search opt. % sat. % sat. time val.

base dom base dom base dom base dom

follow-100 % 20 70 100 100 0.02 0.13 2.9 0.6

follow-75 % 20 70 100 100 0.01 11.2 10.8 4.1

follow-50 % 20 20 100 90 0.02 51.8 28.5 7.3

follow-25 % 20 10 100 70 0.02 93.7 44.6 9.6

follow-0 % 10 10 100 70 0.02 261.6 71.1 13.7

without dominance breaking constraints, the time to find the first solution is pretty much a
constant 0.02 seconds or so. This slowdown in finding the first solution is due to the conflict
between the dominance breaking constraints and the search strategy, as described in Sec-
tion 5. Secondly, when the search strategy is sufficiently bad (at around follow-50 %), it can
take so long to find a first solution with dominance breaking constraints that it sometimes
does not actually manage to find one at all within the time out. Thirdly, although it takes an
increasingly longer time to find a first solution with dominance breaking constraints, if it
does find one, it is typically of much higher quality than the ones found without dominance
breaking constraints.

8 Conclusion and future work

We have described a generic method for identifying and exploiting dominance relations in
constraint problems. The method defines a set of dominance breaking constraints which
are provably correct and compatible with each other. The method also defines symmetry
and conditional symmetry breaking constraints as a special case, thus it unifies symme-
try breaking, conditional symmetry breaking and dominance breaking under one method.
Experimental results show that the dominance breaking constraints we define can lead to
significant reductions in search space and run time on a variety of problems, and that they
can be effectively combined with other dominance breaking techniques such as Lazy Clause
Generation.

Although we have developed this method in the context of Constraint Programming, the
dominance relations we find can be applied to other kinds of search as well. For example,
MIP solvers, which use branch and bound, can also benefit from the power of dominance
relations, as they can encounter suboptimal partial assignments which nevertheless do not
produce an LP bound strong enough to prune the subproblem. Simple dominance rules such
as fixing a variable to its upper/lower bound if it is only constrained from below/above [21]
are already in use in MIP, but our method can produce much more generic dominance rules.
Similarly, local search can benefit tremendously from dominance relations, as they can show
when a solution is suboptimal and map it to another solution which is better. Exploring how
our method could be adapted for use in other kinds of search is an interesting avenue of
future work.

It may also be possible to automate many or all of the steps involved in our method.
Such automation would provide a great benefit for system users as they will be able to
feed in a relatively “dumb” model and have the system automatically identify and exploit

180 Constraints (2015) 20:155–182

the dominances. Step 0 typically requires augmenting the objective function with an appro-
priate lexicographical ordering of the variables. Simple methods such as ordering the
variables based on the order they are created or based on the order they are labelled in
the search work well. For Step 1, Table 2 gives a list of standard σ ’s we can try. There
also exist automated methods for detecting symmetries in problem instances [26, 35] which
could be adapted to look for additional candidates for σ . Step 2 and 3 involve algebraic
manipulations which are not difficult for a computer to do. Assuming that all constraints
have been annotated with any functional or monotonic properties, it is straightforward to
apply the rules contained in Tables 3, 4 and 5 to derive candidates for scond(σ) and
ocond(σ). The difficulty lies in choosing whether to use simplified forms of scond(σ)

and ocond(σ) if they are available, as there is a tradeoff between speed and pruning and
there may not be a clear winner. We could either go for a default (e.g., always pick sim-
plest), or present the options to a human, who can then choose. Another difficulty lies
in Step 4, where we need to simplify the dominance breaking constraint and determine
whether it is sufficiently simple, efficient and powerful that it is worth adding to to prob-
lem. This could potentially be done via some some of automated empirical testing where
we initially add it, but monitor whether it is actually pruning anything. If not, we can
disable it to save on overhead. Automating the method is another interesting avenue of
future work.

Acknowledgments NICTA is funded by the Australian Government as represented by the Department of
Communications and the Australian Research Council. This work was partially supported by Asian Office
of Aerospace Research and Development (AOARD) Grant FA2386-12-1-4056.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Abdennadher, S., & Schlenker, H. (1999). Proceedings of the Innovative Applications iof Artificial
Intelligence Conference, 838–843.

2. Aldowaisan, T.A. (2001). A new heuristic and dominance relations for no-wait flowshops with setups.
Computers & OR, 28(6), 563–584.

3. Backofen, R., & Will, S. (1999). Excluding symmetries in constraint-based search. Proceedings of the
5th International Conference on Principles and Practice of Constraint Programming CP1999, volume
1713 of LNCS, (pp. 73–87): Springer.

4. Brucker, P., Drexl, A., Möhring, R.H., Neumann, K., Pesch, E. (1999). Resource-constrained project
scheduling, Notation, classification, models, and methods. European Journal of Operational Research,
112(1), 3–41.

5. Chu, G., & Stuckey, P.J. (2012). A generic method for systematically identifying and exploiting dom-
inance relations. In Proceedings of the 18th International Conference on Principles and Practice of
Constraints Programming CP2012, number 7514 in LNCS, (pp. 6–22): Springer.

6. Chu, G., de la Banda, M.G., Stuckey, P.J. (2010). Automatically exploiting subproblem equivalence in
constraint programming. In Lodi, A., Milano, M., Toth, P. (Eds.) Proceedings of the 7th International
Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, volume 6140 of LNCS, (pp. 71–86): Springer.

7. Chu, G., & Stuckey, P.J. (2009). Minimizing the maximum number of open stacks by customer search.
In I.P. Gent (Ed.) Proceedings of the 15th International Conference on Principles and Practice of
Constraints Programming, volume 5732 of LNCS, (pp. 242–257): Springer.

Constraints (2015) 20:155–182 181

8. Chu, G., & Stuckey. P.J. (2013). Dominance driven search. In Schulte, C. (Ed.) Proceedings of the 19th
International Conference on Principles and Practice of Constraint Programming, volume 8124 of LNCS,
(pp. 217–229): Springer.

9. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A. (1996). Symmetry-breaking predicates for
search problems. In Proceedings of the 5th International Conference on Principles of Knowledge
Representation and Reasoning, (pp. 148–159): Morgan Kaufmann.

10. Fahle, T., Schamberger, S., Sellmann, M. (2001). In Walsh, T. (Ed.) Proceedings of the 7th International
Conference on Principles and Practice of Constraint Programming, volume 2239 of LNCS, (pp. 93–107):
Springer.

11. Feydy, T., & Stuckey, P.J. (2009). Lazy clause generation reengineered. Proceedings of the 15th Inter-
national Conference on Principles and Practice of Constraints Programming CP2009, volume 5732 of
LNCS, (pp. 352–366): Springer.

12. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T. (2002). Breaking Row
and Column Symmetries in Matrix Models. In Hentenryck, P.V. (Ed.) Proceedings of the 8th Interna-
tional Conference on Principles and Practice of Constraints Programming CP2002, volume 2470 of
LNCS, (pp. 462–476): Springer.

13. Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P. (2006). Static and dynamic structural symmetry
breaking. Proceedings of the 12th International Conference on Principles and Practice of Constraints
Programming CP2006, (pp. 695–699): Springer.

14. Filippo F., & Michela M. (2001). Global cut framework for removing symmetries. In Walsh, T. (Ed.)
Proceedings of the 7th International Conference on Principles and Practice of Constraint Programming,
volume 2239 of LNCS, (pp. 77–92): Springer.

15. de la Banda, G.M., Stuckey, J.P., Geoffrey, C. (2011). Solving talent scheduling with dynamic
programming. INFORMS Journal on Computing, 23(1), 120–137.

16. Gargani, A., & Refalo, P. (2007). An efficient model and strategy for the steel mill slab design problem.
Proc. of CP 2007, volume 4741 of LNCS, (pp. 77–89): Springer.

17. Gent, I.P., Kelsey, T., Linton, S., McDonald, I., Miguel, I., Smith, B.M. (2005). Conditional symmetry
breaking. Proceedings of the 11th International Conference on Principles and Practice of Constraint
Programming CP2005, volume 3709 of LNCS, (pp. 256–270): Springer.

18. Gent, I.P., & Smith. B.M. (2000). In Proceedings of the European Conference on Artificial Intelligence
ECAI2000, IOS Press, 599–603.

19. Getoor, L., Ottosson, G., Fromherz, M.P.J., Carlson, B. (1997). Effective redundant constraints for online
scheduling. Proceedings of the 14th National Conference on Artificial Intelligence and 9th Innovative
Applications of Artificial Intelligence Conference, (pp. 302–307).

20. Heller, D., Panda, A., Sellmann, M., Yip, J. (2008). Model restarts for structural symmetry breaking. Pro-
ceedings of the 14th International Conference on Principles and Practice of Constraint Programming,
(pp. 539–544): Springer.

21. Hoffman, K.L., & Padberg, M. (1991). Improving LP-representations of zero-one linear programs for
branch-and-cut. INFORMS Journal on Computing, 3(2), 121–134.

22. Toshihide, I. (1977). The power of dominance relations in branch-and-bound algorithms. Journal of the
ACM, 24(2), 264–279.

23. Kalagnanam, J., Dawande, M., Trumbo, M., Lee. H.S. (1998). Inventory matching problems in the steel
industry. Technical report, IBM Research Report, T.J. Watson Research Center, 1998 RC, (p. 21171).

24. Richard, E. (2004). Korf. Optimal rectangle packing: New results. Proceedings of the Fourteenth
International Conference on Automated Planning and Scheduling (ICAPS 2004), (pp. 142–149).

25. Roland M. (2005). The challenge of exploiting weak symmetries. Proceedings of the International Work-
shop on Constraint Solving and Constraint Logic Programming, volume 3978 of LNCS, (pp. 149–163):
Springer.

26. Mears, C., & Garcia, M. (2009). de la Banda, and Mark Wallace. On implementing symmetry detection.
Constraints, 14(4), 443–477.

27. Miller, H.E., Pierskalla, W.P., Rath, G.J. (1976). Nurse scheduling using mathematical programming.
Operations Research, 857–870.

28. Monette, J.N., Schaus, P., Zampelli, S., Deville, Y., Dupont, P. (2007). A CP Approach to the Bal-
anced Academic Curriculum Problem. Seventh International Workshop on Symmetry and Constraint
Satisfaction Problems, volume 7. http://www.info.ucl.ac.be/yde/Papers/SymCon2007 bacp.pdf.

29. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., MiniZinc, G.T. (2007). Towards
a Standard CP Modelling Language. Proceedings of the 13th International Conference on Prin-
ciples and Practice of Constraint Programming CP2007, volume 4741 of LNCS, (pp. 529–543):
Springer.

http://www.info.ucl.ac.be/ yde/Papers/SymCon2007_{b}acp.pdf

182 Constraints (2015) 20:155–182

30. Ohrimenko, O., Stuckey, P.J., Codish, M. (2009). Propagation via lazy clause generation. Constraints,
14(3), 357–391.

31. Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In Mark
Wallace (Ed.) Proceedings of the 10th International Conference on Principles and Practice of Constraint
Programming CP2004, volume 3258 of LNCS, (pp. 482–495): Springer.

32. Prestwich, S., & Beck, J.C. (2004). Exploiting dominance in three symmetric problems Fourth Interna-
tional Workshop on Symmetry and Constraint Satisfaction Problems, (pp. 63–70). http://zeynep.web.cs.
unibo.it/SymCon04/SymCon04.pdf.

33. Proll, L.G., & Smith, B. (1998). Integer linear programming and constraint programming approaches to
a template design problem. INFORMS Journal on Computing, 10(3), 265–275.

34. PSPLib. project scheduling problem library Accessed on 1 March 2012. http://129.187.106.231/psplib.
35. Puget, J.-F. (2005). Automatic detection of variable and value symmetries. Proceedings of the 11th Inter-

national Conference on Principles and Practice of Constraint Programming CP2005, volume 3709 of
LNCS, (pp. 475–489): Springer.

36. Rendl, A. (2010). Effective compilation of constraint models. PhD thesis: St Andrews University. http://
hdl.handle.net/10023/973.

37. Schulte, C., & Stuckey, P.J. (2008). Efficient constraint propagation engines. ACM Transactions on
Programming Languages and Systems, 31(1).

38. Yu, C.F., & Wah, B.W. (1988). Learning dominance relations in combinatorial search problems. IEEE
Transactions Software Engineering, 14(8), 1155–1175.

http://zeynep.web.cs.unibo.it/SymCon04/SymCon04.pdf
http://zeynep.web.cs.unibo.it/SymCon04/SymCon04.pdf
http://129.187.106.231/psplib
http://hdl.handle.net/10023/973
http://hdl.handle.net/10023/973

	Dominance breaking constraints
	Abstract
	Introduction
	Definitions
	Constraint programming
	Dominance

	Identifying and exploiting dominance relations
	Overview of method
	Step 1: Finding appropriate mappings
	Step 2: Finding scond()
	Step 3: Finding ocond()
	Step 4: Posting the dominance breaking constraint

	Generating symmetry and conditional symmetry breaking constraints
	Interaction with search
	Related work
	Experimental results
	The utility of dominance breaking constraints
	Photo Problem.
	Black Hole Problem.
	Knapsack Problem.
	Nurse Scheduling Problem.
	RCPSP.
	Talent Scheduling Problem.
	Steel Mill Problem.
	PC Board Problem.

	Conflict between dominance breaking constraints and search

	Conclusion and future work
	Acknowledgments
	Open Access
	References

