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HARDNESS ANALYSIS OF X-RAY IMAGES FOR NEURAL-NETWORK  
TUBERCULOSIS DIAGNOSIS 

Ya. A. Pchelintsev,1,2  A. V. Khvostikov,1,3  A. S. Krylov,1,4    
L. E. Parolina,5  N. A. Nikoforova,6,7  L. P. Shepeleva,6,8    
E. S. Prokop’ev,6,9  M. Farias,10  and  Ding Yong11 UDC 519.6+004.891.3  

We consider the automatic hardness determination of a chest X-ray image and the effect of pre-filtering 
of the training and validation samples on the performance of the classification algorithm of tuberculosis 
diagnosis from chest X-rays.  Convolutional neural networks are used in automatic hardness determina-
tion and tuberculosis diagnosis.  The results of the present study are compared with those from different 
datasets, including datasets pruned by image hardness criteria.   

Keywords: chest X-ray images, tuberculosis diagnosis, quality control, convolutional neural networks, 
radiograph hardness. 

Introduction 

Analysis and preprocessing of input data is a topical issue for the application of deep learning methods in 
medical diagnosis.  It is necessary to control the correspondence of input information in the trained (training) 
deep learning method.  This, for instance, is required when controlling for the presence of adversarial attacks on 
the input data [1]. 

X-ray hardness is an important factor in radiology and, in particular, tuberculosis diagnosis, as it directly af-
fects the informativeness of the image [2, 3].  Assuming correct contrast of the X-ray image, its hardness can be 
determined visually by counting the number of upper thoracic vertebrae clearly visible on the X-ray: 3–4 visible 
vertebrae is the optimal hardness level, a smaller or greater number indicates that the X-ray is too soft or too 
hard [3, 4].  Examples of X-rays with different hardness levels are shown in Fig. 1.   
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 (a) soft (b) normal (c) hard 

Fig. 1.  Examples of X-ray images of different hardness levels. 

Quality control of chest X-rays based on various parameters is important for a comprehensive analysis of 
the image and formulation of a correct diagnosis.  Automatic determination of the imaging spatial conditions 
(patient’s pose, chest position inside the frame, etc.) is considered in [5, 6, 7].  The effect of image quality on the 
results of automatic COVID-19 diagnosis is considered in [8]. 

In our study, the control of input X-ray images is used to verify that the level of radiation is adequate for re-
liable diagnosis of lung tuberculosis.   

This article is a development of [9], where we have shown that optimization of the chest X-ray diagnosis al-
gorithm designed to work with images of close hardness levels, combined with automatic quality control of the 
X-ray images, ensures better classification accuracy than the algorithm designed to process X-ray images with 
widely differing hardness levels.   

In this article we consider two issues:  

 (1) automatic hardness determination of chest X-ray images by a neural-network algorithm;  

 (2) the effect of pre-filtering of the training and validation samples on the classification accuracy for tu-
berculosis diagnosis from chest X-ray images.   

The Data

To develop and test the X-ray hardness determination algorithm, we used a set of 1,298 X-ray images of  
tuberculosis patients collected in several medical institutions of the Sakha (Yakutiya) Republic.  Examples  
of images from this set are shown in Fig. 2.  The set was tagged by a radiologist: for each image, we have the 
number of clearly visible upper thoracic vertebrae.  The distribution of the images by this factor is shown  
in Fig. 3.  In what follows, this dataset is called SakhaTB. 

The model training stage for tuberculosis diagnosis is preceded by hardness filtering of the images.  There-
fore, similarly to the previous study [9], we maintain training, validation, and testing samples of sufficient size 
for diagnosis by splitting the dataset into two parts, as described below. 

The first part of the dataset includes the open-access datasets Montgomery County and Shenzhen [11, 12], 
which are particularly popular in studies involving X-ray processing of tuberculosis patients  [10].   Both datasets  
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Fig. 2.  Examples of X-ray images from the SakhaTB dataset. 

 

Fig. 3.  The distribution of images in the SakhaTB dataset by the count of clearly visible vertebrae. 

are available from the NIH National Medical Library and have been collected by the U.S. Department of Health 
and Social Services in Montgomery County (Maryland) and by the Guangdong Provincial Medical College in 
People’s Hospital No. 3 in Shenzhen (China), respectively.  The two datasets contain gray-scale chest X-rays 
with 8-bit color depth tagged into two classes: healthy individual (NORMAL) and tubercular patient (TB).  
The image sizes vary and are approximately 3000 × 3000 and 4000 × 4900 pixels.  The number of images in each 
class is presented in Table 1.  Since most studies use these two datasets jointly [10], we have also combined 
them into one dataset (Montgomery-Shenzhen or MC-SZ).  Examples of X-ray images from the combined da-
taset are shown in Fig. 4. 
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(a) healthy patients (class NORMAL) 

(b) tuberculosis patients (class TB) 

Fig. 4.  Examples of images from the Montgomery-Shenzhen (MC-SZ) dataset corresponding to different classes. 

The second part of the dataset used for tuberculosis diagnosis is a subset of TBX11K [13} prepared in Nan-
kai University (Tianjin, China).  TBX11K contains 11,200 gray-scale chest X-rays with 8-bit color depth meas-
uring 512 × 512 pixels.  From this number, 8,400 images are tagged to one of three classes (healthy, tuberculosis 
patients, and patients with other diseases) and show the borders of the diseased lung regions.  Table 1 shows the 
count of tagged images; all were included in the final sample.  Examples of X-ray images are shown in Figure 5. 
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(a) healthy patients (class NORMAL) 

 
(b) tuberculosis patients (class TB) 

Fig. 5.  Examples of X-ray images from the TBX11K dataset corresponding to different classes. 

A Method of Hardness Determination 

The X-ray hardness level is an ordinal quantity, and to preserve the order relations between classes hardness 
determination is treated as ordinal regression (also known as ordinal classification). 
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Fig. 6.  The distribution of SakhaTB images by hardness level. 

Table 1 
Size of Datasets Used in This Study 

Dataset name Number of images  
tagged NORMAL 

Number of images  
tagged TB 

Total number  
of images  

Montgomery 80 58 138 

Shenzhen 326 336 662 

TBX11K 3800 800 4600 

Total 4206 1194 5400 

We see from Fig. 3 that the set of images is substantially unbalanced and for some hardness sublevels very 
few cases are available.  We have accordingly decided to use the number of clearly visible thoracic vertebrae as 
identified by a radiologist in order to divide all X-ray images into three hardness groups based on standard med-
ical criteria: soft (fewer than three vertebrae clearly visible), normal (three to four vertebrae clearly visible), and 
hard (more than four vertebrae) [3, 4].  The count of X-ray images in the three groups is shown in Fig. 6.  These 
three classes were treated as admissible values of the objective variable in ordinal regression. 

A neural network was developed for automatic hardness determination of chest X-rays.  The input chest 
X-ray is preprocessed and then assigned a real number from  [0, 1]  by the neural network; this real number is 
an internal dimensionless hardness indicator which, after comparison with tunable thresholds, is applied to clas-
sify the image in one of the hardness classes.  The thresholds are part of the model and are tuned together with 
the neural network layer weights during training.  The advantage of this approach is that the internal hardness 
indicator can produce a relative ranking of the images even when the current image is substantially different 
from the training sample so that the class separation thresholds may be incorrectly set for such an image.   

Convolutional neural networks of the ResNet family [14], DenseNet [15], and others are widely used in 
medical image processing and, in particular, in disease diagnosis [10]. 

In this study, the smallness of the sample suggested using the compact ResNet-18 network with fewer pa-
rameters and thus less pronounced tendency to overtrain compared with other networks of the same architectures 
or representatives of other architectures mentioned above. 
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We also compared our solution with that produced by a compact network with a newer convolutional neural 
network architecture EfficientNetV2-S [16] which performs better in image classification problems than any of 
the networks mentioned above.  Its main distinction is the optimization of the functioning of convolutional lay-
ers by proportional scaling, change of the order of operations of different dimensions, reduction of convolution 
kernel size, and omission of “heavy” layers, thus reducing memory use and utilizing the free resources to in-
crease neural network depth and generalizing capacity.   

To accelerate training with the aid of ready-made low-level filters in both problems, we used as the initial 
neural network state the weights of the corresponding model obtained by real-world image classification 
ImageNet-1K [17].  The last layer was replaced with a fully-connected layer with one output and two tunable 
threshold parameters in the threshold ordinal regression model [18]. 

Although the final criterion for determining the X-ray hardness level is the number of clearly visible upper 
thoracic vertebrae [3, 4], the determination of the contrast level in the preliminary stage requires considering the 
visibility of other chest regions (for instance, the elements of the lung pattern) and organs [4].  We accordingly 
decided not to restrict the analysis to the chest but to examine the X-ray image as a whole.   

The preprocessing stage includes the following steps: 

 1. Automatic image contrasting: 

 h x( ) = 255*
x − p0.5

p99.5 − p0.5
, 

  where  p0.5 (x)  and  p99.5 (x)  are 0.5% and 99.5% percentiles of the pixel intensities in the image; 

 2. Automatic gamma-transformation of pixel intensities: 

 
g(x) = 255 x

255
⎛
⎝

⎞
⎠

γ
,

γ = logµ0.5,

⎧

⎨
⎪

⎩
⎪

 

  where  x  is the pixel intensity in the input image,  µ  the mean intensity of the entire image. 

 3. Downsizing the image to the input resolution of the neural network (512 × 512 pixels for ResNet-18 
and 384 × 384 pixels for EfficientNetV2-S). 

 4. Optional: global or local (CLAHE [19]) histogram equalization.  The side of the window (in pixels) 

used for local histogram equalization is  1
2n

  of the image side, where  n ∈ ℕ  is the method parame-

ter.  The effect of this step and the window size on the performance of the algorithm will be demon-
strated below. 

As the loss function we took the all-threshold ordinal regression loss function defined as the sum of terms 
whose number depends on the number of classes [18]: 

 

L z, y( ) =
k=1

K−1

∑ f s k, y( ) θk − z( )( ) ,
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−1, k < y,
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where  z  is the neural network output (the nondimensional hardness indicator) with values form [0, 1]  (the clos-
er to 1, the harder the image),  y  is the true class of the image corresponding to this output,  K  is the total num-
ber of classes,  θ1 < θ2 <…< θK−1  are the thresholds partitioning the real axis into  K  parts, and  f (x),  is the 
binary classification loss function used as the base.  For the binary classification loss function we take the lo-
gistic loss function:  

 f (x) = ln 1
1+ e−x . 

The sample remained highly unbalanced even after reducing the number of ordinal-regression classes to 
three.  We accordingly weighted the loss function for each case with weights inversely proportional to the num-
ber of images in the corresponding class.  As the measure of ordinal-regression performance we took the mean 
absolute error balanced by classes (macro-averaged MAE, in what follows mMAE) [20]. 

The base performance estimate was obtained by training a simple model with classification of images into 
three classes.  The last layer was replaced by a fully-connected layer with three outputs.  The loss function was 
defined as the cross-entropy: 

 

 

CE z, y( ) =
k=1

K

∑I y = k[ ]⋅ ln softmax z( )k( ) ,

softmax z( )k = ezk

i=1
K∑ ezi

,

I y = k[ ] =
1, y = k,

0, y ≠ k,
⎧
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⎩
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and the performance measure as the balanced accuracy (in what follows, BalAcc) [21]. 
The models were trained on a dataset divided into a training, a validation, and a testing sample in 64:16:20 

ratio with preliminary random mixing of the images and stratification to preserve the proportions between clas-
ses.  The training sample underwent random transformations: 

 – rotations (within 15 degrees in each direction); 

 – scaling (with a random coefficient from  [0.8, 1.2]); 

 – translations (up to 305 of image size along each axis); 

 – changing brightness and contrast (up to 20% in each direction). 

The loss function was optimized by the gradient descent algorithm AdamW [22] with the parameters  
lr = 5 ⋅10−6 ,  β1 = 0.9 ,  β2 = 0.999 ,  λ = †0.01.  The batch size was 64 images for the ResNet-18 model  
and 16 images for the EfficientNetV2-S model; in both cases, the gradient was accumulated over 8 and 2 itera-
tions respectively (until a “virtual batch” of 128 objects was reached).  At the end of each epoch, the model qual-
ity was measured on a validation sample; if the loss function on the validation sample had not decreased during 
10 epochs, the gradient descent step was reduced by a factor of 5; if there had been no improvement dur-
ing 31 epochs, training was stopped.   Overtraining was controlled by measuring the loss function and the quality  
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(a) ResNet-18 (b) EfficientNetV2-S

Fig. 7.  Plots of the loss function vs. number of epochs on a validation sample for hardness level determination. 

Table 2 
Quality Measures of the Algorithms Used for Hardness Determination  

on a Training Sample from SakhaTB 

Model Histogram equalization BalAcc mMAE 

clf – 0.563 0.452 

ord-eff – 0.623 0.399 

ord – 0.609 0.452 

ord-glob global 0.609 0.452 

ord-clahe2 1/2 of image side 0.636 0.398 

ord-clahe4 1/4 of image side 0.610 0.449 

ord-clahe8 1/8 of image side 0.593 0.468 

ord-clahe16 1/16 of image side 0.600 0.468 

measure, but no significant improvement of model performance on the validation sample was observed over 
time (see Fig. 7; note the slight increase of the model loss function with EfficientNetV2-S, which indicates over-
training), therefore as the final state we took the weights at the end of the last epoch. 

The final values of the quality measures obtained on a test samples are presented in Table 2.  The models 
for the solution of ordinal regression models contain “ord” in their names; the model for the classification prob-
lem is denoted “clf.”  The model “ord-eff” is based on EfficientNetV2-S, all other models are based on ResNet-18.  
The column “Histogram equalization” is blank if not applied, “global” in case of global equalization, or shows 
the size of the local equalization window as a fraction of the full image size. 
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 (a) clf (simple classification) (b) ord-clahe2 (ordinal regression) 

Fig. 8.  Model predictions versus the true class for an object from SakhaTB. 

By balanced accuracy and balanced MAE, the best model was the ordinal regression model with local his-
togram equalization in the preprocessing stage with a window side measuring  1/2  of the image side.  In what 
follows, we denote this as “ord-clahe2”.  Further image analysis is carried out using this model. 

Figure 8 plots the probabilities of the classes Hard and Soft predicted by the clf model for the simple classi-
fication problem, and also the dimensionless hardness indicator predicted by the ord-clahe2 model for ordinal 
regression, versus the true hardness value for test-sample objects.  The separation of the classes is far from ideal.   

Image misclassification was found to have been caused by noise in the dataset due to ambiguity and loose 
definition of the tagging criteria.  This conjecture was also confirmed by the closeness of the training sample 
evaluation metric to the test sample evaluation metric: balanced accuracy of about 0.70 and 0.67 for clf and ord-
clahe2 models respectively.   

Analysis of X-ray hardness determination as an ordinal regression in the given model produces, with a cer-
tain accuracy, a ranking of the images by hardness based on neural network internal hardness indicator.  As a 
ranking quality measure, we took the Spearman rank correlation coefficient [23] as it is sensitive also to nonlin-
ear correlation.  Observations were made for the number of clearly visible vertebrae as reported by the radiolo-
gist and the hardness classes.  The values of the quality metric are presented in Table 3.  Figure 9 shows the dis-
tribution of the images from the training sample and from the TBX11K and Montgomery-Shenzhen datasets by 
the dimensionless hardness indicator predictor of the ord-clahe2 model.  Caution should be exercised regarding 
the separation of images from TBX11K and Montgomery-Shenzhen into hardness classes: the true class thresh-
olds may substantially differ from the network-produced thresholds because the images used may visually di-
verge from the training images.   

We evaluated the performance of the ord-clahe2 model on the MC-SZ dataset.  For this purpose, MC-SZ 
was tagged similarly to SakhatTB: for each image, we counted the clearly visible upper thoracic vertebrae.  Ta-
ble 4 compares the results produced by the algorithm on MC-SZ and on a SakhaTB test sample.  Separate histo-
grams for the classes NORMAL and TB from MC-SZ and TBX11K are shown in Fig. 10.  The slight differences 
in the class histograms match the visual differences between the images of these classes: in both datasets there 
are more soft images in TB and more hard images in NORMAL (see Figs. 4 and 5). 
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Fig. 9.  Distribution of the ord-clahe2 predicted hardness value for images from the three datasets. 

Table 3 
Ranking Quality Metrics for the SakhaTB Test Sample with Different  

Hardness Determination Algorithms 

Model Spearman (vertebrae) Spearman (hardness) 

ord-eff 0.564 0.457 

ord 0.576 0.497 

ord-glob 0.599 0.514 

ord-clahe2 0.606 0.534 

ord-clahe4 0.602 0.519 

ord-clahe8 0.588 0.498 

ord-clahe16 0.596 0.507 

Hardness-Based Neural-Network Tuberculosis Diagnosis 

Using the predicted hardness values from the previous stage we removed from the datasets an equal propor-
tion of the hardest and the softest images (i.e., pruning both tails of the distribution).  Then the quality of the 
model trained on the pruned test sample was measured and compared with the quality, on the same test sample, 
of the model tuned to the unpruned training sample. 

Given the visual differences of all three datasets and the small size of the MC-SZ sample, we decided  
to prune each of the two datasets separately rather than the pooled dataset; in this way, changes of their propor-
tions in the final sample would not affect the quality.  This “cautious” approach is associated with the need to 
perform correct image contrasting before hardness determination, but this issue falls outside the scope of the 
present article. 

In addition to sample pruning from both tails of the hardness level histogram, we considered the case with 
the omission of only the hardest images, because soft images may preserve some details of lung tissue which are 
completely lost in hard images. 
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(a) Montgomery-Shenzhen 

 
(b) TBX11K 

Fig. 10. Distribution of the ord-clahe2 predicted hardness value for images of each class in the two datasets used for tuberculosis diag-
nosis. 

Table 4 
Comparison of the Quality of the ord-clahe2 Model on the SakhaTB and MC-SZ Datasets 

Dataset BalAcc mMAE Spearman (vertebrae) Spearman (hardness) 

SakhaTB 0.636 0.398 0.606 0.534 

MC-SZ 0.546 0.565 0.325 0.203 

The tuberculosis diagnosis algorithms may be described as follows: a chest X-ray is delivered to the input 
for preprocessing; then the neural network assigns two real numbers from  [0, 1]  to this image (these numbers 
are the weights of the classes NORMAL and TB).  The sum of weights of each image equals 1.  The class with 
the higher weight is accepted as the algorithm output.  The neural-network layer weights are adjusted during 
training. 

For neural networks we used EfficientNetV2-S and ResNet-18 with the last layer replaced with a fully-
connected two-output layer.  The procedures for the division of the dataset into subsamples and model training 
with weighted classes for balancing, as well as the initial weights and the preprocessing stages were all similar 
to those in the preceding section; only histogram equalization was omitted.  Cross-entropy was used as the loss 
function and balanced accuracy as the quality metric. 
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Table 5 
Comparison of the Classification Quality of Models on Full  

and Pruned Datasets (Balanced Accuracy) 

 Removal of hard and soft images Removal of hard images only 

Share removed  5% 10% 15% 5% 10% 15% 

Before 0.958 0.951 0.951 0.962 0.961 0.965 

After 0.961 0.962 0.953 0.968 0.966 0.975 

Table 6 
Comparison of the Classification Quality of Models Trained on Complete  

and Pruned Datasets (Sensitivity/Specificity) 

 Removal of hard and soft images Removal of hard images only 

Share removed 5% 10% 15% 5% 10% 15% 

Before 0.923/0.994 0.909/0.994 0.908/0.995 0.930/0.994 0.927/0.995 0.934/0.996 

After 0.933/0.990 0.933/0.991 0.915/0.990 0.943/0.994 0.941/0.992 0.958/0.993 

The model with EfficientNetV2-S produced better classification before pruning and it was used in all com-
parisons.  This is probably due to the significantly greater size and quality of the sample.  The results are pre-
sented in Table 5.  We see that the change in quality depends on the extent of image pruning but remains always 
positive.  Comparison of sensitivity and specificity indicators for the class TB is shown in Table 6. 

CONCLUSION 

We have demonstrated the possible use of neutral networks for hardness level determination of chest X-rays.  
Although high quality measures could not be attained due to the complexity of the problem, the results are  
significantly better than random choice: balanced accuracy 0.636, Spearman correlation coefficients 0.606  
and 0.534.  However, the performance of the proposed algorithm noticeably deteriorates when applied to data 
from other sources: for MC-SZ the balanced accuracy fell from 0.636 to 0.546, and the ranking quality dropped 
approximately to one-half.  To preserve the algorithm performance on images different from the training sample, 
we have to apply various procedures, such as training sample enlargement, image contrasting with reduction to 
a single standard, solution of the cross-dataset generalization problem so important in medicine [24].  Applica-
tion of more rigorous image tagging criteria will probably improve the stability of the method, and the use of 
contrastive loss and triplet loss as additional loss functions will improve the quality of image ordering relative to 
one another.   

However, even our imperfect model of hardness determination improves the performance of the tuberculo-
sis diagnosis algorithm if the images undergo preliminary filtering before classifier training and generation  
of predictions.  Smaller hardness variability and better data homogeneity substantially improves the detection 
accuracy of tuberculosis patients ta a cost of a small reduction in specificity: the greatest absolute and relative 
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sensitivity gain for the class TB was observed with removal of 10% of the hardest and 10% of the softest images 
(from 0.909 to 0.933) and with removal of 15% of the hardest images (from 0.934 to 0.958).  In the second in-
stance, we even attained the highest sensitivity (0.958). 

Research supported by grants from the Russian Foundation for Basic Research (RFFI 19-5780014) and 
BRICS (BRICS2019-394). 
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