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Abstract
The classification of land use and land cover (LULC) from remotely sensed imagery in semi-arid Mediterranean areas is a
challenging task due to the fragmentation of the landscape and the diversity of spatial patterns. Recently, the use of deep
learning (DL) for image analysis has increased compared to commonly used machine learning (ML) methods. This paper
compares the performance of four algorithms, Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron
(MLP) and Convolutional Network (CNN), using multi-source data, applying an exhaustive optimisation process of the
hyperparameters. The usual approach in the optimisation process of a LULC classification model is to keep the best model in
terms of accuracy without analysing the rest of the results. In this study, we have analysed such results, discovering noteworthy
patterns in a space defined by themean and standard deviation of the validation accuracy estimated in a 10-fold cross validation
(CV). The point distributions in such a space do not appear to be completely random, but show clusters of points that facilitate
the discovery of hyperparameter values that tend to increase the mean accuracy and decrease its standard deviation. RF is
not the most accurate model, but it is the less sensitive to changes in hyperparameters. Neural Networks, tend to increase
commission and omission errors of the less represented classes because their optimisation lead the model to learn better the
most frequent classes. On the other hand, RF andMLP prediction layers are the most accurate from a general qualitative point
of view.

Keywords Machine learning · LULC · Convolutional neuronal networks · Random forest · Support vector machines ·
Hyperparameter optimisation

Mathematics Subject Classification (2010) 62P12 · 62P25 · 91D20 · 68T07

1 Introduction

The classification of land use and land cover (LULC) from
remotely sensed imagery is crucial for several aspects of land
management [16, 42], yet it may be a challenging task in
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some cases [42]. Some areas, such as the semi-arid Mediter-
ranean region of south-eastern Spain, can be challenging due
to their socio-economic and physical characteristics, which
create a particularly fragmented landscape [7, 22] with a high
diversity of spatial patterns, implying not only a wide range
of different uses, but also vegetation covers at the regional
scale [7]. The mixture of lithology and spectral properties of
soils and the diversity of biophysical characteristics of plant
species jeopardise the distinction between crops and natu-
ral vegetation, rainfed or irrigated crops, or between some
anthropogenic surfaces, among others.

Traditionally, LULC classification in remote sensing has
been carried out using Machine Learning (ML) algorithms
such as Random Forest (RF) or Support Vector Machines
(SVM), which have achieved more than satisfactory accu-
racy rates in the last decades [46], thanks to projects and
space missions developed by different government agencies

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-024-10285-y&domain=pdf
http://orcid.org/0000-0003-4306-6643


Computational Geosciences

around the world to collect information for Earth monitor-
ing, such as the NASA Landsat programme or the European
Spatial Agency (ESA) Sentinel programme. The different
constellations of satellites that make up the system provide
a wide range of different data sources that allow the classifi-
cation results to be improved [46, 52].

Usingmulti-source data, RF has been successfully applied
to classify small agricultural areas [41], urban areas [18] or
forests [39], improving classification results over other ML
algorithms as well as decreasing confusion between sparse
vegetation and forest. Also using RF as a classifier, [4] tested
multi-source feature classificationwith optical and radar data
combined with a DEM to accurately monitor a tropical peat-
land, [13] used it to effectively map forest above-ground
biomass in heterogeneous mountainous regions.

However, when spatial or temporal context is important in
the land cover being analysed, there may be contextual fea-
tures that are difficult to extract from images [46]. For this
reason, together with the rapid increase in computing power,
the use of deep learning (DL) for image analysis has made
great progress. However, there are still several unresolved
aspects to the accurate application of ANN architectures in
LULC classification, as it is a relatively new field of research.
One important underdeveloped aspect is the fusion of multi-
source data [45, 46].While such data has greatly expanded its
use as input information forML algorithms, it remains under-
exploited in DL, especially in architectures such as Deep
Convolutional Neural Networks (DCNN) [37] or Multilayer
Perceptrons (MLP).

It is important to consider the quality and quantity of the
training data set [1]. Sparsity or imbalance problems in the
training data have a negative effect on the results of neural
networks [45]. The loss function minimization process car-
ried out in neural network training, can increase accuracy by
focusing in classify accurately those classes more frequent
in the training data, leading to too high omission or com-
mission errors in the less frequent. Conventional machine
learning approaches are still widely used for this reason, as
algorithms such as RF or SVM are robust to small train-
ing data sets, although not necessarily to imbalanced data.
In addition, generalisation capacity, which is related to the
size of the training data, is still a critical challenge in DL.
The same level of success is not always achieved when good
performing models with their own training and test data are
applied to other data sets [49]. For these reasons, it is neces-
sary to check not only global accuracy metrics but also per
class metrics. In addition, it is necessary to improve not only
the predictive performance but also the understanding and
interpretability of DL models [46].

In response to these issues, some efforts have been made
to compareML techniques with some DL architectures, as in
[37], where a GEOBIA classification method was developed

using DCNN as a classifier, among others, and its perfor-
mance was studied in comparison with RF and SVM. Their
results highlight the importance of the number of training
samples in the accuracy results, which are similar or even
lower for DCNN than forMLmethodswhen the training data
set is small. In [36], the applicability of GEOBIA techniques
after classification is studied in comparison with GEOBIA,
SVM and RF classification. Castelo-Cabay et al. [11] also
compares the results obtained using a Deep Neural Network
architecture with a pixel based and a GEOBIA classification
performed with RF obtaining an overall accuracy of 87%,
43% with CNN and a pixel-based approach, but a 95% with
the GEOBIA approach.

As well as comparing how different algorithms perform,
other issues have been explored, such as in [28], which, in
addition to comparingDCNNwithMLP and SVM, proposed
a procedure for the automatic construction of the training
dataset. Regarding to multi-source input data, [49] compared
the performance and the generalisation ability in LULC clas-
sification of one, two, and three dimensional DCNN using
SAR and optical data, and [2] compared the results obtained
with two different composites of medium resolution images
as input to a DCNN architecture trained in one semi-arid
location and tested in two other semi-arid locations.

In general, RF seems to be more accurate than SVM
when no hyperparameter optimisation is performed. How-
ever, when the hyperparameters are optimised, SVM tends
to perform slightly better. In fact, one of the main advantages
of RF is its lack of sensitivity to the values of its hyperpa-
rameters [34]. On the other hand, SVM is very sensitive to
them. Another question yet to be explored is whether some
pattern might be found between the hyperparameter values
and the accuracy obtained.

It is important to take into account that the more exhaus-
tive the exploration of the hyperparameter space the more
overestimated might the final overall accuracy be. So it is
necessary to have a test dataset, independent of those data
used to explore the hyperparameters space, to perform a final
honest accuracy estimation.

The main objective of this paper is to compare four algo-
rithms, Random Forest, Support Vector machine, Multilayer
Perceptron and Convolutional Network. The first two algo-
rithms can be considered clasical machine learning models,
whereas the other two are types of deep learning models.
Additionally, an exhaustive optimization of the hyperparam-
eters of eachmodel has been carried out in order to guarantee
the maximum possible accuracy and also to evaluate the sen-
sitivity of the models to them. Both average and standard
deviation of accuracy are taken into account; the results are
presented in a hyperparameter space defined by these two
statistics. As an exhaustive exploration of the hyperparame-
ter space might produce an overestimated accuracy value, a
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test set will be separated from the dataset to obtain a more
honest final accuracy estimation. Per class, as well as global
accuracy metrics, will be analysed to check for imbalances
in class accuracies.

2 Metodology

Four different classification algorithmswere used to compare
their suitability for application over a semi-arid Mediter-
ranean area in south-east Spain. As Fig. 1 shows, the process
starts with the acquisition of images from three different
sensors, followed by the pre-process recommended for each
different type of sensor, with its resampling to 10 metres and
co-registration to a common spatial reference system (SRS).
Features derived from each sensor, i.e. indices, textures and
lidar metrics, are then extracted to form the dataset. Besides,
the summer RGBI image of Sentinel-2 is used as input data
for the CNN. Finally, the optimisation process of each indi-
vidual algorithm takes place before the classification with
optimal parameters.

2.1 Study area

The study area is the inland basin of the Mar Menor coastal
lagoon in SE Spain (Fig. 2) with 1275 km2 and a slight
slope of less than 10%. It belongs to the domain of the
Mediterranean semi-arid climate with irregular and scarce
rainfall, usually below 300-350 mm/year. The alternation
of extreme droughts and floods is common due to this high

spatial and temporal variability of rainfall. Temperatures are
warm throughout the year, with an average of 16◦C to 18◦C
and an annual average maximum of more than 42◦C.

The Mar Menor is the highest coastal saline lagoon in the
western Mediterranean, almost closed by a 22 km long and
between 100 and 1,200mwide sand barrier called LaManga
of the Mar Menor. The lagoon and its surroundings include
the most important protection figures delivered by European
laws for its unique ecological values.

The soil features in the inland area of the basin and its
climate and orographymake the area very well fit for agricul-
tural purposes since ancient times, changing during the last
fifty years progressively from rainfed to irrigated cultivation,
thanks to the support of water transferred from river Tagus,
desalination plants and underground waters. The inland area
of the basin is then one of the main agricultural surfaces in
MurciaRegion.According to regional statistics [10], fields of
irrigated grass crops alternate with irrigated dense tree crops
in lower slope areas, representing near 38,000 ha. Green-
houses cover more than 1,500 ha in this area, while other
types of plastics coverages as nets used to prevent birds and
insects from nibbling fruit on trees, and also to prevent hail
damages has been considered out of this measure.

Considering natural vegetation, there is a wide range of
biodiversity and vegetation heterogeneity, mainly Mediter-
ranean scrubs, although there are also patches of Mediter-
ranean forest. The other main use in this territory is urban;
many large urbanised surfaces, whose summer population
increase is hard to quantify, can be found along the coast-
line delimiting the lagoon. The agricultural an residential

Fig. 1 Flow chart of the
methodology used
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Fig. 2 Study Area: Mar Menor
Basin. CRS: ETRS89/UTM
zone 30N

developing in the basin have been affecting the marine
ecosystem for several decades [21, 40].

2.2 Datasets

Eight SARandMSI images (four images each)were obtained
from the Copernicus Open Access Hub (Table 1). As most
of the class separation problems are related to the phenol-
ogy and temporal evolution of the different crops and natural
covers, the dates were selected according to the sowing and
harvesting calendar for most of the crops in the area.

2.2.1 Sentinel-2 data

The S2 L1C data were corrected with ACOLITE. It is a
generic processor for atmospheric correction and processing
for coastal and inland water applications. It supports many
sensors, such as Landsat (5/7/8), Sentinel-2 (A/B), Sentinel-
3 (A/B), PlanetScope, Pléiades, and WorldView. It performs
the atmospheric correction using the “dark spectrum fitting”
or the “exponential extrapolation” [53–55], which gave a

Table 1 Sentinel-1 and Sentinel-2 images used in this study

Season S1 (SAR) S2 (MSI)

Autumn 2018/11/07 2018/11/08

Winter 2019/02/25 2019/02/24

Early spring 2019/04/11 2019/04/13

Late spring 2019/06/10 2019/05/19

more accurate classification than others in this study area
[51]. The MSI bands from B01 to B12, except B09 and B10,
were used and resampled to 10m resolution using the nearest
neighbour method.

Indices highlight fundamental interactions between spec-
tral variables, so their use to detect biophysical patterns is an
effective practice supported by a wide range of studies [9, 17,
26, 33, 43, 57]. Five common indices have been extracted:
Normalized Difference Vegetation Index (NDVI, Eq. 1) [48],
Tasseled Cap coefficient for Brightness (TCB Eq. 2) [32],
Soil-Adjusted Vegetation Index (SAVI Eq. 3) [29], Nor-
malized Difference Built-up Index (NDBI, Eq. 4) [14] and
Modified Normalized Difference Water Index (MNDWI,
Eq. 5) [56].

NDV I = B8A − B4

B8A + B4
(1)

TCB = (0.3037 · B2)+ (0.2793 · B3)+ (0.4743 · B4)

+(0.5585 · B8) + (0.5082 · B11)

+(0.1863 · B12) (2)

SAV I = (1 + L)
B8 − B4

B8 + B4 + L
(3)

NDBI = B11 − B8

B11 + B8
(4)

MNDW I = B3 − B11

B3 + B11
(5)

Haralick’s GLCM texture metrics [24, 25] recommended
in [23]were added as predictors to the dataset, computed over
two summary layers per date: the first principal component
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of the spectral layers (i.e. an albedo layer) and the NDVI.
These metrics distinguish vertical patterns of parallel lines
more than one pixel wide, using tonal differences in pairs
of pixels within a predefined neighbourhood. Three metrics
were used: Angular second moment (ASM, Eq. 6), Contrast
(CON, Eq. 7) and Entropy (ENT, Eq. 8).

ASM =
N−1∑

i, j=0

P2
i, j (6)

CON =
N−1∑

i, j=0

(Pi, j (i − j)2) (7)

ENT =
N−1∑

i, j=0

(Pi, j (− log Pi, j ) (8)

where Pi, j is the probability of i and j values occurring in
adjacent pixels; and i and j are the labels of the column and
row, respectively, of the GLCM.

2.2.2 Sentinel-1 data

SAR images were selected in themain acquisitionmode over
the Earth’s surface using the Terrain Observations by Pro-
gressive Scans SAR (TOPSAR), the Interferometric Wide
(IW), with a full swath of 250 km and 5x20 m spatial res-
olution in a single look. TOPSAR steers the beam from
backwards to forwards in the azimuth direction, with suffi-
cient overlap to provide continuous coverage when the three
sub-swaths composed of a series of bursts are merged. The
angle of incidence in thismode ranges from29.1◦ to 46◦. The
final Ground Range Detected (GRD) product was focused,
multi-looked and projected to ground range using an Earth
ellipsoidmodel as it is composed of all bursts and sub-swaths
merged and resampled to the common pixel spacing.

The pre-processing of the S1 SAR images was performed
in SNAP 7.0 in batch mode and included the following steps:
(1) radiometric calibration, (2) speckle filtering (with Lee
sigmafilter, 5x5window size, sigmaof 0.9 and 3x3 target size
window), (3) terrain correction and resampling to 10m (using
the nearest neighbour model with the SRTM 1Sec HGT as
the digital elevation model (DEM)), and (4) conversion to
dB. The projection of the S1 imagery was set the same as
that of the optical imagery for it to be used together. For
this study, intensity bands of S1 IW GRD images in co- and
cross-polarisation (VV, VH) were used.

In addition, the Dual Polarisation SAR Vegetation Index
(DPSVI) Eq. 9 proposed by [44] has been calculated to sep-
arate bare ground from vegetation:

DPSV I = (σ 0
VV + σ 0

V H )

σ 0
VV

(9)

2.2.3 LiDARmetrics

LiDAR is an active remote sensing system that uses laser
pulses in the visible spectrum to record the altitude of several
points on the Earth surface [19]. The Spanish Plan Nacional
de Ortofotografía Aerea (PNOA) [30] of the Spanish Geo-
graphical Institute (IGN) includes a globla LiDAR coverage
of the whole national territory with a sampling density of 0.5
points per square metre. Data for the study area was obtained
from August 2016 to March 2017. The recorded points are
pre-classified according to the ASPRS (American Society
for Photogrammetry and Remote Sensing) standards with
unknown accuracy, but the points have not been reclassified
to avoid an over-complicated process. The data is available
in the website of the IGN’s National Centre for Geographic
Information.

First, points not belonging to bare soil, vegetation, build-
ings orwaterwere filtered out. After that, it was computed the
proportion of points of low vegetation (ppB), medium size
vegetation (ppM), high vegetation (ppA), buildings (ppE)
and water (ppH) per each 10x10 m cell corresponding to the
Sentinel-2 images. The number of medium or high vegeta-
tion points whose nearest neighbour is another medium or
high vegetation point (Nvv) was also computed.

To obtain the heights, the altitude of the terrain extracted
from the Spanish oficial DEM with 5 m resolution (also
obtained from the IGNwebsite) was substracted from each of
the points. Next it is calculated the average height and stan-
dard deviation of each of the classes in each 10x10 cell, being
set as 0 if the cell has no points of a given class. The resulting
layers are the average height of small vegetation (mZB), the
average height of medium size vegetation (mZM), the aver-
age height of high vegetation (mZA), the average height of
building points (mZE), the average height of ground points
(mZG), the standard deviation of small vegetation (sZB),
the standard deviation of medium size vegetation (sZM), the
standard deviation of high vegetation (sZA), the standard
deviation of building points (sZE) and the standard devia-
tion of ground points (sZG).

The cluster tendency of the dataset has been measured
using the Hopkins statistic [27], calculated with the R pack-
age clustertend [58]:

H =
∑m

i=1 u
d
i∑m

i=1 u
d
i + ∑m

i=1 wd
i

(10)

where udi is the distance of each point to its nearest neigh-
bour, and wd

i is the distance of m randomly chosen points to
their nearest neighbour. The spatial cluster tendency (HI) of
medium and high vegetation points was been calculated in
each 10x10 cell.
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Table 2 Summary of features in
dataset

Dataset Variables

S1 VV, VH

S1 indices DPSVI

S2 B01, B02, B03, B04, B05, B06, B07, B08, B08A, B11, B12

S2 indices NDVI, SAVI, NDBI, MNDWI, TCB

S2 texture PC1, NDVI, Entropy, Contrast, Second angular moment

LiDAR ppA, ppM, ppB, ppH, ppE, mZG, mZB, mZM, mZH, mZA, mZE, sZG,

sZB, sZM, sZA, sZE, sZH, Hv, He, Nk, Nke, Nvv, wCv, wCd, wDv, wDd

It was also calculated the optimum number of clusters of
medium and high vegetation points in each 10x10 cell (nCl)
according to the function available in the NbClust R package
[12].

The tendency of points to appear dispersed or forming
clusters is measured by the Ripley’s K function [38]:

K (d) = A

n2
∑

i=1

nCi,d (11)

where d is a given distance, A is the area of the analysed
territory, n is the number of points and Ci,d is the number of
points whose distance to point i is lower than d. Values of
K (d) larger than the expected indicate a clustered point pat-
tern, whereas K (d) values lower than the expected indicate
a regular point pattern [38]. Relative K function is calculated
with the R package spatstats [6] as:

Kr (d) = K (d) − Kth(d)

Kth(d)
(12)

where Kth(d) is the expected value of K (d) assuming a ran-
dom point distribution. The function is calculated at several
distances to estimate the pattern at different scales.

It has been extracted 4 metrics from the Kr function for
medium and high vegetation points: the maximum and mini-
mum values (wCv and wDv, respectively) and the distances
at which they occur (wCd and wDd).

In summary, the final dataset is composed by a total of
126 multi-source features summarized in Table 2.

2.3 Training areas and classification scheme

The training areas were digitised using aerial photographs
from the Spanish Plan Nacional de Ortofotografía Aerea
(PNOA) [30], acquired in 2016 and 2019 (also available
from the IGNwebsite). The representativeness of the set was
improved using Isolation Forest with the methodology pro-
posed in [3], resulting in a total of 131 polygons, distributed
as shown in Table 3. Seventeen out of the 131 polygons were
used for doing a final accuracy testing of the models. Other
114 polygons were used to calibrate and validate the models
using a 10-fold Cross-validation approach.

The classification scheme adopted was chosen to group
different related coverages in the study area. Netting is a
class that consists of covering trees with nets of different
mesh sizes to prevent both insects and birds from eating the
fruit and to prevent hail damage. Some residual rainfed areas
remain in the study area, but they are not included as a sepa-
rate class in the classification scheme because most of them
are in the process of being converted to irrigation or are aban-
doned and no longer in production. In this case, their spectral
signatures are similar to those of bare soil areas and it is
preferable to classify them as such.

In order to avoid strong imbalances between the classes,
the number of pixels in the training dataset was extracted

Table 3 Classification scheme
including the number of
polygons for training and
validation (N.Pol.), number of
pixels per class (N.Pixels),
number of randomly selected
pixels per polygon as final
training dataset (N.RPix), and
percentage (Perc.) (DTC: Dense
Tree Crops, IGC: Irrigated
Grass Crops)

Id Class Description N.Pol. N.Pix. N.RPix. Perc.

1 Forest Mediterranean forest 10 41616 10000 2.4

2 Scrub Scrubland 12 10075 1200 11.9

3 DTC Fruit and citrus trees 18 19969 1800 9.0

4 IGC Mainly Horticultural crops 10 8658 1000 11.5

5 Impermeable All artificial surfaces 18 47004 1639 3.5

6 Water Water bodies 12 45050 1158 2.6

7 Bare soil Uncovered land or low-vegetation 11 5203 1055 20.3

8 Greenhouses Irrigated crops under plastics structures 26 145453 2600 1.8

9 Netting Crops covered by nets 14 9258 1400 15.1
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by randomly selecting 100 pixels per polygon from the 114
polygons, selected as initial training dataset with a larger
number of pixels per polygon, as specified in the Table 3. If
polygons had less than 100 pixels, all pixels of that polygon
were selected.

2.4 Clasification algorithms

2.4.1 Random forest

Random Forest (RF) [8] is a non-parametric classification
and regression method based on an ensemble of decision
trees, typically between 500 and 2000, with two procedures
to reduce correlation between trees: 1) each tree is trained
with a bootstrapped subsample of the training data, 2) the
feature used to split each node of the trees is selected in each
split from a different randomly generated subset of features.
These changes reduce the correlation between trees, making
the whole concept of ensemble learning more meaningful
[31]. Once all the trees are calibrated, each contributes with
a vote to classify each new pixel. Finally, the pixel is assigned
to the class with the most votes.

Using the default values for the required parameters, the
number of trees (ntree = 500) and the number or features
chosen to split the nodes (mtry = f loor(

√
p), where p is the

number of features), usually achieves high accuracy results
[34]. However, in order to obtain the best possible results,
the values need to be optimised by the user. In this study, a
third parameter was also optimised, maxsize, which refers to
the maximum depth allowed for trees. All the combinations
of the following hyperparameter values are explored to find
the most accurate combination with the training polygons:

• ntrees = [250,500,750,1000,1250,1500]
• mtrys = [5, 7, 9, 11, 13]
• maxsize = [2,4,8,16, 32, None]

The default value of ntree according to Breiman is 500.
Given the number of features, the default value ofmtry should
be 11. The parameter maxsize is the maximum depth to
which the trees are allowed to grow. Although in the original
definition of Random Forest the depth is not limited, it is
usually another hyperparameter to check, so we decided to
include it. None means no growth limit.

2.4.2 Support vector machine

SupportVectorMachine (SVM) is another of themostwidely
used ML algorithms for LUC classification in remote sens-
ing [35]. It computes optimal nonlinear hyperplanes between

classes in the feature space using two parameters to which
SVM is extremely sensitive: a cost parameter that determines
the flexibility of these hyperplanes, leading to underfitting or
overfitting of themodel if the parameter is notwell optimised;
and the type of kernel transformation to convert the nonlinear
boundaries between classes into linear ones. For this study,
the parameters were tested and optimised for three different
kernels: the Gaussian Radial Basis Function (RBF), poly-
nomial and sigmoid. For all kernels, the gamma parameter
was optimised, as well as the aforementioned cost parameter
and a specific parameter required as an independent term in
the polinomial and sigmoid functions, the coef0. Finally, the
degree has also been optimised for the polynomial kernel.

Hyperparameter optimisation is quite more complex in
this case, not only for its highest sensitivity, but also for
the larger number of parameters. In this case we carried out
optimisation in three stages, focusing in each stage in the
best hyperparameter values detected in the previous one. The
hyperparameter combinations explored were:

• First stage:

– Kernel rbf:
∗ gamma = np.logspace(-9, 3, 13)
∗ cost = [0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8, 16, 32]

– Kernel polynomial:
∗ gamma = np.logspace(-9, 3, 13)
∗ cost = [0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8, 16, 32]
∗ degree = [2,3,4,5]
∗ coef0 = [0,0.1,0.2,0.4,0.7,0.9]

– Kernel sigmoid:
∗ gamma = np.logspace(-9, 3, 13)
∗ cost = [0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8, 16, 32]
∗ coef0 = [0,0.1,0.2,0.4,0.7,0.9]

• Second stage:

– Kernel rbf:
∗ gamma = [0.0001, 0.0005, 0.001]
∗ cost = [16, 24, 32, 40, 48, 56, 64, 72]

– Kernel polynomial:
∗ gamma = [0.0001, 0.0005, 0.001]
∗ cost = [16, 24, 32, 40, 48, 56, 64, 72]
∗ degree = [2,3,4,5]
∗ coef0 = [0.7, 0.75, 0.8, 0.85, 0.9, 0.95]

• Third stage:

– Kernel polynomial:
∗ gamma = [0.001]
∗ cost = [32, 36, 40, 44, 48, 52, 56, 60, 64]
∗ degree = [3]
∗ coef0 = [0.7, 0.75, 0.8, 0.85, 0.9, 0.95]
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2.4.3 Multilayer perceptron

A Multilayer Perceptron (MLP) consists of several layers
with different numbers of neurons. All neurons in each layer
are connected to all neurons in the next layer. The first (input)
layers have as many neurons as features used to train the
model, and the last (output) layer has as many neurons as
classes. Each neuron performs a linear combination of its
inputs through a weight vector, and the result is transformed
through a non-linear activation function to produce the neu-
ron’s output. In this case, the hyperparameters optimised
were the number of hidden layers (nLayers), the proportion
of weights automatically set to zero to prune the network
as a method of regularisation (dropRates), the rate at which
the network learns (learningRates), and the number of cases
analysed to decide the next step in the gradient descent pro-
cess (batch size). It has been tried a MLP with different
numbers of hidden layers (Fig. 3).

All combinations of the following hyperparameters are
explored:

• nLayers = [1,2,3,4]
• dropRates = [0.1,0.2,0.3,0.4,0.5]
• learningRates = [10**i for i in range(-5,2)]
• batchSizes = [8, 16, 24, 32]

nLayers is the number of hidden layers. The learning rate
is the rate at which the network learns. A small value can
lead to suboptimal performance, but too high a value can

Fig. 3 Architecture of a MLP model with just two layers

lead to unstable behaviour. The drop rate is the proportion of
weights that are automatically set to zero as a regularisation
method by pruning the network. The batch size is the number
of cases analysed to determine the next step in the gradient
descent process.

The number of neurons in each layer varies with the num-
ber of hidden layers:

• nLayers = 1: [130, 260, 9]
• nLayers = 2: [130, 260, 134, 9]
• nLayers = 3: [130, 260, 176, 93, 9]
• nLayers = 4: [130, 260, 197, 134, 72, 9]

2.4.4 Convolutional neural network

Convolutional Neural Networks (CNNs), which have been
successfully applied to image classification, are increasingly
being used for remote sensing classification. They are com-
posed of several layers that perform different transformations
on the input layer using different convolutions, which consist
of applying a filter to the input to extract spatial or spectral
features, or both. By combining different types of layers, the
network learns to assign importance, in the form of weights
and biases, to each feature extracted from the image using
these transformations. The convolution layers take an image
as input and distinguish between objects in the image based
on the colour bands in which the image is composed. Using
a filter of a given size, they extract high-level features from
the image, but not limited to it. It can also extract low-level
features such as colour or gradient orientation, or reduce or
increase the dimensionality of the image. The convolution
layer is followed by a variety of different types of layers, such
as pooling, which provide statistics within the window of the
image covered by the kernel size. The most commonly used
are the maximum (max pooling) and the average (average
pooling). Finally, a fully connected layer usually performs
the classification task and gives the output layer,with asmany
neurons as possible classes in the scheme.

For this comparative study, an architecture was testedwith
2 convolutional layers (Fig. 4) using the relu activation func-
tion, with a max-pool layer between them, followed by a
fully connected layer of 64 neurons using the same activa-
tion function, tofinally obtain the output layer using a softmax
activation. For this experiment, only 4 bands, visible and near
infrared, of a single date image, were used.

The hyperparameter optimization was also carried out in
two stages, with the second set established based on the
results of the first:

• First stage

– learning rate: [0.01,0.005,0.001]
– drop rate: [0,0.25,0.5]
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Fig. 4 Architecture of a the CNN model

– batch size: [8,16,32]

• Second stage

– learning rate: [0.005, 0.0075, 0.01, 0.0125]
– drop rate: [0, 0.1, 0.2, 0.3]
– batch size: [16,32]

3 Results

3.1 Hyperparameter optimisation

Figure 5 shows the mean and standard deviations of accu-
racy values obtained with 10-fold CV with RF for different
hyperparameter sets. Obviously, in these figures the best
combination is the one that maximises the mean and min-
imises the standard deviation. The figure shows a zoom to

the best combinations in the space defined by the mean and
the standard deviation. The first conclusion is that accuracy
results are not very high. In addition, it can be seen that the
model is not very sensitive to ntree ormtry, as there is a large
diversity of values in the best models. On the contrary, the
model is sensitive to the maximum size of the trees as the
highest accuracy values are reached only with values of 32
or None. The best model achieved an accuracy of 0.868 in the
training and cross validation process with values of ntree =
750, mtry = 5 and maxsize = None. It is noteworthy the clus-
tered pattern of the results and that most of the parameter
combinations are in the highest accuracy cluster.

Figure 6 shows the results of the best parameter combi-
nations for SVM, where the highest mean of accuracies is
achieved with a polynomial kernel of degree = 3, a cost = 56,
a gamma = 0.001 and a Coef0 = 0.70. In this case there is
an interesting pattern with most of the models in a cluster of
results around accuracy = 0.3 and the other around accuracy
= 0.8. The intermediate mean accuracy values are accompa-
nied by larger standard deviations. There is no clear pattern of
hyperparameter values producing good or bad results, which
difficulties the optimization of this classification model. The
polynomial kernel seems to produce the best results, that is
the reason why the 3 stage optimisation process ends focus-
ing on it. However, it is the kernel with more parameters,
which gives it an advantage and also makes it the most repre-
sented. The bottom plot in Fig. 6 shows a zoom to the highest
mean accuracy area. In general, low values of cost and coef0
seems to work better.

Figure 7 shows the results for a MLP. The accuracy is
clearly higher than with Random Forest or Support Vector
Machines. The bestmodel obtained amean accuracy of 0.923
and a standard deviation of 0.051. Such model had 2 hidden
layers a learning rate of 0.01, a drop rate of 0.1 and batch size
of 16. However, there is no clear hyperspace values giving
the best results.

Figure 8 shows the results obtained with the CNN. The
highest accuracy (0.951) was obtained with a learning rate
of 0.005, a drop rate of 0.25 and batch size 32. Once again,
there is no clear hyperspace values giving the best results.

3.2 Test data

The hyperparameter optimisation carried out with the mod-
els might lead to an overestimation of the accuracy values
obtained by the cross-validation process. Test data polygons
were randomly selected from the labelled data set prior to
the cross validation. Table 4 shows overall accuracies and
kappa indices obtained by each algorithm with the test data;
the standard deviations appear between parentheses. These
standars deviations are calculated from the confusion matrix
following [47], and are smaller than those obtained during
the optimisation. The accuracy results are higher than those
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Fig. 5 Accuracy mean and
standard deviations of accuracy
values obtained with 10-fold CV
with RF for different
hyperparameter sets for (a) per
each parameter combination and
(b) detailed zoom to the most
accurate models

obtained with cross-validation. Such a result is not usually
to be expected, but can happen if the randomly selected test
happens to be particularly low-noise. All the obtained met-
rics are similar in the case of RF, SVM and MLP, being the
latter slightly better than the others. It is noteworthy that
CNN shows a substantial decrease in test accuracy although
validation accuracy is quite high.

Tables 5, 6, 7, 8, and 9 show the confusion matrices and
omission and commission errors of each model. Figures 9,
10, 11, 12, and 13 show graphically the different errors that
appear in the confusion matrices.

Classification of the test data with the best RF model
achieved an accuracy of 0.932 and a kappa index of 0.923.

The graph from Fig. 10 shows the main omission errors
between impermeable (class 5) with scrub (class 2), bare
soil (class 7) and netting (class 9), and between classes of
plastic covering of crops, greenhouses and netting (classes
8 and 9 respectively) with themselves or, to a lesser extent,
with impermeable (class 5). Almost every other class was
well classified, but the traditionally less separable classes,
dense tree crops, irrigated grass crops, were particularly well
separated, as shown in Table 10, with accuracy metrics by
class.

On the test data, the SVM model obtained an accuracy of
0.931 and a kappa index of 0.919. The proportion of omission
and commission errors (Fig. 10 and Table 6) is mostly low,

Fig. 6 Accuracy mean and
standard deviations of accuracy
values obtained with 10-fold CV
with SVM in (a) the first
optimization stage, (b) detailed
zoom to the best parameter
combinations and (c) results
after the third optimization stage

123



Computational Geosciences

Fig. 7 Accuracy mean and
standard deviation of accuracy
values obtained with 10-fold CV
with MLP per each parameter
combination

Fig. 8 Accuracy mean and
standard deviation of the 10
folds per each parameter
combination with CNN. Zoom
to the best parameter
combinations

Table 4 Overall Accuracy (OA)
and Kappa index (K) obtained
using test data in classification
with each algorithm with
optimal hyperparameters

RF SVM MLP CNN CNN f ull

OA 0.932 (0.0044) 0.931 (0.0047) 0.939 (0.0044) 0.852 (0.0065) 0.969 (0.0007)

K 0.923 (0.0052) 0.919 (0.0055) 0.928 (0.0052) 0.826 (0.0077) 0.958 (0.0001)

The standard deviation of the metrics is shown in brackets. CNNa refers to the model calibrated with the same
pixels that the others and CNNb refers to the model with the larger dataset
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Table 5 Confusion matrix of the optimised RF model (DTC: Dense tree crops, IGC: Irrigated grass crops, Com.Err.: Commission error, Omis.Err.:
Omission error)

Forest Scrub DTC IGC Imp. Water Bare soil Greenhouses Netting Com.Err.

Forest 193 7 0 0 0 0 0 0 0 0

Scrub 0 100 0 0 0 0 0 0 0 0.405

DTC 0 0 499 0 0 0 0 0 1 0.006

IGC 0 0 0 300 0 0 0 0 0 0

Impermeable 0 57 3 0 627 0 33 1 9 0.022

Water 0 0 0 0 0 100 0 0 0 0

Bare Soil 0 4 0 0 0 0 296 0 0 0.106

Greenhouses 0 0 0 0 3 0 2 478 17 0.059

Netting 0 0 0 0 11 0 0 29 160 0.144

Omis.Err. 0.035 0 0.002 0 0.141 0 0.013 0.044 0.2

Table 6 Confusionmatrix of the optimised SVMmodel (DTC:Dense tree crops, IGC: Irrigated grass crops, Com.Err.: Commission error, Omis.Err.:
Omission error)

Forest Scrub DTC IGC Imp. Water Bare soil Greenhouses Netting Com.Err.

Forest 170 30 0 0 0 0 0 0 0 0.012

Scrub 0 100 0 0 0 0 0 0 0 0.500

DTC 0 0 500 0 0 0 0 0 0 0.006

IGC 0 0 0 300 0 0 0 0 0 0

Impermeable 2 51 2 0 612 3 50 3 7 0.022

Water 0 0 0 0 0 100 0 0 0 0.029

Bare Soil 0 19 1 0 5 0 275 0 0 0.154

Greenhouses 0 0 0 0 7 0 0 490 3 0.039

Netting 0 0 0 0 2 0 0 17 181 0.052

Omis.Err. 0.15 0 0 0 0.162 0 0.083 0.02 0.095

Table 7 Confusionmatrix of the optimisedMLPmodel (DTC:Dense tree crops, IGC: Irrigated grass crops, Com.Err.: Commission error, Omis.Err.:
Omission error)

Forest Scrub DTC IGC Imp. Water Bare soil Greenhouses Netting Com.Err.

Forest 196 4 0 0 0 0 0 0 0 0.005

Scrub 0 100 0 0 0 0 0 0 0 0.315

DTC 1 1 496 0 1 0 0 0 1 0.006

IGC 0 0 0 295 0 0 0 0 5 0.003

Impermeable 0 40 3 1 649 8 15 1 13 0.069

Water 0 0 0 0 0 100 0 0 0 0.099

Bare Soil 0 1 0 0 32 3 264 0 0 0.057

Greenhouses 0 0 0 0 13 0 1 475 11 0.048

Netting 0 0 0 0 2 0 0 23 175 0.146

Omis.Err. 0.02 0 0.008 0.017 0.111 0 0.12 0.05 0.125
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Table 8 Confusionmatrix of the optimisedCNNmodel (DTC:Dense tree crops, IGC: Irrigated grass crops, Com.Err.: Commission error, Omis.Err.:
Omission error)

Forest Scrub DTC IGC Imp. Water Bare soil Greenhouses Netting Com.Err.

Forest 133 63 0 0 0 0 0 0 0 0

Scrub 0 98 0 0 0 0 0 0 0 0.553

DTC 0 4 484 0 0 0 0 0 2 0.051

IGC 0 0 22 272 0 0 0 0 0 0.004

Impermeable 0 53 4 1 594 0 49 60 23 0.080

Water 0 0 0 0 0 98 0 0 0 0

Bare Soil 0 1 0 0 10 0 283 0 0 0.148

Greenhouses 0 0 0 0 1 0 0 488 1 0.246

Netting 0 0 0 0 41 0 0 99 56 0.317

Omis.Err. 0.321 0 0.012 0.075 0.242 0 0.037 0.004 0.714 0.321

Table 9 Confusion matrix of the optimised CNNmodel using the whole sample of training data (CNN f ull ) (DTC: Dense tree crops, IGC: Irrigated
grass crops, Com.Err.: Commission error, Omis.Err.: Omission error)

Forest Scrub DTC IGC Imp. Water Bare soil Greenhouses Netting Com.Err.

Forest 4155 13 0 0 0 0 0 0 0 0

Scrub 0 1520 0 0 0 0 0 0 0 0.202

DTC 0 35 5122 0 7 0 0 4 0 0.018

IGC 0 0 12 3046 0 0 0 4 6 0

Impermeable 0 336 81 0 22059 0 90 164 272 0.029

Water 0 0 0 0 0 14592 0 0 0 0

Bare Soil 0 0 0 0 372 0 987 7 8 0.084

Greenhouses 0 0 0 0 133 0 0 2434 22 0.071

Netting 0 0 0 0 142 0 0 7 326 0.486

Omis.Err. 0.003 0 0.009 0.007 0.041 0 0.282 0.06 0.314

Fig. 9 Omission and
Commission errors with the
optimised RF model
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Fig. 10 Omission and
commission errors with the
optimised SVM model

Fig. 11 Omission and
commission errors with the
optimised MLP model

Fig. 12 Omission and
commission errors obtained
with the optimised CNN model
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Fig. 13 Omission and
commission errors with the
optimised CNN model using the
whole sample of training data
(CNN f ull )

around 0.15, except for the commission error of scrub, where
the confusion of this natural vegetation with impermeable
and bare soil reaches 0.5. Confusion between netting and
greenhouses seems to have been partially solved, as netting
is still the most difficult to identify. However, impermeable,
bare soil and scrub are still confused with forest and, in the
case of impermeable, also with greenhouses and netting. In
general, both classes of crops have been well classified, as
can be seen in Table 10, with metrics of accuracy per class.

The accuracy and kappa index of the MLP model reach
values of 0.939 and 0.928 respectively. Even though it is not
themost accuratemodel, the proportionof omission and com-
mission errors is less than 0.15, except for the commission
error for scrub, which is mainly confused with impermeable.
Again, the most problematic classes are impermeable, scrub,

bare soil, greenhouses and netting, which are mainly con-
fused with each other (Fig. 11 and Table 7). Nevertheless,
the accuracy metrics per class (Table 10) show a generally
good performance for all classes.

In the case of the CNN model, there is a clear decrease in
the accuracy metrics estimated on the test data with respect
to the previous models, reaching values of 0.852 and 0.826
for accuracy and kappa index respectively (Figs. 12 and 13
and Tables 8 and 10). The omission and commission errors of
class 9, netting, are quite large, with confusion with class 8,
greenhouses. In the case of commission errors, class 2 Shurb
is noteworthy, with high confusion with classes 1 Forest and
9 Netting.

We thought that the reason might be that a CNN model
calibrated with a reduced dataset might not generalise well.

Table 10 Precision, recall and balance accuracy per class obtained with models (DTC: Dense tree crops, IGC: Irrigated grass crops)

Forest Scrub DTC IGC Imp. Water Bare soil Greenhouses Netting

RF Precision 0.965 1.000 0.998 1 0.859 1 0.987 0.956 0.800

Recall 1.000 0.595 0.994 1 0.978 1 0.894 0.941 0.856

Balanced.Accuracy 0.500 0.798 0.872 − 0.549 − 0.896 0.759 0.629

SVM Precision 0.850 1.00 1.000 1 0.838 1.000 0.917 0.980 0.905

Recall 0.988 0.50 0.994 1 0.978 0.971 0.846 0.961 0.948

Balanced.Accuracy 0.525 0.75 0.997 − 0.542 0.985 0.756 0.814 0.646

MLP Precision 0.980 1.000 0.992 0.983 0.889 1.000 0.880 0.950 0.875

Recall 0.995 0.685 0.994 0.997 0.931 0.901 0.943 0.952 0.854

Balanced.Accuracy 0.597 0.842 0.711 0.582 0.652 0.950 0.625 0.721 0.700

CNN Precision 0.997 1.000 0.991 0.993 0.959 1 0.718 0.940 0.686

Recall 1.000 0.798 0.982 1.000 0.971 1 0.916 0.929 0.514

Balanced.Accuracy 0.500 0.899 0.826 0.500 0.690 − 0.553 0.737 0.594

CNN2 Precision 0.679 1.000 0.988 0.925 0.758 1 0.963 0.996 0.286

Recall 1.000 0.447 0.949 0.996 0.920 1 0.852 0.754 0.683

Balanced.Accuracy 0.500 0.724 0.881 0.520 0.567 0.835 0.871 0. 420
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Therefore, we decided to calibrate the model with the full,
albeit unbalanced, dataset. So, there are two different CNN
models with two different training datasets:

• CNN : CNN using the same number of pixels for training
as in the rest of the models (column N.RPix. in Table 3).

• CNN f ull : CNN training with all pixels of 114 polygons,
selected as initial training.

The results are shown in Fig. 13 and Tables 9 and 10. The
accuracy is quite high, but in both cases, especially in the
model calibrated with the smaller dataset, there is a signifi-
cant increase in the omission and commission errors in some
of the classes. The accuracy and kappa index of the CNN f ull

reach values of 0.969 and 0.959 respectively. Although it is
higher than the other models, the omission and commission

errors of class 9, netting, are notable (Fig. 12 and Table 8), as
well as the tendency to confuse impermeable with almost
every other class except both crops and forest. Even the
accuracy metrics per class are generally worse, as shown
in Table 10.

However, performance per class is quite different by algo-
rithm, as Table 10 shown.

Figure 14 shows the predictions obtained with the five
models for the whole study area. Figure 15 shows the results
in an enlarged area and their comparison with a high resolu-
tion orthophoto. RF and MLP give similar results, whereas
SVM seems to predict more bare ground than is actually
present. Convolutional Neural Networks, on the other hand,
seem to predict more urban (impervious) areas than actually

Fig. 14 Prediction of the RF (upper left), SVM (upper right), MLP (middle left), CNN (lower left) and CNN with the full dataset (lower right)
models
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Fig. 15 Prediction of the RF (upper left), SVM (upper right) and MLP (middle left), CNN (middle right) and CNN with the full dataset(lower
right) models and comparison with a high resolution ortophotograph (lower right)

exist. The geometry of the plots seem alsomore roundedwith
the CNN classifications.

4 Discussion

The results obtained in this research show that all the clas-
sification algorithms tested have similar accuracy in this
particular study. Previous studies, such as [15], had already
shown similar results using different ML algorithms.

Valdivieso-Ros et al. [52] found that the overall classifi-
cation accuracy reached with RF was more than 0.90 using
features from Sentinel-1, Sentinel-2 and LiDAR, outper-
forming results from SVM and MLP models to classify 9

different types of LULC in a semi-aridMediterranean region.
Similarly, [59] achievedmore than 90%overall accuracy over
k Nearest Neighbors (kNN), SVM and Artificial Neural Net-
work (ANN) models in a tropical African region to monitor,
quantify andmap LULC and its changes. Other studies found
that SVM achieves better results than RF, e.g. [50], where it
was successfully applied for LULC classification using air-
borne LiDAR and aerial photographs reaching good results
in most of the classes included in the classification scheme,
or in [5] for LULC classification in an Egyptian governorate
over a period of 20 years reached a kappa index above 0.91,
the highest compared to those obtained using Maximum
Likelihood or RF. Ghayour et al. [20] evaluated the perfor-
mance of SVM, ANN, Maximum Likelihood Classification
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(MLC), and Minimum Distance (MD) to produce LULC
maps using data from Sentinel-2 and Landsat-8 satellites and
concluded thatwith optimised parameters, SVMachieved the
highest accuracy, over 95% with Sentinel-2 data, in an Ira-
nian province with Mediterranean climate. Occasionally, RF
and SVM have shown equal results, as in the research car-
ried out in [15] in a large area of semi-arid Mediterranean
using Geographic Object Based Analysis (GEOBIA), where
the comparison of the performance of RF and SVM with
default parameters among five classification algorithms out-
performed the classification metrics of the other three with
similar values.

Ali and Johnson [2] compared two different composites of
medium resolution images as input to a DCNN architecture.
They obtained in each test site of the two used accuracies of
91.4% and 94.8%, and kappa values of 0.88 and 0.93 with
the four band composite, while using the second composition
with ten bands, only achived 85.1% and 88.8% of accuracy
and kappa of 0.79 and 0.85. One of themain complications of
DL algorithms, aswell aswith SVM, is the need for a exhaus-
tive optimization of hyperparameters, as final accuracy can
be very sensitive to their values.

In [18], RF was compared with Extreme Gradient Boost-
ing, and the latter outperformed the former only in terms
of processing time. Results with RF alone were satisfactory
in terms of accuracy, integrating multi-temporal optical and
SAR data for classification of urban areas, reducing mis-
classification between vegetation classes as forest or low
vegetation, and labelling the water and urban classes almost
perfectly. In this study, RF also performed well in labelling
the water class. For the Impermeable class, a certain percent-
age of misclassification with bare soil and scrub still persist,
given that urban and peri-urban developments are usually
adjacent to fields in various stages of production, or even
abandoned, awaiting a change of use.

The results of [41] show how RF outperforms the accu-
racy obtained with SVM, but not that obtained with ANN, as
also happened in this comparison, while [39] used it to clas-
sify a heterogeneous Mediterranean forest area, obtaining a
high value of overall accuracy (98.13%) with training data,
and a low proportion of misclassifications between high and
low vegetation classes. In line with these results, also in this
study, RF presents less problems to correctly label vegetation
classes than others, being the most problematic those where
the reflectance of artificial surfaces dominates.

However, a CNN architecture calibrated with four bands
of a single date image is slightly higher, about 0.97. Ali
and Johnson [2] reached 97.7% in another semi-arid area
in Pakistan with the same four combination bands VIS-NIR,
which outperformed the accuracy and separability achieved
with a 10 combination bands including also red-edge and
SWIR bands, which only achived an accuracy of 95.8%, also
below those obtained in our research. Unfortunately, due to

its sensitivity to imbalanced data, it has had serious issues
with the impermeable class, which should be resolved by
reviewing the training and validation datasets.

The results obtained in this study also show that, depend-
ing on the type of neural network used in the classification
process withmultitemporal andmulti-source data, the results
can be quite similar to those obtainedwithRF or SVM. In this
case, the accuracy ofMLP is only better when comparing the
omission and commission errors of all classes in general, so
that the good results obtained with the use of multitemporal
and multisource data with RF or SVM, are not outperformed
by MLP. Moreover, the use of multi-source data, also con-
sidered as feature level fusion by some authors [60] and an
underexplored issue [45, 46], does not make a major differ-
ence between RF, SVM and MLP in this particular study
area, while [60] found worse results with MLP doing a sim-
ilar comparative study testing different levels of fusion data
using optical and SAR data and features extracted from both
datasets.

Using CNN, the results show the influence of the quality
and quantity of the training data, as pointed out by [45]. With
the same training data as the rest, with 100 or less pixels per
training polygon, CNN achieves good results in validation,
as it does with the larger data set with all possible pixels
of training polygons. However, on the test data, the accu-
racy drops with the small dataset, indicating a lack of good
generalisation capacity in the model. Conversely, when the
larger data set is used for training (CNN f ull in this study),
the classification accuracy on the test data reaches a value
of almost 0.97, which is in line with the results obtained by
other researches, such as those presented in [37], comparing
patch-based CNN and full CNN. The CNN architecture was
tested on a four-band single date image, which [2] found to be
more robust in semi-arid locations than other band combina-
tions for separating confusing land cover. The performance
of the CNN with both datasets in training and the larger one
in test is consistent with the conclusions of [2] for almost
all other classes except the impervious class. The research
reviewed in [45] pointed out that CNNs are extremely sensi-
tive to an unbalanced dataset, which would affect the results
obtained. The problem observed in the opaque class seems to
respond to this. The total number of pixels of this class used
in the larger training dataset, 47004, would not be sufficiently
representative of the total area covered by this class and the
intra-class variability it has, as it includes not only the urban
class but also transport and industrial infrastructure.

The problem with CNNs is that the training areas were
selected in the core of the identified polygons to avoid uncer-
tainties associated with the boundary pixels. A convolutional
network will have no problem in predicting such pixels,
since the whole window around them will be homogeneous
with the reference class. On the contrary, border pixels will
have more diversity within their windows. Urban areas (class
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impervious) are the most heterogeneous class in the study
area, due to the different colours and the presence of parks
and gardens within them. We believe this is the reason why
there is an overestimation of urban areas in the CNN pre-
diction maps. CNN seems also be acting as a mode filter,
generating plots larger and rounder than the real ones.

5 Conclusions

The usual approach in the optimisation process of a LULC
classification model is to keep the best model in terms of
accuracy without analysing the rest of the results. In this
study, we have analysed such results, discovering noteworthy
patterns in a space definedby themean and standard deviation
of the validation accuracy estimated in a 10-fold CV. Four
clusters appear with RF and 2 with SVM and MLP. In all
cases, the largest cluster corresponds to the most accurate
models. RF is the model where the worst models have the
highest accuracy; it seems that although it is not the most
accurate model, it is the most robust.

It is difficult to establish clear relationships between
parameter values and accuracy. The only conclusions that
can be drawn are that in RF trees should be allowed to grow
fully, in SVM the polynomial kernel seems to work better,
and in MLP good models seem to reduce the standard devi-
ation when the number of layers is reduced and the learning
rate is increased. However, for all models, the standard devi-
ation does not seem to be very large for the most accurate
models. This lack of relation difficults but highlights the need
for optimisation.

ANNmodels optimise categorical cross-entropy, a metric
that is not accuracy, but can be considered related. Thus, the
models have a tendency to increase accuracy by learning to
classify particularly well those classes with a larger sample
size, leading to an increase in the commission and omission
errors of the less represented classes. CNN seems to need a
larger sample to achieve good accuracy results. In any case,
the CNN models were calibrated with 4 bands from a single
summer image, so with much less information a really high
accuracy was obtained.

The performance of RF and SVM is similar, although
RF offers slightly higher rates of omission and commission
errors. However, MLP slightly outperforms both in terms of
accuracy, kappa and omission and commission errors. The
best accuracy was obtained with CNN, but the problem of
misclassification of impermeability needs to be solved.

Having good accuracy metrics is not enough to consider
a classification method as the best option. Prediction maps
provide additional insight into possible biases of the classi-
fication performed.
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