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Abstract
Decisions regarding problem conceptualization, search approach, and how best to parametrize optimization methods for
practical application are key to successful implementation of optimization approaches within georesources field development
projects. This work provides decision support regarding the application of derivative-free search approaches for concurrent
optimization of inflow control valves (ICVs) and well controls. A set of state-of-the-art approaches possessing different
search features is implemented over two reference cases, and their performance, resource requirements, and specific method
configurations are compared across multiple problem formulations for completion design. In this study, problem formulations
to optimize completion design comprise fixed ICVs and piecewise-constant well controls. The design is optimized by several
derivative-free methodologies relying on parallel pattern-search (APPS), population-based stochastic sampling (PSO) and
trust-region interpolation-based models (DFTR). These methodologies are tested on a heterogeneous two-dimensional case
and on a realistic case based on a section of the Olympus benchmark model. Three problem formulations are applied in both
cases, i.e., one formulation optimizes ICV settings only, while two joint configurations also treat producer and injector controls
as variables. Various method parametrizations across the range of cases and problem formulations exploit the different search
features to improve convergence, achieve final objectives and infer response surface features. The scope of this particular
study treats only deterministic problem formulations. Results outline performance trade-offs between parallelizable algorithms
(APPS, PSO) with high total runtime search efficiency and the local-search trust-region approach (DFTR) providing effective
objective gains for a low number of cost function evaluations.APPS demonstrates robust performance across different problem
formulations that can support exploration efforts, e.g., during a pre-drill design phase while multiple independent DFTR runs
can provide local tuning capability around established solutions in a time-constrained post-drill setting. Additional remarks
regarding joint completion design optimization, comparison metrics, and relative algorithm performance given the varying
problem formulations are also made.

Keywords Completion design · Inflow control valves · Derivative-free optimization · Pattern-search methods ·
Model-based trust-region · Production optimization

1 Introduction

Field development of georesources increasingly relies on
efficient drilling of horizontal and multilateral sections using
geosteering technology [1] and the successful deployment
of advanced inflow control technology [2]. Designing lower
completion programs including inflow control valves is chal-
lenging due to geological uncertainty and the need to run
time-consuming reservoir simulations to test possible config-
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urations. A general approach to deal with uncertainty during
model-update is to assimilate data from multiple sources,
e.g., seismic data, log measurements, and, if available, pro-
duction data. More efficient measurement and assimilation
capability in turn enable the ability to update subsurface
models alsowhile drilling.Thesemodel-processing improve-
ments and the availability of modern completion technology,
e.g., adjustable completion strings at the wellsite [3], allow
for a possible re-evaluation of the completion programbefore
running the strings into hole. Within this context, procedures
to optimize completion design and production strategy can
be introduced to help adjust pre-drill solutions according to
updated subsurface models.
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If practical, automatic search procedures can serve both
as quality checks and to provide novel input to improve
established designs. This work studies three derivative-free
methodologies with different search characteristics for var-
ious configurations of fixed completion design and well
control optimization. The main contributions of this work
are the experimental setup and application results offering
a comparison of the different methodologies over increas-
ingly complex problem formulations and cases. The different
formulations are tested on two cases with realistic proper-
ties, i.e., a 2D grid and a section of the Olympus model.
Only deterministic properties are used to focus the study on
algorithm performance for different problem configurations
and increasing model complexity (a scope treating uncer-
tainty is deferred to subsequent work). The remainder of this
section introduces the three derivative-free search method-
ologies and provides the context and motivation for joint
completion and control optimization.

1.1 Optimizationmethodologies

In general, beyond time limitations for well planning and
reconfiguration imposed by the drilling context, optimiza-
tion procedures for well planning workflows must perform
efficiently since objective functions involve computation-
ally costly reservoir simulations. Moreover, iterative pro-
cedures not only require practical search algorithms with
problem-specific tuning but also fit-for-purpose formula-
tions and parametrizations to maintain low-dimensional
problems. This is particularly relevant for the efficiency
of derivative-free methodologies, since the computational
resources required to drive the search of such methods typi-
cally depends on the number of variables.

Three derivative-free optimization methods that rely on
very different search characteristics have been implemented
and tested in this study: (1) Asynchronous Parallel Pat-
tern Search (APPS) direct-search algorithm; (2) Particle
SwarmOptimization (PSO) population-based algorithm, and
(3) Derivative-Free Trust-Region model-based (DFTR) algo-
rithm.Theprocedures aim to complement existingworkflows
for pre- and post-drill selection and screening of comple-
tion configurations. Their performance is therefore studied
within the described pre- and post-drill contexts. The range
of optimization procedures is tested and detailed tuning per-
formed to solve a simple two-dimensional case and a realistic
three-dimensional production scenario basedon theOlympus
model. Specifically, comparisons are presented using equiv-
alent performance measures based on total runtime. This
should help further application within the existingworkflows
bymeaningfully comparingdifferent procedures even though
they possess fundamentally different search properties and
capabilities, i.e., intrinsic parallel and serial executionmodes.

This work focuses on derivative-freemethodologies because,
even though they typically require a larger number of cost
function evaluations, the completion problems presented in
this work treat only a low number of variables (8 to 36).
In general, derivative-free algorithms are typically straight-
forward to implement for applications relying on reservoir
simulations, e.g., they do not require extensive access to
simulator code often necessary for adjoint-gradient use [4],
and can be more robust to numerical inconsistencies, e.g.,
due to adaptive simulator time-stepping for different can-
didate solutions [5]. Moreover, compared to gradient-based
methods, these algorithms are less dependent on good initial
points to perform a successful search, i.e., they are less prone
to being caught in local minima at early stages during opti-
mization. Finally, these algorithms canbe applied to extended
formulations of field development problems that involve sig-
nificantly different variable types, e.g., concurrent solution
approaches including well placement coordinates, well con-
trols such as bottomhole pressure (BHP) and/or rates, and
completion parameters (e.g., cross-section areas).

1.2 Completion optimization

Compared to passive flow controls, devices with valves can
be useful to dealwith underlying geological uncertainty since
they enable flow adjustments after installation. (See an exten-
sive comparison between valve and passive control devices
in [6], where properties and functionality of these controls
across a range of applications are discussed.) Essentially, the
option to reconfigure the completion during field lifetime
creates a buffer with respect to uncertainty in reservoir prop-
erties and variations in fluid conditions. However, a modern
drillingworkflowenhancedwith fastmodel update capability
provides a crucial opportunity to deal with such uncertainty
also when installing passive completions, i.e., specifying a
particular configuration along the wellbore. Passive control
devices are often a more reasonable option since these can be
installed at a significantly lower cost and are more robust in
terms ofmaintenance.Moreover, even inwellbore configura-
tions with only fixed equal-strength devices, the completions
can regulate zones with overproduction since their pressure
drop is commonly proportional to the squared flow rate [7].

Furthermore, the capability to operate well controls, i.e.,
BHP and/or rates, over reasonable ranges provides increased
robustness with respect to unexpected conditions. Introduc-
ing the capability of dynamicallymanaging sweep by varying
well control settings provides an additional means to counter
reservoir and fluid uncertainties that complements the func-
tionality of the fixed ICD configuration. This aligns with
results in [7] where additional controls to the optimization
problem, e.g., optimizing ICDs within an integrated system
including network and facility variables, will in some cases
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mitigate the effects of wellbore pressure drops and in general
will influence the solution in terms of design and predicted
benefit. Thus, the completion optimization process should
consider well controls [6, 8] to ensure optimality with respect
to, at least, these two closely located, highly interdependent
variable types. Altogether, this provides a context and lends
support for performing joint completion design optimization
involving fixed nozzle-based completions and well controls.

1.3 Paper structure

This paper is structured as follows: Section 2, discusses
inflow control technology, the completion design process
within a drilling workflow perspective and approaches for
completion redesign. Section 3, describes the core problem
setup, the objective and the iterative procedures used for opti-
mization. Section 4, describes the two models and provides
the configuration for the different cases tested in this work.
Optimization performance is discussed and design solutions
presented in Section 5. Finally, Section 6, summarizes the
main points from the experiments and suggests topics for
further work.

2 Background

This section first introduces inflow control technology and a
general drilling and model-updating workflow. This serves
as context to describe completion design approaches and the
development of redesign workflows.

2.1 Inflow control technology

The promise of advanced wells [9], i.e., long horizontal, pos-
siblymultilateral, wellbores with smart well technology such
as sophisticated sensors and inflow controls, is higher pro-
ductivity due to larger coverage of the reservoir and greater
flexibility for production. Such wellbores can increase field
recovery not only by joining isolated regions within the
reservoir but also by enabling connection to satellite forma-
tions. Moreover, the greater penetration also provides more
information about the surrounding geology, which aids reser-
voir characterization [10]. In terms of production flexibility,
longer wellbores with inflow controls allow shutting down
certain regions of the reservoir, e.g., to avoid uneven produc-
tion profiles and high water cuts due to wellbore friction and
formation heterogeneity.

Deploying wells with advanced inflow controls can incur
substantial additional drilling and completion costs that must
be justified by a corresponding increase in revenue [9]. Estab-
lishing automatic procedures that can complement manual
search for improved designs is therefore important to both

increase economic productivity and ensure robustness, e.g.,
with respect to geological and fluid contact uncertainty. Note
that in this work the focus is on the first aspect, i.e., the
development and testing of a set of core methodologies to
find optimal control configurations with respect to economic
recovery. As mentioned, this work is performed within a
deterministic setting. Subsequent work will focus on the sec-
ond part by extending these methodologies to apply to the
uncertain case, e.g., using a random sampling strategy [11]
to deal with increased computational cost.

Wells with inflow controls are typically implemented
within reservoir simulators using multisegmented wellbore
models [12]. Multisegment well models provide a refined
representation of the well that makes it simpler to associate
fluid flow to a range of control devices in various configura-
tions [13]. General operation for wells with inflow controls
is that formation fluids enter the well annulus and then flow
from the annulus into the tubing by passing through restric-
tions to flow, e.g., nozzles, for the particular completion.
This completion design imposes an additional pressure drop
between the formation and the tubing that is used to balance
the drawdown along the length of the wellbore. A given pres-
sure drop depends on the velocity and density of the fluids and
on the geometry of the restriction [3]. Several types of com-
pletions with different flow-through features and operational
capabilities can be installed; broadly [14], inflow control
completions can be passive inflow control devices (ICDs),
active inflow control valves (ICVs) and autonomous inflow
control devices (AICDs) [15]. ICDs are installations with
preset flow restrictions, while ICV settings can be adjusted
after installation from the surface. Autonomous completions
can self-adjust based on the viscosities of the fluids, essen-
tially choking back undesired fluids such as water and gas
while letting oil through with relatively little obstruction.

Within a single compartment, the pressure-drop mecha-
nism restricting the flow from the formation into the well
can be adjusted in terms of shape, number and flow-through
features. Multiple flow-restriction mechanisms exist with
specific features [6], e.g., nozzles, long helical tubes or
labyrinthine channels. This work targets the problem of con-
figuring ICDs with fixed openings (nozzles) towards the
formation, i.e., passive devices. Note, however, that the
methodologies presented in this work can be extended to
more sophisticated production scenarios, e.g., installations
involving ICVs where individual well sections are controlled
over the lifetime of the field [16, 17]. Passive devices gen-
erally require a lower up-front cost because they involve
no moving parts, have straightforward run-in-hole applica-
tion [8], and typically do not require intervention [10]. Due
to the lack of opportunities for modification of wells with
fixed-sized devices, it is important that they have an opti-
mal design at installation [18]. Because of their fixed nature,
it is important that the performance of passive devices is
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explored through time, i.e., that sufficient predictive capa-
bility provided by, e.g., reservoir simulation, is embedded in
the design process. Furthermore, the decision process itself,
or crucial aspects of it, should be able to be repeated effi-
ciently once new information is available, e.g., through fast
model update. Overall, control devices cannot be universally
implemented, but require specific characterization of static
reservoir conditions and thorough study of long-term reser-
voir behavior [18]. This further emphasizes the importance
of supporting the (re-)design process by efficiently updating
subsurface representations before installation and of using
dynamic models within a systematic search approach, i.e.,
optimization. Strategically, drilling operators seek to inte-
grate these work components into efficient workflows to
evaluate possible alternatives at the rig before finally hav-
ing to run the completions into hole.

2.2 Drilling workflow andmodel-updating context

Subsurface models are crucial tools for decision-making and
optimization.However, inherent uncertainty canmakemodel
predictions vary substantially from actual reservoir condi-
tions and production results. Frequent model updating, at
least semi-automatically on a continuous basis [19], prefer-
ably performed by assimilating information using various
data sources across different scales [20], helps ensure accu-
rate production forecasts and ultimately successful reservoir
management.Keeping an evergreenmodel, e.g., through con-
tinuous data integration and reservoir characterization and
modeling work [21], is important for optimized drilling and
field recovery. Furthermore, the ability to differentiate and
emphasize specific model components to support particu-
lar operational needs, i.e., fit-for-purpose modeling, is an
important capability inmodernfield developmentworkflows.
Ultimately, the vision is to have automated workflows that
continuously upload data coupled with autonomous intelli-
gence for assimilation of particular properties necessary to
produce highly relevant and useful representations of reality
according to operational needs.

The various data types accumulated during drilling, e.g.,
actual well path, logging-while-drilling (LWD) logs and for-
mation pressure measurements [22], are crucial to update
models and decrease uncertainty in forecasts. This model-
updating process within modern drilling workflows is a
precursor for subsequent re-evaluation of the completion pro-
gram, since the planned completion design may no longer
be appropriate to current reservoir conditions. To operate
efficiently within a drilling workflow, the re-evaluation of
the completion program can be performed using dedicated
optimization techniques. "Pre-" and "post-"drill descriptors
are used in this work to refer to the general time limitations
imposed on the completion design process during planning

and the real-time drilling environment, respectively. More
broadly, this distinction corresponds to the development and
drilling phases described in [23] in the context of well loca-
tion planning and optimization.

While computationally demanding, pre-drill completion
optimization efforts have the advantage of a relatively large
time budget of months and even years to conduct a num-
ber of optimization runs. This time frame allows starting
from multiple initial points while using different settings
and testing across multiple realizations. Post-drill comple-
tion optimization efforts, on the other hand, are required to
arrive at a solution in a limited time frame of hours [8, 10],
ranging from 12 to 24 hours, which is the time it takes for
pulling up the drillstring before running the completion into
hole. Thus, within this time frame, there is the opportunity to
improve the existing completion program, developed using
the now-outdated pre-drill model. More specifically, a new
optimization effort can be launched using an updated model
of the reservoir. Importantly, this enables the development of
an ICD configuration that is optimal with respect to the most
recent subsurface information. In this work, the performance
of the selected optimization procedures is therefore studied
within two different operational contexts: (1) a pre-drill state
without a specific time condition on the optimization effort
and (2) a heavily time-constrained post-drill state delimited
by the time frompulling-out-of-hole to laying the completion
string.

2.3 Completion redesign

Time is thus a crucial aspect for drilling workflows inte-
grating model updating and potential completion redesign.
A major goal at the wellsite is to perform an efficient
re-evaluation of the completion program following the acqui-
sition of new information about the subsurface. At this
point, the completion program has been developed through
early-stage feasibility studies including full-field simulation
and detailed single-well pre-drill completion design work.
Clearly, improvements in dynamic simulation tools, e.g.,
more time-efficient single-wellmodeling techniques [24], aid
the completion re-assessment before running it into the hole.
These design steps are followed by post-drill evaluation and
history-matching [8] to finalize the workflow.

Workflows for redesign and tuning of lower completions
at the platform not only rely on engineering experience but
also on expert analysis and efficient integration of updated
information. Model-updating is enabled by efficient LWD
data collection tools [25] and improved real-time inversion
methodology [26]. In [27], a real-field case is described
where formation log data are used to adjust completion set-
tings before running these into the hole. In that case, a model
is updated with the actual well path and log data, and various
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simulation scenarios are run to select appropriate configura-
tions for the completion.

In this work, a range of optimization techniques is tested
to support the above redesign process. Potentially, this re-
evaluation, using dedicated optimization techniques, can be
started already during drilling as LWD data are retrieved
and analyzed. For example, program re-evaluation can be
performed at specific times during drilling. The particular
timing of these steps can be determined a priori or be depen-
dent on the state of information during drilling. Along these
lines, possibly one or several trigger functions, e.g., depend-
ing on howmuch geological and geophysical knowledge has
evolved compared to a previous state, can be defined and
used to initiate the completion optimization routine.

2.4 Flow control applications

An early comparison of two flow control devices to delay
gas breakthrough, one fixed at installation time and another
that could be modified from the surface during production, is
given by [12]. Another early real-field application is pre-
sented in [28], where a number of ICDs are installed in
horizontal sections to balance inflow along the wellbore
and gain better control of the gas-oil ratio. Several simu-
lation cases and two real-field cases are presented in [29] to
demonstrate key benefits of increased sweep, reduced flow
variation and compensatedwellbore friction. Similar benefits
from real-field installations of nozzle-based passive devices
in one sandstone and one carbonate reservoir are described
in [30]. In [31], installation of flow control devices is studied
to avoid early gas andwater breakthrough in a production sce-
nariowith varyingpermeability profile causedby ahorizontal
well traversing a set of dippingmultistacked reservoirs.Other
authors, e.g., [16, 18], describe the challenges of balancing
inflow with control devices as increasingly longer horizon-
tal sections are being installed, while [3] describes specific
production and injection challenges for horizontal wellbores
in naturally fractured carbonate reservoirs. Overall, the main
targets are to control and reduce water coning and/or gas
cresting, to eliminate uneven lateral influx due to abrupt
changes in permeability and to avoid sand production.

2.5 Completion design approaches

Various approaches for how to combine predictive tools
with engineering experience to evaluate completion options
have been presented in the literature. In [32], a decision-tree
methodology is presented emphasizing formation stability
followed by steps analyzing economic performance and risk
in the selection process for completion solutions. In [18], on
the other hand, a simulation-based approach is used to assess

the impact of control devices for typical production prob-
lems of fluid distribution and breakthrough delay. A general
completion design workflow is provided by [3] to change the
configuration of nozzle-based completions at wellsite.

In particular, [10] presents a classification for conducting
completion design based on the complexity of the reservoir
simulation models used. In that work, completion design
workflows of increasing complexity are described. The first
approach relies on well-centric simplified geological and
reservoir simulation models built from logs or pseudo-logs,
and is suitable when the time frame is short and only limited
data are available. Because of the local nature of the model,
however, this workflow cannot be used to provide long-term
predictions. The second approach relies on a well-centric
simplified skeleton grid for the reservoir model with geolog-
ical properties along the wellbore derived from an existing
full-field model. Limiting the updates of the reservoir model
to the near-wellbore region enables fast updates of the model
using LWD data. The well-centric nature of these models
facilitates efficient assimilation of LWD data once these data
become available, and supports completion design bymatch-
ing configurations with surrounding geological features, e.g.,
log-derived permeability distribution. The third approach is
to use a sector model, i.e., to simulate parts of the full-field
reservoir simulation model with flux or pressure boundary
conditions from the full field model. Furthermore, com-
pletions are often modeled with increased resolution from
local grid refinement around the well, in particular when
interference with other wells is expected. This provides the
most accurate results, but is also the most time-consuming
approach. Three-dimensional sector simulation models with
local grid refinement are used in [8, 33] to tailor completion
designs. A combined approach is described in [7] where the
ICD settings from a well-centric optimization workflow was
used in a full-field model to assess interference between dif-
ferent wells. Other approaches, e.g., [34], use proxies (fluid
travel times) in automated routines to reduce recovery vari-
ations between compartments, but do not explicitly apply
mathematical search routines to iterate over candidate solu-
tions. In contrast, in this work, an approach that explicitly
couples mathematical search algorithms with reservoir sim-
ulation models to optimize completion design is presented.
The overall problem setup and the range of optimization tech-
niques tested in this work are presented next.

3 Methodology

The start of this section presents the setup and the mathe-
matical formulation for the ICD and control problem being
addressed in this work. The problem setup characterizes the
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level of abstraction used to define the system components
and optimization variables. The mathematical formulation
formalizes the problem setup and specifies themain variables
of interest, the associated constraints and the objective. The
three derivative-free optimization algorithms used to search
for optimal solutions are then described. These descriptions
focus on the main operations and features of the methods,
and present particular applications to the control problem.

3.1 Problem setup

The ability to divide wellbores into segments not only provides
improved accuracy for simulation of horizontal wells and mul-
tilaterals [35, 36], but also add additional flexibility when
defining a problem setup for optimization of ICDs. Simi-
lar to [10], the ICD problem setup in this work consists of a
fixed number of compartments of equal length. Specifically,
the well completion design problem addressed in this work
considers the selection of the most suitable cross-sectional
flow area associated with an ICD within each compartment.
These cross-sectional flow areas can be treated as continuous
variableswith bound-constraints in the optimizationmethod-
ologies.

For optimization purposes, in completion designs inwhich
there are possiblymultiple ICDs lyingwithin twopackers, the
ICDs can be combined into an equivalent ICD. This equiva-
lent ICD is an effective cross-sectional area that corresponds
to the combined effect of all the nozzles in the compartment.
In particular, this abstraction is useful to reduce the number of
variables in the optimization problem.Ultimately, in practice,
a reverse-engineering step is required to convert an optimal
cross-sectional area obtained by optimizationmethodologies
into an actual operational number and (possibly stepwise)
size of nozzles and other hardware specifications to realize
the corresponding drawdown profile (see, e.g., [33]).

Other common variables for overall completion design
are the number and length of compartments (determined by
the positions of the packers), which, either directly or indi-
rectly, influence the flow area determining inflow from the
formation. Though packers are typically placed according to
howpermeability is distributed along thewellbore [15], com-
partment length could also be subject to optimization, e.g.,
by varying the measured depth of the packers. Potentially,
joint optimization of compartment lengths and ICD settings
could be performed either simultaneously or possibly in a
sequential manner, i.e., iteratively varying packer locations
and nozzle sizes. Varying packer location is likely to have
significant effect in cases where the wellbore traverses zones
with extensive boundaries that are fully or partially sealing.
Though such cases are interesting, in this work, compartment
lengths are kept constant to both keep problemdimension and

complexity low and emphasize the joint optimization of well
controls and nozzle sizes.

3.2 ICD design and well control optimization

The ICD design and well control optimization problem tack-
led in this work consists of finding the set of cross-sectional
flow areas for the ICDs and the well controls (either BHPs or
flow targets) that improve the reservoir performance. The
reservoir performance is assessed by means of an objec-
tive function that assigns some economic criteria to the
reservoir in- and outflows over time. Different objective
function formulations can influence the optimal comple-
tion design [7], e.g., different solutions may be obtained
when using objectives emphasizing higher economic return
through higher production versus objectives that prioritize
equalizing inflow along the wellbore [37]. Though econom-
ically optimal, searches based only on economic measures
may not yield reasonable nor practical completion and con-
trol configurations froma design and operational perspective.
Different formulations can also influence the optimization
search itself, e.g., discontinuity and smoothness properties
can have significant impact on algorithm exploration and
convergence performance, even for derivative-free method-
ologies that do not require well-defined gradient information
and are less susceptible to noise.

3.2.1 Problem formulation

This work follows the general formulations presented in [38]
and [39] for the optimization problem and objective function.
The optimization problem is given as

u∗ = argmax
u

J (x,u), (1)

s.t. g(x,u) = 0, (2)

u ∈ D. (3)

Here, J (x,u) represents the objective function, where x
corresponds to the discretized-in-space–and-time state vari-
ables of the reservoir system (i.e., pressure and saturation),
while u are the decision variables being optimized, which
correspond to specific model parameters of interest. Thus,
in this work, u represents both ICD cross-sectional areas
and well control pressure and rate settings, within a feasi-
ble space D. The constraint given by Eq. (2) represents the
system of reservoir equations solved numerically by the sim-
ulator for the unknown state variables x. This means that, for
a given set of model parameters u, a reservoir simulation will
be performed to satisfy constraint Eq. (2), and the calculated
state variables of the reservoir xwill also be used to compute
the objective function given by Eq. (1).
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In this work, optimizations are performed using an undis-
counted Net Present Value (NPV) formulation for the objec-
tive J . Following [38], J is given as

J (x,u) =
N∑

n=1

( Nw∑

i=1

Np∑

p=1

Cp,i qp,i (x,u)

)∣∣∣∣
t=tn

Δtn . (4)

In this formulation, the outer sum is taken over N simulation
time steps tn , while Nw and Np correspond to the number
of wells and flowing phases, respectively. For well i , the
terms Cp,i and qp,i represent respectively the price/cost for
produced/injected volumes and the production/injection flow
rate for phase p.

Tentatively, functions that describe overarching flow pat-
terns and that incorporate specific understanding of the
reservoir and of the particular production scenario can be
used to formulate new types of objectives that augment purely
economic measures [34]. The goal of augmented formula-
tions of this type would be to focus on quantifying essential
geology- and geophysics-based phenomena for engineering-
based decision-making. Possibly, such formulations would
yield solutions that are both a better match to overall engi-
neering considerations and also less susceptible to underlying
model uncertainty. Exploring a range of appropriate, possibly
more efficient, cost function formulations for the completion
design optimization problem is, however, beyond the scope
of this paper and will be treated in subsequent work.

3.3 Optimizationmethodologies

This section presents the three different derivative-free opti-
mization algorithms applied to the ICDandwell control prob-
lem: A direct-search Asynchronous Parallel Pattern Search
algorithm (APPS), a population-based Particle Swarm Opti-
mization algorithm (PSO), and a model-based Derivative-
Free Trust-Region algorithm (DFTR).

The algorithms are implemented in the open-source opti-
mization framework for georesources field development
problems FieldOpt [40] with up-to-date research code
available at [41]. General descriptions provided in the next
sections focus on core search features and algorithm charac-
teristics. Detailed descriptions of FieldOpt’s versions of
APPS [40], PSO [42] and DFTR [43, 44] can be found in
these publications, while the main references are provided in
the corresponding sections given below.

As a general rule, the computational expense of derivative-
free search procedures typically increases with the number
of variables [45]. It is therefore crucial and common to
take advantage of search features within the different pro-
cedures that can be effectively parallelized, e.g., concurrent
computation of the cost function sampling that involves

time-consuming reservoir simulations. Given the pre-/post-
drilling time perspective discussed earlier, amain assumption
for later analysis is that the procedures presented in this work
have available all computational resources necessary to fully
exploit their intrinsic capabilities for distributed computing.
In practice, this means, e.g., having available during opti-
mization an equal number of cores as the total number of
stencil points for the APPS algorithm and an equal number
of cores as the number of particles for the PSO runs. Assert-
ing this assumption is important because it predicates the
performance analysis presented in Section 5where optimiza-
tion runs are compared not only in terms of computational
cost, i.e., total number of function evaluations, but also with
respect to actual elapsed runtimes.

Parallel computation of a set of sampling points is straight-
forward for direct search and population-based procedures
that, in a very broad sense, iteratively construct and test can-
didate solutions in batches. This is not the case, however, for
theDFTR procedure that conducts its search based on explicit
model building. In essence,DFTR performs a sequential sam-
pling of the search space, since finding a new point is the
result of a minimization of the current model approximat-
ing the objective. Moreover, at each iteration, the procedure
relies on various interacting model-monitoring, maintenance
and rebuilding operations, e.g., a verification of whether the
overall spread of points in the sample set satisfies geometric
conditions, a check on point acceptance criteria, and a test
of model accuracy against expected performance measures.
Descriptions and pseudocode for APPS, PSO and DFTR pro-
cedures are provided next.

3.3.1 APPS

APPS [46] is an advanced iterative procedure based on a
pattern search derivative-free algorithm, i.e., its search relies
on straightforward comparisons of cost function values com-
puted across a set of points specified by a stencil or pattern.
Pattern search has global convergence properties [47, 48] in
the sense that, given algorithmic conditions are met, conver-
gence to a local optimum is assured irrespective of the initial
point. Various optimization procedures with different fea-
tures, e.g., Mesh Adaptive Direct Search (MADS) [49, 50],
are based on the core pattern search operation. These core
features of the pattern search algorithm are presented next,
followed by a brief description of the asynchronous imple-
mentation applied in this work.

The basic pattern search algorithm relies on local polling
of the cost function space around a current best solution point.
The algorithm uses a stencil centered at this point to deter-
mine search directions and distance (step size) away from the
current solution. A stencil corresponding to the coordinate
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axes is commonly used (although other stencils are possible,
any stencil must span the search space according to certain
geometric properties to ensure at least one descent direction
and algorithm convergence [48]). The stencil step size can
be increased or decreased by specified factors depending on
whether the polling operation finds points that improve the
objective, or not. If one of the stencil end points yields an
improvement, then the algorithm uses this point as the cen-
ter of the stencil at the next iteration. Moreover, the stencil
step size may be increased to further explore this promis-
ing area. If no improvement is found, then the stencil step
size is decreased, and the polling continues until a specified
minimum step size threshold is reached. A pseudocode for
the APPS implementation used in this work is provided in
Algorithm 1.

The independent nature of the set of stencil points enables
a concurrent evaluation of the corresponding objective values
over a number of computing cores. However, parallel imple-
mentations of pattern-search methodologies can be ineffi-
cient for simulation-based optimization where cost function
evaluation runtimes may vary significantly for different solu-
tion candidates. In an oilfield development context, this is
more likely to be the case for well placement problems than
for well control problems, since varying well configurations
may yield very different simulator runtimes due to their
parametrization within reservoir grids and geological hetero-
geneity. Still, it is important for distributed implementations
dealing with simulation-based problems to take advantage
of possible idle cores during optimization. In particular,
the APPS procedure applied in this work enables an asyn-
chronous computation of sampling points, i.e., the polling
previously described is no longer dependent on a single com-
parison of all points in the stencil before proposing new
stencil points. Rather, during the iteration, if the evaluation at
certain points has been completed, then new sampling points
can be proposed and their evaluation started at the cores that
are now available, i.e., without waiting for the complete eval-
uation of the original set. Implementations are found in [46],
where further uncoupling polling directions from the stencil
enable sophisticated strategies to determine standalone prop-
erties, agency and interaction between the individual stencil
directions. For example, in that work, polling directions may
be treated as independent agents with individual step size
properties that pass the current best point and step size infor-
mation dynamically before making a new polling decision
along their particular direction.

The notation used in Algorithm 1 is as follows. The func-
tion being optimized is f , step sizes are denoted by Δ, and
the initial point is denoted by x with corresponding lower
and upper bounds xlb and xub. The sets of trial and evalu-
ated points are denoted respectively by T and E, while the
search directions di are p−dimensional vectors in the set

D. In each iteration of the algorithm, some additional infor-
mation of the new trial point y is stored to ensure proper
asynchronous execution of the algorithm. Thus, tags TAG(y)
and PARENT_TAG(y) correspond to the current point and
the parent point, i.e., the point that generated the current
point, while DIRECTION_INDEX(y) and STEP(y) label
the trial-point direction index and the associated step size,
respectively.

Algorithm 1 Pseudocode for APPS [46, 47, 50].
Inputs: Initial point x, variable bounds xlb, xub
Parameters: Step size tolerances Δmin and Δtol
Initialization:
Specify search directions: D = {d1, . . . ,dp}
Set initial step sizes: Δi = Δinit

Generate Trial Points:

Let I := {i : Δi ≥ Δtol & τi = −1} be the tentative iterates
Let Δ̃i ≤ Δi be the length of the longest feasible step size from
x along direction di
Create new trial point y := x + Δ̃idi
Save the following information from y:

– PARENT_TAG(y) := TAG(x)
– DIRECTION_INDEX(y) := i
– STEP(y) = Δi

Set τi := TAG(y) as the trial point tag
Add new trial point y to the set T

Exchange Trial Points:

Send new trial points in T for evaluation
Collect set of evaluated trial points in E

Process Evaluated Trial Points:
Let z ∈ E be the point that f (z) > f (y),∀y \ z ∈ E
if f (z) > f (x) then

Replace x with the new best point z
Check convergence based on function value
Set Δi := max{ST E P(z),Δmin}
Set τi := −1∀ i = 1, . . . , p
Prune the evaluation queue T
Go back to Generate Trial Points

else
for all y ∈ E do

if PARENT_TAG(y) = TAG(x) then
i := DIRECTION_INDEX(y)
Δi := 1

2Δi
τi := −1

end if
end for
Delete all points in E
Check convergence based on step length
Go back to Generate Trial Points

end if

3.3.2 PSO

The general description of the PSO applied in this work fol-
lows [51]. PSO is a stochastic search algorithm that has been
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applied for both standalone and joint optimization of well
placement and controls [23, 45]. Search is conducted using a
fixed number of particles thatmove as a collective through the
solution space, mimicking a swarm or flock of birds. Overall
operation is driven by information sharing and cooperation
between the particles using a series of position and veloc-
ity updates at each iteration. The search is initiated using a
random population; thereafter, each particle is moved based
on local information obtained from neighboring particles,
while memory of the best performance so far is maintained.
The performance and location of any one particle is com-
municated to other particles within a specified neighborhood
(see [51] for a wider discussion of different neighborhood
types, e.g., geographical or social). Finally, the introduction
of stochastic components within each PSO velocity update
enables a global search feature to avoid local optima and
facilitate wide exploration.

Parallel implementation of the PSO search procedure is
straightforward and, in this work, all PSO runs performed
are provided the number of computational cores needed to
fully parallelize the evaluation of all candidate solutions in a
given population.

Based on the recent review paper [52], a pseudocode
for the PSO algorithm used in this work is provided in
Algorithm 2. While the main operations and conditions are
described in the pseudocode, the following set of Eqs. (5)–(8)
form the basis of the algorithm.

p∗,t
i := {xki | f (xki ) ≥ f (xli )∀ l ∈ [1, t]} (5)

g∗,t := {p∗,t
i | f (p∗,t

i ) ≥ f (p∗,t
j )∀ j ∈ [1, N ]} (6)

vt+1
i = ωvti + c1r1(p

∗,t
i − xti ) + c2r2(g∗,t − xti ) (7)

xt+1
i = xti + vt+1

i (8)

Here, i denotes the particle’s index, t is the iteration, f
is the objective being optimized, xti is the position vector of
particle i at iteration t , and N is the swarm size. Moreover,
p∗,t
i is the best position for particle i at iteration t , while g∗,t is

the global best position at iteration t , vti is the velocity vector
and ω is the inertia weight. Finally, r1 and r2 are two random
numbers independently generated within the range of [0, 1],
while c1 and c2 are typically called acceleration coefficients
or learning factors (in this work, these factors are abbreviated
as Learning{Fac.1, Fac.2} in Tables 4 and 5). Note that we
only need an iterative update to keep track of the particle’s
best position, as shown in Algorithm 2, and thus we do not
need to calculate Eq. (5).

Algorithm 2 Pseudocode for PSO [52].
Inputs:
Swarm size N
Problem dimensionality D
Maximum number of iterations T
Lower bound of the search space LB
Upper bound of the search space UB

Main Iteration:
Initialize the swarm randomly
Iterate through the swarm:
for i = 1 to N do

Set velocities v0i := random vector ∈ [LB,UB]D
Set positions x0i := random vector ∈ [LB,UB]D
Set particles p∗,0

i := x0i
end for
Set initial global best position g∗,0 using Eq. (6)
t := 1
while t ≤ T do

for i := 1 to N do
r1, r2 := random numbers ∈ [0, 1]
Update velocities vt+1

i using Eq. (7)
Update positions xt+1

i using Eq. (8)
if f (xt+1

i ) < f (p∗,t
i ) then

f (p∗,t+1
i ) := f (xt+1

i )

else
p∗,t+1
i = p∗,t

i
end if
Update best particles g∗,t+1 using Eq. (6)
t := t + 1

end for
end while

3.3.3 DFTR

Below follows a general presentation of the DFTR algo-
rithm and thereafter descriptions of each of its main steps
and operations. The overall presentation follows [48] while
for a comprehensive description of the main steps and opera-
tions see [44]. Finally, Algorithm 3 at the end of this section
assembles the various DFTR steps and operations to present
the core functionality of the method.
TheDFTR algorithm DFTR is a sophisticated derivative-free
procedure that relies on local quadratic approximations of
the objective to guide its search. This modeling of response
surfaces is particularly useful when dealing with black-box
functions, e.g., from simulated data points. The method
builds polynomial-based interpolationmodels to capture cost
function curvature, which enables a robust search.Moreover,
themethod enables building underdetermined approximation
models, which is a feature that provides faster convergence
with fewer function evaluations. (In this regard, note that sim-
ilar methodologies have been applied that use a fixed set of
sample points, e.g., the BOBYQA package used by [53] for
well location and completion optimization.) Finally, notice
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that the DFTR is essentially a sequential algorithm (although
for some particularly structured problems, the proceduremay
be decomposed into a series of subproblems that can be
solved in a distributed manner, as discussed in [54]).

General operation The cost function is denoted by f (x)
for a given vector of variables x = (x1, x2, . . . , xn) for an n-
dimensional problem. During its execution, the DFTR algo-
rithm samples the cost function f , and the function values are
then used to build a model mk . At each iteration k, the algo-
rithm optimizes the current model mk inside a trust region
(a ball centered around the current iterate xk) to compute a
new point xk+1. The cost function f is then evaluated at the
new point, and the point is either accepted or rejected as the
new iterate. The model is constantly maintained throughout
the optimization by various operations that use recent function
evaluations. These operations are discussed inmore detail next.

Generation ofmodels A core DFTR feature is its reliance on
interpolation models to find new iterates. At each iteration
k, the incumbent model mk interpolates the objective f in a
set of evaluated points Yk using quadratic polynomials. The
interpolation equations for an n-dimensional problem uses
the basis φ of all monomials of degree at most 2. The model
is a linear combination of the terms of the basis:

m(x) =
L∑

i=0

αiφi (x) (9)

where αi are the coefficients of the linear combination and
L is the total number of terms of the basis, i.e., L = (n +
1)(n + 2)/2. The coefficients αi can be obtained by solving
the interpolation condition that m(yi ) = f (yi ) for every
point yi ∈ Y, which can be denoted in matrix form by the
following system of linear equations:

M(φ,Y)α = f(Y) (10)

where M(φ,Y) is a matrix with the linear combinations rep-
resenting the mi models for all points i ∈ Y, and f(Y) is a
vector with the function values f (yi ).

Underdetermined models An exact solution to this system
of equations would require at least the same number of inter-
polation points as the number of terms of the basis. For many
applications, including reservoir engineering problems, it
is impractical to require this number of simulations before
being able to start the iterative sequence. In fact, the use of
underdetermined models is key to efficiently implementing
quadratic interpolation in derivative-free optimization.

Thus, the first models are built using just a few points and
are gradually improved as more simulations are performed.

From the initialization up to n points, the models are built
using coarse finite differences with only the linear terms of
the basis. Fromn+1 to L points, the interpolation condition is
not sufficient to compute a fully determined quadratic model.
However, the additional degrees of freedom (i.e., the number
of evaluated points minus the number of linear terms of the
basis) allow the construction of more elaborate models, e.g.,
a model with minimum Frobenius norm Hessian around the
incumbent solution xk :

m(xk + s) = m(xk) + ∇m(xk)T s + 1

2
sT∇2m(xk)s.

Here, ∇2m(xk) is the Hessian matrix with minimum
Frobenius norm while s is the step.

Even with some curvature captured by a minimum Frobe-
nius norm Hessian, the model might still yield inaccurate
approximations. The quality of the model is typically mea-
sured in terms of its modeling errors. A model considered to
be Fully-Linear (FL) has at least n + 1 points with bounded
modeling errors as given by the following equations:

| f (x + s) − m(x + s)| ≤ κe f Δ
2, ‖s‖ < Δ, (11a)

‖∇ f (x + s) − ∇m(x + s)‖ ≤ κegΔ, ‖s‖ < Δ, (11b)

where κe f and κeg are function-dependent parameters, s is
the step, and Δ is the radius of the trust region.

Calculation of new points At the beginning of each iteration
k, the DFTR algorithm calculates a new point by optimizing
the model mk inside the trust region which is a ball of radius
Δk centered around the iterate xk :

maximize
s

mk(xk + s) (12)

s.t. ‖s‖∞ ≤ Δk (13)

xlb ≤ xk + s ≤ xub (14)

where the step s is limited by the trust-region radius Δk , and
the new point must honor the lower (xlb) and upper (xub)
bounds. This procedure is called the trust-region subprob-
lem. DFTR convergence can be obtained by finding a step s
that simply provides sufficient ascent, also known as Cauchy
or eigen-step, as discussed in [48, 55]. (However, achieving
optimally in the sub-problem is preferred to improve con-
vergence and save costly reservoir simulations in the main
optimization loop.)

Trial point acceptance A tentative new point x+
k is obtained

by solving the trust-region subproblem (the DFTR imple-
mentation in this work solves the quadratic optimization
subproblem using the standard solver SNOPT [56]). As
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mentioned, to improve performance, the trial point x+
k is

accepted (or rejected) to become the next iterate xk+1 based
on whether it yields a sufficient ascent and the incumbent
model is deemed sufficiently accurate. Improvement in the
objective function and mismatch between the model and the
actual function are both measured with the following rela-
tionship [44]:

ρk(xk, x
+
k ) = f (x+

k ) − f (xk)

mk(x
+
k ) − mk(xk)

. (15)

Here, ρk(xk, x
+
k ) is the ratio of the actual ascent and the

predicted ascent.Notice that the denominator is positive since
x+
k is the position where the modelmk is maximal within the

search radiusΔk around xk . A ρk(xk, x
+
k ) close to 1 indicates

good model accuracy whereas less accurate models present
either too small or overly large values.

For given tuning parameters η1 and η0, if ρk is sufficiently
large (i.e., ρk ≥ η1 > 0), or acceptably large (i.e., ρk ≥ η0 >

0, and the model is FL), then the point is accepted as the next
iterate (xk+1 = x+

k ). If the point is accepted, then the model
is updated and the trust-region center is moved towards the
new iterate. On the other hand, a small ρk indicates that either
the trust region is overly large or that the model is inaccurate
(and thus not FL). Furthermore, if the model is FL and ρk
is small, then reducing the radius will reduce the error [48].
However, if the model is not FL, then it must be improved by
model maintenance operations [57]. In that case, the rejected
point will be included in the interpolation set if it contributes
to reducing the error (since, even though rejected, the point
contains valuable information obtained through simulation).
If the rejected point does not improve themodel, it will not be
included in the interpolation set, the trust-region radius will
be adjusted and another pointwill be computed subsequently.
For brevity, we omit details on polynomial interpolation and
model maintenance procedures here, but these concepts are
discussed extensively in [48].

Radius update The factor ρk also influences the size of the
trust-region radius. If ρk ≥ 1, then the radius is increased as
follows:

Δk+1 = min[max(Δk, 2‖sk‖), Δmax].

This equation prevents the radius from growing exces-
sively in each step by bounding it to twice the step size ‖sk‖
and to the radius size upper bound Δmax.

Finally, if ρk < η1, then the radius is reduced if the model
mk is FL (as the errorwill be reduced according to Eqs. (11a)-
(11b)). However, if the model is not FL, then the radius
remains the same as there is no guarantee the model will
be improved by reducing the radius. In this case, appropriate

model maintenance procedures are employed to improve the
model accordingly [58].

Criticality step As algorithm convergence depends both on
sufficient objective improvement and model accuracy, a spe-
cial procedure checks the so-called criticality measure to
avoid early convergence to non-optimal solutions. For uncon-
strained problems, the criticality measure applies a simple
gradient norm, while for bounded problems, it relies on a
projected gradient equation given as follows:

σ [mk, xk] =
∥∥∥max

{
min[xk + ∇mk(xk), xub], xlb

} − xk
∥∥∥.

This definition represents the distance between xk and the
projected point xk + ∇mk(xk) onto the feasible set [59].

Equations (11a) and (11b) certify bounded-error models
provided they are FL. Ideally, when convergence is near
(σ [mk, xk] < εc, for a small εc > 0), both the gradients
of the model ∇m(xk) and of the actual objective ∇ f (xk)
become small. However, if the radius Δk is too large, the
gradients might differ in magnitude and direction, which can
lead to slow convergence of the algorithm. The criticality
step is a solution to this issue as was addressed in [60] and
[48, Chapter 10]. It ensures that the radius of the trust region
is comparable to the criticality measure, reducing it when
necessary. The reduction should occur iteratively as the crit-
icality measure σ [mk, xk] depends on the model mk , and
thus also on radius Δk . The radius is reduced by a factor
ω ∈ (0, 1), so Δ(1) = ωΔk , and model maintenance proce-
dures make a new model m(1) which is FL within the new
trust region radius Δ(1). The procedure is repeated until the
criticality measure is sufficiently high (σ [m(1), xk] ≥ μΔ(1),
for μ > 0).

The various DFTR steps and operations discussed above
are collected into the full DFTR algorithm as presented in
Algorithm 3. The next section describes the two optimization
cases and the experimental setup used in this work, while the
section after presents and analyzes the results.

4 Experimental cases

Two cases, Case 1 and Case 2, are presented for optimization
of inflow and well control settings. Case 1, shown in Fig. 1,
comprises a 2D reservoir model with a 60 × 60 grid that is
a cut-out of layer 21 from the SPE 10 model [61]. Case 2,
shown in Fig. 2, is a 86 × 38 × 7 section of the Olympus
benchmark grid [62]. This sub-section includes two major
faults that run through the model. Both cases involve a single
long deviated producer and two injectors. The scope of this
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Algorithm 3 Pseudocode for DFTR [44]. Note ‖·‖∞ denotes
the Frobenius normwhile abbreviation bct stands for "before
criticality test".
Inputs: Initial point x1, variable bounds xlb, xub
Parameters: initial radius (Δbct

1 ), maximum radius (Δmax), thresh-
olds for acceptance of steps (1 > η1 > 0, η0 ≥ 0), criticality step
threshold (εc)

Compute initial model mbct
1

Add function values from points in mbct
1 to Y

for k = 1, 2, . . . do
if σ [mbct

k , xk ] < εc then
(mk ,Δk ) ← CriticalityStep(mbct

k ,Δbct
k )

else
Set mk = mbct

k and radius Δk = Δbct
k

end if
if Δk < Δtol then

stop and return solution xk and mk(xk)
end if
Compute step sk by solving Eqs. (12)–(14)
Set x+

k = xk + sk
Evaluate f (x+

k ) and ρk(xk , x
+
k ) (using Eq. 15)

if ρk ≥ η1 or (ρk > η0 and the model is FL) then
Set xk+1 = x+

k
Add x+

k to interpolation set Y
Compute an updated model mbct

k+1
else

Set xk+1 = xk (keep the incumbent point)
if xk improves the model mbct

k+1 then
Add x+

k to interpolation set Y
else

Generate improved model mbct
k+1

using model maintenance procedures
Compute another trial point x+

k
end if

end if
if ρk ≥ η1 then

Increase radius:

Δbct
k+1 = min

[
max(Δk , 2‖sk‖), Δmax

]

else if Model was FL then
Decrease radius: Δbct

k+1 = 1
2Δk .

else
Keep the same radius: Δbct

k+1 = Δk .
end if

end for

work is to study the resulting fluid flow patterns along and
towards the production wellbore due to optimized control
settings. The following case descriptions therefore empha-
size initial production scenarios for these two cases and the
optimization setup.

4.1 Case 1 production scenario

Case 1 is based on a single-layer reservoir model that
provides a horizontal two-phase waterflooding production
scenario. The injection is driven by two vertical injectors
(INJ1 and INJ2) in the northern part of the reservoir. Produc-

tion is fromone horizontal producer (PROD1) in the southern
part, starting with its heel in the west and ending with its toe
in the east.

Figure 1 shows the porosity and permeability fields for
Case 1, in addition to the relative positioning of thewells. The
case has a clear high-permeability region that extends diag-
onally from northwest to southeast. The southeastern part of
the high-permeability region is traversed by approximately
the last two-thirds of the PROD1 trajectory. This particular
configuration is expected to lead to early water breakthrough
starting close to the toe and cause bypassed oil around the
lower-permeability area close to the heel.

The defined objective drives the optimization both to
increase oil recovery while decreasing water production and
injection. In the search for an optimal control configuration,
the push to reduce water overproduction due to high per-
meability is balanced by the revenue increase caused by
higher hydrocarbon production from the same zone. The
implementation of ICDs along the well enables zone-specific
flow restrictions that facilitate the development of a stable
water front towards the wellbore. For Case 1, an improved
configuration of fixed-sized valves will try to avoid water
overproduction by restricting fluid flow from the part of the
well near the high-permeability zone.

The Case 1 producer, PROD1, has a length of 1200m and
is compartmentalized into eight segments of equal length.
The optimization setup in this work models each of the
PROD1 compartments as being deployed with a single ICD
with fixed valve size throughout the production timeframe.
Each ICD is represented using a single continuous optimiza-
tion variable that accounts for the total perforation cross-
sectional flow-throughareaof thedevice in the corresponding
compartment. As previouslymentioned, this parametrization
is practical for optimization purposes because it associates a
single variable to each compartment, thus keeping the total
number of variables representing ICDs low. Moreover, this
straightforward parametrization enables potential scaling of
the problem, e.g., to treat joint configurations where not only
production but also well placement variables are involved,
and/or to deal with completions with valve settings that vary
in time. (Following the above parametrization, the dimension
of a problem involving devices with variable inflow settings
would increase by a factor equal to the number of control
periods defined for the devices.)

More to the point, the level of abstraction of the above
parametrization is considered sufficient to treat the reservoir-
grid scale fluid distribution for the type of cases presented in
this work. That is, a higher ICD and compartment density
can provide higher resolution but is not expected to substan-
tially affect the overall flow pattern evolution to warrant the
increase in problem dimension. This perspective and chosen
level of refinement fits within the larger field development
context described for this work, where the aim of the partic-

123



Computational Geosciences

Fig. 1 Porosity (left) and permeability (right) fields for Case 1. Horizontal producer PROD1 is located at the southern part of the reservoir, while
vertical injectors INJ1 and INJ2 are located in the northern part

ular optimization effort is to arrive at solution configurations
that may guide and support the overall well planning and
design workflow. Within such workflow, the team of drilling
and reservoir engineers and completion specialists will in
turn translate the obtained ICD and control solutions into
specialized hardware configurations and possible operational
plans for the well.

4.2 Case 2 production scenario

The Case 2 Olympus section model presents a more complex
and realistic production scenario with not only water influx
laterally from injectors but also contribution from an aquifer.
The production scenario comprises two deviated injectors
(INJD15 and INJD16) located in the eastern region of the
reservoir, and a long (approximately 2500m) deviated pro-
ducer (PRODX2) that traverses the southern part. PRODX2
is placed in the uppermost layers of the reservoir, while both
INJD15 and INJD16 penetrate all seven layers. PRODX2’s

trajectory traverses 47 grid blocks and two main non-sealing
faults while slightly sloping downwards from heel to toewith
heel and toe depths at 2034m and 2058m, respectively. The
toe of the PRODX2 wellbore is located slightly less than
12m from the oil-water contact. As with Case 1, the multi-
segmented well model for the producer in Case 2 consists
of eight segments and is constructed such that each seg-
ment connects to approximately the same number of grid
blocks. Thus, the same ICD parametrization as described for
Case 1 applies for Case 2. Permeability, porosity, fault mul-
tipliers and other static model data are taken from the upper
channelized formation of the Olympus case (realization 37).
Figure 2 shows the channelized permeability field and the
relative positioning of all the wells.

4.3 Optimization setup for Case 1 and Case 2

In this work, wells are controlled using bottomhole pressure
(BHP) without specified target rate limits. Default BHP set-

Fig. 2 Relative positioning of
wells (top) and permeability
field (bottom) corresponding
to Case 2. Grid and static
properties taken from Olympus
benchmark case, realization 37.
The figure shows the fourth
layer from top
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Table 1 Simulation parameters and variable settings for all optimiza-
tion runs based on Case 1

Case 1 simulation parameters

Grid block size 24m × 24m × 24m

Total # of blocks 3600

Simulation timeframe 2190 days

Default BHP (PROD1) 90 bar

Default BHP (INJ1, INJ2) 230 bar

# of PROD1 segments 8

ICD Ax 3.927E − 5m2

Optimization settings

# of BHP variables-per-well 10

BHP bounds (PROD1) [bar ] [70, 150]

BHP bounds (INJ·) [bar ] [170, 230]

# of ICD variables 8

ICD Ax bounds [m2]
[
0, 7.353 × 10−3

]

Total ICD cross-sectional area is denoted as Ax . "INJ·" signifies both
injectors in this case

tings, i.e., for those optimization runs where well controls
are not treated as variables, are set to constant for the entire
production timeframe. For Case 1, default BHP settings are
230 bar for injectors INJ1 and INJ2, and 90 bar for pro-
ducer PROD1. For Case 2, default BHP settings are 205 bar
for injectors INJD15 and INJD16, and 155 bar for producer
PRODX2. Whenever well controls are defined as optimiza-
tion variables, BHPs are parametrized as piecewise-constant
functions with 10 control periods, i.e., during optimization
each well is associated with 10 control variables. Production
timeframes for Case 1 and Case 2 are set to 2190 days and
5470 days, respectively. All simulations are performed using

Table 2 Simulation parameters and variable settings for all optimiza-
tion runs based on Case 2

Case 2 simulation parameters

Grid block size (approx. mean DX, DY, DZ) 57m × 87m × 3m

Total # of active blocks 22876

Simulation timeframe 5470 days

Default BHP (PRODX2) 155 bar

Default BHP (INJD15, INJD16) 205 bar

# of PRODX2 segments 8

ICD Ax 3.927E − 5m2

Optimization settings

# of BHP variables-per-well 10

BHP bounds (PRODX2) [bar ] [105, 175]

BHP bounds (INJ·) [bar ] [195, 255]

# of ICD variables 8

ICD Ax bounds [m2]
[
0, 7.353 × 10−3

]

Total ICD cross-sectional area is denoted as Ax . "INJ·" signifies both
injectors in this case

a commercial reservoir simulator. Tables 1 and 2 summarize
the relevant simulation settings and optimization parameters
in addition to the bounds for the different variable types.

Three problem formulations denoted OptFm.0,
OptFm.1 andOptFm.2 are used to performoptimization runs.
Case 1 and Case 2 are each solved using these three prob-
lem formulations. For each case, OptFm.0 entails optimizing
only the eight ICDvariables of the producerwhile keeping all
BHP well controls at default levels. OptFm.1 involves both
ICD variables and the BHP controls of the producer while
keeping constant injector BHPs at default values. Finally,
OptFm.2 entails optimizing the eight ICD variables of the
producer and the BHPs of both the producer and injectors.
Thus, OptFm.1 and OptFm.2 are associated with a total of
18 and 38 control variables, respectively. Table 3 summarizes
the types of variables involved in these different problem for-
mulations.

These formulations are used to compare the performance
of the different derivative-free search procedures over a
range of reasonable problem sizes and possible variable
types. Taken together, these formulations study the effect
on the ICD optimization when the number of well controls
is allowed to increase and provide, to a certain extent, data
on the impact of jointly optimizing ICDs and BHP controls.

To expand theperformance analysis presented inSection 5,
this work introduces a dual presentation of cost function evo-
lution curves. In that section, the cost function data are plotted
both with respect to the number of cost function evaluations
(nfevals), and also in terms of runtime-equivalent cost func-
tion evaluations, (neq.fevals). The total number of neq.fevals’s
performed by a particular optimization run is obtained by
dividing its runtimewith the time it takes to perform one sim-
ulation run (of the corresponding case) using default control
values. The complementary neq.fevals plots enable additional
visual comparison and analysis of cost function evolution for
the different procedures in terms proportional to actual run-
time. (An analog definition using number of cores instead
of simulation runtime was applied in [63] to compare paral-
lelizable procedures like APPS and PSO against inherently
serial algorithms like DFTR.) The logic behind the selection
of the number of cores for the parallel algorithms is as fol-
lows. For PSO, the number of cores equals the number of
particles or the swarm size while the number of cores used

Table 3 Variables involved in the problem formulations OptFm.0,
OptFm.1 and OptFm.2 applied to Case 1 and Case 2

Formulation # of variables (type) Wells

OptFm.0 8 (ICD) PROD·
OptFm.1 8 (ICD) + 10 (BHP) PROD·
OptFm.2 8 (ICD) + 30 (BHP) PROD·, INJ·
"INJ·" signifies both injectors, while "PROD·" signifies producers

123



Computational Geosciences

Table 4 Settings for optimization procedures APPS, PSO and DFTR applied in OptFm.0 through OptFm.3 runs

General DFTR

ObjectiveScalingCoeff. 1.0 × 109 Max#FunctionEvals. 200 / 3600 / 3600

APPS InitialRadius 0.3 / 0.075 / 0.165

Max#FunctionEvals. 1000 / 3600 / 10 800 CostFunctionTolerance 1.0 × 10−6

InitialStepLength 0.25 / 0.35 / 0.25 EpsilonCriticality 1.0 × 10−5

MinimumStepLength 0.005 {Epsilon0, Epsilon1} {0, 0.05}

ContractionFactor 0.618 PivotThreshold 0.0625

ExpansionFactor 1.618 AddThreshold 100

PSO ExchangeThreshold 1000

#SwarmIterations 170 / 250 / 308 RadiusMax 1.5

SwarmSize 12 / 27 / 57 RadiusFactor 6

Learning{Fac.1, Fac.2} {2, 2} / {1, 1} / {1.5, 1.5} RadiusTolerance 1.0 × 10−5

VelocityScale 1 Gamma{Inc., Dec.} {2, 0.5}

Crit.{Mu, Beta, Omega} {100, 10, 0.5}

Triplet settings correspond to parameters used at each problem configuration, i.e., OptFm.0 / OptFm.1 / OptFm.2. In this work, each function
evaluation corresponds to a reservoir simulation. Parameters in italic serve as stopping criteria for the particular algorithms. The abbreviations
Evals., Coeff., Fac., Inc., Dec., and Crit. stand for Evaluations, Coefficient, Factor, Increase, Decrease, and Criticality, respectively

for APPS is twice the number of unknown variables. The
upper bound of 38 cores is set to all the parallel runs as this
is the number of cores available in the computer used for the
simulations.

For each case, Case 1 and Case 2, and for the different
problem formulations, OptFm.0, OptFm.1 and OptFm.2, the
APPS, PSO and DFTR search procedures are applied using
different settings. These settings have been manually tuned
in a systematicmanner for each case and formulation. Table 4
lists the settings used in Case 1, and Table 5 lists the settings
used in Case 2. Among these settings are scaling coefficients

and the stopping criteria for the three algorithms used in
this paper. Notice that these methods have rather different
search characteristics, thus they rely on different convergence
criteria beyond a general maximum number of function eval-
uations that apply to all. Note that all variables for all problem
formulations are scaled to the order of unity, i.e., all variables
lie within the domain [−1, 1] during optimization. This scal-
ing was performed by using a linear transformation of each
vector value with its corresponding variable bound (see [64],
p.274 for details). Thus, all settings provided inTables 4 and 5
apply to the scaled variable domain.

Table 5 Settings for optimization procedures APPS, PSO and DFTR applied in OptFm.0 through OptFm.3 runs

General DFTR

ObjectiveScalingCoeff. 1.0 × 109 Max#FunctionEvals. 15 000 / 15 000 / 15 000

APPS InitialRadius 0.105 / 0.09 / 0.15

Max#FunctionEvals. 10 800 / 10 800 / 10 800 CostFunctionTolerance 1.0 × 10−6

InitialStepLength: 0.025 / 0.35 / 0.075 EpsilonCriticality 1.0 × 10−5

MinimumStepLength: 0.001 / 0.005 / 0.005 {Epsilon0, Epsilon1} {0, 0.05}

ContractionFactor: 0.618 PivotThreshold 0.00625

ExpansionFactor: 1.618 AddThreshold 100

PSO ExchangeThreshold 1000

# of iterations 170 / 250 / 350 RadiusMax 1.5

SwarmSize 12 / 27 / 38 RadiusFactor 6

Learning{Fac.1, Fac.2} {2, 2} / {2, 2} / {2, 2} RadiusTolerance 1.0 × 10−5

VelocityScale 1 Gamma{Inc., Dec.} {2, 0.5}

Crit.{Mu, Beta, Omega} {100, 10, 0.5}

Triplet settings correspond to parameters used at each problem configuration, i.e., OptFm.0 / OptFm.1 / OptFm.2
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5 Results

Results corresponding to Case 1 and Case 2 are discussed
next. Results for the different approaches with tuned algo-
rithm settings are presented for the simple model of Case 1
before expandingmodel complexity in Case 2. For each case,
results and analysis are organized according to the speci-
fied problem formulations (OptFm.0,OptFm.1 andOptFm.2;
see Table 3). Solving for these various formulations enables
analysis regarding problem dimension and variable types.

5.1 Case 1 OptFm.0 results

Figure 3 and Table 6 summarize search performance for
Case 1 OptFm.0. Figure 3 presents the corresponding cost
function performance profiles, and Table 6 provides optimal
cost function values, relative percentage increases compared

Fig. 3 Case 1 OptFm.0 cost function evolution curves for APPS, PSO
and DFTR runs; plotted in terms of total number of cost function evalua-
tions, nfevals, (above) and runtime-equivalent cost function evaluations,
neq.fevals, (below)

Table 6 Case 1 OptFm.0 results

Proc. f ∗[1 × 109$] �[%] nfevals topt[s] nc

APPS 1.141 9.3 901 945 16

PSO 1.140 (±0.001) 9.2 2040 5280 12

DFTR 1.140 9.2 168 3265 1

f ∗ andΔ[%] represent best cost functionvalues andpercentage increase
with respect to default control configuration for this case, respectively.
For each optimization run, nfevals := total number of cost function
evaluations; topt := total runtime in seconds; and nc := number of cores
used in parallel by each procedure. The f ∗ value for PSO is the mean
over six optimizations runs (standard deviation given in parenthesis).
Best PSO run yields f ∗

best = 1.141

to base case objective value (obtained using default initial
controls), as well as the total number of cost function eval-
uations performed, final runtimes and the number of cores
used for parallelization. Additionally, Fig. 4 shows the con-
trol solution for each algorithm (for PSO, the best solution
from its set of runs is used), as well as resulting oil and water
saturation maps at end of production time.

Figure 3(a) and (b) show APPS, PSO and DFTR cost
function evolution curves plotted with respect to nfevals and
neq.fevals, respectively. These curves arrive at practically the
same final value and yield close-to the same relative increase
in the objective, as can be confirmed by the first two columns
in Table 6. Figure 3(a) shows a very efficient DFTR progres-
sion in terms of nfevals (< 200), while both APPS and PSO
require substantially more sampling (∼ 500,> 1500) before
approaching convergence. Table 6 shows APPS requires in
total 901 function evaluations compared to 168 by DFTR.
However, Fig. 3(b) shows APPS converging more than three
times faster than DFTR if APPS is deployed with full par-
allelization over 16 cores (APPS has a 16-point sampling
stencil in this eight-variable formulation).

PSO runs for this case spend more than double the num-
ber of cost function evaluations compared to APPS and 60%
longer time to converge compared to DFTR. Note, however,
thatPSO runs in thiswork converge only due to a pre-setmax-
imum number of swarm iterations. Multiple combinations of
swarm size and total number of iterations were tested for
this specific case and the particular combination presented
in Table 4 consistently provided best performance over all
runs, e.g., at least a swarm size 1.5 times larger than problem
dimension was needed for none of the swarms to collapse
during optimization. Thus, Case 1 OptFm.0 is solved using a
swarm size of 12 over 170 iterations, which yields a total
number of function evaluations of 2040 (see Table 4 for
additional parameters). A total of six runs were performed
because of the stochastic nature of the algorithm, and all runs
were fully parallelized, i.e., the number of cores used equals
the swarm size. Result columns PSO:nfevals and PSO:topt in
Table 6 confirm the swarm-based search of PSO requires
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Fig. 4 Optimal controls and corresponding oil-water saturation maps
at end production time for Case 1 OptFm.0. Results: APPS (left), PSO
(center) and DFTR (right). Oil is indicated by red and water by blue
in the saturation map. The PSO results shown correspond to the run
with highest f ∗ from the PSO set. Colorbar representation of indi-

vidual ICD openings: dark green (fully open, i.e., upper bound), dark
purple (close to shut, i.e., almost lower bound), black (fully closed, i.e.,
lower bound); optimization bounds given in Table 1. The same colorbar
applies to Figs. 6 and 8. Fixed BHP settings are provided for reference

substantial computational resources. The runtime efficiency
of APPS compared to DFTR and PSO for this particular case
is reflected in Fig. 3(b).

A comment regarding algorithm- and case-specific con-
vergence criteria is appropriate at this point. Note that
while all methods operate under a standard limit on maxi-
mum number of function evaluations (explicitly defined by
Max#FunctionEvaluations for APPS and DFTR, and equal to
#SwarmIterations times SwarmSize for PSO, see Table 4),
additional algorithm-specific criteria apply for APPS and
DFTR. In this work, APPS stops once its stencil size is less
than the MinimumStepLength (∝ 1.0 × 10−3) while DFTR
operation is subject to both a RadiusTolerance (1.0 × 10−5)
and a CostFunctionTolerance (1.0 × 10−6).

Though these algorithm-specific convergence criteriamay
make comparisons more difficult and nuanced, their enforce-
ment reflects the search mode and accuracy required by
the respective approaches. As an example, recall that while
DFTR explicitly approximates the objective through inter-
polation, APPS relies on direct comparison of cost function
sample points, thus only implicitly, and in a comparatively
coarser manner, capturing cost function shape. Given the dif-
ferent modes of operation by the different algorithms, the
implemented tolerances should indeed be tuned according
to what is strictly necessary and sufficient for the particular
approach to conduct an efficient search in the given case.

Based on an extensive set of additional runs (equal to those
reported here, for both cases), we found that convergence
criteria other than the ones reported in Table 4 for DFTR,
APPS and PSO algorithms resulted in less efficient searches,
e.g., premature convergence or long plateaus. Thus, for all
methods in all cases, the algorithm parameters and results
reported in this work are those corresponding to the best-
performing runs in terms of the highest final objective and
sufficient number of iterations. This configuration enables a
comparison based primarily on the core search properties of
the algorithms, since each run is close to the best result possi-
bly achieved given that particular algorithm for that particular
case.

With this in mind, we further discuss a previous result to
show that reported core search performance remains largely
consistent despite some relative influence algorithm-specific
criteria can have on convergence. As presented earlier,
Table 6 shows APPS:topt less than three times DFTR:topt.
Clearly, this factor would decrease if APPS was encouraged
to produce a similar convergence plateau as the other runs.
However, even assuming the APPS plateau continues for,
say, 200 more function evaluations under a tighter step size
tolerance, and that this yields a proportional time increase of
roughly APPS:topt ≈ 1200 s, the speed-up difference, i.e.,
APPS:topt ≈ 1200 s versus DFTR:topt ≈ 3200 s would still
remain substantial. We will further consider differing search
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properties and convergence criteria when analyzing subse-
quent results in the following sections.

The search efficiency demonstrated by DFTR for this
simple case shows the value of creating accurate models
through careful sampling. However, it can also be seen as
a reflection that the objective function is easier to approxi-
mate for a low-dimensional problem with only one type of
variable. The inclusion of other variable types with differ-
ent degree of influence on the objective (further discussed
below) will likely make the cost function more challenging
to approximate. (The next section, Case 1 OptFm.1 results,
further explores this search feature contingent on problem
size increases and the inclusion of different variable types.)

Finally, Fig. 4 shows the actual ICD solutions and cor-
responding saturation maps at the end of the production
timeframe. The well segments are represented by eight hor-
izontal rectangles placed below the saturation maps and
PROD1. The coloring of each of the rectangles represents
the total cross-sectional value of the ICD in that particular
segment. The coloring varies from dark-green (fully open,
i.e., upper bound) to light green then light purple to dark
purple (almost closed, i.e., close to lower bound) to black
(fully closed). All three solutions yield a similar completion
design that corresponds to the permeability field of the case,
i.e., high-permeability zones are completely shut down,while
segments near the PROD1 heel located in low-permeability
zones, in addition to the toe segment, both remain open to
varying degree. The final saturation maps are thus also very
similarwith only slight variation in the shapeof the remaining
oil located between the injectors. Overall, these visualiza-
tions confirm the expectation of what the applications should
produce, i.e., a closing of high water-cut areas.

5.2 Case 1 OptFm.1 results

The Case 1 OptFm.1 formulation not only optimizes ICD
settings, but also involves BHP variables for PROD1, i.e.,
the problem is a joint optimization problem consisting
of fixed-in-time ICDs and piecewise-constant time-varying
BHP variables. Note we use the "joint" term here to refer
to problem formulations comprising multiple variable types,
e.g., well placement, production controls and/or configura-
tion of inflow control devices. Joint problems may be solved
using various strategies, e.g., simultaneous, sequential or
embedded. This work implements a simultaneous solution
approach, i.e., at each iteration, each method operates on all
components of the variable vector.

A particular feature of the Case 1 OptFm.1 formulation is
that the two variable types affect the magnitude of the objec-
tive to different degree. Given their physical implementation,
a change in aparticular ICDvariable affects the entire produc-
tion timeframe,while a change in anyparticularBHPvariable

Fig. 5 Case 1 OptFm.1 cost function evolution curves for APPS, PSO
and DFTR runs

influences the objective primarily through production during
the corresponding control period. (An analog relationship is
similarly found in other joint problems, e.g., when optimiz-
ing both well trajectories and controls.) Due to the problem
structure, this feature remains despite the different variable
types being scaled onto the [−1, 1] domain using their cor-
responding bounds (see the end of Section 4.3).

Complementary performance results are provided by
Fig. 5 and Table 7, while Fig. 6 shows saturation maps and

Table 7 Results for OptFm.1

Proc. f ∗[1 × 109$] �[%] nfevals topt[s] nc

APPS 1.161 11.2 2689 2250 36

PSO 1.153 (±0.008) 10.4 6750 12 426 27

DFTR 1.147 9.9 516 9673 1

Column descriptions provided in Table 6. Best PSO run yields f ∗
best =

1.158
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Fig. 6 Optimal controls and corresponding oil-water saturation maps at end production time for Case 1 OptFm.1. Results: APPS (left), PSO (center)
and DFTR (right). The PSO results shown correspond to the run with highest f ∗ from the PSO set

final ICD and BHP solutions for the corresponding search
approaches. Results fromCase 1OptFm.1 are comparedwith
the previous OptFm.0 results to study changes in algorithm
performance due to increased problemdimension and limited
expansion of variable structure. In particular, derivative-free
performance is directly related to problem size and close-to
discontinuous cost function sensitivity may impact individ-
ual search characteristics. Finally, overall performance is
studied in terms of solution and objective value, e.g., dif-
ferences in final configuration and cost function gains due to
solving the problem jointly with well controls are explored.

Comparing f -increase columns (Δ) from Tables 6 and 7
shows individual APPS, PSO and DFTR increments of 1.9,
1.2 and 0.7%, respectively. For each algorithm, these incre-
ments correspond to relative objective function gains of 20,
13 and 8% attributed to the greater flexibility enabled by
the OptFm.0 to OptFm.1 problem expansion. Notably, irre-
spective of the algorithm, the OptFm.1 formulation requires
approximately three times the number of cost function eval-
uations used to solve for OptFm.0. In a similar manner, both
APPS and PSO total runtimes are 2.4 times longer while
the DFTR runtime is three times longer compared to the
OptFm.0 runs. In terms of the number of cost function evalu-
ations, Fig. 5(a) shows a very efficient local search by DFTR
even though both APPS and PSO eventually reach higher val-
ues. If considering performance in terms relative to runtime,
however, Fig. 5(b) shows an inverse situation where APPS
conducts a very efficient search compared to DFTR.

The expansion fromOptFm.0 to OptFm.1 entitles increases
in both problem dimension and cost function complexity.
Increased complexity may complicate DFTR’s characteris-

tic model-building routine by forcing reduced model sizes,
thus placing greater importance on the initial point and likely
leading to less effective searches. Compared to Fig. 3, Fig. 5
shows a markedly poorer f -evolution by DFTR relative to
the performance obtained by the other search approaches. In
fact, as shown in Table 4, DFTR for OptFm.1 provided the
best result when started with a lower "InitialRadius" setting
of 0.075 compared to using 0.3when solvingOptFm.0. (Note
that for each formulation, DFTR is tested using 12 different
InitialRadius settings; thereafter, the run with the highest f
value is selected for comparison, and its setting reported in
Tables 4 and 5.) Taken together, theOptFm.0–OptFm.1 prob-
lem expansion demonstrates DFTR maintains its high local
search efficiency while using only very few sampling points.
However, its overall exploration capacity is likely to further
degrade as search space complexity increases. Subsequent
sections will further discuss this point as results from more
advanced cases are analyzed.

PSO runs for both OptFm.0 and OptFm.1 problem formu-
lations yield gradually increasing mean f -evolutions with
low standard deviation throughout the optimization (Figs. 3
and 5, respectively). Note that for each formulation, the
various PSO search parameters are tuned such that the
combination requiring lowest total nfevals while consistently
providing successful progressionwith high f ∗ is chosen. The
tuning entitles finding a sufficient number of iterations and
population size to both ensure convergence and avoid popu-
lation collapse for all runs in each formulation. The chosen
parameter combinations are reported in Table 4. In rela-
tive terms and despite specific tuning, the PSO applications
require substantial computational resources both in terms
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Fig. 7 Case 1 OptFm.2 cost function evolution curves for APPS, PSO
and DFTR runs

of nfevals and neq.fevals to solve either problem formulation.
Finally, for these applications, not even full parallelization (#
of particles = # of parallel computing cores) is able to reduce
runtime sufficiently to make PSO performance comparable
to the most efficient approach, i.e., APPS.

Table 7 (second column) provides f ∗ performance of the
different algorithms for OptFm.1 while Fig. 4 shows corre-
sponding saturationmaps and control solutions.PSO solution
results in Fig. 4 (center) correspond to the runwith highest f ∗
( f ∗ = 1.158) from the PSO set. Figure 4 shows the PSO ICD
and BHP controls are very similar to the APPS controls that
yield a f ∗ = 1.161. Associated saturation maps for PSO and
APPS are therefore very similar. Comparatively, however,
the DFTRmap shows substantially less water intrusion from
both injectors even though the DFTR BHP profile is some-
what more aggressive compared to the other two solutions
(especially after 438 days). In this case, the APPS and PSO
ICD solutions enable a higher degree of water encroachment

Table 8 Results for OptFm.2

Proc. f ∗[1 × 109$] �[%] nfevals topt[s] nc

APPS 1.194 14.4 4733 4276 38

PSO 1.151 (±0.016) 10.2 14 250 14 178 38

DFTR 1.167 11.8 1129 89 407 1

Column descriptions provided in Table 6. Best PSO run yields f ∗
best =

1.167

by deploying configurations with significantly larger valve
openings (from dark to light green).

5.3 Case 1 OptFm.2 results

Case 1 OptFm.2 engages all controls in the problem scope by
also treating the injectors’ (INJ·) BHP settings as variables.
This more than doubles the dimension of the previous for-
mulation to a total of 38 (variable numbers and types for all
problem formulations are provided in Table 3). Compared
to previous formulations, the additional flexibility enabled
by OptFm.2 is expected to facilitate higher final objective
values for all derivative-free approaches. However, due to
their reliance on different search characteristics, the higher
number of variables in this particular formulation can sig-
nificantly affect the relative computational performance of
the approaches. (Compared to gradient-based methods, the
performance of derivative-free approaches is much more
dependent on the total number of variables.) Finally, the
inclusion of additional BHP controls may serve to balance
cost function sensitivity associatedwith the different variable
types, and thereby indirectly benefit computational perfor-
mance by providing a smoothening effect on the objective.
Thus, compared to OptFm.1 comprising 8 ICD and 10 BHP
variables, the OptFm.2 formulation now involves 8 ICD
and 30 BHP controls, which increases the relative influence
BHP controls can exert on the overall cost function. In this
sense, the optimization may reach higher objective values
not only because a greater number of possible configurations
are available but also because the search process itself is less
dominated by a few (ICD) dimensions.

Figure 7 and Table 8 show the search results for Case 1
OptFm.2 while Fig. 8 shows the saturation maps and optimal
ICD and BHP controls corresponding to each approach. It is
useful to compare the saturation maps of OptFm.2 (Fig. 8)
with those of OptFm.1 (Fig. 6) to illustrate the effect of
involving INJ·BHP controls in the optimization. For all solu-
tions, the dark-bluewater area from INJ2 has amore compact
encroachment on the toe half of PROD1when usingOptFm.2
controls compared to OptFm.1 solutions. On the other hand,
the INJ1 injection when using OptFm.2 controls extends the
dark-blue areas closer towards the middle of PROD1 while
also further pushing water onto the curved pocket of oil
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Fig. 8 Optimal controls and corresponding oil-water saturation maps at end production time for Case 1 OptFm.2. Results: APPS (left), PSO (center)
and DFTR (right). The PSO results shown correspond to the run with highest f ∗ from the PSO set

located north of the reservoir. Figure 9 illustrates this redis-
tribution by showing the saturation difference for the APPS
solution with increases in oil and water saturation drawn
as black and white areas, respectively. Finally, it should be
noted that each OptFm.2 solution has an ICD configuration
with one more open compartment (to a varying degree) com-
pared to its correspondingOptFm.1 solution.Thus, compared
to previous formulations, it appears optimizing using addi-
tional (INJ·) controls enables wells with extended reservoir
interfaces, and that the higher number of controls provides a
measure of flexibility to optimally adjust the resulting fluid
displacement.

The corresponding performance data for the different
search approaches are shown in Table 8. For this formula-
tion, APPS requires 4733 function evaluations compared to

Fig. 9 Oil (black) - water (white) saturation map difference between
Case 1 OptFm.1 and OptFm.2 APPS solutions at end production time

1129 by DFTR and 14250 by PSO. However, as Fig. 7(b)
also shows, APPS finished more than 3 times faster than
PSO and 20 times faster than DFTR. Figure 7(a), on the
other hand, presents an efficient DFTR progression in terms
of sheer number of cost function evaluations. In particu-
lar, for the DFTR algorithm, its plateau convergence phase
requires a significant amount of time, which may be due
to increased algorithm processing, e.g., substantial model
rebuilding efforts, added to the actual time used to run
the simulations themselves. Recall that the model-building
part of DFTR is particularly dependent on problem dimen-
sion (see Section 3.3.3). Finally, for this formulation, PSO
conducts an inefficient search even though substantial com-
putational resources are provided. Further, there is a large
deviation between the individual PSO runs, as visualised
in Fig. 7. PSO yields a mean f ∗ = 1.151 (while the best
result from the PSO set is f ∗ = 1.167, equal to the DFTR
results).

Lastly, an additional note is made regarding the ICD
results obtained from the different approaches across the
three problem formulations for this case. Comparing ICD
solutions from Figs. 4, 6 and 8, we note that, although
there is a spread in magnitude among the open ICD settings,
there is a tendency of fewer fully closed segments when
increasing the number of BHP controls, i.e., when going
from formulations OptFm.0 to OptFm.2. (Beyond this note,
however, too few data points are available to make further
conclusions.)

To conclude, overall results fromTables 6 to 8 demonstrate
the gains obtained with more expansive problem formula-
tions while detailing the resources needed to achieve these
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gains for the different search approaches. As part of an area
or field development project, these data can support a deci-
sion situation concerned with finding an effective problem
formulation and configuring an application of optimization
routines that is likely to meet expectations, i.e., this type
of data provides information regarding possible alternatives
for an optimization campaign, e.g., with regard to problem
formulation, search strategy choice, method parametriza-
tion, etc. Moreover, within an established decision structure,
these results can be used to assess probabilistic returns in
terms of likely gain and performance for the various search
approaches, given the particular problem specifications and
computational budget. The next section presents the data for
the more realistic Case 2 and expands on the analysis of the
approaches performed so far for Case 1.

Fig. 10 Case 2 OptFm.0 cost function evolution curves for APPS, PSO
and DFTR runs; curves plotted in terms of total number of cost func-
tion evaluations, nfevals, (above) and runtime-equivalent cost function
evaluations, neq.fevals, (below), analogous to Fig. 3

Table 9 Case 2 OptFm.0 results

Proc. f ∗[1 × 109$] �[%] nfevals topt[s] nc

APPS 0.622 17.9 1118 2.3 × 104 16

PSO 0.622 (±0.000) 17.9 2040 4.0 × 104 12

DFTR 0.622 17.9 159 5.8 × 104 1

f ∗ andΔ[%] represent best cost functionvalues andpercentage increase
with respect to default control configuration for this case, respectively.
Analog column configuration as Table 6. Best PSO run yields f ∗

best =
0.622

5.4 Case 2 OptFm.0 results

Themain goal of Case 2 is to extend the performance analysis
of the different approaches to a problemwith increasedmodel
complexity. Figure 10 and Table 9 summarize the search per-
formance for the Case 2 OptFm.0 formulation. Figure 10(a)
shows the three approaches reaching the same f ∗ with differ-
ent progression paths. For this case, both DFTR and APPS
show very efficient initial progressions in terms of nfevals;
however, APPS requires a substantial plateau phase before
converging, which leads to a total nfevals ∼ 1100 compared to
nfevals < 200 for DFTR. However, Fig. 10(b) shows that using
full parallel capacity for this case, i.e., nc = stencil size,
APPS converges close to twice as fast as PSO and ∼ 2.5
times faster than DFTR.

Figure 11 shows ICD solutions (fixed BHP settings are
included for later reference) and corresponding saturation
maps at the end of the production timeframe. All saturation
maps for Case 2 are presented with a horizontal slice posi-
tioned at layer 4. The saturation maps in general reflect the
similarity of final cost function values presented by Table 9.
The APPS map, however, shows a somewhat greater water
sweep close to the PRODX2 wellbore in the area between
the two faults. Similar to Case 1, all ICD solutions show a
complete shut-in of segments in the toe-half of PRODX2,
which corresponds to the high-permeability channel in this
region (shown in Fig. 2).

5.5 Case 2 OptFm.1 results

Performance results for Case 2 OptFm.1 are presented by
Fig. 12 and Table 10, while Fig. 13 shows final ICD and
BHP solutions and corresponding saturation maps for the
different search approaches. As for Case 1, Case 2 OptFm.1
signifies an expansion in problem formulation to also involve
producer BHP controls as optimization variables. For this
formulation, Fig. 13 shows that, except for a couple of con-
trol periods, both APPS and PSO solutions mainly operate
PRODX2 using BHP controls set at the lower bound. Fur-
thermore, compared to Case 2 OptFm.0, the corresponding
ICD solutions have several more shut-in segments in the toe-
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Fig. 11 Optimal ICD controls and corresponding saturation maps for
Case 2 OptFm.0. APPS, PSO and DFTR saturation maps showing layer
4 on top, with red indicating oil and blue indicating water. Colorbar
representation of individual ICD openings: dark green (fully open, i.e.,

upper bound), dark purple (close to shut, i.e., almost lower bound), black
(fully closed, i.e., lower bound); optimization bounds given in Table 2.
The same colorbar applies to Figs. 13 and 15. Fixed BHP settings are
provided for reference

half of PRODX2. Altogether, this yields a more aggressive
control strategy for this particular case that results in sig-
nificantly higher objective increases for APPS and PSO as
seen in Fig. 12. Table 10 confirms these additional increases
of 23.3% and 22.1% for APPS and PSO, respectively, com-
pared to theCase 1OptFm.0 results. These results point to the
importance of involving both ICD and BHP variables during
optimization.

DFTR solutions for OptFm.0 and OptFm.1 formulations
are very alike and OptFm.1 compared to OptFm.0 yields
an additional increase of 3% only, as shown by Table 10.
(These two solutions are also similar to the OptFm.2 solution
discussed later which also yields a relatively small increment
of about 8% compared to OptFm.0.) Mirroring these results,
Fig. 12 presents a low-performing DFTR search compared
to the other approaches. (A similar poor progression is also
seen for OptFm.2 in Fig. 14.)

5.6 Case 2 OptFm.2 results

Finally, Fig. 14 and Table 11 summarize the Case 2 OptFm.2
results while Fig. 15 shows the corresponding saturation
maps and optimal ICD and BHP controls. For all approaches,
Fig. 15 shows significant control activity for both injectors
and somewhat stable control settings for PRODX2.However,
APPS and PSO solutions present both higher injection pres-
sures in general and practically operate PRODX2 at its lower
bound pressure settings, thus ensuring an aggressive produc-
tion strategy. For APPS, this production setting is countered
by fewer ICD segments open for production compared to the
OptFm.1 solution. Finally, the APPS saturation map shows a
markedly improved waterflooding sweep compared to PSO
and DFTR maps.

Of the different methods tested in this work, the DFTR
search approach is the most sensitive to local cost function
properties. The generally inefficient cost function evolu-
tions and associated DFTR results described above indicate
increased search difficulties across the various formulations
for this particular case, also despite significant problem-
specific tuning of method parameters. Overall, for all for-
mulations, these more demanding search conditions can
be reasonably attributed to cost function response surfaces
harder to traverse due to Case 2’s more realistic physical
model.

On a more granular level, DFTR reparametrizations
required to improve problem-specific performance may be
used to infer some properties and possibly changes in cost
function response surface across formulations. (Recall that
for each formulation, DFTR has been run with a dozen dif-
ferent initial radii and that the configuration and solution
associated with the highest f is reported.) In this regard,
the reported "best" DFTR InitialRadius parameters (Table 5)
can be compared across the various formulations to probe
problem properties. As seen for Case 2 OptFm.0, Fig. 10
and Table 9 show DFTR matching the performance of the
other approaches. However, compared to Case 1, this result
required a substantial reduction in the initial search radius (to
about a third, from 0.3 to 0.105). Because of the simplicity
of the OptFm.0 formulation, this re-parametrization can be
attributed to less-favorable response surface features caused
by the underlying simulation model, as discussed above.

For OptFm.1, the best-performing DFTR runs entitle a
reduction in InitialRadius in both Case 1 andCase 2 (to 0.075
and 0.09, respectively). However, for Case 2, this reduction
is no longer sufficient to conduct an overall efficient search
compared to the other routines. Finally, forOptFm.2,DFTR is
again able to successfully initiate its search using a relatively
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Fig. 12 Case 2 OptFm.1 cost function evolution curves for APPS, PSO
and DFTR runs

large initial radius (0.165 and 0.150 for Case 1 and Case 2,
respectively), although DFTR’s overall Case 2 performance
for this formulation yields a poor final result.

Altogether, the occurrence of InitialRadius changes across
both cases may be an indication of added challenging con-
ditions presumably caused by the particular variable type
configurations of the different formulations. (This function
feature was first mentioned at the end of Section 5.2 and fur-

Table 10 Case 2 OptFm.1 results

Proc. f ∗[1 × 109$] �[%] nfevals topt[s] nc

APPS 0.745 41.2 2479 5.6 × 104 36

PSO 0.731 (±0.008) 38.5 6750 2.1 × 105 27

DFTR 0.638 20.9 1114 8.0 × 105 1

Analog column configuration as Table 7. Best PSO run yields f ∗
best =

0.739

ther discussed at the start of Section 5.3.) If so, the above
observation may point to some degree of general smoothen-
ing of f caused to a higher ratio of BHP versus ICD variables
for OptFm.2 compared to OptFm.1. Such improved con-
ditioning could subsequently enable a local search routine
similar to DFTR to start with larger initial radii (or step).

Results from Table 11 show robust improvements in
objective (50.7%, 46.9% and 25.5% for APPS, PSO and
DFTR, respectively). The corresponding cost function evolu-
tion curves presented in Fig. 14 show comparably effective
searches for both APPS and PSO in terms of obtaining a
similarly high objective value for this problem. Of these two
approaches, APPS delivers the most efficient cost function
evolution from the start and reaches a convergence plateau
using fewer objective evaluations. (Note that PSO for this
problem formulation required 350 population iterations to
produce a reasonable convergence curve compared to 250
for OptFm.1.)

6 Final remarks

A fundamental challenge in industry algorithm research and
development, and subsequent application efforts, is to suc-
cessfully design and execute fit-for-purpose optimization
campaigns. A fit-for-purpose approach is needed because
possible area and field development operations to be opti-
mized involve problems with distinct variable types and
different requirements for model fidelity. Simply speaking,
oneparticular search approach cannot possibly solve all prob-
lem configurations equally well.

The design phase for the development of tailored search
methodologies requires scoping of appropriate problem
formulations and the definition of practical variable abstrac-
tions. In this work, we have tested a range of increasingly
complex problem formulations in terms of both problem size
and variable type. Given that the tested methods rely on dif-
ferent search characteristics, the study focused on how the
increasing number and the composition of different types of
variables affect the relative computational performance of the
approaches. Finally, an ICD parametrization has been imple-
mented to effectively yield results for large-scale production
strategies while maintaining a low problem dimension (the
latter particularly useful for the derivative-free optimization
methods applied in this work).

Further application requires benchmarking on realistic test
cases and an honest attempt at comparing the quite different
search features against useful baselines. Multiple metrics in
figure and table form have therefore been used in this work
to analyze results along relevant dimensions. Furthermore,
best-performing tuning has been implemented for the dif-
ferent algorithms to enable comparison based primarily on
their core search properties. Thus, each run is close to the
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Fig. 13 Optimal ICD and BHP controls and corresponding saturation maps for Case 2 OptFm.1. Analog configuration as Fig. 11

best result and performance possibly achieved (by us) given
that particular algorithm for that particular case. Overall, this
structuring of the comparison provides nuance to the analy-

Fig. 14 Case 2 OptFm.2 cost function evolution curves for APPS, PSO
and DFTR runs

sis and enables highlighting the conditional usefulness of the
various approaches given varying circumstances for applica-
tion, e.g., availability of resources, and for particular cases,
e.g., problem dimension and types of variables involved.

A few specific remarks can be made based on the results
obtained in this work:

– Introducing the capability of dynamically managing
sweep through varying well control settings not only pro-
vides higher objective value but can also be seen as a
means to counter reservoir and fluid uncertainties and
thus complement the functionality of the fixed ICD con-
figuration. Altogether, this provides a context and lends
support for performing joint completion design optimiza-
tion involving fixed nozzle-based completions and well
controls.

– APPS demonstrates robust performance across differ-
ent problem formulations to support different exploration
efforts. Comparably, DFTR results demonstrate decreas-
ing performance for formulations involving a higher
number of variables and/or comprising multiple variable
types.

– Implementation of both APPS and PSO with full par-
allelization requires substantial computational resources
and constrains the optimization effort to a lower number
of concurrent trials. DFTR, on the other hand, applies a
serial search approach that enables multiple trial runs at

Table 11 Case 2 OptFm.2 results

Proc. f ∗[1 × 109$] �[%] nfevals topt[s] nc

APPS 0.795 50.7 8254 3.8 × 105 38

PSO 0.775 (±0.008) 46.9 9500 5.5 × 105 38

DFTR 0.662 25.5 2550 1.5 × 106 1

Analog column configuration as Table 8. Best PSO run yields f ∗
best =

0.783
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Fig. 15 Optimal ICD and BHP controls and corresponding saturation maps for Case 2 OptFm.2. Analog configuration as Figs. 11 and 13.

one time by requiring only a minimum of computational
cores.

– DFTR results show in general a high search efficiency
during early stages, but also substantial dependency on
the initial position. This characteristic is better suited for
local improvement around a particular point and can be
an opportunity to improve the performance of a less-
effective algorithm during late-stage convergence, e.g.,
in a hybrid configuration.

Finally, while this work has been scoped to not involve
model uncertainty, a robust optimization will typically use
the expected objective over a set of realizations covering the
probable range of uncertain parameters. Though any final
application needs to account for geological uncertainty as
part of the design phase, this work has used a determinis-
tic scope to focus on core algorithmic performance against
problem types. However, performance over a set of realiza-
tions is a crucial dimension and a natural component in future
algorithm development.

Acknowledgements The authors would like to thank Jarle Haukås for
valuable contributions to the framing of this research, and SLB Sta-
vanger Research (SSR) for hosting the authors during parts of this
research.

Funding Open access funding provided by NTNU Norwegian Univer-
sity of Science and Technology (incl St. Olavs Hospital - Trondheim
University Hospital).

Data Availability The optimization code used in this project is available
on theGitHub page of the PetroleumCyberneticsGroupNTNU (https://
github.com/PetroleumCyberneticsGroup/FieldOpt-Research-Open).
The data supporting this study’s findings are available from the cor-
responding author upon reasonable request.

Declarations

Competing interest The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Constable, M.V., Antonsen, F., Stalheim, S.O., Olsen, P.A., Fjell,
Ø.Z., Dray, N., Eikenes, S., Aarflot, H., Haldorsen, K., Digranes,
G., Seydoux, J., Omeragic, D., Thiel, M., Davydychev, A., Deni-
chou, J.M., Salim, D., Frey, M., Homan, D., Tan, S.: Looking
ahead of the bit while drilling: From vision to reality. SPWLA 57th
Annual Logging Symposium (2016). SPWLA-2016-MMMM

2. Bergmo, P.E.S., Grimstad, A.A.: Water Shutoff Technologies for
Reduced Energy Consumption. SPE Norway Subsurface Confer-
ence (2022). https://doi.org/10.2118/209555-MS. SPE-209555-
MS

3. Leung, E., Nukhaev,M., Gottumukkala, V., Samosir, H., El-Fattah,
M.A., Ogunsanwo, O., Gonzalez, A.: Horizontal well placement
and completion optimisation in carbonate reservoirs. SPE Caspian
Carbonates Technology Conference p. 19 (2010). https://doi.org/
10.2118/140048-MS. SPE-140048-MS

4. Krogstad, S., Nilsen, H.M.: Efficient adjoint-based well-placement
optimization using flow diagnostics proxies. ECMOR XVII - 17th
European Conference on the Mathematics of Oil Recovery, Online
Event (2020). https://doi.org/10.3997/2214-4609.202035227

5. Volkov, O., Voskov, D.V.: Effect of time stepping strategy on
adjoint-based production optimization. Comput. Geosci. 20(3),
707–722 (2016). https://doi.org/10.1007/s10596-015-9528-1

6. Al-Khelaiwi, F.T., Birchenko, V.M., Konopczynski, M.R., Davies,
D.R.: Advanced wells: A comprehensive approach to the selection
between passive and active inflow-control completions. SPE Prod.

123

https://github.com/PetroleumCyberneticsGroup/FieldOpt-Research-Open
https://github.com/PetroleumCyberneticsGroup/FieldOpt-Research-Open
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2118/209555-MS
https://doi.org/10.2118/140048-MS
https://doi.org/10.2118/140048-MS
https://doi.org/10.3997/2214-4609.202035227
https://doi.org/10.1007/s10596-015-9528-1


Computational Geosciences

Oper. 25(03), 305–326 (2010). https://doi.org/10.2118/132976-
PA. SPE-132976-PA

7. Todman, S., Wood, G., Jackson, M.D.: Modelling and optimiz-
ing inflow control devices. SPE Kingdom of Saudi Arabia Annual
Technical Symposium and Exhibition p. 19 (2017). SPE-188012-
MS

8. van der Bol, L., McCarty, A., Pritchett, J., Sripornprasert, Y.,
Goh, G., Ridho, M., Natapak, R., Sowmyanarayanan, N.M.: ICD
design optimisation with single-well dynamic 3D modelling and
real-time operation support. International Petroleum Technology
Conference p. 16 (2016). https://doi.org/10.2523/IPTC-18848-
MS. IPTC-18848-MS

9. Holmes, J.A.: Modeling advanced wells in reservoir simulation.
J. Pet. Technol. 53, 54–66 (2001). https://doi.org/10.2118/72493-
JPT. SPE-72493-JPT

10. Gurses, S.F., Vasper, A.C.: Optimized modeling workflows for
designing passive flow control devices in horizontal wells. SPE
Reservoir Characterization and Simulation Conference and Exhi-
bition p. 10 (2013). https://doi.org/10.2118/166052-MS. SPE-
166052-MS

11. Jesmani, M., Jafarpour, B., Bellout, M.C., Foss, B.: A reduced ran-
dom sampling strategy for fast robust well placement optimization.
J. Petrol. Sci. Eng. 184, 106414 (2020). https://doi.org/10.1016/j.
petrol.2019.106414

12. Holmes, J.A., Barkve, T., Lund, O.: Application of a multisegment
well model to simulate flow in advanced wells. SPE European
Petroleum Conference pp. 171–181 (1998). https://doi.org/10.
2118/50646-MS. SPE-50646-MS

13. Youngs, B., Neylon, K.J., Holmes, J.A.: Recent advances in
modeling well inflow control devices in reservoir simulation.
International PetroleumTechnologyConference p. 6 (2009). IPTC-
13925-MS

14. Maas, T.R., Bouts, M.N., Joosten, G.J., Jansen, J.D.: The impact of
smart completions on optimal well trajectories. Abu Dhabi Inter-
national Petroleum Exhibition publisher & Conference (2017).
https://doi.org/10.2118/188368-MS. SPE-188368-MS

15. Gurses, S., Chochua, G., Rudic, A., Kumar, A.: Dynamic modeling
and design optimization of cyclonic autonomous inflow con-
trol devices. SPE Reservoir Simulation Conference p. 15 (2019).
https://doi.org/10.2118/193824-MS. SPE-193824-MS

16. Youngs, B., Neylon, K., Holmes, J.: Multisegment well modeling
optimizes inflow control devices. World Oil pp. 37–42 (2010)

17. Agrawal, A., Leeuwen, P.V., Demirbas, B., Hajj, J.: Surface man-
agement of gas breakthrough in thin oil rim waxy reservoir: A
case study. SPE Intelligent Energy International Conference and
Exhibition p. 25 (2016). https://doi.org/10.2118/181077-MS.SPE-
181077-MS

18. Fernandes, P., Li, Z., Zhu, D.: Understanding the roles of inflow-
control devices in optimizing horizontal-well performance. SPE
Annual Technical Conference and Exhibition p. 12 (2009). https://
doi.org/10.2118/124677-MS. SPE-124677-MS

19. Webb, S.J., Revus, D., Myhre, A.M., Goodwin, N.H., Dunlop, N.,
Heritage, J.: Rapid model updating with right-time data - ensur-
ing models remain evergreen for improved reservoir management.
Intelligent Energy Conference and Exhibition p. 13 (2008). https://
doi.org/10.2118/112246-MS. SPE-112246-MS

20. Antonsen, F., Teixeira De Oliveira, M.E., Petersen, S.A., Met-
calfe,R.W.,Hermanrud,K.,Constable,M.V.,Boyle,C.T., Eliassen,
H.E., Salim, D., Seydoux, J., Omeragic, D., Thiel, M., Denichou,
J.M., Etchebes, M., Nickel, M.: Geosteering in complex mature
fields through integration of 3D multi-scale LWD-data, geomod-
els, surface and time-lapse seismic. SPWLA 59th Annual Logging
Symposium p. 16 (2018). SPWLA-2018-Q

21. Warrlich, G.M.D., Abu-Shiekah, I., Alexander, D.M., Zhu, F.,
Goossens, P.M., Tull, S.S., Al-Lamki, A.A.: Maintaining an
“Evergreen” model to optimise a waterflood development in a

carbonate transition zone field. SPE/EAGE Reservoir Character-
ization and Simulation Conference p. 14 (2009). https://doi.org/
10.2118/125552-MS. SPE-125552-MS

22. Salim, D., Couto, P., Alves, J., Freitas, E., Haq, S., Denichou,
J.M.: Optimizing recovery by integrating an advanced reservoir
simulation approach into the drilling of horizontal wells. Offshore
Technology Conference (2015). OTC-26161-MS

23. Jesmani, M., Bellout, M.C., Hanea, R., Foss, B.: Well placement
optimization subject to realistic field development constraints.
Comput. Geosci. 20(6), 1185–1209 (2016). https://doi.org/10.
1007/s10596-016-9584-1

24. Goh, G., Tan, T., Zhang, L.M.: A unique ICD’s advance com-
pletions design solution with single well dynamic modeling.
IADC/SPE Asia Pacific Drilling Technology Conference p. 12
(2016). https://doi.org/10.2118/180672-MS. SPE-180672-MS

25. Dong, C., Dupuis, C., Morriss, C., Legendre, E., Mirto, E., Kutiev,
G., Denichou, J.M., Viandante, M., Seydoux, J., Bennett, N., Zhu,
Q., Zhong, X.: Application of automatic stochastic inversion for
multilayer reservoir mapping while drilling measurements. Abu
Dhabi International Petroleum Exhibition and Conference p. 14
(2015). https://doi.org/10.2118/177883-MS. SPE-177883-MS

26. Seydoux, J., Legendre, E., Mirto, E., Dupuis, C., Denichou, J.M.,
Bennett, N., Kutiev, G., Kuchenbecker, M., Morriss, C., Yang,
L.: Full 3D deep directional resistivity measurements optimize
well placement and provide reservoir-scale imaging while drilling.
SPWLA 55th Annual Logging Symposium p. 14 (2014). SPWLA-
2014-LLLL

27. Maggs, D., Raffn, A.G., Porturas, F., Murison, J., Tay, F., Suwar-
lan, W., Samsudin, N.B., Yusmar, W.Z.A., Yusof, B.W., Imran,
T.N.O.M., Abdullah, N.A., Reffin, M.Z.B.M.: Production opti-
mization for second stage field development using ICD and
advanced well placement technology. Europec/EAGE Conference
and Exhibition p. 11 (2008). https://doi.org/10.2118/113577-MS.
SPE-113577-MS

28. Henriksen, K.H., Gule, E.I., Augustine, J.R.: Case study: The
application of inflow control devices in the Troll field. SPE
Europec/EAGE Annual Conference and Exhibition p. 5 (2006).
https://doi.org/10.2118/100308-MS. SPE-100308-MS

29. Montaron, B.A., Bradley, D.C., Cooke, A., Prouvost, L.P., Raffn,
A.G., Vidal, A., Wilt, M.: Shapes of flood fronts in heterogeneous
reservoirs and oil recovery strategies. SPE/EAGE Reservoir Char-
acterization and Simulation Conference p. 18 (2007). https://doi.
org/10.2118/111147-MS. SPE-111147-MS

30. Raffn, A.G., Zeybek, M., Moen, T., Lauritzen, J.E., Sunbul, A.H.,
Hembling, D.E., Majdpour, A.: Case histories of improved hori-
zontal well cleanup and sweep efficiency with nozzle based inflow
control devices (ICD) in sandstone and carbonate reservoirs. Off-
shore Technology Conference p. 9 (2008). https://doi.org/10.4043/
19172-MS. OTC-19172-MS

31. Karim, R.A., Goh, K.F.G., Nuriyadi, M.A., Ahmad, N.A., Leung,
E., Murison, J.A.: Horizontal well optimization with inflow con-
trol devices (ICDs) application in heterogeneous and dipping
gas-capped oil reservoirs. SPE Annual Technical Conference and
Exhibition p. 15 (2010). https://doi.org/10.2118/133336-MS.SPE-
133336-MS

32. Venkitaraman, A., Manrique, J.F., Poe, B.D.J.: A comprehensive
approach to completion optimization. SPE Eastern Regional Meet-
ing p. 11 (2001). SPE-72386-MS

33. Al Hashemi,M., Bellah, S., Gurses, S., Akhtar,M.N.: ICD comple-
tions optimization for an offshore Abu Dhabi well using dynamic
modeling. SPE Reservoir Characterization and Simulation Confer-
ence and Exhibition p. 9 (2013). https://doi.org/10.2118/165962-
MS. SPE-165962-MS

34. Li, D., Alobedli, A., Selvam, B., Azoug, Y., Obeta, C., Nguyen,
M., Al-Shehhi, B.H.: A new ICD/ICVwell completion design opti-
mizer and well management logic for full field reservoir simulation

123

https://doi.org/10.2118/132976-PA
https://doi.org/10.2118/132976-PA
https://doi.org/10.2523/IPTC-18848-MS
https://doi.org/10.2523/IPTC-18848-MS
https://doi.org/10.2118/72493-JPT
https://doi.org/10.2118/72493-JPT
https://doi.org/10.2118/166052-MS
https://doi.org/10.1016/j.petrol.2019.106414
https://doi.org/10.1016/j.petrol.2019.106414
https://doi.org/10.2118/50646-MS
https://doi.org/10.2118/50646-MS
https://doi.org/10.2118/188368-MS
https://doi.org/10.2118/193824-MS
https://doi.org/10.2118/181077-MS
https://doi.org/10.2118/124677-MS
https://doi.org/10.2118/124677-MS
https://doi.org/10.2118/112246-MS
https://doi.org/10.2118/112246-MS
https://doi.org/10.2118/125552-MS
https://doi.org/10.2118/125552-MS
https://doi.org/10.1007/s10596-016-9584-1
https://doi.org/10.1007/s10596-016-9584-1
https://doi.org/10.2118/180672-MS
https://doi.org/10.2118/177883-MS
https://doi.org/10.2118/113577-MS
https://doi.org/10.2118/100308-MS
https://doi.org/10.2118/111147-MS
https://doi.org/10.2118/111147-MS
https://doi.org/10.4043/19172-MS
https://doi.org/10.4043/19172-MS
https://doi.org/10.2118/133336-MS
https://doi.org/10.2118/165962-MS
https://doi.org/10.2118/165962-MS


Computational Geosciences

with multiple ICD/ICV wells. Abu Dhabi International Petroleum
Exhibition publisher & Conference p. 17 (2017). https://doi.org/
10.2118/188642-MS. SPE-188642-MS

35. Holmes, J.A., Byer, T.J., Edwards, D.A., Stone, T.W., Pallister,
I., Shaw, G.J., Walsh, D.: A unified wellbore model for reservoir
simulation. SPEAnnual Technical Conference andExhibition p. 14
(2010). https://doi.org/10.2118/134928-MS. SPE-134928-MS

36. Stone, T.W., Bennett, J., Law, D.H.S., Holmes, J.A.: Thermal sim-
ulation with multisegment wells. SPE Reserv. Eval. Eng. 5(03),
206–218 (2002). https://doi.org/10.2118/78131-PA. SPE-78131-
PA

37. Elfeel, M.A., Goh, G., Biniwale, S.: Advanced completion opti-
mization ACO: A comprehensive workflow for flow control
devices (2021). https://doi.org/10.2523/IPTC-21189-MS. IPTC-
21189-MS

38. Volkov, O., Bellout, M.C.: Gradient-based constrained well place-
ment optimization. J. Petrol. Sci. Eng. 171, 1052–1066 (2018).
https://doi.org/10.1016/j.petrol.2018.08.033

39. Volkov, O., Bellout, M.C.: Gradient-based production optimiza-
tion with simulation-based economic constraints. Comput. Geosci.
21(5), 1385–1402 (2017). https://doi.org/10.1007/s10596-017-
9634-3

40. Baumann, E.J.M., Dale, S.I., Bellout, M.C.: FieldOpt: A powerful
and effective programming framework tailored for field develop-
ment optimization. Comput. Geosci. 135, 104379 (2020). https://
doi.org/10.1016/j.cageo.2019.104379

41. FieldOpt Research: Open-source repository with up-to-date
research code. https://github.com/PetroleumCyberneticsGroup/
FieldOpt-Research-Open (2022). Accessed 14 Aug 2022

42. Kristoffersen, B.S., Bellout, M.C., Silva, T.L., Berg, C.F.: An auto-
matic well planner for complex well trajectories. Math. Geosci.
53(8), 1881–1905 (2021). https://doi.org/10.1007/s11004-021-
09953-x

43. Silva, T.L., Bellout, M.C., Giuliani, C., Camponogara, E., Pavlov,
A.: A derivative-free trust-region algorithm for well control opti-
mization. ECMOR XVII - 17th European Conference on the
Mathematics of Oil Recovery, Online Event (2020). https://doi.
org/10.3997/2214-4609.202035086

44. Silva, T.L., Bellout, M.C., Giuliani, C., Camponogara, E., Pavlov,
A.: Derivative-free trust region optimization for robust well con-
trol under geological uncertainty. Comput. Geosci. 26(2), 329–349
(2022). https://doi.org/10.1007/s10596-022-10132-y

45. Isebor, O.J., Durlofsky, L.J., Echeverría Ciaurri, D.: A derivative-
free methodology with local and global search for the constrained
joint optimization of well locations and controls. Comput. Geosci.
18(3–4), 463–482 (2014). https://doi.org/10.1007/s10596-013-
9383-x

46. Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous parallel
pattern search for nonlinear optimization. SIAM J. Sci. Comput.
23(1), 134–156 (2001)

47. Kolda, T.G.: Revisiting asynchronous parallel pattern search for
nonlinear optimization. SIAM J. Optim. 16(2), 563–586 (2005)

48. Conn, A., Scheinberg, K., Vicente, L.: Introduction to derivative-
free optimization. Society for Industrial and Applied Mathematics
(2009). https://doi.org/10.1137/1.9780898718768

49. Charles, A., Dennis, J.E.: Mesh adaptive direct search algorithms
for constrained optimization. SIAM J. Optim. 17(1), 188–217
(2006). https://doi.org/10.1137/040603371

50. Tamara, K.G., Virginia, T.: Understanding asynchronous parallel
pattern search. Tech. rep., Livermore, CA (2002)

51. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence:
Theories, Methods and Technologies. MIT Press (2008)

52. Gad, A.G.: Particle swarm optimization algorithm and its applica-
tions: A systematic review. Arch. Comput. Meth. Eng. pp. 1–31
(2022)

53. Forouzanfar, F., Reynolds, A.C., Li, G.: Optimization of the
well locations and completions for vertical and horizontal wells
using a derivative-free optimization algorithm. J. Pet. Sci. Eng.
86-87(Supplement C), 272–288 (2012). https://doi.org/10.1016/j.
petrol.2012.03.014

54. Merlini Giuliani, C.: Distributed Derivative Free Optimization.
Universidade Federal de Santa Catarina, Presentation PhDDefense
(2016)

55. Audet, C., Hare, W.: Derivative-free and blackbox optimization.
Springer (2017)

56. Gill, P.E.,Murray,W., Saunders,M.A.: SNOPT:An SQP algorithm
for large-scale constrained optimization. SIAMRev. 47(1), 99–131
(2005). https://doi.org/10.1137/S0036144504446096

57. Conn, A.R., Scheinberg, K., Vicente, L.N.: Geometry of sample
sets in derivative-free optimization: Polynomial regression and
underdetermined interpolation. IMA J. Numer. Anal. 28(4), 721
(2008). https://doi.org/10.1093/imanum/drn046

58. Conn, A.R., Scheinberg, K., Vicente, L.N.: Geometry of interpo-
lation sets in derivative free optimization. Math. Program. 111(1),
141–172 (2008). https://doi.org/10.1007/s10107-006-0073-5

59. Conn, A., Gould, N., Toint, P.: Trust region methods. Society
for Industrial and Applied Mathematics (2000). https://doi.org/10.
1137/1.9780898719857

60. Scheinberg, K., Toint, P.L.: Self-correcting geometry in model-
based algorithms for derivative-free unconstrained optimization.
SIAM J. Optim. 20(6), 3512–3532 (2010)

61. Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution
project: A comparison of upscaling techniques. SPE Reserv. Eval.
Eng. 4(4), 308–317 (2001). https://doi.org/10.2118/72469-PA

62. Fonseca, R., Della Rossa, E., Emerick, A., Hanea, R., Jansen,
J.: Overview of the Olympus field development optimization
challenge. ECMORXVI - 16th European Conference on theMath-
ematics of Oil Recovery 2018(1), 1–10 (2018). https://doi.org/10.
3997/2214-4609.201802246

63. Bellout, M.C., Echeverría Ciaurri, D., Durlofsky, L.J., Foss, B.,
Kleppe, J.: Joint optimization of oil well placement and con-
trols. Comput. Geosci. 16(4), 1061–1079 (2012). https://doi.org/
10.1007/s10596-012-9303-5

64. Gill, P.E., Murray, W., Saunders, M.A.: Practical Optimization.
Academic Press, San Diego, CA, USA (1981)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.2118/188642-MS
https://doi.org/10.2118/188642-MS
https://doi.org/10.2118/134928-MS
https://doi.org/10.2118/78131-PA
https://doi.org/10.2523/IPTC-21189-MS
https://doi.org/10.1016/j.petrol.2018.08.033
https://doi.org/10.1007/s10596-017-9634-3
https://doi.org/10.1007/s10596-017-9634-3
https://doi.org/10.1016/j.cageo.2019.104379
https://doi.org/10.1016/j.cageo.2019.104379
https://github.com/PetroleumCyberneticsGroup/FieldOpt-Research-Open
https://github.com/PetroleumCyberneticsGroup/FieldOpt-Research-Open
https://doi.org/10.1007/s11004-021-09953-x
https://doi.org/10.1007/s11004-021-09953-x
https://doi.org/10.3997/2214-4609.202035086
https://doi.org/10.3997/2214-4609.202035086
https://doi.org/10.1007/s10596-022-10132-y
https://doi.org/10.1007/s10596-013-9383-x
https://doi.org/10.1007/s10596-013-9383-x
https://doi.org/10.1137/1.9780898718768
https://doi.org/10.1137/040603371
https://doi.org/10.1016/j.petrol.2012.03.014
https://doi.org/10.1016/j.petrol.2012.03.014
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1093/imanum/drn046
https://doi.org/10.1007/s10107-006-0073-5
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.2118/72469-PA
https://doi.org/10.3997/2214-4609.201802246
https://doi.org/10.3997/2214-4609.201802246
https://doi.org/10.1007/s10596-012-9303-5
https://doi.org/10.1007/s10596-012-9303-5


Computational Geosciences

Authors and Affiliations

Mathias C. Bellout1 · Thiago L. Silva1,2 · Jan Øystein Haavig Bakke3 · Carl Fredrik Berg1

Mathias C. Bellout
bellout@alumni.ntnu.no

Thiago L. Silva
thiago.silva@sintef.no

Jan Øystein Haavig Bakke
JBakke@slb.com

1 Department of Geoscience and Petroleum, NTNU,
Trondheim, Norway

2 Department of Sustainable Energy Technology, SINTEF
Industry, Trondheim, Norway

3 Schlumberger Norway Technology Center, Stavanger,
Norway

123

http://orcid.org/0000-0002-9223-8715

	Derivative-free search approaches for optimization of well inflow control valves and controls
	Abstract
	1 Introduction
	1.1 Optimization methodologies
	1.2 Completion optimization
	1.3 Paper structure

	2 Background
	2.1 Inflow control technology
	2.2 Drilling workflow and model-updating context
	2.3 Completion redesign
	2.4 Flow control applications
	2.5 Completion design approaches

	3 Methodology
	3.1 Problem setup
	3.2 ICD design and well control optimization
	3.2.1 Problem formulation

	3.3 Optimization methodologies
	3.3.1 APPS
	3.3.2 PSO
	3.3.3 DFTR


	4 Experimental cases
	4.1 Case 1 production scenario
	4.2 Case 2 production scenario
	4.3 Optimization setup for Case 1 and Case 2

	5 Results
	5.1 Case 1 OptFm.0 results
	5.2 Case 1 OptFm.1 results
	5.3 Case 1 OptFm.2 results
	5.4 Case 2 OptFm.0 results
	5.5 Case 2 OptFm.1 results
	5.6 Case 2 OptFm.2 results

	6 Final remarks
	Acknowledgements
	References


