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Abstract
Current parameterizations of the hydrodynamic forces on irregular particles consider some shape dependencies, but lack an
explicit dependence on the orientation with respect to the flow. In this paper, we propose a new parameterization of the drag
and lift forces acting on whole Limpet shells at arbitrary orientations with respect to the direction of flow through the linear
regression of fluid forces against the velocity components in an object frame of reference. The fluid forces were estimated
using boundary layer-resolving Reynolds-averaged Navier-Stokes (RANS) simulations. We verified the accuracy of the shear
stress transport (SST) k − ω turbulence model on flat plates with varying angles of attack, and we achieved coefficients of
determination versus existing data of approximately 0.95 for both the drag and lift coefficients. From the linear regression
of our simulated force data, we developed a model as a function of 3-dimensional orientations to predict the hydrodynamic
forces acting on a Limpet shell with coefficients of determination of 0.80 for normal forces and 0.51 for longitudinal forces.

Keywords Limpet shell · Hydrodynamic forces · CFD modeling

1 Introduction

The distribution of shelly sediments on the shelf affects the
hydrodynamic and acoustic properties of the seafloor and the
habitat of bottom animals. One approach to understand the
transport and distribution of sediments by the action of waves
and currents is by means of Euler-Lagrange simulations that
track the motion of individual particles. The Euler-Lagrange
models for sediment transport require parameterizations of
the drag and lift force coefficients acting on these particles.
Current parameterizations of force coefficients for irregular
particles have considered mainly the effect of shape but not
the 3-dimensional orientation of the particles [16, 17].
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The goal of this paper is to develop an effective and robust
parameterization of the drag and lift coefficients for forces on
a whole Limpet shell that has an arbitrary orientation to the
flow direction. The hydrodynamic forces acting on Limpet
shells in a unidirectional flow have been studied in a number
of laboratory experiments [10, 11]. However, these experi-
ments considered only three convex side-up orientations such
that the shell was oriented with the anterior, posterior, and
lateral side of the shell facing the inlet of flow.

It is well known that hydrodynamic forces on airfoils can
have complicated non-linear dependence on the orientation
(see for example Figs. 3 and 4 of Ahmad 2005 [9]). The
consideration of the angle of attack of mainstream flow on
objects has been discussed in various other works such as
from Jones et al. 2002, Ortiz et al. 2015, and Sun et al. 2018
[5, 7, 14]. In previous work, Jones et al. considered func-
tions of angle of attack for solving the hydrodynamic forces
acting on submerged torpedoes in simulation. They defined
the longitudinal and lateral hydrodynamic forces, X and Z ,
respectively, as

X = 1

2
ρV 2Aref

(
cl sin α − cd cosα

)
(1)
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and

Z = −1

2
ρV 2Aref

(
cl cosα + cd sin α

)
, (2)

where cl and cd are the lift and drag coefficients, respectively,
α is angle of attack, ρ is the density of the water, Are f is a
reference area, and V is the velocitymagnitude.Our goal is to
extend such explicit models for the drag and lift coefficients
to three dimensions [14]. In another work, Ortiz et al. used
wind tunnel experiments to consider the aerodynamic loads
on flat plates with varying aspect ratios and angles of attack,
and they noticed that the ratio of the aerodynamic drag and lift
coefficients, cd and cl , in an object frame of reference closely
followed the following equation introduced by Torres et al.
2004 [7, 15]:

cd/cl = tan α, (3)

whereα is angle of attack.Wewill compare this ratiowith the
ratio obtained from the force parameterizations considered
in this manuscript.

Considering different shapes such as ellipsoids and fibres,
Sun et al. analyzed the drag coefficients of graphite dust in
a high temperature gas cooled reactor (HTGR) using a com-
putational fluid dynamics model [5]. Using a drag coefficient
framework introduced by Rosendahl 2000, Sun et al. consid-
ered the following formula for the drag coefficients [1]:

cd(α) = cd,α=0◦ + (cd,α=90◦ − cd,α=0◦) sinμ0 α (4)

where α is the angle of incidence and the orientation, μ0 is a
coefficient estimated based on the shape of the particle using
numerical data and the least squares method, and cd,α=0◦
and cd,α=90◦ are coefficients depending on the shape and
the Reynolds number. We will examine this dependence in
relation to our parameterization of the fluid forces in an object
frame of reference.

Here, we propose a new parameterization of forces for
arbitrary orientations, which assumes that the force vector in
the object frame of reference is related to the flow vector in
the object frame of reference by nine unique tensor coeffi-
cients which are independent of the orientation. To test this
parameterization, we first carried out Reynolds-Averaged
Navier-Stokes (RANS) simulations for flow around a rect-
angular plate and whole Limpet shells in order to estimate
the drag and lift forces at different orientations. The new
parameterization and RANS methodology are described in
the Methods section. In the Validation section, we validated
the RANS simulations by comparing the drag and lift forces
with the laboratory experiments of Denny 1989 for Limpet

shells and Ortiz et al. 2015 for the rectangular plate, respec-
tively. In the Discussion section, we used a linear regression
between the force and velocity components in the object
frame of reference to determine the nine force coefficients
and evaluated the performance of the new force parameteri-
zation against the simulated forces [7, 10].

2 Methods

2.1 A parameterization of the fluid forces

Our goal is to develop a predictive model for hydrodynamic
forces acting on an irregular particle with an arbitrary orien-
tation with respect to the flow direction. The hydrodynamic
force is often defined as

Fj = 1

2
u1ρC j A j ||u||, (5)

where ρ is fluid density, A j is the projected surface area
in direction j , u1 is the mainstream velocity in the longitu-
dinal direction (x), and ||u|| is the speed. Note that in this
traditional formulation, both the area A j (α, δ, γ ) and the
force coefficient C j (α, δ, γ, Re) are functions of the Euler
angles α, δ, and γ , with the latter also depending on the
Reynolds number Re. While the projected area A j has sim-
ple geometrical dependence on the Euler angles, the force
coefficients have complicated empirical dependence on the
orientation (e.g. Ahmad 2005 [9]). Here, we seek an alterna-
tive to force coefficients that are empirical functions of Euler
angles by considering a formulation where the force coeffi-
cients in a frame of reference tied to the object are assumed
to be constants, independent of the orientation of the object
with respect to the flow. We define the object frame of ref-
erence using the following rotation matrix for each extrinsic
orientation of our Limpet shell:

Rz =
⎡
⎣

cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

⎤
⎦

Ry =
⎡
⎣

cos(δ) 0 sin(δ)
0 1 0

− sin(δ) 0 cos(δ)

⎤
⎦

Rx =
⎡
⎣
1 0 0
0 cos(γ ) − sin(γ )

0 sin(γ ) cos(γ )

⎤
⎦

Then, we have a unique rotation matrix R for each orien-
tation of our shells:

R = Rz · Ry · Rx . (6)
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Our convention for the object frame of reference is such
that the longitudinal direction spans from the anterior to the
posterior of the shell, and the normal direction spans from
the bottom of the shell and upwards. The lateral direction
then forms a right handed system along with the longitudinal
and the normal directions. When the shell longitudinal and
normal directions are initially in the x and y directions of the
computational frame, and the shell is subsequently rotated
by the Euler angles α, δ, and γ , the rotation matrix defined
above can be used to transform vectors to the object frame.
A visualization of this convention is shown in Fig. 1.

For example, we use this rotation matrix to convert our
simulated forces and velocity components from the compu-
tational frame of reference to the object frame of reference:

F̂i = Ri j Fj (7)

and

Û j = R j1u1, (8)

where i = 1 for the longitudinal components and i = 2
for the normal components in the object frame. Then, we
hypothesize that the forces in the object frame of reference

are related linearly to the respective velocity components as
follows:

F̂i = 1

2
Û jρAre f Ci j ||u||, (9)

where the tensor coefficients Ci j are assumed to be orientation-
independent and Aref is a constant reference area of the
considered object. Here, and in all that follows, “ˆ" will
denote variables in the object frame of reference. Note, that
F̂ still depends on orientation via Û . Once we have evalu-
ated the coefficientsCi j in the object frame, we transform the
forces back to the computational frame of reference using the
rotation matrix:

Fj = RT
i j (α, δ, γ )F̂i (α, δ, γ ). (10)

2.2 Numerical simulations

We use the shear stress transport (SST) k − ω turbulence
model with boundary layer resolving grids in our RANS sim-
ulations to obtain our fluid drag and lift forces, as suggested
by Ahmad [9]. The SST k − ω model is a commonly used
turbulence model in the family of RANS turbulence models,
which models all effects of turbulence. The standard k − ω

turbulence model is designed for low Reynolds numbers, as

Fig. 1 Conventions for the
computational and object frames
of reference
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Table 1 Boundary conditions
for simulations

Parameter Floor Top & Side Geometry Inlet

U noSlip slip fixedVal (0 0 0) fixedProfile

k fixedVal 0 slip fixedVal 0 fixedVal I.C.

ω fixedVal ∞ slip fixedVal ∞ fixedVal I.C.

νt fixedVal 0 calculated fixedVal 0 calculated

p zeroGrad slip zeroGrad zeroGrad

it works best for flow where the boundary layer is relatively
thick, allowing the viscous sublayer to be easily resolved [6].
Thus, it is best used for near-wall treatment in simulations.
The SST k − ω model, however, uses model behavior from
the k − ε turbulence model in the free-stream, avoiding sen-
sitivity at the inlet usually found in the standard k−ω model.
The k − ε model is most reliable for free-shear flows, where
the flow develops a mean velocity gradient in the absence of
boundaries, so this model would not have worked well for us
by itself. The SST k − ω model uses blending functions F1
and F2 to switch from regular k−ω behavior to k−ε behav-
ior in the free-stream and a limiter of the turbulent kinetic
energy production to alleviate spurious energy production in
stagnation regions. The main output of the turbulence model
is the kinematic eddy viscosity νT which provides a closure
for the Reynolds stresses in the RANS equations. We use the
following values for the constants in the SST k − ω model:
β = 0.075 in the ω dissipation term, β∗ = 0.090 in the k
dissipation term, σω = 0.500 in the ω diffusion term, and
σω2 = 0.856 in the k diffusion term.

The RANS simulations are forced using a smooth-wall
logarithmic velocity profile at the inlet

u(y) = 2.5u∗ ln
(
9y

u∗
ν

)
, (11)

where u∗ is the bottom shear stress velocity. To specify the
profile, we estimate u∗ from measurements of a reference
velocity U at some known height y = Y by solving the
following implicit equation

U = 2.5u∗ ln
(
9Y

u∗
ν

)
(12)

using a combination of the secant method and bisection. The
rest of the boundary conditions for our RANS simulations
are provided in Table 1. To initialize the k −ω equations, we
use the estimates

k = 3

2
(U I )2 (13)

and

ω = k0.5

0.55T
. (14)

I is a turbulence intensity dimensionless coefficient, and T
is a turbulence length scale.

Wall functions are empirically derived for the purpose of
satisfying the physics in the near-wall regions. While they
are commonly used, they can sometimes skew results at these
near-wall regions, especially for complex flows. Therefore,
resolving the boundary layers within the mesh instead is the
more accurate route [8]. To resolve the boundary layers in
our simulations and avoid the use of wall functions, we will
use grid step �x in near-wall regions with size

�x = ν

u∗
, (15)

In our OpenFOAM implementation, we chose a bounded,
linear Gaussian upwind scheme to discretize the divergence
operator, and a linearGaussian scheme for the gradient opera-
tor. Here, Gaussian implies the utilization of Gaussian finite
volume integration in the discretization of the divergence
aspects. Additionally, we are solving for steady state tur-
bulent flow and therefore use a steady-state time scheme
which sets the time derivatives in the simulations to zero; as
a result our force predictions would not account for history-
dependent effects.

3 Results

3.1 Validation for flat plate at varying angles
of attack

Tovalidate the SST k−ω turbulencemodel in ourRANS sim-
ulations, we considered experimental measurements of the
drag and lift forces acting on flat plates conducted by Ortiz

Table 2 Initial Conditions (I.C.) for plate simulations

Parameter Computed value

Reference velocity U 18.9 m/s

Turbulence length scale T 0.24

Intensity I 4.7%

Turbulence kinetic energy k 1.0 m2/s2

Turb. specific dissipation rate ω 7.7 s−1
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Fig. 2 Cross-section of our 90◦
plate mesh demonstrating the
surface layers and refinement
levels of the mesh.
Computational domain is 1.20
meters long in the x direction,
0.60 meters tall in the y
direction, and 1.60 meters wide
in the z direction. Coarsest grid
size shown here (refinement
level 2) is 0.0167 meters. Plate
is sitting 0.15 meters from inlet
wall

et al. [7].We created a stereolithographyfile of a generic plate
that is 0.4 meters wide, 0.066 meters tall, and 0.002 meters
thick, identical to Ortiz’s plate with an aspect ratio of 6. We
chose a computational domain size of 1.20 meters long in the
x direction, 0.60meters tall in the y direction, and 1.60meters
wide in the z direction, and we placed the plates 0.15 meters
away from the inlet. A smooth-wall logarithmic velocity pro-
file was specified at the inlet matching the reference velocity
U = 18.9 m/s at the top of the wind tunnel. The correspond-
ing bottom shear stress velocity u∗ = 0.54m/s provided the
required boundary layer grid size �x = 3 × 10−5m from
Eq. 15, and Table 2 shows the turbulence parameters defin-
ing the initial conditions for k and ω. We then ran RANS
simulations with 9 different angles of attack using the SST
k − ω turbulence model and compared our calculated drag
and lift coefficient results with those reported in Ortiz et al.

0 10 20 30 40 50 60 70
Angle of Attack (°)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

SST k-omega Drag
SST k-omega Lift
Ortiz 2015 Drag
Ortiz 2015 Lift

Fig. 3 Simulated (dashed) and experimental (solid) force coefficients
for plate with different angle of attack using SST k-ω. All coefficients
were computed using Aref = 0.026 m2

Figure 2 shows a cross-section of the xy-plane of the plate
and its position in our simulation domain. Seven refinement
levels were used around the plate’s surface and four layers
with an expansion ratio of

√
2 resulted in a refinement factor

of 29 = 512 that reduced the coarse outer mesh grid size
of 0.015m to the desired surface �x = 3 × 10−5m. Similar
refinement was applied at the floor.

We ran our simulations for 3 seconds, allowing for con-
vergence of the drag and lift coefficients, and the results at
the end of the simulations are reported in Fig. 3. As in Ortiz
et al., the drag and lift coefficients are based on the top sur-
face area of the plate Aref = 0.066 × 0.4 = 0.026 m2

(Eq. 9). A comparison of the simulated (dashed lines) and
experimental (solid lines) drag and lift coefficients as a func-
tion of the pitch angle are shown in Fig. 3. The figure shows a
good agreement with a correlation coefficient of 0.95 which
confirms that our settings, meshes, and the chosen turbulence
model are providing accurate force results.

3.2 Validation for limpet shell at varying reynolds
numbers

Having validated that the SST k − ω turbulence model can
reproduce experimental forces on plates, we next simulate
the flow around a Limpet shell at various Reynolds number
to compare with with the laboratory experiments of Denny
(1989) [10] for shells on the bottom with the convex side
up. We obtained a stereolithography file of a Limpet Patella
shell created by Emily Hauf of the Paleontological Research
Institution [18] and scaled the shell to be 8 centimeters
long, 2.5 centimeters tall, and 6.8 centimeters wide. These
dimensions are 2-3 times larger than the shells considered
in Denny which allowed us to achieve the same Reynolds
numbers at correspondingly smaller mainstream velocities.
For the comparison, we considered shell Reynolds num-
bers based on the shell length of 24,000, 36,000, 48,000
and 64,000, corresponding to reference flow velocities of
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0.30 m/s, 0.45 m/s, 0.60 m/s and 0.80 m/s at the mid-
shell elevation y = 0.012m above the bottom.

We chose a computational domain size of 0.72 meters
long in the x direction, 0.40 meters tall in the y direction,
and 0.56 meters wide in the z direction, and we placed the
shells 0.15 meters away from the inlet. The flow is again
forced with a smooth-wall logarithmic profile at the inlet
that attains the reference velocity at y = 0.012m. For the
highest Reynolds number Re = 64, 000, the corresponding
bottom shear stress velocity u∗ = 0.038 m/s suggests amin-
imum grid size �x = 2.6 × 10−5 m, which is used to set
the thickness of mesh layers around the Limpet shell geom-
etry. The same reference velocity suggests 0.0018 m2/s2

and 0.49 s−1, respectively, for the initial turbulence kinetic
energy k and turbulence specific dissipation rate ω. We used
the same boundary conditions stated in Table 1. Figure 4
shows the surface mesh of our Limpet shell where the cells
have been set to the desired �x , and Fig. 5 shows a cross-
section of the xy-plane of our initially oriented shell. Here,
one can note the two surface layers and six refinement levels
surrounding the surface mesh of our shell.

We again report the results at the end of the simulated
3 second period and compare our simulated drag (Fig. 6,
red symbols)to the experimental values for the limpet shell
considered in Figure 3b of Denny 1989. For this comparison,
the drag coefficient is defined using the cross-section area of
the shell projected in the upstream direction. In Fig. 6, circles
represent the baseline shell orientation of concave side down
and anterior-facing upstream, while triangles correspond to
orientation with shell side-facing upstream and concave side
down.

We notice a good match between our simulated drag coef-
ficients and Denny’s experimental drag coefficients except at
the lowest Reynolds number. In this regard, we note that

Fig. 4 Surface mesh of the Limpet shell

while the standard k − ω turbulence model is designed for
low Reynolds numbers, the SST k − ω model sacrifices
some accuracy in low Reynolds number flow in exchange for
less sensitivity to the inlet free-stream turbulence properties.
Therefore, we believe the drag coefficient underestimations
for log(Re) = 4.4 to be due to deficiencies in the turbulence
model for low Reynolds numbers.

3.3 Limpet shell in a flow at varying pitch and yaw

We next simulate the flow around a Limpet shell at various
orientations in three dimensions to evaluate the respective
lift and drag forces. For orientations, we rotated the shell
around the z−axis and y−axis at degrees of 0, 15, 30, 45,
75, 90, 135, 150, and 180. In order to investigate the effect
of angle of attack on our shell in the computational frame of
reference, Figs. 7 and 8 report the drag and lift coefficients
as a function of pitch α (oriented around the z−axis) and
yaw δ (oriented around the y−axis) in degrees, respectively.
These coefficients were computed using the total surface area
(both concave and convex side) of the Limpet shell Are f =
0.0105m2.

We notice nearly parabolic trends for the drag coefficients,
which was expected from Ortiz et al.’s experimental results
shown in Fig. 3. We also notice an upward trend of the drag
coefficients up to the 90◦ orientations, and then a downward
trend as the shell is then oriented past 90◦. The strong sym-
metry in the drag coefficient trends is expected considering
that there is not much of a geometrical difference between
the two different lateral sides of our shell. We also note that
the trend for the drag coefficients in Figs. 7, 8, and 3 are
consistent with Sun et al.’s Eq. 4.

4 Discussion

4.1 Parameterizing the fluid forces on a flat plate

We first implemented our proposed force parameterization
using the force and velocity data from the plate experiments
of Ortiz et al.. The unique rotation matrices R from Eq. 6
were used to convert the experimental forces and velocities
from the laboratory frame of reference to the object frame of
reference, and then we performed regressions to estimate the
tensor coefficients in Eq. 9. The coefficient matrix resulting
from the regressions is

Ci j =
[
0.0567 0.0278

−0.1233 1.2112

]
(16)

where Are f in Eq. 9 was the top surface area of the plate. We
obtain coefficients of determination between reported forces
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Fig. 5 Cross-section of the
Limpet shell mesh
demonstrating the surface layers
and refinement levels of the
mesh. Domain is 0.72 meters
long in the x direction, 0.40
meters tall in the y direction,
and 0.56 meters wide in the z
direction. Coarsest grid size
shown here (refinement level 1)
is 0.0115 meters. Shell is sitting
0.15 meters from inlet wall

Fig. 6 Simulated drag
coefficients for the Limpet shell
at four Reynolds numbers and
two orientations (red symbols),
anterior or lateral side facing
upstream, estimated using the
respective projected areas,
A j = 0.0011 m2 and
0.0012 m2. Also shown are the
respective drag coefficients of
the Limpet Shell in Figure 3b of
Denny [10] (black symbols)

Fig. 7 SST k − ω drag and lift
coefficients as a function of
pitch, α, where
Aref = 0.0105m2 is the total
surface area. Note, that Ortiz
considered a y−axis that
pointed downward rather than
upward as we did, resulting in
negative lift coefficients in our
simulations for pitch angles less
than 90◦
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Fig. 8 SST k − ω drag and lift
coefficients as a function of yaw,
δ, where Aref = 0.0105m2 is
the total surface area

versus predicted forces of 0.91 for the longitudinal forces
and 0.76 for the normal forces.

We examine the forces reported by Ortiz et al. versus our
predicted results from the regressions for Ortiz’s experimen-
tal data in Fig. 9. In this figure, the vertical axes are the
aerodynamic forces in the object frame of reference, while
the horizontal axes are the respective velocity components in
the object frame of reference. As the current experiment only
considers rotations around the z−axis, orα, we only consider

the longitudinal, Û1, and normal, Û2, velocity components
in the figures. In Fig. 9, circles represent the simulated or
reported forces, x’s represent the predicted forces from our
regressions, green and blue represent the longitudinal forces,
and red and black represent the normal forces. The figure
shows that our parameterization for the forces agrees very
well with the forces obtained with the simulations.

We can nowobtain an equation for the aerodynamic forces
back in the computational frame of reference as a function of

Fig. 9 Simulated and reported
aerodynamic forces versus the
predicted forces resulting from
our force parameterization,
specifically for Ortiz’s
2-dimensional case of a plate
with aspect ratio of 6. The
reference area considered here is
the top surface area of the plate
Aref = 0.026m2
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orientations. Because we do not consider various δ and γ for
this case of a pitching plate, we only consider α in this final
model. Along with the predicted force coefficients in Eq. 16,
we substitute

Û j =R j1u1

=
[
cosα

− sin α

]
u1

(17)

into the force model described in Eq. 9 to solve for the forces
in the object frame of reference:

F̂i =1

2
ρAre f ‖u‖Ci j Û j

=1

2
ρAre f ‖u‖u1

[
0.0567 cosα − 0.0278 sin α

−0.1233 cosα − 1.2112 sin α

] (18)

where Are f here refers to the top surface area of the plate.
We can rewrite Jones et al.’s Eqs. 1 and 2 into a concate-

nated form of the forces and compare the result with our
Eq. 18:

[
X
Z

]
= 1

2
ρAre f ‖u‖2

[−cd cosα + cl sin α

−cl cosα − cd sin α

]
.

Because our mainstream velocity in Eq. 18 is moving in
the longitudinal direction, u1 = ‖u‖. Jones et al. considered
angles of attack α in which the object is pitching towards
the inlet of flow, or negative α’s in our frame of reference.
Hence, the longitudinal components X of these force equa-
tions would have opposite signs. Therefore, we note a strong
agreement with Jones et al.’s Eqs. 1 and 2 and our forces in
Eq. 18.

Next, we substitute Eq. 18 into our model described in
Eq. 10:

Fj =RT
ji (α, δ, γ )F̂i (α, δ, γ )

=1

2
ρAre f ‖u‖u1·

[
0.0567 cos2 α + 0.0955 sin α cosα + 1.2112 sin2 α

−0.1233 cos2 α − 1.1545 sin α cosα − 0.0278 sin2 α

]
.

(19)

Equation (19) provides an explicit model for the aerody-
namic forces acting on a flat plate as a function of angle of
attack, α.

As stated in Eq. 3, the ratio of the longitudinal and normal
force coefficients should result in the tangent of α. We can
see that in Eq. 19, our most influential coefficients are 1.2112
for longitudinal force and −1.1545 for normal force, which
correspond to the following ratio:

1.2112 sin2 α

−1.1545 sin α cosα
≈ tan α. (20)

As α → 0, the coefficients mentioned above lose their
influence, andEqs. 3 and 20 become invalid. Hence, our force
model in Eq. 19 agrees with Ortiz et al.’s theory as long as
α 	= 0. We also note that Hoerner’s prediction, sin2 α cosα,
for the ratio of drag and lift coefficients of ellipsoid and fiber-
shaped particles is not consistent with our results and those of
Ortiz et al. for rectangular plates [4]. Regarding Sun et al.’s
Eq. 4 for the drag coefficient with respect toOrtiz et al.’s data,
we notice that the simulated and reported drag coefficients
in Fig. 3 follow a sine function, consistent with the formula
suggested by Sun et al.

4.2 Parameterizing the fluid forces on a Limpet
Shell

For the 3-dimensional case of the Limpet shell, we consider
a Reynolds number of 12,000 and 67 unique orientations
where all 3 axes are rotated. We follow the same procedure
described in the previous section to evaluate the forces in
the object frame of reference with Eq. 9, and then we solve
for the predictive force model in the computational frame of
reference with Eq. 10. We perform regressions to solve for
the predicted force coefficients Ci j , but because we are con-
sidering 3-dimensional data, the predicted force coefficients
Ci j will now result in a 3 × 3 matrix where i = 1 stands for
longitudinal forces, i = 2 for normal forces, and i = 3 for
lateral forces. For the columns, j = 1 for the force coeffi-
cients resulting from the longitudinal component of flow in
the object frame, Û1, j = 2 for the force coefficients result-
ing from the normal flow component in the object frame, Û2,
and j = 3 for the force coefficients resulting from the lateral
flow component in the object frame, Û3. The 3-dimensional
coefficient matrix resulting from the regressions is

Ci j =
⎡
⎣
0.4804 −0.0376 0.0216
0.1082 1.2722 −0.0962
0.0026 0.2045 0.7868

⎤
⎦ (21)

Here, Aref = 0.0105m2 from Eq. 9 is again the total sur-
face area of the shell. The regression fit of the computed and
predicted forces in the object frame is characterized with
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coefficients of determination 0.80 for the normal forces and
0.51 for the longitudinal forces. The low value of the coef-
ficient of determination for the longitudinal forces is due to
a handful of outliers that will be examined in more details
below.

In Figs. 10 and 11, we show the computed longitudinal
and normal hydrodynamic forces versus the predicted hydro-
dynamic forces, respectively. We consider a 2-dimensional
projection of the 3-dimensional regressions for visualiza-
tion purposes. We use colored lines and x’s to represent the
plane of best-fit of the simulated forces, or our predicted
forces, where different colors correspond to their respective
unique values of the lateral velocity component in the object
frame. We use black circles to represent the computed forces
from the simulations. The vertical axes are the hydrodynamic
forces in the object frame of reference, while the horizontal
axes are the respective longitudinal and normal velocity com-
ponents in the object frame of reference.

Similar to the previous section, we would now like to
express an equation for the hydrodynamic forces back in
the computational frame of reference as a function of ori-
entations. In this case of 3-dimensional data, we will be
considering α, δ, and γ in this final model. Along with the
predicted force coefficients in Eq. 21, we substitute

Û j =R j1u1

=
⎡
⎣

cosα cos δ

− sin α cos δ

− sin δ

⎤
⎦ u1

(22)

into the force model described in Eq. 9 to solve for the forces
in the object frame of reference:

F̂ =1

2
ρAre f ‖u‖Ci j Û j

=1

2
ρAre f ‖u‖u1·

⎡
⎢⎣
0.4804 cosα cos δ + 0.0376 sin α cos δ − 0.0216 sin δ

0.1082 cosα cos δ − 1.2722 sin α cos δ + 0.0962 sin δ

0.0026 cosα cos δ − 0.2045 sin α cos δ − 0.7868 sin δ

⎤
⎥⎦

(23)

where Aref is the total surface area of the shell.

Next, we substitute Eq. 23 into our model described in
Eq. 10 and solve for our model that can be used to predict
the hydrodynamic forces:

Fj =RT
ji (α, δ, γ )F̂i (α, δ, γ )

=1

2
ρAre f ‖u‖u1·

[ cosα cos δ

cosα sin δ sin γ − sin α cos γ

cosα sin δ cos γ + sin α sin γ

sin α cos δ − sin(δ)
sin α sin δ sin γ + cosα cos γ cos δ sin γ

sin α sin δ cos γ − cosα sin γ cos δ cos γ

]
·

⎡
⎢⎣
0.4804 cosα cos δ + 0.0376 sin α cos δ − 0.0216 sin δ

0.1082 cosα cos δ − 1.2722 sin α cos δ + 0.0962 sin δ

0.0026 cosα cos δ − 0.2045 sin α cos δ − 0.7868 sin δ

⎤
⎥⎦

(24)

Similar to Eq. 19, 24 provides an explicit model for pre-
dicting the hydrodynamic forces acting on a Limpet shell as
an analytical function of the shell orientation angles α, δ, and
γ . While both the 2D and 3D coefficients in Eqs. 16 and 21
are diagonally dominant, they differ significantly in C11. We
see that for the plate, C11 is essentially zero, while the coef-
ficient is significant for the limpet shell. To understand the
difference between the C11 force coefficients for the limpet
shell and the plate, we isolate the longitudinal forces by
examining the special case of the forces acting on the limpet
shell for α, δ, and γ = 0:

Fj = RT
ji (0, 0, 0)F̂i (0, 0, 0)

= 1

2
ρA‖u‖u1

⎡
⎣
0.4804
0.1082
0.0026

⎤
⎦ (25)

Clearly, the longitudinal and the normal force acting on the
limpet are not zero unlike the plate. This is because the limpet
has a nonzero projected area even when α, δ, and γ are zero,
while the plate has a negligible projected area in this case.We
also note that the C22 coefficients for the limpet shell and the
plate do not differ significantly, and we do not expect to see
a significant change in this coefficient if the shell is distorted
slightly. We do expect to see a proportional reduction in C11

as the shell shape becomes flatter.
In Fig. 12,we investigate the surface pressure distributions

on two of the outlier cases with extreme longitudinal force in
Fig. 10. As a naming convention for the orientations, we use
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Fig. 10 Longitudinal force
regression as a function of Û1
and Û2 for different Û3 values
indicated by different colors

(α δ γ )◦. Specifically in Fig. 12, we plot the surface pres-
sure of shell orientations (75 30 0)◦ and (135 0 0)◦, where
(75 30 0)◦ represents an orientationwith a high, positive lon-
gitudinal force and (135 0 0)◦ represents an orientation with
a high, negative longitudinal force. The direction of flow can
be interpreted by the red x−axis arrow displayed for each
case. For orientation (75 30 0)◦, we can see a concentration
of very high pressure acting on the anterior of the shell con-
trasted with a slightly lower pressure on the posterior side.
This pattern results in a significant longitudinal force despite
the fact that the longitudinal flow component is small. For
orientation (135 0 0)◦, we notice a concentration of high
pressure acting on the pos-

terior of the shell and a much lower pressure occurring on the
anterior. As expected, this results in a very high, albeit neg-
ative, longitudinal force acting on the shell as the direction
of flow is travelling in nearly the opposite direction relative
to the object frame. As for the normal forces, we notice the
trend of high normal forces being given by high Û2 velocity
components in Fig. 11. We also note that the cluster of sim-
ulated data points near a nearly zero normal force in Fig. 11
all correspond to orientations of the shell being nearly per-
pendicular to the flow with respect to the object frame. The
outliers in Figs. 10 and 11 may require the addition of non-
linear terms and and will be investigated in a separate work
focusing on triangular shell fragments.

Fig. 11 Normal force
regression as a function of Û1
and Û2 for different Û3 values
indicated by different colors
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Fig. 12 Comparing surface
pressure of (75 30 0)◦ and
(135 0 0)◦ simulated data
points. These points correlate to
a high, positive longitudinal
force and a high, negative
longitudinal force, respectively.
Pressure is normalized by ρ and
mainstream velocity squared

5 Conclusion

In this paper,we investigated a parameterization of the hydro-
dynamic forces on a Limpet shell that includes an explicit
dependence on the three Euler angles defining the shell ori-
entation with respect to the main flow. The parameterization
assumes that the force and the flow vectors in the object
frame of reference are linearly related with nine orientation-
independent tensor coefficients as defined in Eqs. 9 and 10.
We tested the parameterization using RANS simulations to
estimate the drag and lift forces on a rectangular plate and a
Limpet shell at different orientations.

The accuracy of the SST k − ω turbulence model used
in the RANS simulations was first tested by running vari-
ous simulations on flat plates with varying angles of attack
and then comparing the simulated aerodynamic drag and lift
coefficients with those measured in wind tunnel experiments
by Ortiz et al. We calculated coefficients of determination of
approximately 0.95 for both the drag and lift coefficients,
and we concluded that our turbulence model used in our
RANS simulations is reporting reliable estimates. For fur-
ther turbulence model verification, we compared simulated
drag and lift coefficients with the ones reported in flow tunnel

experiments with Limpet shells by Denny 1989 at the same
orientations and found good agreement with the observed
dependence of the drag coefficients on the Reynolds number
(Fig. 6).

We first tested the force parameterization using the mea-
sured forces in the pitching plate experiments of Ortiz et al.
where the force and flow vectors in the object frame are 2-
dimensional and only four tensor coefficients are needed to
define the parameterization.We found that our parameteriza-
tion fits the measured data with coefficients of determination
of 0.76 for normal forces and 0.91 for longitudinal forces
(Fig. 9) and noted a strong agreement between the predicted
forces in Eq. 18 and Jones et al.’s Eqs. 1 and 2.We also noted
a strong agreement between our ratio of the 2-dimensional
drag and lift coefficients in Eq. 20 and the ratio introduced
by Torres in Ortiz et al. 2015.

We then proceeded to evaluate the parameterization of the
forces on a Limpet shell using the force estimates obtained in
our RANS simulations. The resulting 3-dimensional parame-
terization provided by the coefficients in Eq. 23 was found to
be effective in predicting the normal forces with a coefficient
of determination of 0.80 for the predicted normal forces, but
somewhat less effective for the longitudinal forces where the
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coefficient of determination was 0.51. The reduced effec-
tiveness of the parameterization for longitudinal forces was
found to be limited to a small number of outliers character-
ized with the highest longitudinal forces and corresponding
to a few specific orientations with low values of yaw and roll
angles. Improvements of longitudinal force parameteriza-
tions with the addition of cubic termswill be investigated in a
separate study focusing on triangular spherical shells objects.
Considering the overall good performance of the parame-
terizations, we believe that the proposed new approach of
predicting forces on rotating objects would be valuable for
modeling the dynamics of shell-shaped objects inLagrangian
particle simulations. The advantage of the new parameteri-
zation is that it provides explicit expression for the forces
in the computational frame of reference as a function of the
Euler angles defining the orientation of the object, e.q. Eq. 24.
We conclude by noting that the coefficients obtained here
for a Reynolds number of 12,000 can be easily extended to
other Reynolds numbers using themeasured dependencies in
Fig. 6.We are also considering additional RANS simulations
for shell fragments where the goal is to obtain parameteriza-
tionswith an explicit dependence of the tensor coefficients on
the shape characteristics such as aspect ratio and curvature.
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