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Abstract
In this work, various high-accuracy numerical schemes for transport problems in fractured media are further developed
and compared. Specifically, to capture sharp gradients and abrupt changes in time, schemes with low order of accuracy
are not always sufficient. To this end, discontinuous Galerkin up to order two, Streamline Upwind Petrov-Galerkin, and
finite differences, are formulated. The resulting schemes are solved with sparse direct numerical solvers. Moreover, time
discontinuous Galerkin methods of order one and two are solved monolithically and in a decoupled fashion, respectively,
employing finite elements in space on locally refined meshes. Our algorithmic developments are substantiated with one
regular fracture network and several further configurations in fractured media with large parameter contrasts on small length
scales. Therein, the evaluation of the numerical schemes and implementations focuses on three key aspects, namely accuracy,
monotonicity, and computational costs.

Keywords Transport problems · Fractured media · Discontinuous Galerkin · Continuous Galerkin · Finite differences ·
Space-time

1 Introduction

Numerical modeling of flow and scalar transport, such as the
transport of dissolved substances or heat, in fractured media,
is challenging. One of the major challenges is the contrast
of length scales between a large domain and small fractures
embedded. While in some cases the fast time scale, deter-
mined by the backbone of the fracture network, is the only
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relevant one, a larger range of time scales matters in many
applications, for example, related to contaminant transport
[1–5]. This is enforced by the large storage capacity in the
matrix compared to the fracture space. In such cases, high-
quality solutions are needed.

The great contrast of hydraulic parameters between the
highly permeable fractures and the surrounding less perme-
able matrix also causes challenges [6]. The velocity field
in a complex fracture network is highly heterogeneous and
reveals preferential flow paths. As a consequence, the corre-
sponding transport process is prone to very sharp gradients
at the interface of fractures and the matrix material. Abrupt
changes can also occur in time, for example in case of chang-
ing inflow over boundaries [5]. Therefore, both the space
and time discretization are required to be robust. A particu-
lar problem in the case of strong advective transport, which
may occur only locally, is spurious oscillations of the numer-
ical solutions, or so-called over- and undershoots. Although
thesemay remain limited, they are nonphysical and can cause
large problems, for example, if chemical reactions should be
considered or for inverse modeling.

Space discretization methods for numerical models for
transport in fractured media can be broadly categorized into
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two groups: hybrid-dimensional models [7] and continuum
models [8]. In the former approach, fractures are explicitly
represented in one dimension lower than the surrounding
matrix. Continuum models present both fractures and the
surrounding matrix in the same dimension. Especially when
the separation of fractures and the surrounding matrix is not
so clear and separate treatment of interfacial fluxes should be
avoided, also a full dimensional representation of the frac-
ture domain can be beneficial (for example [9]). However,
if meshes are too coarse, detailed information on a fracture
network, such as connections, can be lost. How to properly
refine the mesh and meanwhile maintain the major topology
of the underlying fracture network is a non-trivial task for
continuum models [10].

The finite volume method (FVM) has gained consider-
able popularity for space discretization of transport problems
because of its local conservation property and ease of imple-
menting numerical fluxes as well as limiters that avoid
non-monotonic behavior of the solutions. However, it is
not straightforward to construct high-order FV schemes
[11]. The finite element method (FEM) allows for accurate
solution approximation either by increasing the polynomial
degree or refining themesh, namely the hp refinement [12]. It
is well-known that the standard version of the FEMcalled the
continuous Galerkin (CG) method can easily produce insta-
bilities and spurious oscillations for advection-dominated
problems [13].

To deal with instabilities and artificial oscillations, facili-
tating upwinding or stabilized FEMs in continuous Galerkin
schemes can be used, such as the Streamline Upwind Petrov-
Galerkin (SUPG)method [13], Galerkin least-squares (GLS)
[14], finite incremental calculus (FIC) [15] andflux-corrected
transportmethods (FCT) [16]. Themain idea behindSUPG is
adding artificial diffusion in the streamline direction. A rigor-
ous analysis of SUPG is presented in [17, 18]. A great amount
of SUPG applications can be found in advection-diffusion
problems [19, 20] and Navier-Stokes problems [21, 22]. The
main issue of SUPG is choosing the stabilization parameter. It
should be large enough to ensure the monotonic solution and
meanwhile small enough to not introduce excessive artificial
diffusion. An optimal choice is usually unknown in prac-
tice. SUPG has been used for modeling transport in fractured
media. For example, in the study of [23], spurious oscillations
were found whenmodeling transport in fractured media with
standard FEMs. The solutions showed monotonicity conser-
vation when the SUPG method was used.

Another alternative is the Discontinuous Galerkin (DG)
method [24, 25], which can be considered as the combi-
nation of FVM and FEM. It maintains the element-wise
conservative property and offers great flexibility in defin-
ing interelementary numerical fluxes. Furthermore, inherited
from the hp-FEM [12, 26], the DG method can also permit
very accurate approximating solutions. Due to the flexibility

of handling interelementary fluxes and upwinding schemes,
which are often beneficial for stability, schemes can be set up
in a straightforward manner. To date, a number of DG meth-
ods have been developed. The primal approaches, e.g. the
upwind DG method and the interior penalty (IP) methods,
explicitly define internal numerical fluxes by the unknown
quantities. One does not need to introduce newvariables, thus
the approach is easy to implement. However, the resulting
system matrix is relatively dense because the DoFs of neigh-
bor elements also contribute to the system matrix, causing
challenges for the linear system solver. In more recent vari-
ants of DG methods, e.g. the local DG method [27] and the
hybridizable DG method [28], auxiliary variables indicating
numerical fluxes are introduced in the variational formula-
tion. These approaches can alleviate the dense systemmatrix,
but additional DoFs are introduced. Altogether, compared
to the conventional Galerkin approach, the family of DG
methods is computationally more costly because of the large
number of DoFs and a denser system matrix. DG methods
for space discretization have been studied formodeling trans-
port in highly heterogeneous media or fracture media with
full dimensional resolution of fractures, for example in [9]
for purely advective transport.

In the work of [29], DG has also been used for space
discretization of fractures in a fractured medium, where the
lumped mixed finite element method with an upwind FVM
was used for discretizing the matrix domain. High-order
adaptive time integration techniques using the method of
lines were applied. In their validation simulations, spurious
oscillations were mostly generated when using a standard FE
method for the discretization in the matrix domain, but were
not generated in the fractures. Improved solutions in terms of
numerical dissipation could be demonstrated when compar-
ing DG to standard finite volume schemes for the transport
in the fractures. In the study of [30], slope limiters were
implemented to diminish spurious oscillations when solv-
ing transport problems in fractured media using the enriched
Galerkin method and the interior penalty method, which was
developed in the paper, with the third-order strong stability
Runge-Kutta method for time discretization.

Concerning the time discretization approach, the low-
order implicit Euler method produces monotonic solutions,
but is prone to significant numerical dissipation [31]. The
Crank-Nicolson (CN) method, recognized for its second-
order accuracy and unconditional stability, is widely used
in diffusion problems. However, when applied to advection-
diffusion problems, it may exhibit non-monotonic behavior
unless the time step is appropriately refined. This implies
a constraint on the time step size, dictated by both the ele-
ment size and the velocity field. This constraint can pose
challenges in scenarios involving focused channels with high
flow velocities or when an extremely fine mesh is necessary
to resolve the fracture zone. Explicit schemes, such as explicit
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Runge-Kutta methods, can yield highly accurate solutions,
but are subject to the Courant-Friedrich-Levy (CFL) con-
dition. Consequently, for transport problems in fractured
media, an accurate monotonic-preserving time discretization
method is often preferable. The timeDiscontinuous Galerkin
(TDG) method offers such an alternative [32–35]. Similar
to the DG method in space, the TDG method allows for
easy adjustment of the polynomial degree while incorporat-
ing numerical fluxes into two adjacent temporal subintervals,
enhancing the stability of the temporal scheme.

Most space-time approaches to date are based on the
Cartesian product of the spatial and the temporal subdomains,
e.g. see [36, 37]. Thus thismethod is also knownas the tensor-
product TDG method [38, 39]. Several applications can be
found in [40–45]. The TDG method is also computationally
demanding compared to finite difference methods (FDM).
The extra costs of TDG can partly be compensated by using
coarser discretizationor a suitable solver strategy, e.g. afixed-
point iteration method used in this work (see Appendix B).

There are also a few works jointly using the DG method
both in space and time. In the work of [46], detailed proofs of
stability and error estimates, for solving advection-diffusion
equations, are given. In the work of [47], the etching pro-
cess of a slit is simulated by using this space-time scheme.
Space-time DG method for flow and transport simulations
in porous media was tested by [48]. They also considered
heterogeneous permeability distributions, however, not frac-
tured media. Therefore, the size of the grid cells did not
vary too much. Different interior penalty methods and mesh
densities are compared qualitatively. All IP schemes pro-
duce similar solutions, with local over- and undershoots near
the steep concentration fronts detected. However, the overall
solution is stable.

Overall, numerical solutions of advection-dominated trans-
port in fractures often suffer from stability issues, prompting
the focus on stability-preserving numerical schemes both in
space and time. For space discretization, DG has in many
studies been found to be of advantage for capturing mov-
ing sharp fronts. However, the method is computationally
costly. StabilizedCGmethods such as SUPG,which aremore
common and already implemented in many codes are less
costly. Bothmethods allow for upwinding, but howmuch this
improves spurious oscillations is unclear. For time discretiza-
tion, also the TDG method is advantageous for stability, but
they are computationally more costly than more common
finite difference time integration schemes. They should be
beneficial for spurious oscillations compared to higher-order
explicit schemes. So far no systematical comparison of these
methods has been done for transport problems in complex
fracture networks.

In the current work, we apply the full space-time FE for-
mulation for solving transport problems in fractured media.
The goal is to compare DG methods for space and/or time

discretization to advanced CG methods that are more often
implemented in existing software.

With this comparison, we want to answer the following
questions:

• For which conditions are DG methods for space dis-
cretization beneficial compared to more common stabi-
lized CG discretization schemes to model transport in
fractured media?

• For which conditions are TDG methods for time inte-
gration beneficial to model transport in fractured media
when compared to standard time integration schemes?

• What are the computational costs for schemes that pro-
duce more accurate solutions?

The criteria for comparison are accuracy, monotonicity (spu-
rious oscillations), and computational costs.

For space discretization, we consider the symmetric inte-
rior penalty Galerkin (SIPG) version of DG methods, where
the upwind advective flux and the average diffusive flux are
imposed on interelementary interfaces. The TDG method is
used for the time discretization. By properly choosing jump
terms at temporal interelementary interfaces, the transient
problem is solved in a sequential manner, as usual time-
stepping methods do (e.g. the Backward Euler (BE) method
and theCrank-Nicolsonmethod). For efficiency, afixed-point
iteration method is proposed in this work, which can greatly
reduce the computation times for TDG schemes with the
polynomial degree ≥ 1. It should be noted that we compare
these schemes, but do not consider different DG schemes.

The paper is organized as follows. Section 2 briefly intro-
duces the scalar transport process which is coupled with
the flow process via flow velocities and a mass balance for
the fluid. In Section 3 the variational formulations of DG,
TDG, and SUPG are performed. Section 4 demonstrates the
workflow of numerical algorithms implemented in this work.
Section 5 presents the convergence study for the validation
purpose. Three numerical examples in fractured media are
shown in Section 6. The last two sections provide discussion
and conclusions of the results.

2 Problem statement

The steady-state groundwater flow equation for confined
aquifers in the mixed formulation [49–51] reads

q + K∇h = 0,

− ∇ · q = Q, (1)

where h ∈ R is the hydraulic pressure head. K ∈ R
dim×dim
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is the hydraulic conductivity coefficient, which is a second-
order tensor with dim components, where dim is the spatial
dimension. K is often highly heterogeneous and sometimes
anisotropic in practice [52, 53]. In fractured media, the value
of K in fractures is often orders of magnitude greater than
that in the surroundingmatrix. q is theDarcy flux and Q is the
source or sink term such as pumping and injecting wells. The
flow velocity a ∈ R

dim then equals the Darcy flux divided
by the porosity φ:

a = q
φ

. (2)

A general transient scalar transport equation takes the
form

∂u

∂t
+ ∇ · (au) − ∇ · (D∇u) = f ∀{x, t} ∈ � × I , (3)

where I := [t0, t0 + T ] is the time interval with the end time
T > 0. Equation 3 is subject to the boundary and initial
conditions

u = gD, x ∈ �D, (3a)

n · D∇u = gN , x ∈ �N , (3b)

u = u0, t = t0. (3c)

Here, u (x, t) ∈ R is the scalar unknown variable, which
can be for example concentration or temperature. a ∈ R

dim is
the advection coefficient namely the flow velocity defined in
Eq. 2. D ∈ R

dim×dim refers to the diffusion (or heat conduc-
tivity) coefficient. f ∈ R denotes the source or sink term.�D

and �N represent the Dirichlet boundary and the Neumann
boundary, where n is the unit normal vector exterior to the
boundary, gD and gN are the boundary values respectively
defined on �D and �N . u0 denotes the initial condition in
the initial time step t0. Moreover, we assume that the domain
boundary ∂� is subdivided into two disjoint sets�D and�N :
∂� = �D ∪ �N , �D ∩ �N = ∅.

3 Numerical methods

In this section, we introduce both DG and SUPG discretiza-
tion methods in space and the TDG method. The methods
are taken from the literatures as described in Section 1 and
are here outlined for completeness.

3.1 Semi-discretization in space with DG

3.1.1 Partitions and finite element space

Let Th = {K } be the mesh of the spatial domain �, where
K ∈ Th is a single element. We define the boundaries of the

single element K by ∂K and there are three possible locations
of ∂K :

1. on an outer boundary where the Dirichlet boundary is
defined

2. on an outer boundary where the Neumann boundary is
defined

3. on an interelementary interface shared with another ele-
ment.

We indicate the three cases above by ∂KD , ∂KN and ∂Kint

respectively. Additionally, we introduce the superscripts +
and − that denote two adjacent elements K+ and K− that
share an interelementary interface. The set consisting of all
interelementary interfaces is then defined as:

�int = {
∂K+

int ∩ ∂K−
int : ∀K+, K− ∈ Th

}
. (4)

We define two operators that act on an interelementary
interface F :

1. Jump operator: [[u]] = u+ − u−
2. Mean operator: {{u}} = u++u−

2 ,

in which u+ and u− are two functions respectively defined
on the two sides of F , namely F+ and F− shown in Fig. 1.

Let Qps (K ) be the space of tensor-product polynomials
of degree ps ∈ N0 defined on a finite element K , the finite
element space of the spatial part is defined as:

Dps (Th) : = {v ∈ L2(�) |
v |K∈ Qps (K ) for K ∈ Th}

= {ϕ1, · · · , ϕns }, dim(Dps (Th)) = ns, (5)

where ns is the degree of freedom (DoF) in space. The cor-
responding shape functions {ϕ1, · · · , ϕns } are constructed
from Qps (K ), which are obtained from Q̂ ps (K̂ )dim transfor-
mations of polynomials in Q̂ ps (K̂ ), so-called isoparametric
finite elements, and where

Q̂ ps (K̂ ) = span
{ dim∏

j=1

x
α j
j | α j ∈ N0, α j ≤ ps

}
. (6)

We also refer to [37] for more details.
For theDGdiscretization, there are neither continuity con-

straints between two adjacent elements nor strong constraints
on the Dirichlet boundary. We denote the discrete space for
the DG discretization by DDG

ps . Obviously, the space DDG
ps

is piecewise discontinuous. Throughout this work, we use a
uniform degree of polynomials for all elements and intro-
duce the notation DG(ps) which indicates the DG method
with polynomials of degree ps in space.
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We make the solution ansatz in space

uh (x, t) =
ns∑

j=1

ϕ j (x) c j (t) , (7)

where ns is the DoF in space and c j (t) is the time-dependent
unknown coefficient at the spatial node j . The shape func-
tion ϕ j (x) is only defined on an element K , to which the
nodal index j belongs. A nodal index j does only belong to
one element. An example of index numbering of two adja-
cent elements is shown in Fig. 1. For every fixed time t , the
solution approximationuh (x, t) is a piecewise discontinuous
function defined on DDG

ps (Th).
We then apply the standard Galerkin approach for the

spatial test function vh (x), which is also discontinuous
and defined as a set of shape functions: vh = {ϕi } for
i = 1, 2, . . . , ns .

3.1.2 Variational formulation

Incorporating the solution approximation uh , multiplying the
governing (3) by the spatial test function vh (x) and integrat-
ing over the domain and integrating by parts yields:

(
vh,

∂uh
∂t

)

Th
− (∇vh, auh)Th +

(∇vh, D∇uh)Th +
∑

K∈Th

∑

F∈∂K

{
〈vh, n · auh〉F −

〈vh, n · D∇uh〉F
}

= (vh, f )Th , (8)

where (·, ·)Th = ∫
Th · · dx and 〈·, ·〉F = ∫

F · · dx denotes
face integral on element boundaries.

Assembling the volume terms (·, ·)Th is done in a standard
manner andwill here not be outlined further. It isworth stress-
ing that by assembling volume terms (·, ·)Th yields a block
diagonal matrix. The most essential part of the DGmethod is
how to treat the face terms 〈·, ·〉F . As the next steps, the use of
an upwinding method for the advection term and the interior
penalty Galerkin (IPG) methods for the diffusion term will
be outlined separately.

3.1.3 Advection term

By using the classical upwind method to obtain stable solu-
tions, the consistent formulation of the face integral of the
advection part reads:

∑

K∈Th

∑

F∈∂K

〈vh, n · auh〉F

=
∑

K∈Th

{ ∑

F∈∂KN

〈vh, n · auh〉F +
∑

F∈∂KDout

〈vh, n · auh〉F +

∑

F∈∂KDin

〈vh, n · agD〉F
}
+

∑

F∈�int

〈[[vh]], nup · auuph
〉
F , (9)

where for the element boundary ∂KD it is distinguished
between the inflow part and the outflow part:

∂KD =
{

∂KDout , if n · a > 0

∂KDin , if n · a < 0
. (10)

Fig. 1 Two adjacent DG
elements sharing the interior
interface F . Element K− is
numbered by node indices
1,2,3,4 and element K+ is
numbered by node indices
5,6,7,8. Face F− is numbered
by node indices 2,3 and face F+
is numbered by node indices 5,8
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And the upwind value on an interelementary interface is
taken to be:

nup · auuph =
{
n+ · au+

h , if n+ · a > 0

n− · au−
h , if n− · a > 0

. (11)

The definition of the unit normal vectors n+ and n− is
illustrated in Fig. 1. Themain idea behind the upwindmethod
is that the cross-over advective flux is approximated by the
flux from the upstream.

3.1.4 Diffusion term

The diffusion terms are treated with the IPG method. This
leads to the formulation:

∑

K∈Th

∑

F∈∂K

〈vh, n · D∇uh〉F

=
∑

K∈Th

{ ∑

F∈∂KN

〈vh, gN 〉F+
∑

F∈∂KD

〈vh, n · D∇uh〉F−
∑

F∈∂KD

〈n · D∇vh, ε (uh − gD)〉F−

∑

F∈∂KD

〈vh, σ | D | (uh − gD)〉F
}
+

∑

F∈�int

〈[[vh]], {{n · D∇uh}}〉F−
∑

F∈�int

〈{{n · D∇vh}}, ε[[uh]]〉F−
∑

F∈�int

〈[[vh]], σ | D | [[uh]]〉F . (12)

The terms containing the part (uh − gD) indicate the
penalizing treatment of the Dirichlet boundary. Similarly,
the jump term [[uh]] means that the continuity condition of
interelementary interfaces is weakly imposed by penalizing.
The part {{n ·D∇uh}}means that the diffusive cross-over flux
is approximated by the average flux of two adjacent elements
and ensures the formulation is consistent. The terms multi-
plied by the parameters ε and σ are the (non-)symmetrizing
terms and penalty terms respectively. Since we only consider
isotropic diffusive cases in this work, | D | refers to the L1

norm of scalar diffusion coefficients. Choosing different val-
ues of ε and σ we get the four variants of the IPG methods:

1. Symmetric IPG (SIPG): ε = −1 and σ > 0
2. Non-symmetric IPG (NIPG): ε = 1 and σ > 0
3. Incomplete IPG (IIPG): ε = 0 and σ > 0

4. Oden, Babuška and Baumann scheme (OBB): ε = 1 and
σ = 0.

The penalty parameter σ has a dependency on the local ele-
ment size hK and can be defined as σ = α/hK . The constant
α is a problem-specific parameter [24, 25, 54]. Throughout
this work, we use the SIPG method, and the constant α is set
to be max{1, ps(ps + 1)}.

3.2 Semi-discretization in space with SUPG

3.2.1 Finite element space

We first outline the FE subspace (5) for the conventional
CG method, denoted by DCG

ps . The space DCG
ps is piecewise

continuous because the continuity condition is enforced on
interelementary interfaces. The solution ansatz retains the
same form as Eq. 7. However, the shape functions ϕ j (x) are
piecewise continuous and defined in the whole domain.

In the case of the SUPG discretization [13, 18], the mod-
ified test function reads

vSU PG
h = vh + τ a · ∇vh, (13)

where the primal test function vh is defined in DCG
ps above.

The stabilization parameter τ proposed in [13] is locally
defined on the element K as

τ = hK
2 | a |ζ (PeK ) , (14)

where hK is the element size and ζ (PeK ) is a function of
the grid Peclet number:

ζ (PeK ) = coth (PeK ) − 1

PeK
, (15)

PeK = | a | hK
2 | D | . (16)

3.2.2 Variational formulation

Multiplying the governing (3) by the SUPG test function
(13) and integrating over the domain results in the variational
formulation:

(
vh + τ a · ∇vh,

∂uh
∂t

)

Th
+

(vh + τ a · ∇vh,∇ · (auh))Th −
(vh + τ a · ∇vh,∇ · (D∇uh))Th

= (vh + τ a · ∇vh, f )Th . (17)
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By integrating by parts we obtain the final variational formu-
lation:

(
vh + τ a · ∇vh,

∂uh
∂t

)

Th
+

(vh + τ a · ∇vh,∇ · auh)Th +
(∇vh, D∇uh)Th − (τ a · ∇vh,∇ · D∇uh)Th

= (vh + τ a · ∇vh, f )Th +
∑

K∈Th

∑

F∈∂KN

〈vh, gN 〉F . (18)

The Neumann boundary condition is implemented as a
right-hand-side term in Eq. 18. The Dirichlet boundary is
treated as an essential boundary condition. In the following,
we use SUPG(ps) to denote the SUPG scheme with polyno-
mials of degree ps .

3.3 Time discretization

3.3.1 ODE systemwith time derivative

By implementing the solution ansatz and the test function
either with DG (Section 3.1.1) or SUPG (Section 3.2.1)
into the corresponding variational formulation, the original
governing equation is transformed into nths order system of
ODEs. Each row has the following statement:

M i j

ns∑

j=1

ċ j (t) + Ai j

ns∑

j=1

c j (t) = Bi , (19)

where i = 1, 2, · · · , ns . The matrix M denotes the mass
matrix, A is the system matrix which results from the space
discretization of advection and diffusion terms, and B is the
right-hand-side term.

The tensor-product TDG method for treating the time
derivative in Eq. 19 will be presented as follows.

3.3.2 Partitions and finite element space

Let Ih = {Im} be the decomposition of the time interval I ,
where Im ∈ Ih is a single 1D temporal element and spans
the subinterval

[
tm−1, tm

]
. Let Ppt (Im) ∈ R be the space

of polynomials of degree pt ∈ N0 defined on a temporal
element Im . The finite element space of the temporal part is
then defined as:

Vpt (Ih) : = {
v ∈ L2(I ) |
v |Im∈ Ppt (Im) for Im ∈ Ih

}

= {ψ1, · · · , ψnt }, dim(Vpt (Ih)) = nt , (20)

where nt is the DoF in time. The corresponding tempo-
ral shape functions are denoted by ψ1, · · · , ψnt , which are

obtained from

P̂pt (
ˆIm) = span

{
tα j | α j ∈ N0, α j ≤ pt

}
. (21)

Similarly, there is no continuity constraint between two
adjacent elements in the TDG method. We let TDG(pt )
denote the TDG method with polynomials of degree pt in
time.

The solution ansatz (7) can then be extended to the space-
time version:

uh (x, t) =
ns∑

j=1

ϕ j (x) c j (t)

=
ns∑

j=1

ϕ j (x)

( nt∑

l=1

ψl (t) ξ jl

)

, (22)

with

c j (t) =
nt∑

l=1

ψl (t) ξ jl . (23)

Here,ψl (t) is the temporal shape function at the temporal
node l and ξ jl is the scalar coefficient at the spatial node j
and the temporal node l.

3.3.3 Variational formulation with jump terms

Multiplying (19) by the temporal test function ψk (t), incor-
porating the solution ansatz Eq. 23 and integrating over the
temporal domain yields the variational formulation in space-
time:

∫

Ih
ψk

(
M i j ψ̇l (t) + Ai jψl (t)

) ns∑

j=1

nt∑

l=1

ξ jldt

=
∫

Ih
ψkBi dt, (24)

where k = 1, 2, · · · , nt , i = 1, 2, · · · , ns . By sorting all the
space-time nodes, the scalar coefficients can be written in
vector form:

ξ =

⎡

⎢⎢⎢⎢
⎣

ξ1

· · ·
ξ l

· · ·
ξnt

⎤

⎥⎥⎥⎥
⎦

, (25)
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where

ξ l =

⎡

⎢⎢⎢⎢
⎣

ξ1l
· · ·
ξ jl
· · ·
ξnsl

⎤

⎥⎥⎥⎥
⎦

(26)

denotes the coefficient vector at the temporal node l (say ξ0

being the given initial condition). Correspondingly, Eq. 24 is
taken to be a block linear system:

Lξ = b, (27)

where L is a block matrix having nt × nt blocks. Each block
reads:

Lkl =
⎡

⎢
⎣

∫
Ih ψkM11ψ̇ldt

. . . ∫
Ih ψkMnsns ψ̇ldt

⎤

⎥
⎦+

⎡

⎢
⎣

∫
Ih ψk A11ψldt

. . . ∫
Ih ψk Ansnsψldt

⎤

⎥
⎦

∈R
ns×ns , (28)

and b is a block vector having nt blocks. Each block reads:

bk =
⎡

⎢
⎣

∫
Ih ψkB1dt

...∫
Ih ψkBns dt

⎤

⎥
⎦ ∈ R

ns . (29)

Obviously, system (27) is block-wise diagonal due to
the discontinuous function space in time. Each block cor-
responds to a subinterval in time. Hence it is possible to
decouple (27) and solve it block by block.

As stated in [55], for the TDGmethod a jump termweakly
imposing the continuity condition is crucial at every interele-
mentary interface tm−1. The variational formulation of such
a jump term is chosen as:

ψ
(
t+m−1

) ∫

Th
ϕi

(
uh(t

+
m−1) − uh(t

−
m−1)

)
dx, (30)

where the superscripts + and − denote the two sides of the
interelementary interface shared by two adjacent temporal
elements Im−1 and Im (see Fig. 2). The jump term (30) takes
a consistent form in the spatial FE subspace defined before.
Thus it is multiplied by the spatial test function ϕi and inte-
grated over the spatial domain Th . Let the temporal node r
representing t−m−1 and s representing t+m−1, the jump term

(30) becomes

ψs
(
t+m−1

) ∫

Th
ϕiϕ j dx

ns∑

j=1

(
ξ js − ξ jr

)
(31)

and in matrix form:

⎡

⎢
⎣

ψs
(
t+m−1

)
M11

. . .

ψs
(
t+m−1

)
Mnsns

⎤

⎥
⎦

(
ξ s − ξ r

)
. (32)

Here, ψs
(
t+m−1

)
actually equals 1 above. However, we

need the index s to know which block of the linear system
(27) the jump term should be added to. The reason for choos-
ing ψs

(
t+m−1

)
in the jump term Eq. 30 is that we can still

decouple the block linear system, by sequentially solving
each subsystem starting from I1 with the given initial condi-
tion ξ0. An example of sequentially solving the block linear
system is presented in Appendix A.

Complementing (27) by jump terms at all interelementary
interfaces, we get the final block linear system which repre-
sents the consistent variational formulation with jump terms
in the whole space-time domain.

3.3.4 Other time integration schemes for comparison

We note that all TDG schemes are unconditionally stable.
The special case TDG(0) is equivalent to the well-known
implicit BE method. The CN time discretization scheme is
also used in this work as a higher-order scheme for com-
parison purposes. As it is a standard scheme, it will not be
described further.

4 Solution algorithm

We use structured elements to generate continuum meshes
for fracture networks. The small length scale of fractures is
resolved by local quadtree-refinements and thus the resulting
mesh canwell represent the topology of the fracture network.
Compared to the work in [10], the final mesh does not need
to be converted into a triangular mesh and can be straightfor-
wardly applied to the FEM solver [56].

Algorithm 1 illustrates the workflow of generating a mesh
pattern with fractures. There are in total three refining stages.
The first generates a uniform mesh without any hanging
nodes. The second stage locally refines the elements which
are intersected by fractures. This step is done N times until
the finest element size can adequately resolve the small
length scale of fractures. Next, those finest elements inter-
sected by fractures are marked as fracture elements. The last
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Fig. 2 Illustration of the jump term at tm−1 for TDG(1). Im−1 and Im
present two adjacent time intervals on either side of the temporal node
tm−1. t

−
m−1 and t+m−1 are temporal nodes defined as the left and right

limits of tm−1. ξ r and ξ s are the solution vectors on t−m−1 and t+m−1,
respectively, indicating the discontinuous solution at tm−1

refinement step is optional if higher-resolution results are
needed, e.g. reference solutions.

Algorithm 2 presents the workflow for solving flow and
transport problems. The stationary groundwater flow is first
solved by the mixed finite element method [49–51], which
provides the locally conservative property and a continuous
velocity field. More details about assembling the block lin-
ear system with jump terms and efficient solver strategy are
demonstrated in Appendix A and B respectively.

Algorithm 1 Generate mesh with fractures.
1: Generate uniform mesh given a global level
2: Set a required local refinement level N
3: Randomly generate fractures
4: for n = 1 : N do
5: for each element do
6: for each fracture do
7: if fracture ∩ element then
8: Set refinement flag
9: end if
10: end for
11: end for
12: Refine flagged elements
13: end for
14: for each element do
15: for each fracture do
16: if fracture ∩ element then
17: Mark as fracture element
18: else
19: Mark as matrix element
20: end if
21: end for
22: end for
23: Further refine mesh if needed

Algorithm 2 Solve flow and transport problems.
1: Solve the stationary groundwater flow Eq. 1
2: Calculate advection coefficients by the formula 2
3: Spatial semi-discretization of the transport Eq. 3 either with the DG

method (weak formulations 8, 9 and 12) or the SUPG method (the
weak formulation 18), yielding the ODE system Eq. 19

4: Setup the time step length �t
5: Time discretization of the ODE system Eq. 19 based on the TDG

weak formulation 24, yielding the block system Eq. 27
6: Including jump terms Eq. 32 into the system Eq. 27
7: Decouple the block linear system with jump terms in a temporally

sequential manner (see Appendix A)
8: Assign the initial condition of the transport Eq. 3
9: for t = t0 : �t : t0 + T do
10: Iteratively solve the block linear system in the current time inter-

val (see Appendix B)
11: Save the transport state
12: Update the transport state as the initial condition for the next

time interval
13: end for

All source codes are developed in C++ based on the FEM
library deal.II [56].

5 Verification and convergence study
of the different schemes

Before transport in fractured media is considered, a bench-
mark advection-diffusion problem in a homogeneous domain
[57] is considered as validation and to test the properties of the
implemented methods. The test case describes advection in
a circle flow field and diffusion of a 2D Gaussian hat-shaped
initial concentration distribution. We use a dimensionless
formulation of this general case. The advection coefficient
a equals (−4y, 4x). Regarding the diffusion coefficient, we
choose two different isotropic homogeneous cases:

1. case with strong diffusion: | D |= 10−2

2. advection dominated case: | D |= 10−8.

The Gaussian initial condition reads

u (x, y, t0) = exp

(

− (x + 0.2)2 + y2

2σ 2

)

, (33)

where the width of the distribution σ is set to 0.1. The exact
solution given in [57] reads

uex = 2σ 2

2σ 2 + 4 | D | t exp
(

− (x̃ + 0.2)2 + (ỹ)2

2σ 2 + 4 | D | t

)

, (34)

where x̃ = xcos (4t) + ysin (4t) and ỹ = −xsin (4t) +
ycos (4t). Since the exact solution holds for the infi-
nite spatial domain, the simulation domain is bounded by
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Fig. 3 Convergence study of
different time schemes. Left:
| D |= 10−2. Right:
| D |= 10−8

[−0.5,−0.5] × [0.5, 0.5], and the Dirichlet boundary con-
dition is computed from the exact solution.

The error is defined as the L2 norm of the difference
between the numerical solution and the exact solution at the
last time step:

ε = ‖uh − uex‖L2 =
√∫

�

(uh − uex )2 dx . (35)

The convergence results of different TDG schemes and
the CN method are shown in Fig. 3. From the figures we see
that all investigated schemes converge for both cases. The
error of the TDG(0) scheme is the highest in both aspects:
error and convergence rate. The numerical error caused by
TDG(1) is lower than that by CN. Also, the convergence rate
of TDG(1) is better than that of CN for both cases, especially
for the advection-dominated case. Though the error produced
by TDG(2) is not higher than that by TDG(1), TDG(2) does
not greatly improve the convergence rate, notably when the
diffusion term dominates. The reason is that the very high
resolution in space needed to achieve the optimal conver-
gence rate of TDG(2) is not feasible. TDG(2) is considered
a very high-order scheme in time; see [58]. Thus it is not
surprising that convergence curves of TDG(1) and TDG(2)
overlap given a fine time step.

The results of the grid convergence study for different
spatial schemes are shown in Fig. 4. For both the strong dif-
fusion and the advection-dominated case, all spatial schemes

optimally converge at the rate ps + 1 in the L2 norm. Note
that there is hardly any difference of L2 errors betweenSUPG
and DG schemes in this convergence study, especially for the
advection-dominated case.

The implementation of the numerical methods is within
the limits of feasibility verified by this case.

6 Comparing different schemes for transport
in fracturedmedia

Asoutlinedbefore, the goal of thiswork is to test and compare
the benefit of higher-order space-time discretization schemes
for transport modeling in fractured media. For this purpose,
we consider three numerical examples in this work. The first
example is a transport problem in fractured media, in which
the fracture network is highly regular and prototypical. Due
to the orthogonal structure of the fracture network, a gridwith
adaptive refinement to resolve the interfaces well can be con-
structed without problems. The second and third examples
are extensions of the first one, in which a large number of
fractures are randomly placed. Thus the cases are more real-
istic but do not allow resolving the interfaces in the same
detail as in the first case. Although there is still grid refine-
ment, themedium is in this way rather represented as a highly
heterogeneous domain. This setup is chosen to test if restric-
tions found for transport modeling in a domain with a clear
distinction between fracture andmatrix are weakened if there

Fig. 4 Convergence study of
different spatial schemes. Left:
| D |= 10−2. Right:
| D |= 10−8
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is a wide range of matrix block sizes, in particular smaller
ones. We consider here a diffusive and a less diffusive prob-
lem. The global average L2 errors are estimated separately in
the fracture and matrix domain between different schemes.
To assess the impact of errors on cumulative quantities, we
compare local inverse breakthrough curves (BTC) at dif-
ferent points and global ones over cross-sections (note that
we use the abbreviation BTC for the inverse breakthrough
curve). We plot inverse BTCs on a logarithmic scale in the
whole work for better visualizations. Apart from the errors
in general, a particular focus is on the generation of spurious
oscillations (over- and undershoots). We consider different
measures to assess this question. The computation times of
different methods are also compared for the test cases using
the wall times.

Details of the model setups and the error definitions are
outlined in this section. For the fractured media cases, we
use a formulation with units.

6.1 Benchmark fracture network

This test case is a solute transport problem based on the reg-
ular fracture network of [59], with slightly different setups.
Note that the model with different measures was also used
as a benchmark case for flow by [60], however, we focus
here on the transport process. In this geometry, the fracture
network and the shapes of matrix blocks are simple enough
to identify the relevant transport time scales. We focus here
on time discretization, while different space discretization
schemes are considered in the next example.

The domain has a span of 1m by 1m. The mesh is locally
refined near the fractures (see Fig. 5). The global refine-
ment level is set to be 5 and the local level equals 4. As a
result, all fractures span two finite elements in the transverse
direction. They have an aperture of 3.9× 10−3 m. All model
parameters are listed in Table 1. We simulate sudden tracer
injection from the left boundary with a constant flow rate of
10−5 ms−1 and concentration of cL = 100%. The upper and
lower boundaries are no-flow boundaries. The initial condi-
tion is a concentration of zero in the whole domain.

This model is considered to be advection-dominated in
the fractures, where Peclet numbers reach up to Pe = 100,
and diffusion-dominated in the matrix blocks, where Peclet
numbers are Pe = 0.005 with a definition of the Peclet
number for the length of the domain. The simulation runs
with an initial time step of 432 seconds until 1 day, after that,
the time step is enlarged to 1 day until 1200 days.

As there is no analytical solution to this problem, a numer-
ical reference solution is generated. The time step for this
is eight times finer in the early time and four times finer
afterward, with the TDG(0) scheme being used. SUPG(2) is
chosen for space discretization as a higher-order scheme that

is not so prone to spurious oscillations (found in Section 6.2).
We compare here only the TDG(0) (backward Euler), the
TDG(1), and the CN scheme, as the TDG(2) scheme did not
lead to much smaller errors in the validation test.

Figure 5 shows the flow result (left) and the concentration
distribution at t = 400 days (right). This figure is in analogy
to the results shown in [59].

To evaluate the schemes, we investigate only global mea-
sures for this case. The flux-weighted inverse breakthrough
curve on the outflow boundary is considered as one measure.
This is according to [59], however, we focus here on earlier
times. It allows for assigning different processes to differ-
ent time regimes, see for example [61]. We also investigate
the solution accuracy averaged over the domain. Two error
measures are defined to indicate the error separately in the
fracture and matrix domains:

1. average L2 error in the fracture domain:

ε f =
√∫

� f

(
uh − ure f

)2
dx

∫
� f

1dx
(36)

2. average L2 error in the matrix domain:

εm =
√∫

�m

(
uh − ure f

)2
dx

∫
�m

1dx
. (37)

The breakthrough time in the BTC is determined by the
transport time scale for the fastest connection in the fracture
network (here expected to be determined by advection). A
fast drop after the breakthrough is determined by the macro-
dispersion in the fast flow regimes, here in the backbone of
the fracture network. If there is a clear separation of time
scales for processes in the fractures and in the matrix, and
there is only one matrix block size, the fast decrease is fol-
lowed by a tailing with a power of −1/2, which comes from
the diffusion in the matrix blocks (stagnant zones). After
reaching the diffusive time scale, an exponential decrease is
obtained (matrix is filled). If there are different shapes and
sizes of matrix blocks, different diffusion times are assigned.
The BTC shows then a superposition of the different power
law contributions, leading to a different power law. If models
are used to investigate such a behavior, it is important that
the full span of processes time scales is well represented.

With amean velocity in the fastest path of v = 0.002m/s,
the fastest advective transport time is at ta = 500 s. This
is well reproduced in the BTC (Fig. 6) by all discretiza-
tion schemes. After the breakthrough, a sharp drop-down
of the concentration (1 - u) is observed at the early time.
This is well reproduced by the TDG(1) and the CN scheme
(except for the spurious oscillations), while the lower order
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Fig. 5 Left: flow result and the
mesh (test case 1). Right:
concentration distribution [-] at t
= 400 days (test case 1)

scheme does not capture the slope as good. This over-
diffusive behavior is expected. The CN scheme indicates that
the advectivemovingof the concentration front in the fracture
in the early breakthrough time causes non-monotonic behav-
ior. This behavior fades away when the diffusive time scale
comes into effect. The time scale for the diffusivefilling of the
smallest blocks can be estimated to td,min = 106s. Accord-
ingly, after the breakthrough, the BTC is characterized by a
−1/2 slope. The first time where a deviation is expected is
at t ≈ 106s. Although the crossover is not that sharp, the
slope of the BTC steepens in this range, as is expected. This
is reproduced well by all schemes.

The errors for different time schemes at t = 1 day and
t = 600 days are listed in Table 2. It is not surprising that
the error dominates in the fracture domain due to the dom-
inance of the advection term. TDG(0) yields larger errors
than TDG(1) because of numerical dissipation. CN results in
extraordinarily large errors in the fracture domain, attributed
to non-monotonic behavior (see also Fig. 6). In summary, the
TDG(1) scheme produces monotonic solutions while main-
taining a satisfactory solution accuracy.

Table 1 Model parameters (test case 1)

Parameter Value Unit

Permeability matrix 1 × 10−12 m2

Permeability fracture 8.3 × 10−5 m2

Viscosity 2.98 × 10−3 Pa · s
Porosity matrix 0.25 −
Porosity fracture 1.0 −
Diffusion coefficient 10−10 m2 · s−1

Longitudinal dispersivity 10−2 m

Transverse dispersivity 10−3 m

To further evaluate the monotonicity of the solution, we
compute the total variation [62] in higher dimensions over
time using the following definition:

T V =
∑

K

max | ui − u j |, (38)

where i and j are different indices of spatial DoF on the
element K . The maximum difference of the scalar quantity
u is initially evaluated within the element K , and the total
variation is the summation of these differences taken over all
elements or a subset of elements. Since this definition does
not take the cell size into account, it can only be employed
to compare solutions on the same grid. As an increase of
TV over time is here not only created by spurious oscilla-
tions but also due to the generation of a sharp front as the
concentration evolves, the global TV is difficult to interpret.
Instead, we evaluate TV locally in the fracture domain and
within a small rectangular zone measuring 0.01m by 0.01m,

which surrounds the central point (0.5, 0.5). The results are
depicted in Fig. 7. Lines below the reference solution are
indicative of numerical dissipation, while lines above sug-
gest non-monotonic behavior. It is observed in the left figure
that both CN and TDG(1) result in numerical oscillations at

Table 2 Errors for different time discretization schemes and computa-
tion times (test case 1)

Scheme t = 1 day t = 600 days Wall time
ε f εm ε f εm [min]

TDG(0) 3.9e-4 1.5e-4 4.7e-4 1.2e-4 13

TDG(1) 5.5e-5 2.2e-5 1.6e-4 4.0e-5 37 (23)

CN 1.5e-3 1.7e-4 1.4e-3 4.1e-5 13

Reference – – – – 58

In parentheses, the wall time of TDG with the fixed-point iteration is
shown
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Fig. 6 Inverse breakthrough
curve of the flux-weighted
concentration for different time
discretization schemes (test case
1)

2

12

1

early times. However, the non-monotonic behavior is quickly
mitigated for TDG(1), while it persists with a high magni-
tude for a prolonged period in the case of CN. In contrast,
TDG(0) exhibits a significant numerical dissipation.

It should be noted that while there are differences between
the schemes in the early time behavior, all schemes show sim-
ilar behavior in the later time. This is not surprising because
the transport process in the later time is dominated by the
diffusion exchange between fracture and matrix.

Table 2 presents the computation times for various time
discretization schemes. TDG(0) requires the least computa-
tion time. Directly solving the block linear system of TDG(1)
can be several times more costly than that of TDG(0). By
employing a fixed-point iteration, the computation time is
reduced from 37 minutes to 23 minutes. The computation
time of the iteration method, of course, depends on the

stopping criterion. We observe that a relative tolerance of
10−3 is an appropriate value to halt the iteration, ensuring
accuracy (see Appendix B). Especially in the later transport
times, only two or three iteration steps are needed. Compared
to the reference solution, TDG(1) produces an equally robust
solution while maintaining low computation times.

6.2 Complex fracture network

For a second transport problem in fractured media, we
simulate a heat transport problem with a complex fracture
network. In this problem, we analyze the space discretiza-
tion schemes and the time discretization schemes. For the
comparison of the space discretization schemes, TDG(1)
was used for time discretization and DG(1) was used as

Fig. 7 Total variation over time
(test case 1). Left: in the fracture
domain. Right: in the central
zone spanning 0.01m by 0.01m
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space discretization scheme to evaluate the different time
discretization schemes. Although the setup is still proto-
typical, it is more realistic than the previous one in that it
contains a full spectrum of matrix blocks of different sizes
that are not all isolated. The clear distinction between advec-
tive and diffusive transport is here no longer expected.With a
heat transport considered with realistic parameters, diffusive
transport is stronger than in the previous example. For this
reason, it is expected that the numerical problems in the pre-
vious example do not persist. It is possible that the problems
occur locally, but do not have a strong influence on the cumu-
lative transport behavior (such as a BTC over a cross-section
studied in the previous example).

In this problem, 50 fractures are randomly placed in a
spatial domain of 16m × 8m (Fig. 8). Model parameters
are shown in Table 3. Hot water of 100 degrees Celsius is
injected from the left side, with the flow being driven by two
Dirichlet boundaries from left h = 92m to right h = 90m.
The upper and lower boundaries are no-flow boundaries. The
initial temperature field equals zero degrees Celsius all over.
The simulation runs for 50 days with a uniform time step of
8 hours. In this problem the grid no longer allows for a very
sharp resolution of the interfaces.

Figure 9 presents the reference simulation results of the
flow velocity and the temperature distribution. A highly het-
erogeneous velocity field is observed, but the transport in the
matrix is diffusive. The temperature result well reflects the
preferential flow paths of the heat fluxes.

To evaluate this test example, we use local and globalmea-
sures. We use the averaged error as defined in the previous
subsection. For the local measures, four observation points
(Fig. 8) are selected for plotting BTCs:

P1 = (1.46, 3.3)

P2 = (1.46, 3.65)

P3 = (8, 3.5)

P4 = (8, 3) .

P1 is located in a fracture connection and very close to
the inflow boundary. P2 is near the point P1 but located
in the matrix domain. The points P3 and P4 are also in a
fracture connection and in the matrix domain, but with a
larger distance to the inflow boundary. For this example, we

Table 3 Model parameters (test case 2)

Parameter Value Unit

Specific storage 10−6 m−1

Hydraulic conductivity fracture 2 × 10−3 ms−1

Hydraulic conductivity matrix 2 × 10−7 ms−1

Porosity 0.375 −
Density capacity solid 1.4 × 106 Jm−3K−1

Density capacity water 4.17 × 106 Jm−3K−1

Diffusion coefficient solid 1 Wm−1K−1

Diffusion coefficient water 0.598 Wm−1K−1

only consider the inverse breakthrough curves at the locations
close to the inlet, while the other ones are used in the next
example. In the next example, as additional global measures,
average BTCs over the cross-section A with x = 1.46m and
the cross-section B with x = 8m are investigated.

The errors (see Eqs. 36 and 37) of different space and
time discretization schemes are given in Tables 4 and 5 at
t = 25 and 50 days. It holds for all schemes that the error
dominates in the fracture domain. The reason is the internal
sharp gradients at the interfaces of fractures and the matrix.

Considering the spacediscretization schemes, as expected,
DG(0) has the highest errors among the spatial schemes due
to the high numerical dissipation. We observe that DG(2)
and SUPG(2) lead to higher errors than the other schemes,
in particular DG(2). This is due to spurious oscillations that
are stronger in the schemes with higher-order polynomial
degree (see also Fig. 10). By comparing DG(1) and SUPG(1)
schemes, we note that both schemes generate similar errors.
Regarding the time discretization schemes, errors are a bit
lower using CN than using TDG(0) in the matrix domain.
TDG(1) has the lowest global errors both in the fracture and
matrix domains. All in all, the errors produced by the differ-
ent time discretization schemes do not differ so much.

The spurious oscillations can be evaluated more closely
with the local observations. The BTCs for the observation
points close to the inflow boundary are shown in Fig. 10. The
other BTCs for this case are not shown, as they do not show
new aspects. For the space discretization, the BTCs obtained
with DG(0) show high numerical dissipation. Otherwise, the
schemes do not differ much, except for the DG(2) scheme,

Fig. 8 Left: fracture network
and observation points (test
cases 2 and 3). Right: the
corresponding mesh (test cases
2 and 3)
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Fig. 9 Left: flow result (test
cases 2 and 3). Right:
temperature distribution [°C] at t
= 15 days (test case 2)

which leads to a strong deviation of theBTC in both domains.
This is due to persistent spurious oscillations generated with
DG(2). An example of the solution at a given time is shown
at the bottom of Fig. 10. For the time discretization, in the
early breakthrough time of the fracture domain, the TDG(0)
scheme does notmatchwell the reference solution (Fig. 10b).
The CN scheme produces even slightly non-monotonic solu-
tions in the early time. In the late time, all temporal schemes
show a similar behavior. In the matrix domain, all temporal
curves match well with each other in the entire time scale
(Fig. 10d).

For this example, it can be concluded that the space dis-
cretization schemes with polynomial order 2, in particular
DG(2), and the CN scheme for time discretization, cause
spurious oscillations. DG(0) for space discretization causes
stronger numerical dissipation. Otherwise, the schemes did
not lead to larger differences in terms of BTCs or generation
of spurious oscillations. The case is quite diffusive, which
also dampens the preferential transport in the fractures (seen
in the snapshot in Fig. 9). For this reason, in the next section,
the schemes are compared for a more advective case.

The computation times of different schemes are shown in
Tables 4 and 5. As expected, DG(0) is the least costly spatial
scheme. A spatial DG scheme is much more costly than a
SUPG scheme given the same polynomial order. A second-
order spatial scheme can be several timesmore costly than the
corresponding first-order scheme. Considering the temporal
schemes, TDG(0) and CN have an equivalent computation
time. TDG(1) is not that expensive if the fixed-point iteration
method (see Appendix B) is used: the computation time of

Table 4 Global errors for different space discretization schemes and
computation times (test case 2)

Scheme t = 25 days t = 50 days Wall time
ε f εm ε f εm [min]

DG(0) 2.3e0 6.0e–1 2.9e0 7.8e–1 7

DG(1) 1.1e–1 2.2e–2 1.3e–1 2.9e–2 153

DG(2) 4.5e0 4.5e–1 4.7e0 5.0e–1 1553

SUPG(1) 1.1e–1 2.2e–2 1.4e–1 2.9e–2 14

SUPG(2) 3.6e–1 6.7e–2 3.3e–1 6.9e–2 92

TDG(1) is reduced from 153minutes to 54minutes and leads
to only a factor of 2.4 between the other two schemes.

6.3 Complex fracture network with a smaller heat
conductivity and larger time steps

To test and compare the schemes formore advective transport
problems with respect to the numerical errors, we change the
heat conductivity in the complex fracture network, described
in the last test case, by a factor of 100. Also, we increase the
time discretization steps to make time discretization more
challenging. Such settings would be needed if a process on
large length scales would be considered and the conditions
would be relevant near wells. The time discretization steps
are enlarged to 1 day for the reference solution (TDG(0) used)
and 5 days for others. The simulation runs for 600 days.Other
model setups are kept the same as in the last test case.

As the problem of the spurious oscillations in the space
discretization schemes can for this case be best visualized
with a snapshot of the solution, we show such snapshots
for the space discretization schemes. The time discretiza-
tion schemes are evaluated with the same measures as in
the last example. In this case, the BTCs at all locations (see
Section 6.2) are investigated.

We present the temperature results for SUPG(1), DG(1),
and DG(0) in Fig. 11 to evaluate the space discretization
schemes. DG(2) and SUPG(2) are here not considered, as
they showed spurious oscillations in the more diffusive
case already. The significant temperature contrast between
fractures and the surrounding matrix is here much more
pronounced (cf. Fig. 9). Here, also the space discretiza-

Table 5 Global errors for different time discretization schemes and
computation times (test case 2)

Scheme t = 25 days t = 50 days Wall time
ε f εm ε f εm [min]

TDG(0) 1.5e–1 2.8e–2 1.9e–1 3.6e–2 22

TDG(1) 1.1e–1 2.2e–2 1.3e–1 2.9e–2 153 (54)

CN 2.7e–1 2.2e–2 2.3e–1 2.9e–2 23

In parentheses, the wall time of TDG with the fixed-point iteration is
shown
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(a) (b)

(c) (d)

Fig. 10 Top: inverse breakthrough curves in the logarithmic scale close to the inflow boundary, for different schemes used in the second test case
(a to d). Bottom: non-monotonic solution at t = 15 days given by DG(2), under- and overshoots are colored in black and green respectively (test
case 2)
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Fig. 11 Temperature
distribution [°C] at t = 15 days
(test case 3). Upper left:
SUPG(1). Upper right: DG(1).
Lower: DG(0)

tion schemes with polynomial degree one create spurious
oscillations. Both SUPG(1) and DG(1) display undershoots
(colored in black) in matrix blocks and overshoots (col-
ored in green) in fractures. Additionally, it is observed that
SUPG(1) produces spurious oscillations characterized by a
wiggling structure. In contrast, DG(1) effectively prevents
the spread of numerical oscillations. As only DG(0) pro-
duces oscillation-free results,weuse it as the reference spatial
scheme for further investigation of time schemes.

The errors for the different time discretization schemes
are shown in Table 6. The high errors for the CN scheme
are due to the strong numerical oscillations. To evaluate the
numerical oscillations, the BTCs for all points and cross
sections are presented in Fig. 12. As anticipated, the CN
method exhibits strong numerical oscillations for the obser-
vation points within the fracture domain (Fig. 12a and c).
Slight discrepancies between the low-order TDG(0) scheme
and the reference solution are observed at observation points
1 to 3 (Fig. 12a, b, and c). In contrast, the TDG(1) scheme

Table 6 Global errors for different time discretization schemes and
computation times (test case 3)

Scheme t = 15 days t = 300 days Wall time
ε f εm ε f εm [min]

TDG(0) 8.8e–1 1.5e–1 6.1e–2 2.5e–2 3

TDG(1) 2.6e–1 4.5e–2 1.5e–2 6.0e–3 8 (4)

CN 3.5e0 1.6e–1 1.4e0 1.4e–2 3

Reference – – – – 13

In parentheses, the wall time of TDG with the fixed-point iteration is
shown

remains stable and consistently aligns well with the refer-
ence solution, irrespective of the observation point location.
However, oscillations of the CN scheme are restricted to frac-
tures, so that even in this example, the local deviations do not
strongly impact the cumulative transport behavior over the
cross-sections (Fig. 12e and f).

The computation times are also presented in Table 6. By
using the fixed-point iteration method, the computation time
of TDG(1) is reduced from 8 minutes to 4 minutes. Similar
to the previous example, TDG(1) requires more computation
time compared to TDG(0) and CN, but only by a factor of
1.3. In comparison with the reference solution, TDG(1) is
deemed highly efficient.

7 Discussion

The test cases in the previous sections revealed different
numerical problems. Numerical dissipation is reflected in
the accuracy of the solutions and is relevant for all transport
problems with strong advections. For transport in fractured
media, it is not only challenging to get a good accuracy of the
solution, but also to prevent spurious oscillations, which can
be a serious difficulty in the application of transport models.

In the validation problem that was considered to study the
convergence, all discretization schemes generatedmonotonous
solutions without spurious oscillations, also in the advection-
dominated case. In this problem, the velocity field is smooth
and does not have strong gradients. In the test cases with
fractured media, due to the strong parameter contrast, veloc-
ity fields are very heterogeneous and have strong gradients at
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Fig. 12 Inverse breakthrough curves in logarithmic scale for different time schemes (test case 3)
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interfaces. In these test cases, the problem of spurious oscil-
lations became apparent.

The different space discretization schemes were only
tested for the more complex fracture network cases. The
solutions of the lowest-order DG(0) scheme were always
monotonic, however, the strong numerical dissipation com-
pared to all higher-order schemes was here clearly visible in
the BTCs. The schemes with polynomial degree two caused
spurious oscillations already for themore diffusive case (with
realistic parameters). For the DG(2) scheme they were so
strong that not only the global error of the solution was high
(cf. Table 4), but also local information obtained in a BTC
was strongly affected, nomatterwhere in the domain theBTC
was taken. For the SUPG(2) scheme, the oscillations were
weaker, but strong enough to cause higher averaged errors
than the schemes with lower polynomial degree. Although
DG(1) and SUPG(1) lead to better results than the lowest-
order DG(0) scheme in this case, for a more advective
problem, the last example, also these schemes caused strong
spurious oscillations. In this case, they were stronger with
SUPG(1) than with the DG(1) scheme. Taking this into con-
sideration, DG and SUPG schemes cannot well be rated
against each other.

When comparing different time discretization schemes,
the TDG scheme was clearly of advantage compared to a
comparable standard scheme (here CN). This could best
be illustrated with the benchmark fracture network, where
advection and diffusion processes could be reflected in the
BTCs. For the early-time behavior, the numerical dissipa-
tion leads to large errors, seen in strong differences between
the TDG(0) (backward Euler) and other schemes. The CN
scheme leads to spurious oscillations in the early time regime,
when advection in the fracture dominates and creates sharp
gradients of the solution. Conversely, in the late time regime,
where the diffusive processes are relevant, the differences
between the solutions generated with all schemes got very
small. The spurious oscillations generated with the CN
scheme were always present in the fracture network test
examples and became very large in the case of strong advec-
tions (the last example in Section 6.3).

For the artificial benchmark network, it would be pos-
sible to anticipate the strong advection leading to spurious
oscillations with transport time scales. For the more complex
fracture networks, this would not be possible, as time scales
are not clearly identifiable and not clearly distinct.

If the spurious oscillations deteriorate the results depends
also on the quantities of interest. For example, the spurious
oscillations in the benchmark example or in the fracture net-
work created with the CN scheme are local, inside of the
fracture or close to the inlet boundary, and do not affect, for
example, BTCs taken in the matrix domain or over cross-

sections (cf. BTCs at cross sections in Fig. 12). They did,
however, show up in the averaged errors, which were high in
the fracture domain when using the CN scheme. This does,
however, not hold for the space discretization schemes of
polynomial degree 2. Spurious oscillations became relevant
for any measure in the fracture domain for these schemes (cf.
errors in Table 4).

8 Conclusions

In this study, we performed a comparative study between
discontinuous and continuous space and time Galerkin
discretization methods for solving transport problems in
fractured media. Large parameter contrasts result in large
velocity differences, making this problem prone to the gener-
ation of spurious oscillations. In Section 3, we first outlined
both the DG and SUPG discretizations for space, as well
as the TDG discretization for time. In Section 4, the solu-
tion algorithms were introduced, specially, the decoupling
strategy and the fixed-point iteration for TDG, see also
Appendices A and B. The schemes for space and time
discretizations were verified in Section 5, achieving opti-
mal convergence rates for all space discretization schemes.
In contrast, optimal convergence rates in high-order time
schemes were hardly achieved because sufficient high res-
olutions in space were unfeasible.

The schemes were compared with a more regular and for
a more complex fracture network in Section 6. Regarding
the space discretization, all higher-order schemes can cause
spurious oscillations. The lowest-order scheme DG(0) did
not generate spurious oscillations, however, showed large
numerical dissipation compared to the other schemes. This
leads to the conclusion that if spurious oscillations are not
acceptable, the lowest-order scheme would have to be used
with a fine spatial resolution. For higher-order schemes, flux
or slope limiters [63, 64] would be needed. The results of
this study illustrate the need for such methods if higher-
order schemes are used for transport models in fractured
media. The DG schemes cannot be rated against the con-
tinuous SUPG schemes. It might be easier to handle flux or
slope limiters with DG schemes. However, the DG schemes
were computationally more costly than the SUPG schemes.

In terms of the time discretization, we conclude that the
TDG(1) scheme had clear advantages formodeling advective
transport in fractured media compared to the other methods.
Higher-order TDG schemes can effectively reduce numerical
dissipation and generate monotonic solutions while main-
taining reasonable computational costs when employing the
decoupling strategy and the fixed-point iteration method.
Moreover, the TDG method allows having flexible space
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semi-discretization schemes with any flux correction tech-
niques [45, 64].

Appendix A Sequential solution of TDG

Saying we decompose the temporal domain T into Th , which
contains 3 subdomains: I1, I2 and I3. On each subdomain we
apply TDG(1), thus we have in total 6 temporal nodes. The
block linear system Eq. 27 without jump terms then reads:

⎡

⎢⎢⎢⎢⎢⎢
⎣

L11 L12

L21 L22

L33 L34

L43 L44

L55 L56

L65 L66

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

b1
b2
b3
b4
b5
b6

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (A1)

After adding jump terms, Eq. A1 becomes:

⎡

⎢⎢⎢⎢⎢⎢
⎣

L11 + M L12

L21 L22

−M L33 + M L34

L43 L44

−M L55 + M L56

L65 L66

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

b1 + Mξ0

b2
b3
b4
b5
b6

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (A2)

Apparently, ξ1 and ξ2 can directly be obtained by solving

[
L11 + M L12

L21 L22

] [
ξ1

ξ2

]
=

[
b1 + Mξ0

b2

]
. (A3)

After having ξ2, ξ3 and ξ4 can be obtained by solving

[
L33 + M L34

L43 L44

] [
ξ3

ξ4

]
=

[
b3 + Mξ2

b4

]
. (A4)

Similarly, we can solve ξ5 and ξ6 with ξ4.
Therefore, for an arbitrarily large number of time subinter-

vals,we can always solve the block linear system sequentially
in time. This property is quite favorable in practice for avoid-
ing solving a huge block linear system, namely decreasing
computation times.

Appendix B Solve block linear system

Using the sequential solution strategy (Appendix A), we
finally need to solve a block linear system (e.g. Eqs. A3 or
A4). Thematrix on the left-hand side is a block sparse matrix
(see Fig. 13). It is hence hard to find a good preconditioner
matrix if one wants to use an iterative solver.

Fig. 13 Exemplary sparsity pattern for a block sparsematrix byTDG(1)

A fixed-point iteration method (see e.g. [65]) can be used
to solve the block linear system in a decoupledway. Themain
two advantages are

1. the dimension of the original block linear system is
decreased;

2. for every sublinear system the matrix on the left-hand
side is a standard FE sparse matrix which is diagonally
dense and non-diagonally sparse (see Fig. 14).

Thus the computation times can be greatly decreased.
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Fig. 14 Exemplary sparsity pattern for a standard sparsematrix in FEM

We use the block linear system (A3) as the instance. First
reformulate (A3) with the two sublinear systems:

L22ξ
2 = b2 − L21ξ

1 (A5)

L11ξ
1 = b1 + Mξ0 − L12ξ

2. (A6)

Algorithm 3 describes the process of how to solve the two
sublinear systems iteratively.We use the direct solver (UMF-
PACK) to solve the systems (A5) and (A6).

Algorithm 3 Iteratively solve Eqs. A5 and A6.

Require: ξ0

1: Set the relative tolerance εtol = 10−3

2: Initialize the error ε = positive infinity
3: Initial guess ξ1 = ξ0

4: while ε ≥ εtol do
5: Create a vector ξ1old saving the last result
6: ξ1old = ξ1

7: Solve Eq. A5 and get ξ2

8: Solve Eq. A6 and get ξ1

9: Calculate the error ε =
∥∥∥ξ1−ξ1old

∥∥∥
L2∥∥∥ξ1old

∥∥∥
L2

10: end while
11: Save ξ1 and ξ2

Similarly, we choose ξ2 as the initial guess of ξ3, when
Eq. A4 is considered. Our experience is that the chosen initial
guess obtained from the last time step is very close to the
unknown vector considered in the current time step at the
jump point. Because the amplitude of the jump term should
not be very large. Hence, we can converge to the desired
result in a few steps with a proper relative tolerance.

We remark that this method is not quite feasible for the
case where the degree of polynomials in time is greater than
2. Nevertheless, since TDG(0) and TDG(1) are most widely
used in practice, this method still has considerable value in
application.
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