
Vol.:(0123456789)

Computational Geosciences 
https://doi.org/10.1007/s10596-024-10286-x

ORIGINAL PAPER

Robust inversion of 1D magnetotelluric data using the Huber loss 
function

Elfitra Desifatma1 · I. Gede Putu Fadjar Soerya Djaja1 · Prihandhanu Mukti Pratomo1 · Supriyadi1 · 
Enjang Jaenal Mustopa1 · Maria Evita1 · Mitra Djamal1 · Wahyu Srigutomo1 

Received: 21 June 2023 / Accepted: 1 April 2024 
© The Author(s) 2024

Abstract
In this study, a robust 1D inversion was performed on magnetotelluric (MT) data by utilizing the Huber loss function to avoid 
misleading interpretation of results, which is caused by the presence of outliers in the data. The MT method utilizes the ratio 
between the electric field (E) and the magnetic field (H), which are perpendicular to each other, to obtain impedance values 
(Z). These values are used to extract subsurface information in the form of electrical resistivity variations with depth. In 
the study, forward modeling of the 1D MT responses was conducted by recursively calculating Z values. Robust inversion 
was performed using the Huber loss function as an objective function to minimize the difference between the calculated 
and observed data. The Huber loss function combines the squared loss and the absolute loss to anticipate the presence of 
outliers in MT observation data. The robust inversion was performed on synthetic data with additional noise and field data. 
The inversion process utilized 50 layers with a thickness of 500 m, a hyperparameter � = 5 × 10

−2 , � = 0.01 , and �
t
= 100 . 

The number of iterations used was 500 for inversions that used synthetic data and 3000 for inversions that used field data. 
The robust inversion scheme using the Huber loss function successfully overcame the presence of outliers and accurately 
estimated the actual model parameters, both for synthetic data and field data that contained outliers. The misfit was relatively 
small and close to zero, indicating that the inversion code works well.

Keywords Huber loss · Inverse modeling · Magnetotelluric · Robust inversion · One dimension

1 Introduction

The magnetotelluric (MT) method is a geophysical tech-
nique that provides information on the distribution of sub-
surface electrical conductivity by measuring natural electric (
�⃗E
)
 and magnetic 

(
��⃗H
)
 fields on the surface that vary with 

time [1–3]. The MT method finds applications in various 
geophysical investigations, including geothermal [4–8], 
hydrocarbon [9–12], and mineral investigations [13–15]. It 
is well-suited for exploring a wide range of depths, from 
shallow to profound, without the need for artificial sources 
and without causing environmental damage [16], making it 
a suitable choice for exploration purposes. Natural MT fields 
or iginate from solar storms for low-frequency 

electromagnetic (EM) fields (< 1 Hz) and lightning activity 
near the Earth’s surface for high frequencies (≥ 1 Hz) [17]. 
These EM waves propagate towards the Earth’s surface, 
where some are reflected, while others are transmitted into 
the subsurface. Receivers record the resulting superposition 
of primary and secondary EM fields. The ratio between the 
electric field 

(
�⃗E
)
 and the magnetic field 

(
��⃗H
)
 is expressed as 

impedance  �⃗Z , which is then used to determine the electrical 
resistivity � (Ωm) in the MT modeling.

The MT method is essential in geophysical exploration, so 
it is widely used to examine the electrical properties of the 
Earth’s subsurface. The presence of outliers in the MT data 
results in an inappropriate model [18], leading to inaccurate 
characterization of subsurface structure [19] and mislead-
ing interpretations. The outlier removal process can increase 
the reliability and accuracy of the analysis in data interpre-
tation. Three outlier removal methods are used most often: 
the impedance estimation by correlation [20–22], the robust 
method [23–25], and the time serial analysis method [26, 27]. 
The robust method is widely utilized in terrestrial EM studies, 
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specifically for time series EM data [25, 28–30]. Besides this 
method’s application in MT data processing, several authors 
have also employed a robust inversion approach, which aims to 
estimate the subsurface properties of geophysical data by mini-
mizing the impact of outliers or data errors. Inversion refers to 
the process of transforming measured geophysical data into a 
subsurface model. Robust inversion techniques are designed 
to handle situations where the data contain outliers or errors, 
which can significantly affect the accuracy of the inversion 
results. In this study, robust inversion was performed using 
Huber’s loss function, which offers protection against outli-
ers in heavy-tailed symmetric distributions [31]. While MT 
data processing in 2D and 3D domains has seen significant 
advancements [32–34], one-dimensional (1D) MT data pro-
cessing still holds significance in assessing data quality [35] 
and determining the initial model for subsequent 2D and 3D 
inversions [36]. Generally, MT inversions encounter ill-posed 
problems [37] and solution stability issues. Regularization is 
typically employed to address the ill-posed problems of MT 
inversions by incorporating a stabilization function into the 
objective function to obtain a stable inversion solution [38]. 
Moreover, the presence of outlier data often obscures the 
primary information in MT field data, leading to inaccurate 
resistivity imaging. Several researchers have conducted MT 
1D inversions [39–41] but have not effectively mitigated the 
presence of outliers. Geophysical inversion problems are 
commonly addressed using the least-squares (LS) scheme 
with damping or smoothness constraints to enhance inversion 
stability and accelerate convergence [42]. However, the con-
ventional LS-based inversion method is sensitive to outliers 
in electric and magnetic field data, which can result in inap-
propriate resistivity values [43]. Therefore, a robust inversion 
algorithm is necessary to overcome or eliminate the presence 
of outliers in MT field data [43]. In this study, the Huber loss 
(HB) function was employed as the objective function to 
achieve robust inversion and mitigate the impact of outliers.

This study aims to develop an effective 1D MT inversion 
algorithm that reduces the presence of outliers by utilizing the 
HB function. The HB function combines the useful character-
istics of square loss and absolute loss into one loss function to 
get the best results. This combination is expected to be highly 
effective in detecting and handling outliers in the data. With 
the addition of the HB function, the inversion process becomes 
robust, allowing for the minimization of the impact of outliers.

2  Method

2.1  Forward modeling of 1D magnetotelluric

Impedance can be used to obtain physical information, i.e., 
apparent resistivity (�app) and phase impedance (�) . EM 
impedance [Z] can be written as Eq. 1 [44]:

where k =
√
−i�0�� ; �0 is magnetic permeability in vac-

uum; � = 2�f  , with f  being frequency; and � is the conduc-
tivity of the medium, which is the inverse of the resistivity 
� =

1
/
�

.
Based on Eq. 1, the apparent resistivity equation 

(
�app

)
and phase impedance (�) for anisotropic homogeneous earth 
can be formulated as:

For a homogeneous earth, the phase impedance value is 
� =

�

4
rad = 45

◦

 . In real conditions, Earth’s subsurface struc-
ture in 1D can be illustrated as a layered earth (Fig. 1) that 
consists of n layers with a thickness of  hn and a resistivity 
of �n . For a layered earth, the impedance value for the earth 
model with n layers can be generated based on the following 
recursive equation:

Ẑn is the impedance in the  nth layer due to resistivity vari-
ations. Equation 4 is used recursively to get the measured 
impedance value on the surface, iteratively calculated 
from the  nth layer. For a homogeneous earth model, the 

(1)Z =

��0√
−i�0��

=

√
i
√
�0�� =

√
�0��e

i��
4 ,

(2)�app =
1

�0�
|Z|2

(3)� = arctan

[
Im(Z)

Re(Z)

]

(4)Ẑn = Zn
Ẑn+1 + Ẑntanh

(
iknhn

)

Ẑn + Ẑn+1tanh
(
iknhn

)

Fig. 1  1D Layered earth illustration
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thickness of layer one is set to infinity ( h1 = ∞ ) so that 
tanh

(
ik1h1

)
= 1 , and the surface impedance becomes

 or

 with Zn =
��0

kn
 and kn =

√
−i�0�

�n

 
Forward modeling using a recursive equation (Eq. 4) 

produces systematic data, which is then used iteratively 
in the inversion process/scheme. The validation process 
for the 1D MT forward modeling program was conducted 
by comparing the response of the modeling results in 
the form of apparent resistivity to the response from the 
homogeneous earth model. The apparent resistivity value 
of the forward modeling results must have the same value 
as the resistivity value of the homogeneous model, and 
the phase impedance value of the modeling results must 
be 45°, which is the phase impedance in the homogene-
ous model.

2.2  Robust inversion using the Huber loss function

Inversion is a mathematical method for generating infor-
mation on a physical system in the form of a phenomenon 
that is reviewed based on observations of the system [45]. 
Inversion can also be defined as a procedure for estimat-
ing physical parameters from observational data [4]. The 
physical parameters to observe are the model parameters 
that produce calculated data that matches the observational 
data. The matching level between the calculated data and 
the observed data is expressed through the objective func-
tion. The objective function is minimized to obtain the final 
model parameters. Robust inversion aims to remove noise 
from MT data. This study used robust inversion by utilizing 
HB as the objective function. The equation for the objective 
function used can be written as follows:

where ⇑ � ⇑
H

 is a misfit in Eq. 5, detailed further in Eq. 6, 
and ��1 = �1 − �1(�) and ��2 = �2 − �2(�) are the dif-
ferences between observation and calculation data. The 

Ẑ1 = Z1

ẐN = ZN ,

(5)
� = ⇑ Δ�� ⇑

H
+ ⇑ Δ�� ⇑

�
+ ��⇑ �

(
m� + Δ�

)
⇑

2

+ ��⇑ �(Δ�) ⇑
2

(6)

⇑ � ⇑
H
=

∑
LH

�
xi
�

L
H

�
xi
�
=

�
1

2
x2
i

for��xi�� ≤ �

�

���xi�� − 1

2
�

�
otherwise

,

variable �� = � −�0, where � is the model parameter 
vector, and �0 is the initial model parameter. The second 
and third terms on the right side of Eq. 5 are implementation 
constraints on the model; the second term is implemented to 
obtain a smooth model, while the third term is implemented 
so that the change in �m is not too large. The variables �1 and 
�2 are Lagrange multipliers, � is the differential operator, � is 
a hyperparameter, and � is the identity matrix. The solution 
to Eq. 5 can be written as follows:

where W is the weight and W0

i,i
= 1 in the first iteration and 

a diagonal matrix in Eq. 8, with J being Jacobian. Model 
parameters can be obtained by

Meanwhile, the Jacobian matrix J can be written as 
follows:

 and

 where data 1:

 and data 2:

The inversion process is conducted iteratively and will 
stop if the iteration has reached a maximum or the misfit 
( ⇑ dobs − dcal ⇑

H ) has not changed much from the previous 
iteration.

(7)
𝚫𝐦

𝐤+𝟏
=

(
𝐉
T

𝟏
W

k
𝐉𝟏 + 𝐉

T

𝟐
W

k
𝐉2 + �1�

T
� + �2𝐈

)−1
(
𝐉
𝐓

𝟏
W

k
𝚫𝐝𝟏 + 𝐉

T

𝟐
W

k
𝚫𝐝2 − �1�

𝐓
�𝐦𝟎

)

(8)Wk

i,i
=

{
1 for

|||�di −
(
����

)
�

||| ≤ �

�

|�di−(����)
�
| otherwise

,

(9)� = �� + ��
�

(10)�1 =

⎡
⎢⎢⎢⎣

�log10(da1)

�log10�1
⋯

�log10(da1)

�log10�N

⋮ ⋱ ⋮

�log10(daM)

�log10�1
⋯

�log10(daM)

�log10�N

⎤⎥⎥⎥⎦

(11)�2 =

⎡
⎢⎢⎢⎣

�log10(db1)

�log10�1
⋯

�log10(db1)

�log10�N

⋮ ⋱ ⋮

�log10(dbM)

�log10�1
⋯

�log10(dbM)

�log10�N

⎤
⎥⎥⎥⎦
,

(12)

dcal1 = da = log10
(
Re(Z)2 + Im(Z)2

)
�log10(dcal1)

�log10�n
= 2

[
Re(Z)Re

�Z

��n

+ Im(Z)Im
�Z

��n

]
�n

(Re(Z))2+(Im(Z))2

(13)
dcal2 = db = log10

(Re(Z))2

(Im(Z))2

�log10(dcal2)

�log10�n
= 2�n

[
1

Im(Zz)
Im

�Z

��n

−
1

Re(Zz)
Re

�Z

��n

]
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3  Result

3.1  Syntetic models

In our study, forward modeling was performed to gener-
ate synthetic data in the form of apparent resistivity and 
phase impedance. This was achieved by applying a syn-
thetic model with predetermined resistivity values and 
thickness. The synthetic data were utilized to validate the 
developed inversion code. Three-layer earth models were 
employed in the forward modeling process to observe the 
resulting patterns of apparent resistivity and phase imped-
ance. The parameters of the three-layer model used are 
provided in Table 1.

Before the inversion scheme, the forward modeling of 
1D MT using the recursive technique was validated using 
a homogeneous earth model with a resistivity of 100 
Ωm. The results of this forward modeling are depicted 
in Fig. 2. The apparent resistivity values returned to their 
homogeneous resistivity value of 100 Ωm, and the phase 

impedance was consistently 45° for each frequency. There-
fore, it could be concluded that the forward modeling code 
was valid. The homogeneous model was used to test the 
performance of the forward modeling scheme because, 
analytically, the forward modeling for a homogeneous 
earth model is frequency independent (where the appar-
ent resistivity is the same as the true resistivity).

Synthetic data were employed to validate the generated 
inversion code. The calculated data results from the inver-
sion process had to align with the synthetic (observed) data 
obtained through forward modeling. The inversion results 
needed to show high accuracy, whereas the inversion model 
had to be the same as the test model. For the inversion pro-
cess, two models with parameters, as presented in Table 1, 
were utilized to generate synthetic data. Model 1 represented 
a 3-layer earth model with a conductive layer between the 
resistive layers, while Model 2 represented a 3-layer earth 
model with a resistive layer between the conductive lay-
ers. Model 1 was used because it referred to several real 
conditions in the field. An example of this condition is a 
water-saturated layer in a hydrothermal water environment 

Table 1  Synthetic Model 
Parameters Used to Generate 
Synthetic Data

Model Resistivity, � (Ωm) Thickness, h (m)

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

1 100 10 100 500 500 ∞

2 10 100 10 500 500 ∞

Fig. 2  Response for the homogeneous earth model
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filled with hot water from geothermal sources due to fault 
activity and magma intrusion, which can result in cracks in 
the basement [46]. Model 2 was also used to refer to real 
field conditions. An example is a highly resistive granite 
basement covered with a layer of conductive sediment [47]. 
During a TDEM survey in the Unzen Mountains of Japan, 
three main layers were identified: a resistive surface layer, 
a conductive layer, and a third resistive layer [48]. Outliers 
were introduced to the synthetic data to simulate real-world 
scenarios where field data often contain outliers. The chosen 
inversion scheme was robust inversion using HB, with the 
LS inversion as a comparison.

The inversion results for Model 1 are presented in 
Fig.  3. The inversion results demonstrate a close fit 

between the calculated data and the synthetic data for 
both the HB and LS inversion schemes. No significant dis-
crepancy was observed between the HB and LS inversion 
results. The inversion results reveal conductive anoma-
lies between the resistive layers at depths ranging from 
200 m to 2000 m. For the HB inversion, convergence was 
achieved at the 168th iteration out of 500, with a misfit of 
0.00009964. The LS inversion reached convergence at the 
180th iteration out of 500, with a misfit of 0.00009970. 
A comparison of the calculated data, synthetic data, and 
the weight values  (W1 and  W2) for Model 1 is depicted 
in Fig. 3d and e. The calculation data resulting from the 
inversion ( da and db ) exhibited strong agreement with the 
synthetic data for both HB and LS inversions. The weight 

Fig. 3  Huber loss (HB) vs. least-squares (LS) inversion model results Model 1 a The inversion result, b The inversion result of the model, c Mis-
fit, d Results of the inversion of data 1 and weight, e Results of the inversion of data 2 and weight
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values  (W1 and  W2) were both 1 at each frequency since 
no outliers were present in the data.

The inversion results for Model 2 are displayed in Fig. 4. 
Similar to those obtained from Model 1 inversion, the cal-
culated data aligned closely with the synthetic data for both 
the HB and LS inversion approaches. For the HB inversion, 
convergence was achieved at the 141st iteration out of 500, 
yielding a misfit of 0.000205. The LS inversion reached 
convergence at the 154th iteration out of 500, resulting in 
a misfit of 0.000205. A comparison between the calculated 
and synthetic data and the corresponding weights is shown 
in Fig. 4a and e. Similar to Model 1, the inversion process 
for Model 2 yielded consistent outcomes. The calculated 
data ( da and db ) from the inversion exhibited compatibility 

with the synthetic data for both HB and LS inversions. The 
weight values  (W1 and  W2) remained constant at 1 for all 
frequencies.

Based on the inversion results obtained for both syn-
thetic models, the misfit was significantly small and was 
approaching zero, indicating the effectiveness of the HB and 
LS inversion codes. The weights assigned to each frequency 
were identical due to the absence of outliers in the data, 
resulting in similar inversion outcomes for both the HB and 
LS methods. When the inversion results for the two models 
presented in Figs. 3 and 4 were compared, it became evident 
that the 1D MT inversion can handle conductive structures 
(Model 1) more effectively than resistive structures (Model 
2). The MT method exhibited greater sensitivity in detecting 

Fig. 4  Huber loss (HB) vs. least-squares (LS) inversion model results Model 2 a The inversion result, b The inversion result of the model, c Mis-
fit, d Results of the inversion of data 1 and weight, e Results of the inversion of data 2 and weight
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conductive structures than resistive structures. According to 
[49], MT is a sensitive method for detecting low resistivity 
(high conductivity) structures, which can be caused by vari-
ous mechanisms such as partial melting, sulfides, metallic 
minerals, and nominally anhydrous hydrogen.

To gain further insights into the performance of HB and 
LS inversions, particularly their applicability to field data, 
outlier data were added to synthetic data from Model 1. The 
results of the HB and LS inversions for Model 1 with the 
addition of outliers to their synthetic data, resembling field 
data, are depicted in Fig. 5. The HB inversion results dem-
onstrate that the calculated data still aligned well with the 
synthetic data, even in the presence of outliers. Conversely, 

the LS inversion results show that the calculated data con-
formed to the synthetic data in the section without outliers 
but failed to match the calculated data in the section con-
taining outliers (Fig. 5a). In terms of the inversion model, 
the HB inversion exhibited a strong agreement with the 
actual model, while the LS inversion displayed some devia-
tions beyond a depth of 1000 m (Fig. 5b). The HB inversion 
attained convergence at the 25th iteration out of 500, yield-
ing a misfit of 0.1937 (Fig. 5c). On the other hand, the LS 
inversion reached convergence at the 58th iteration out of 
500, resulting in a misfit of 0.2350 (Fig. 5c). The HB inver-
sion assigned appropriate weights to da and db , where data 
points identified as outliers within the HB framework were 

Fig. 5  Huber loss (HB) vs. least-squares (LS) inversion model results 
with outlier data were added to Model 1 a  The inversion result in 
the Model 1 response, b The inversion result of the model, c Misfit, 

d Results of the inversion of data 1 and weight, e Results of the inver-
sion of data 2 and weight
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assigned lower weights, as depicted in Fig. 5d and e. When 
the results of the two inversions in Model 1 with the inclu-
sion of outlier data were compared, it became evident that 
the HB inversion outperforms the LS inversion in handling 
data containing outliers. Hence, the HB inversion can be 
regarded as a robust inversion technique capable of han-
dling the presence of outlier data in field applications. Both 
inversions were applied to the same field data in Indonesia 
to provide further verification.

3.2  Application to field data

The inversion was further tested on field data using two 
inversion schemes. Four sets of data from different loca-
tions were employed for this inversion (Fig. 6). Data were 
collected from four islands in Indonesia, namely MT data 
in the Patuha area, MT data in the Matindok area, MT data 
in the Muara Laboh area, and MT data in the Ulumbu area. 
The location of each measurement area can be seen in Fig. 6. 
Data for the Patuha area, point MTP-xy, and data for the 
Matindok area, point MTM-yx, were classified as good-
quality data. On the other hand, data for the Muara Laboh 
area point MTML-xy and data for the Ulumbu area point 
MTU-xy were classified as poor-quality data. Good-quality 
data were characterized by smooth data with small errors 
or deviations and reasonable values within the range of 
resistivity values for geological materials based on Table 2. 
Poor-quality data had the opposite characteristics: the data 
were not smooth, the error or deviation was large with many 
outliers, and the values did not make sense.

For both inversion schemes, 50 layers were utilized, along 
with hyperparameters � = 5 × 10

−2, � = 0.01 , and �t = 100 . 
The inversion process involved 3000 iterations.

The MT data-xy inversion results for the Patuha area are 
shown in Fig. 7. The data for the Patuha area at the MTP-xy 
point (frequency range 318 Hz–0.000992 Hz) exhibited very 
good quality with no outliers. These data were included in 
the good-quality data category based on the data criteria 
mentioned previously. There were no outliers in the data, 
the data were smooth, the errors or deviations were small, 
and the values were reasonable. No significant difference 
was found in the results between the HB and LS inversions. 
The inversion model revealed the presence of conductive 

Fig. 6  Map of data measurement points

Table 2  Rock resistivity value 
[50]

Material Resistivity (Ωm)

Air ~
Pyrite 0.01–100
Quartz 500–800,000
Calcite 1 ×  1012–1 ×  1013

Rock salt 30–1 ×  1013

Granite 200–10,000
Andesite 170–450,000
Wet 1000–40,000
Dry 10–1.3 ×  107

Limestone 500–10,000
Sandstone 200–8000
Shales 20–2000
Sand 1–1000
Clay 1–100
Ground water 0.5–300
Sea water 0.2
Magnetite 0.01–1000
Dry gravel 600–10,000
Alluvium 10–800
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anomalies between resistive layers at a depth of 200 m to 
350 m (Fig. 7b). The HB inversion reached convergence 
at the 37th iteration out of 1000 iterations, with a misfit of 
0.06953 (Fig. 7c). The LS inversion reached convergence 
at the 20th iteration out of 1000 iterations, with a misfit of 
0.07038 (Fig. 7c). A comparison between the observed data 
and calculated data, along with the weight values for each 
data da anddb , are shown in Fig. 7d and e. The calculated 
inversion data for da matched the observed data for both HB 
and LS inversions.

The weight value  (W1) for most HB inversions was one, 
except in the low-frequency range  (10−3–10−4 Hz). Simi-
larly, the calculated data for the inversion results for db also 

matched the observed data for both HB and LS inversions. 
The weight value  (W2) for most HB inversions was one, 
except in the low-frequency range  (10−3–0.000992 Hz).

The results of the data-yx inversion for the Matindok 
area are shown in Fig. 8. The data for the Matindok area at 
the MTM-yx point (frequency range 320 Hz–0.00114 Hz) 
were of good quality, with only a few outliers in the low-fre-
quency section. MT data were still considered good-quality 
data based on the previously mentioned criteria. In the data, 
No outliers were found in the data, the error or deviation was 
small, the data were smooth, and the values were reason-
able. There were minor differences in the results between 
the HB and LS inversion. The inversion model revealed the 

Fig. 7  Huber loss (HB) vs. least-squares (LS) inversion model results 
for the Patuha MTP-xy area a Inversion results of the model response, 
b The inversion result of the model, c Misfit, d Results of the inver-

sion of data 1 and weights, and e Results of the inversion of data 2 
and weights
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presence of conductive and resistive anomalies that varied 
at depths ranging from 10 m to 1000 m (Fig. 8b). The HB 
inversion reached convergence at the 60th iteration out of 
3,000 iterations, with a misfit of 0.3069 (Fig. 8c). The LS 
inversion, on the other hand, initially reached a minimum 
misfit at the 75th iteration out of 3,000 iterations; however, 
the misfit gradually increased to 0.3326 at the maximum 
iteration (Fig. 8c). Comparisons between the observed data 
and calculated data, as well as the weight values for each 
data da and db , are shown in Fig. 8d and e. The calculated 
inversion data for da matched the observed data for both 
HB and LS inversions. The weight value  (W1) for most 
HB inversions was one, except in the low-frequency range 
(1 Hz–0.00114 Hz). Similarly, the calculated inversion data 

for db also matched the observed data for both HB and LS 
inversions. The weight value  (W2) for the HB inversion 
exhibited the same pattern as da.

The results of the data-xy inversion for the Muara 
Laboh area can be seen in Fig. 9. The data for the Muara 
Laboh area at the MTML-xy point (frequency range 
10,000 Hz–0.0178 Hz) were of poor quality, based on the 
previously mentioned criteria. The MT Muara Laboh data 
contained an unreasonable resistivity value. Normally, 
geothermal areas tend to have resistivity values that con-
tinue to rise at low frequencies, and there are conduc-
tive zones that transition into the resistive zone due to a 
water-saturated layer filled with hot water. However, in 
the frequency data of 0.1 Hz and below, a decrease in 

Fig. 8  Huber loss (HB) vs. least-squares (LS) inversion model results for Matindok MTM-yx area (a) Inversion results of model response, (b) 
The inversion result model, (c) Misfit, (d) Results of the inversion of data 1 and weights, (e) Results of the inversion of data 2 and weights
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resistivity was observed. Differences were observed in 
the results between the HB and LS inversions, particu-
larly at small frequencies (3 Hz–0.01 Hz), where the LS 
inversion results deviated slightly from the observed data 
(Fig. 9a). The results of the HB inversion model showed 
the presence of conductive anomalies at depths ranging 
from 100 m to 1000 m and resistive anomalies at depths 
ranging from 1000 m to 10,000 m. Similar anomalies were 
also observed in the LS inversion. However, with a larger 
deviation at depths ranging from 1000 m to 10,000 m, they 
exhibited resistivity values exceeding 10,000 m (Fig. 9b). 
The HB inversion reached convergence at the 152nd itera-
tion out of 3000 iterations, with a misfit of 0.1848. On the 
other hand, the LS inversion initially achieved a minimum 

misfit at the 44th iteration out of 3000 iterations; however, 
the misfit gradually increased to 0.3137 at the maximum 
iteration (Fig. 9c). The comparison between the observed 
data and the calculated data, as well as the weight val-
ues for each data da and db , are shown in Fig. 9d and e. 
The calculated inversion data for da demonstrated a good 
fit with the observed data for the HB inversion. In con-
trast, the LS inversion exhibited slight deviations from 
the observed data at frequencies ranging from 1 Hz to 
0.5 Hz. The weight value  (W1) for most HB inversions was 
one, except in the low-frequency range (1 Hz–0.0178 Hz). 
Similarly, the calculated inversion data for db also demon-
strated a good fit with the observed data for the HB inver-
sion. In contrast, slight deviations from the observed data 

Fig. 9  Huber loss (HB) vs. least-squares (LS) inversion model results for Muara Laboh MTML-xy area a  Inversion results of the model 
response, b The inversion result model, c Misfit, d Results of the inversion of data 1 and weights, e Results of the inversion of data 2 and weights
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were seen at frequencies ranging from 50 Hz to 0.0178 Hz 
for the LS inversion. The weight value  (W2) for most HB 
inversions was one, except at a frequency of 1000 Hz and 
in the low-frequency range (0.5 Hz–0.0178 Hz).

The results of the xy data inversion for the Ulumbu area 
can be seen in Fig. 10. The inversion results for the data 
MTU-xy of the Ulumbu area are also displayed in Fig. 10. 
The MTU-xy point data for the Ulumbu area (frequency 
range 320 Hz–0.00034 Hz) were of poor quality, with many 
outliers, as per the previously established criteria. The 
data contained several outliers occurring at a frequency of 
around 100 Hz and at a frequency of 1 Hz at lower fre-
quencies. Furthermore, the data were not smooth and had 
significant errors or deviations, and the values obtained 
were not relevant to geothermal field measurements where 
two conductive zones were present between the resistive 
zones. A significant difference was observed between the 
HB and LS inversion results (Fig. 10a). While the HB inver-
sion results aligned well with the observation data, the LS 
inversion results deviated significantly. The HB inversion 
model revealed a conductive anomaly at a depth of 100 m 
to 1000 m. In contrast, the LS inversion showed a random 
pattern, making analysis difficult (Fig. 10b). The HB inver-
sion reached convergence at the 46th iteration out of 3000 
iterations, with a misfit of 2.6747 (Fig. 10c). On the other 
hand, the LS inversion converged on the 14th iteration, also 
out of 3000 iterations, with a misfit of 2.8998 (Fig. 10c). 

The comparison between observation data and calculated 
data, as well as the weight values of each data da and db , are 
presented in Fig. 10d and e. The calculated inversion data for 
daexhibited a good fit with the observational data in the HB 
inversion, while the LS inversion slightly deviated from the 
observed data at frequencies between 76 Hz and 0.00034 Hz. 
The weight value  W1 for the HB inversion varied because of 
the presence of outliers. In the HB framework, small weights 
were assigned to data points considered outliers, and vice 
versa, as shown in Fig. 10d and e. The calculation data of 
the inversion results for db in the HB inversion showed a 
fitting pattern with the observation data. In contrast, there 
was a slight increase in frequencies below  10−2 Hz in the 
LS inversion results. Similar to  W1, the weight value on  W2 
for the HB inversion also varied depending on the outlier 
values in the data.

Based on these results, it can be stated that for data of 
good quality, both the HB and LS inversion schemes will 
produce equally good models (Table 3). However, for data 
of poor quality, the HB inversion is significantly better at 
handling outliers than the LS inversion scheme. This is evi-
dent from the resulting misfit values (Table 3). In the case of 
good-quality data, the HB inversion yielded a misfit nearly 
identical to that of the LS inversion. Conversely, for poor-
quality data, the HB inversion produced a misfit smaller than 
that of the LS inversion.

Table 3  Misfit comparison of 
the HB and LS inversions for 
various cases

Model HB LS

converge at 
iteration-

Misfit converge at 
iteration-

Misfit

Model 1 168th 0. 000099 180th 0.000099
Model 2 141th 0.000205 154th 0.000205
Model 1 with outlier 25th 0.1937 20th 0.2350
MTP-xy in
Patuha area
Located in Java
Lat: -7.174028
Long: 107.388083

37th 0.06953 20th 0.07038

MTM-yx in
Matindok area
Located in Sulawesi
Lat: -1.393444
Long: 122.306972

60th 0.3069 75th 0. 3326

MTML-xy in
Muara Laboh area
Located in Sumatra
Lat: -1.637693
Long: 101.134747

152th 0. 1848 44th 0.3137

MTU-xy in
Ulumbu area
Located in East Nusa Tenggara
Lat: -8.711222
Long: 120.441278

46th 2.6747 14th 2. 8998
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4  Conclusion

In this study, successful MT 1D modeling was conducted 
for both forward and inversion modeling. The forward 
modeling scheme uses a recursive formulation to gener-
ate 1D MT responses for various models, which has been 
verified to be accurate. The inversion results for synthetic 
data without outliers demonstrated similar outcomes for 
both inversion schemes (HB and LS inversions). However, 
when synthetic data with outliers was considered, a nota-
ble difference was observed between the results obtained 
from HB and LS inversions. The inversion results for some 
field data exhibited similar outcomes. For field data of 
good quality, both HB and LS inversions produced equally 

accurate models. However, for field data of poor qual-
ity, the inversion results diverged. For this field data, the 
HB inversion converged at the 46th iteration out of 3000 
iterations, with a misfit of 2.6747, while the LS inver-
sion converged at the 14th iteration out of 3000 itera-
tions, with a misfit of 2.8998. The calculated inversion 
data showed a good fit with the observed data in the case 
of HB inversion. Meanwhile, the LS inversion deviated 
slightly from the observed data in the frequency range for 
76 Hz to 0.00034 Hz. Regarding the calculation data of the 
inversion results for db , the HB inversion still matched the 
observed data pattern. In contrast, the LS inversion results 
slightly increased at frequencies below  10−2 Hz. For field 
data of poor quality, specifically those containing outliers, 

Fig. 10  Huber loss (HB) vs. least-squares (LS) inversion model results for the Ulumbu MTU-xy area a Inversion results of the model response, 
b The inversion result model, c Misfit, d Results of the inversion of data 1 and weights, e Results of the inversion of data 2 and weights
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the HB inversion scheme outperformed the LS inversion 
scheme in handling the data. Based on these results, it can 
be concluded that the robust inversion with HB outper-
forms the LS inversion scheme in handling data with outli-
ers, demonstrating its effectiveness for modeling such data.
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