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Abstract
Reservoir simulation is traditionally based on the assumption that water is an inert phase, while hydrocarbon components split
into oil and gas phases. This approach is usually reasonable when modeling conventional hydrocarbon recovery, but specific
applications may require accounting for mass exchange between the water and hydrocarbon phases. We here present the
extension of our Graphics Processing Units (GPUs) compositional reservoir simulator (Esler et al. SPE J. 27(01), 597–612,
2021) to support gas-water equilibrium. Specifically, the Søreide and Whitson equation of state (EoS) (Søreide and Whitson
Fluid Phase Equilib. 77, 217–240, 1992) was implemented to compute mutual solubilities of hydrocarbon/brine mixtures.
The impact of salinity on phase equilibrium is accounted for, with salt being treated as an active tracer. The simulator uses a
mass-variables formulation, meaning that little modifications to the construction of transport equations and Jacobian assembly
was required; most of the required code changes are localized in the EoSmodule for the computation of component fugacities,
and phase properties such as partial molar fractions and partial molar volumes. Treating salt as an active tracer instead of
defining a further pseudo-component has an important advantage with the Søreide and Whitson EoS. If salinity changes as
in water vaporization processes, our choice ensures that flash iterations can still be cast as a Gibbs Minimization problem
with salinity being a constant parameter. On the contrary, salinity would change as flash iterations progress, jeopardizing the
thermodynamic consistency of the phase equilibria. The overall reservoir simulation system of equations is still accurate to
first order in time, at the cost of possibly slight volume imbalances at the end of converged timesteps. In this paper, we focused
on CO2 sequestration in saline aquifers, where solubility trapping is a key mechanism. The accuracy of our implementation
with respect to conventional CPU ones is first demonstrated on a synthetic box model. We then select an open-access aquifer
model (Gassnova 2016) to illustrate its applicability in an industrial setting. Finally, we show how being able to seamlessly
run high resolution models allows for modeling of convective mixing. A key conclusion of this work is that the extreme
performance of GPU-based reservoir simulation naturally transfers to new fields of study, which is critical when modeling
saline aquifers whose extent is an order of magnitude larger than that of typical oil and gas fields.
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1 Introduction

Numerical simulation of gas injection into saline aquifers or
into depleted hydrocarbon fields (whether for cyclic energy
storage or for carbon capture) shares many aspects with the
more established discipline of petroleum reservoir simula-
tion. In particular, at the reservoir scale the fundamental
equations are still first order mass conservation equations
closed by the multi-phase extension of Darcy’s law [3].
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Provided a suitable relative permeability hysteresis model
is used [16, 19], both structural and residual trapping can be
modeled.

In the context of carbon capture, dissolution of CO2 in the
aqueous phase is also an importantmechanism.Conventional
compositional reservoir simulation however relies on cubic
Equations of State (EoS) appropriate for hydrocarbon phases
equilibrium [30, 36], whilewater is treated as a “dead” phase.
Said EoS are not suitable to handle polar components such
as H2O.

A first approach to model hydrocarbon-water equilib-
rium in reservoir simulators is to retain a cubic EoS
description of the hydrocarbon phases while computing the
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hydrocarbon components’ fugacities in the aqueous phase
usingHenry’s constants, based on correlations fitted to exper-
imental data [20]; this is the approach adopted by the GEM
reservoir simulator [6]. A conceptually similar approach is
to use gas dissolution tabulations vs. pressure (and possibly
temperature and salinity) [5]. Such modeling is available, for
example, in Nexus [15], ECLIPSE-300 with CO2SOL
option [34], and Intersect [35]. Note that in these latter
examples, the water component is not allowed to vaporize.
The thermodynamic model of the TOUGH2 simulator [28]
has gained wide acceptance for cases where H2O and CO2

are the only components (in addition to salts). For example,
it is available in ECLIPSE-300 with CO2STORE option.

A second approach is to use more complex EoS suitable
for hydrocarbon-water equilibrium (e.g., the cubic-plus-
association EoS), but these are seldom used in reservoir
simulation because of their computational cost [43]. A
“practical” solution is to use asymmetric binary interaction
coefficients (BICs), as proposed by [37], where specific tem-
perature and salinity-dependent BICs are defined for the
aqueous phase. This EoS, here referred to as the SW-EoS, is
available in ECLIPSE-300 with GASWAT option, as well
as in research codes such as MUFITS [1] and IHRRS [31]. It
is also worth noting that similarly to the CO2SOL option, the
GASSOL option in ECLIPSE-300 uses solubility tables,
but possibly precomputed using the SW-EoS.

Finally, we observe that when H2O and CO2 are the
only modeled components, the problem can be formulated
in black-oil form by identifying H2O with oil and CO2 with
gas. In this case, PVT properties can be either tabulated, or
hard-coded within the simulator as in OPM-Flow [26].

Modeling CO2 storage may require further physics in
addition to the equilibrium of the aqueous and vapor phases,
such as geochemical reactions for long term storage; these
can be either modeled internally by the flow simulator [6],
or simulated by explicit coupling of the flow simulator to a
third party code [18, 39]. Coupled thermal and mechanical
effectsmay also be important; notably, near-wellbore cooling
due to the Joule-Thompson effect [25] can favor fracturing.
Temperature also has an impact on pressure reached in the
aquifer, which needs to be carefully predicted to study cap
rock integrity [27].

CO2 storage applications therefore require complex physics,
and possibly very large grid models [41]. The latter require-
ment is due to the potentially large extent of saline aquifers,
as well as to the need for fine resolution in regions
where CO2 displaces water or undergoes convective mixing.
This requirement is particularly significant for industrial or
general-purpose simulators using first order in space and time
numerical schemes, while more specialized codes designed
to study specific phenomena benefit from higher order meth-
ods [23].

A possible avenue todeliver a high-performance industrial-
grade simulator able to tackle new applications such as CO2

storage is to start from scratch with a design for modern
hardware; this is the approach chosen for GEOSEX [14].
Alternatively, one may progressively incorporate the nec-
essary modeling features into an existing high-performance
code.An example isIntersect, whichwas initially devel-
oped for both isothermal and thermal petroleum recovery
applications, and was later enriched with three-phase equi-
librium capabilities and support for geochemical reactions.
A similar approach of extending our industrial GPU-based
simulator [9, 38] is here chosen.

The end goal is to support a full three-phase model, which
can also be used for modeling CO2 EOR or CO2 storage in
retrograde condensate fields, using the Søreide and Whitson
EoS approach. In this work we limit ourselves to two-phase
reservoir conditions, namely aqueous-vapor, which allows
us to reuse existing stability and flash routines [11]. Never-
theless, the full implementation has been designed as being
three-phase, i.e., there is no replacement of oil by water
behind the scenes.

The paper is structured as follows. We start by describing
the selected numerical formulation and physical modeling
approach, and demonstrate the computational efficiency of
the implementation using a methodology inspired by [9].
We then select an open-access aquifer model used for CO2

sequestration studies [8] to validate the accuracy of themodel
in an industrial setting. Finally, we show how being able to
seamlessly run high resolutionmodels allows for observation
of convective mixing.

2 Overview of simulator modifications

A detailed description of our compositional simulator can be
found in [9] for the usual case where hydrocarbon compo-
nents can partition between oil and gas phases, while water is
a dead phase; we liberally refer to any non-water component
as a hydrocarbon.

Before discussing the numerical formulation and the phys-
ical models used in the code, it is useful to consider the
flow-chart of the GPU simulator timestepping in Fig. 1,
after [24].

The different steps in Fig. 1 are described as follows, with
a highlight of noteworthy changes performed in this work.

1. At the beginning of each timestep, well potentials are
evaluated to compute guide-rates needed for rule-based
allocation.

2. All relevant cell properties are computed, including fluid
(density, viscosity, partial molar fractions, ...) and rock-
fluid (relative permeabilities and capillary pressures).
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Fig. 1 Simplified flowchart of a
reservoir simulation timestep.
Solid green and dashed blue
boxes indicate operations
performed on the GPU and
CPU, respectively. After [24]

Noteworthy modifications: Phase equilibrium calcula-
tions use the SW-EoS, possibly function of salinity, and
water-phase properties (density / viscosity) use specific
correlations.

3. Well groups are balanced at frozen reservoir conditions.
4. The reservoir-well system of equations’ residual is

computed. Noteworthy modifications: The system of
equations used to compute the residual accounts for
hydrocarbon and water components transport in both the
aqueous and vapor phases.

5. The residual is used (possibly in conjunction with vari-
ables change criteria) to decide on convergence.

6. If the timestep is unconverged, the simulator constructs
the Jacobian system and solves the corresponding lin-
ear system of equations to proceed to the next Newton
iteration.Noteworthymodifications: The Jacobian is con-
structed according to the set of equations described in
item 4.

7. If the timestep is converged, the simulator performs
required I/O tasks.

8. Selects a new timestep length and proceeds to a new
timestep.

3 Formulation

3.1 Governing equations

In this work, we allow hydrocarbon and water components to
be in thermodynamic equilibrium, but limit ourselves to cases
without liquid oil at reservoir conditions (see Fig. 2-left). The
reservoir physics is therefore governed by the following nc
conservation equations:

∂

∂t

[
φ

(
wi bwSw + yibgSg

)] + ∇ · (
wi bwuw + yibgug

)

+ qi = 0 , ∀ i ∈ [1, nc] , (1)

where Sϕ , uϕ and bϕ are the saturation, Darcy velocity and
molar density of phase ϕ, respectively, and w and y are the
molar fraction arrays in the water and gas phases; qi is a
source-term density for component i , arising, for example,
from producer or injector wells.

The conservation equations are closed by the multiphase
extension of Darcy’s law [3]:

uϕ = −K · krϕ
μϕ

(∇ pϕ − ρϕg
)

, ∀ϕ ∈ {g, w} , (2)

whereμϕ , ρϕ , krϕ and pϕ are the viscosity, mass density, rel-
ative permeability and pressure of phase ϕ, respectively.K is
the permeability tensor and g is the gravitational acceleration
vector.

The aqueous and vapor phases are assumed to be in instan-
taneous thermodynamic equilibrium, with nc equilibrium
constraints [22], defined as:

fi,w
(
pg, w

) − fi,g
(
pg, y

) = 0 , ∀i ∈ [1, nc] , (3)

where fi,ϕ is the fugacity of component i in phase ϕ. In
Eq. 3, we neglect the pressure difference between phases
and evaluate the fugacities at the gas pressure pg .

3.2 Discretization

The simulator uses a mass-variables formulation with an
extended set of nc +3 primary variables per gridblock; these
are the hydrocarbon volume-weighted pressure ph (equal to
pg in the absence of oil phase), water and gas saturations Sw

and Sg , and themole numbers Ni , i ∈ [1, nc]. This is slightly
different fromothermass-variables formulations [15, 34] that
arrive at phase saturations (to be used in the extendedDarcy’s
law) by back-calculation from mole numbers and pressure.
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Fig. 2 Component-phase
repartition diagrams for
reservoir and surface condition
fluids. While hydrocarbons and
water can be in thermodynamic
equilibrium at reservoir
conditions, we consider the
water phase to be dead at
surface conditions

Relaxing the dead water phase assumption of the original
implementation [9] requires code modifications which we
can broadly separate in two categories.

• Generalize the volume balance and mass conservation
equations to account for the transport of hydrocarbon
components in the water phase and water component in
the hydrocarbon phases.

• Generalize the calculation of partial molar fractions and
partial molar volumes for the multiple combinations of
two-phase cases (gas-water, gas-oil, oil-water) and the
three-phase case, and develop a three-phase flash.

The results presented in this paper are limited to caseswithout
liquid oil at reservoir conditions, hence calculation of three-
phase partial molar fractions and volumes as well as three-
phase equilibrium are not required.

Using afirst-order upstreammobilityweighting, time inte-
gration between tn and tn+1 of the conservation equations
yields the following mass balance residual (MBR):

MBRi;� = Nn+1
i;� − Nn

i;�
�tn

+
∑

�′∈C (�)

T�,�′ · [(wiλw)↑�	w;�,�′

+ (yiλg)↑�	g;�,�′ ] + Qi;�, ∀i ∈ [1, nc] , (4)

where �tn = tn+1 − tn is the timestep length, C (�) is the
set of cells connected to cell �, T�,�′ is the transmissibility
between cells � and �′, and “↑” indicates the upstream cell
for the phase at hand. Only a two-point flux approximation
(TPFA) is considered at the moment.

In Eq. 4 we also defined the mobility of phase ϕ as λϕ =
krϕ/μϕ , and the potential difference between two grid blocks
� and �′ as �	ϕ�→�′ = pϕ,� − pϕ,�′ − ρϕ,�,�′ g�d�→�′ ,
where�d�→�′ is their depth difference, andρϕ,�,�′ is themass
density of phase ϕ at reservoir conditions at their interface.

In addition to Eq. 4, we include equations for the gas and
water phase volume balance residuals (VBRs),

VBRϕ;� = PV�

(
pg

)
Sϕ −Vϕ

(
pg, N �

)
, ∀ϕ ∈ {g, w} , (5)

where PV� is the pore volume of cell � (a function of pressure
in presence of rock compressibility), and Vϕ is the volume of
phase ϕ computed using compositions obtained by the phase
equilibrium calculations.

The three time discretization schemes described in [9]
can be used in combination with the extensions described
here: the fully implicit method (FIM); the implicit pressure,
explicit mobilitymethod (IMPEM); and the adaptive implicit
method (AIM).

Although the code supports any number of components,
the examples presented in this paper only contain H2O and
CO2. For such a small component-set, there is close to no
penalty for using FIM over AIM, hence FIM will be used.

3.3 Well and separator modeling

We utilize bottom-hole pressure as a single variable defining
the well state, and compute the hydrostatic head by integrat-
ing the density along the wellbore based on explicit inflows.
The fluid description in the wellbore follows that of the reser-
voir, i.e., in this work only supports an aqueous and vapor
phase (see Fig. 2-left).

Well and group controls are often based on surface volu-
metric rates and the same thermodynamicmodel needs not be
used. In this work, we choose to keep the usual liquid-vapor
equilibrium with a dead aqueous phase at surface conditions
(see Fig. 2-right). We consider an idealized separation pro-
cess depicted Fig. 3 where the production stream is first
dehydrated, before passing through a familiar multi-stage
separator where each stage is modeled by either an EoS or a
gas-plant table.
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Fig. 3 Idealized separator
process considered in this work.
The water component is
extracted first, while the
hydrocarbon stream is separated
following a conventional
multi-stage process. Each stage
can be modeled with an EoS or
a gas plant table

We recognize that in reality dehydrationmay happen later,
and disregarding the water component during the separa-
tion process may impact the vapor-liquid equilibrium. Our
approach nevertheless has the advantage of simplifying the
work required for extending a conventional reservoir model
to support three-phase equilibrium.

4 Physical models

4.1 Rock and rock-fluid models

The same rock and rock-fluid models as in conventional
reservoir simulations are considered. Because here only
gas and water phases are present at reservoir conditions,
pcgw = pg − pw, krg and krw are function of Sg; also, gas
is naturally the non-wetting phase in relative permeability
hysteresis modeling. Porosity is considered to be a function
of pressure according to a constant pore compressibility or
rock compaction tables.

4.2 Salt-free compositional description

We follow a salt-free compositional description, meaning
that the molar composition array N or the aqueous phase
composition array w do not include salts or other addi-
tives. The water component is therefore pure H2O with
MWH2O = 18.015 g/g-mol, and the salt concentration CS

is a parameter in phase equilibrium and phase property
calculations.

Salinity is at the moment treated as an active tracer, i.e. it
is updated at the end of each converged time-step. The salt-
free approach could, nevertheless, also be used if salt were
treated monolithically with the main components.

In conventional reservoir simulators,CS is often expressed
in kg/sm3 or lb/stb (mass of salt per standard volume of brine,
i.e, water plus salt) for control and reporting purposes. How-
ever, phase equilibrium models are often based on molality
ms , expressed in g-mol/kg (gram-mole of salt per kilogram
of H2O).

The number of water moles can be obtained from surface
brine volume V stc

w and CS as

NH2O = V stc
w · ρstc

w − CS

MWH2O
, (6)

where ρstc
w is mass density of brine at surface conditions; the

molality ms can be obtained as

ms = 1000
CS

MWsalt
(
ρstc

w − CS
) . (7)

4.3 Phase equilibrium

A phase equilibrium model is essentially needed for two dif-
ferent operations.

• To compute the split of a feed in multiple phases, along
with the composition of said phases (flash calculation).

• To compute the partial molar fractions of a multiphase
mixture previously equilibrated with a flash, which we
define as how the number of moles of a specific compo-
nent in a specific phase varies when the feed amount of
said component varies.

Both operations need to be computed on a per-cell basis
at each nonlinear iteration (step 2 in Fig. 1). Each cell being
independent of each other, this procedure exhibits a high
degree of parallelism and is well suited for GPUs. The flash
procedure itself being iterative and each cell requiring a dif-
ferent number of iterations, a possible way to improve GPU
occupancy is to group cells in batches having a similar num-
ber of expected iterations. We use one thread per cell for
fixed-point iterations (first-order flash iterations), and one
thread per component for operations requiring matrix inver-
sion (second-order flash iterations, and partial molar fraction
calculations), as discussed by [11].

Both operations also need to be computed on a per-well
basis at each nonlinear iteration (step 3 in Fig. 1). In this case,
parallelism is not sufficient to warrant GPU execution, hence
well solves are handled by the CPU cores.
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Fugacities needed for the thermodynamic equilibrium
constraints Eq. 3, are obtained via the SW-EoS [37], an exten-
sion of the PR-EoS with two main modifications. First, the
water attraction parameter is modified as

αH2O = 1 + 0.453 ·
[
1 −

(
1 − 0.0103m1.1

s

)
TrH2O

]

+0.0034 ·
(
T−3
r H2O

− 1
)

, (8)

where TrH2O is the reduced water temperature, and ms is
the NaCl molality (no other salts are considered). Second,
the binary interaction coefficients between hydrocarbons or
other light gases (CO2, H2S andN2) andwater in the aqueous
phase are expressed as a function of their reduced temper-
atures and ms . In this paper, benchmark cases contain CO2

only, and the original correlation published by [37] is used:

kaqCO2,H2O
= −0.31092

(
1 + 0.15587m0.7505

s

)

+0.2358
(
1 + 0.17837m0.979

s

)
TrCO2

−21.2566 exp
(−6.7222TrCO2 − ms

)
. (9)

There have since been alternative expressions proposed
for the CO2-water BICs, such as the one of Yan et al. [42],
used for example in IHRRS [31]. Correlations for additional
components such as H2 have also been proposed by [4]. A
summary of correlations for BICs between dissolved compo-
nents in the aqueous phase andwater to be usedwith SW-EoS
can be found in [1].

It is worth noting that flash calculations for gas-water sys-
tems (i.e., no oil) are not challenging. Typical reservoir or
aquifer temperatures are too low for the mixture to approach
critical conditions, hence the vapor phase is mostly com-
prised of hydrocarbons and the aqueous phase is mostly
comprised of water component. This fortunate situation will
change whenwe extend the code to support a full three-phase
equilibrium (i.e., gas, oil and water at reservoir conditions),
as the number of phase boundaries increases, in addition to
the hydrocarbon phases possibly approaching their critical
point.

4.4 Phase properties

The water phase density at reservoir conditions is given, in
the absence of hydrocarbon dissolution, by:

ρw0 (p,CS) = ρstc
w (CS)

Bw (p,CS)
, (10)

where ρstc
w is the surface mass density of brine and Bw is its

formation volume factor. These can either be tabulated vs.
salinity and reservoir pressure, or computed with a built-in
correlation that we take from [40].

The impact of hydrocarbon dissolution on water phase
density is accounted for using Ezrokhi’s correction as

log10

(
ρw

ρw0

)
=

∑

i∈[1..nh ]
ξi w̄i , (11)

where the ξ parameters are taken as a function of tempera-
ture, and w̄i is the mass concentration of component i in the
aqueous phase. For CO2, we use the parameters from [2].

Similarly, the water phase viscosity in the absence of
hydrocarbon dissolution, μw0, is either tabulated or com-
puted with a built-in correlation, and its changes due to
hydrocarbon dissolution are accounted for using Ezrokhi’s
correction as

log10

(
μw

μw0

)
=

∑

i∈[1..nh ]
χi w̄i , (12)

where the χ parameters are taken as a function of tempera-
ture.

The gas phase density is computed from the EoS, while
its viscosity is calculated using either the Lohrentz-Bray-
Clark [21] or the Pedersen [29] correlations.

5 Model #1: tiled boxmodel - scaling
experiments

5.1 Elementary tile

We start with an investigation of the computational perfor-
mance scaling with model size. For this purpose, we extend
the fifth comparative solution project grid [17] to obtain a
simple box model of dimensions 82 × 45 × 30 cells whose
properties are given in Table 1.

Gas and water relative permeability and capillary pressure
curves are taken from the Smeaheia dataset [8], as shown in
Fig. 4.

The initial datum pressure and temperature are 1191 psi
and 98.6°F, respectively. The model is initialized with water
only, can host two components (CO2 and H2O), and contains
one CO2 injector and one producer. The injector is controlled
by surface CO2 rate (40 MMscf/day) and the producer by
surface water rate (18 Mstb/day). The injector is perforated

Table 1 Static properties of an elementary tile used for the scaling test

Layers kx = ky (mD) kz (mD) φ �x = �y (ft) �z (ft)

1-10 500 50 0.3 500 20

11-20 50 50 0.3 500 30

21-30 200 25 0.3 500 50
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Fig. 4 Relative permeability and capillary pressure curves of the Smea-
heia dataset (krg in red, krw in blue, and pcgw in dashed purple)

in cells (i = 61, j = 23, k = [1, 10]), and the producer
in cells (i = 21, j = 23 and k = [20, 30]); both have a
wellbore diameter of 0.5ft.

The simulation duration (300 years) is chosen such that
CO2 breaks through toward the end. Figure 5 shows a 3D
view of the elementary tile at the end of the simulation.

5.2 Results benchmark against the reference
solution

Westart by benchmarking our simulator (hereafter referred to
as “GPUsimulator”) againstECLIPSE-300withGASWAT
option (hereafter referred to as “Reference simulator”).

The reference simulator considerswater andhydrocarbons
to be at equilibrium at surface conditions, while we use the
separator concept of Fig. 3 where gas is dried. It is therefore
important to add a custom gas-plant table to the separator of
the reference model to force separation of H2O and CO2.

Fig. 5 “Waffle” view of an elementary tile used for the scaling test,
colored according to the CO2-rich phase (labeled as gas) saturation at
the end of the simulation (year 300)

Fig. 6 Comparison of the injector and producer bottom-hole pressure
profiles for an elementary tile, as computed by the GPU simulator and
the reference simulator

Figure 6 shows a comparison of injector and producer
bottom-hole pressure profiles; the agreement is excellent,
validating the implementation of both phase equilibrium and
phase properties evaluations.

5.3 Weak and strong scalability

To measure throughput vs. model size, we tile the model
repeatedly in both horizontal directions, mirroring adjacent
copies, so that by symmetry, each well in the resulting tiled
models injects or produces precisely as in the original, untiled
model. We may then investigate how the runtime varies with
model size while keeping the nonlinear behavior the model
essentially fixed. In order to increase performance and make
it possible to simulate larger models, the simulator can take
advantage of multiple GPUs, either inside a single node or
distributed across multiple nodes. In order to explore the
efficiency of multi-GPU simulation, we record runtimes on
one, two, and four GPUs for a range of tiled models up
to about 25M cells. We then plot the resulting simulation
throughput, defined as the number of active cells divided
by simulation elapsed time in seconds in Fig. 7. Note that
because of memory limitations, the single GPU simulations
have a maximum model size which is about 1/4 of the four
GPU simulations and likewise for the two GPU simulations.
Also, note that since the geometry is extremely simplified,
the absolute throughput shown here should not be consid-
ered representative of a more complex model derived from a
realistic geomodel.

As discussed by [9], the efficiency of a GPU-based sim-
ulators is maximized when abundant parallelism is exposed
in the form of large models. Therefore, as the model size is
increased, the overall simulation throughput increases until
all GPU resources are fully utilized and performance satu-
rates. For multi-GPU simulations, the model size at which
performance saturates grows roughly linearly with the num-
ber ofGPUs, since the simulation cells are distributed equally
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Fig. 7 Simulation throughput as a function of model size on 1, 2, and
4 NVIDIA Tesla V100 GPUs. The dashed lines show the vertical and
horizontal positions atwhich each fit curve reaches 90%of itsmaximum

across the GPUs. In Fig. 7, it can be seen that for the case
of this two-component model, between 1.0M and 1.9M cells
are needed for the throughput to reach 90% of its maximum.
Alternatively, multiple model realizations may be run simul-
taneously on a single GPU to reach a very similar maximum
throughput even for very small models [12].

The growth in performance with increasing processor
count is usually discussed in terms of weak and strong scal-
ability. Weak scalability is a measure of the relative cost
of simulations as the number of processors is increased
in proportion to the model size. In an ideal system with
perfect preconditioners, zero communication latency, and
infinite communication bandwidth between processors, we
would expect to observe constant runtime if the model size
is increased in proportion to the number of GPUs. In real-
ity, however, multi-GPU runs incur overhead due to the
communication required between GPUs and perfect weak
scalablility is not expected. In this example, we see that in
moving from one to four GPUs, overall throughput increases
by a factor of over 3.2, corresponding to a weak scalability
of approximately 80%.

Strong scalability is a measure of how performance on a
fixedmodel changes as the numbers processors is raised. The
simulator’s strong scalability on this synthetic model prob-
lem can be assessed by considering the intersection of the 1,
2, and 4-GPU performance curves with a vertical line. From
the figure, we can see that in going from 1 to 2 GPUs, the
performance increases by a factor of 1.8, while in going from
2 to 4 GPUs, the performance increases by a more modest
factor of 1.6. In evaluating this scalability, one should bear
in mind that each V100 GPU contains 5120 cores operating
in parallel, so that the strong scalability in moving from one
to two GPUs is lower than may be expected in moving from
one to two CPU cores.

6 Model #2: Smeaheia - large scale CO2
sequestration in a deep aquifer

6.1 Aquifer andmodel background

We here consider a CO2 sequestration problem based on
the Smeaheia case [33], a publicly available data-set [8]
developed to assess the carbon storage potential in the
homonymous area of the Norwegian continental shelf [13].

The Smeaheia area is located in the Stord Basin, 50 km off
shore the coast of Norway near Bergen. A set of faults sep-
arates it from the Troll Field in the West and the Caledonian
Basement Complex toward the East [10]. The public data-
set has 1.5 million active cells (106x174x100 corner-point
grid) with five producers (one horizontal and four vertical)
to mimic pressure depletion deriving from the nearby Troll
field, and one gas injector. It has a black-oil formulation,
whereby water is formally treated as oil, and CO2 as gas,
which allows running the model with a conventional simula-
tor; dry gas is considered [i.e., water (formally oil)] cannot
vaporize. Injection starts after 31 years of depletion with a
constant CO2 injection rate of 5.9 MSm3/d and continues
for 25 years; simulation is then continued for additional 253
years to monitor CO2 plume migration. Figure 8 shows a 3D
view of the model colored by porosity.

The GPU simulator can directly run the black-oil model,
as well as run a corresponding compositional model in which
aqueous-vapor equilibrium is describedusing theSøreide and
Whitson EoS, with CO2 and H2O components, and using a
reservoir temperature of 37°C.

6.2 Results benchmark with the reference solution,
in compositional mode

Figures 9 and 10 show the gas saturation and the CO2 aque-
ous molar fraction, respectively, after ten years of injection
in a region of layer 80 close to the injector. In the bottom
part of Fig. 10 results are filtered considering only saturated
cells; as expected the CO2 molar fraction is approximately
constant there (according to the Gibbs phase rule, the com-
position of two phases in equilibrium in the presence of two
components only depends on pressure and temperature, but
not on the feed). Saturation maps obtained with the reference
and the GPU compositional simulators show excellent visual
agreement.

6.3 Impact of CO2 solubility in water
and comparison with black-oil runs

Figure 11 compares the gas saturation map at year 2192 in
the top layer of the model for four different fluid models; all
cases have been run with the GPU simulator.
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Fig. 8 3D view of the Smeaheia
model [8] colored by porosity;
“ALPHA_N” is the CO2 injector

Fig. 9 Gas saturation in layer
80 after ten years of injection
computed by the reference (left)
and the GPU reservoir simulator
(right)

Fig. 10 CO2 aqueous molar
fraction in layer 80 after ten
years of injection computed by
the reference (left) and the GPU
reservoir simulator (right). The
bottom color-plots only show
saturated cells, where the
aqueous-phase composition is
almost constant
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Fig. 11 Comparison of gas saturation maps at year 2192 in the top
layer of the model, obtained with the GPU simulator with four differ-
ent fluid models. Top-left: black-oil model; top-right: compositional

model with SW-EoS; bottom-left: black-oil model without gas dis-
solution (DRSDT=0); bottom-right: compositional model with classic
PR-EoS where hydrocarbons cannot dissolve in the aqueous phase

It can be seen that there is a good qualitative agree-
ment between the black-oil and the compositional maps.
The slight discrepancies are due to the fact that the black-
oil tables from [8] have been generated from a model that
is different from the combination of SW-EoS and Ezrokhi’s
modifiers, and partially due to the fact that water vaporiza-
tion is neglected in the black-oil case (note that it could have
been included with a generalized black-oil approach).

There is also a good qualitative agreement between the
black-oil and the compositional maps when CO2 dissolution
in the aqueous phase is prevented. In this case, we see that
the gas migrates from the injection structure to a secondary
structure in the east; this clearly shows the importance of
proper CO2 solution modeling.

The average reservoir pore-volume weighted pressure is
reported in Fig. 12. As expected, the pressure build up is

Fig. 12 Average pore pressure
versus time for the cases with
(solid line) and without (dotted
line) CO2 solubility in water
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Fig. 13 Computational
performance comparison for the
case with (dotted) and without
(solid) CO2 solubility in water.
Cumulative number of linear
iterations (left) and cumulative
number of Newton (right)

higher for the dead water case due to the fact that all CO2

remains in the vapor phase; in the gas-water equilibrium case,
approximately 40 Mton of the total 100 Mton of stored CO2

is trapped in solution.
It is important to note that the results presented above are

used to illustrate the impact of aqueous-vapor equilibrium,
and do not represent a case study. In particular, relative per-
meability and capillary pressure hysteresis, which would be
responsible for residual trapping, are not accounted for.

6.4 Computational performance

Figure 13 shows the cumulative number ofNewton and linear
iterations for the two compositional runs (with and without
aqueous-vapor equilibrium) performed with the GPU simu-
lator; default convergence criteria and a maximum timestep
of 50 days are used (note that timesteps of one year would
still allow convergence). Both runs take a similar number of
Newton iterations, while the simulation including aqueous-
vapor equilibrium takes slightly more linear iterations. This
is likely explained by the fact that the system stiffness is
increased by the thermodynamic coupling between phases,
although it could also be due to the different physical evolu-
tion of the system over time.

In this model, the cost of EoS equilibrium calculations
is in the order of 3%, i.e., close to negligible. The slightly
higher number of linear iterations in the run with equilibrium
causes a slight increase in runtime, from∼2,000s to∼2,400s
on a single V100 GPU. Notably, the computational overhead

Table 2 Water properties

ρw,sur f (Kg/m3) Bw cw (1/bar) μw (cP)

1002 1 5.9 · 10−5 0.655

is even less if we use 4 V100 GPUs instead of 1; in that
case the simulation accounting for gas solubility is only 8%
slower.

Another worthy performance metric is the ratio of black-
oil vs. corresponding compositional run. When accounting
for equilibrium, the black-oil run takes ∼1,500s, meaning
that the compositional simulation runs in approximately 1.6x
the time of its black-oil counterpart. This is aligned with
what was observed in [9] for conventional models with two
hydrocarbon components in equilibrium and dead water.

7 Model #3: Gravity-driven fingering effects

Among the various mechanisms involved in CO2 sequestra-
tion, the approach described in this work enables accounting
for solution trapping of CO2 in resident water. During injec-
tion, CO2 will start accumulating below the caprock due
to gravity forces, and progressively begin to dissolve in the
water located at the top of the underlying aquifer. CO2 sat-
urated water becomes denser than initial resident water and
starts to sink down initiating unstable viscous fingers.

The triggering of fingers is governed by the interplay
between gravity forces and physical diffusion. Numerical
modeling of gravity-driven fingers for research purposes
is typically performed with high order numerical schemes
to limit numerical dispersion which may, otherwise, over-
shadow physical diffusion [7, 23, 32].

Table 3 Ezrokhi’s coefficients for CO2 [2]

C0 C1 C2

0.1033 −2.3 · 10−5 −2.0 · 10−6
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Fig. 14 Initial fluid distribution (left) and CO2 aqueous molar fraction in two cross sections after 680 years of simulation for of the 4-million cell
model (middle) and the 16-million cell model (right)

The GPU simulator currently does not support diffusion,
hence any initial perturbation of the interface between CO2-
saturatedbrine and residentwaterwould trigger an instability,
whose long-term behavior would be governed by numerical
dispersion. Provided the fingers are not expected to satu-
rate within the reservoir thickness however, the ability to
model the resulting convective mixing in a conventional, low
order simulator without diffusion is still of interest; this may
require very refined grids.

As a representative example,weconsidered a200x200x100
grid (4 million active cells) with cell size equal to 5m x 5m x
10m, a horizontal permeability of 100 mD, a vertical perme-
ability of 10 mD and porosity equal to 10%. The reservoir
temperature is constant and equal to 40 ◦C. The initial pres-
sure is set equal to 350 bar. The upper part of the model is
fully saturated with CO2, while the lower part with H2O. A
variable saturation perturbation is introduced at the contact in
order to trigger the instabilities. We have arbitrarily selected
a wavelength equal to 1/5 of the domain width. Water prop-
erties are reported in Table 2, while Ezrokhi’s coefficients
for CO2 are reported in Table 3. Rock compressibility is set
equal to 5 · 10−5 1/bar.

With the GPU simulator, it is easily possible to further
refine the originalmodel; here, we tested a 400x400x100 grid
resulting in a total of 16 million active cells. The simulation
runtime using 4V100GPUswas 15min for the 4-million cell
model and 73min for the 16-million cell model. Amaximum
time-step length of 100 days was used in both cases.

Figure 14 shows the CO2 fraction in the aqueous phase
after 680 years of simulation for the base and the refined
cases. The differences in terms of results for the two cases
are negligible.

At the initial interface between gas phase and (pure) water
phase, gravity forces work to flatten the contact: this trig-
gers counter-current flow and the dissolution of CO2 into
pure water. As inter-phase mass exchange around the contact

progressively reduces, water with the highest concentration
of dissolved CO2 migrates towards the bottom of the fingers.

8 Conclusions and way forward

AGPU-based compositional simulator, originally conceived
to tackle typical petroleum-related problems, has been
extended to support hydrocarbon-water equilibrium, neces-
sary in a number of applications such as CO2 injection in
saline aquifers.

The chosen approach consisted in asymmetric modifica-
tions to the cubic EoS parameters as proposed by Søreide
and Whitson: this allows an efficient and practical way to
simulate hydrocarbon solubility in water and water vapor-
ization within an existing simulator. Water phase density and
viscosity computations were also adjusted to account for the
effective aqueous phase composition.

The selected examples show that new GPU-based hard-
ware is verywell suited for running these compositionalmod-
els. On the Smeaheia case, the overhead of two-components
compositional runswas found to be about 60%over the corre-
spondingblack-oilmodel, inlinewithwhat reportedby [9] for
conventional simulations with two hydrocarbon components
in equilibrium and dead water. This relatively modest cost
means that compositional modeling can become a default,
giving the engineers more flexibility in adding components
as needed (e.g., to model depleted gas fields).

Thiswork focused on supporting two-phase reservoir con-
ditions. The next step will consist in developing and imple-
menting a high-performance three-phase flash algorithm for
GPUs, enabling full three-phase simulations. Use cases will
include CO2 enhanced oil recovery or CO2 sequestration in
retrograde condensate fields, as well as high-pressure/high-
temperature gas fields where water vaporization can impact
final recovery.
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