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Abstract
Although deep learning has been successfully applied in a variety of science and engineering problems owing to its strong 
high-dimensional nonlinear mapping capability, it is of limited use in scientific knowledge discovery. In this work, we pro-
pose a deep learning based framework to discover the macroscopic governing equation of an important geophysical process, 
i.e., viscous gravity current, based on high-resolution microscopic simulation data without the need for prior knowledge of 
underlying terms. For two typical scenarios with different viscosity ratios, the deep learning based equations exactly cap-
ture the same dominant terms as the theoretically derived equations for describing long-term asymptotic behaviors, which 
validates the proposed framework. Unknown macroscopic equations are then obtained for describing short-term behaviors, 
and additional deep-learned compensation terms are eventually discovered. Comparison of posterior tests shows that the 
deep learning based PDEs actually perform better than the theoretically derived PDEs in predicting evolving viscous gravity 
currents for both long-term and short-term regimes. Moreover, the proposed framework is proven to be very robust against 
non-biased data noise for training, which is up to 20%. Consequently, the presented deep learning framework shows consid-
erable potential for discovering unrevealed intrinsic laws in scientific semantic space from raw experimental or simulation 
results in data space.

Keywords Deep learning · Viscous gravity currents · Genetic algorithm · Macroscopic modeling · PDE discovery

1 Introduction

Deep learning algorithms are currently being successfully 
applied in numerous science and engineering fields, such 
as physics [1, 2], earth science [3, 4], and computer vision 
and speech recognition [5]. The advantage of deep learning 
algorithms is their strong capability of constructing high-
dimensional nonlinear mappings. Therefore, a deep learn-
ing based surrogate model may be trained to effectively 
describe a physical process based on collected observation 
data. However, this type of surrogate model constitutes a 
“black box” with poor explainability, and fails to deepen our 
understanding of the essences of the physical process, which 
greatly decreases its usefulness.

This constitutes a challenging problem, which combines 
knowledge discovery and explainable machine learning [6]. 
Humans’ understanding of the world is based on semantic 
space. In semantic space, people are able to understand and 
construct rules for accurate inferences and analyses. In con-
trast, pure data-driven surrogates exist in data space. In data 
space, the expressive capability of surrogates is strong with 
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• Macroscopic governing equation of viscous gravity current is 
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infinite possibilities. It is particularly challenging, however, 
to interpret useful information hidden in amounts of data. 
Therefore, the key to explainability for a machine-learning 
based surrogate is to transform high-dimensional mapping 
from data space into semantic space, and obtain an intui-
tive and interpretable understanding about the mapping. In 
modern sciences, the most widely acceptable semantic form 
or knowledge expression form is represented by partial/ordi-
nary differential equations (PDEs/ODEs), which are usually 
concise and easy-to-understand.

To realize the transformation of surrogates from data 
space into semantic space, data-driven discovery of partial 
differential equations (PDEs) is a feasible solution, and thus 
has recently attracted increasing attention. Usually, PDEs 
consist of several complex differential terms, and the can-
didate library of potential terms can be very large. Deter-
mination of how to accurately reproduce the differential 
terms and find parsimonious PDEs become key objectives. 
Recently, Xu et al. [7] proposed a deep learning-genetic 
algorithm (DLGA) framework. In this framework, a deep 
neural network is utilized to calculate derivatives and gen-
erate meta-data, and the genetic algorithm is employed to 
discover the form of PDEs without the need of including the 
true terms in the initial guess. The deep neural network has 
been utilized in PDE discovery in previous works [8–10], 
because the derivatives calculated by automatic differentia-
tion are more accurate and robust to noise. In the process 
of the genetic algorithm, genomes are composed of several 
basic genes, which can be adjusted according to the situ-
ation of the discovery process, which markedly increases 
both flexibility and practicability. Compared to other sparse 
regression methods, including LASSO [11], SINDY [12, 
13], sequential threshold ridge regression (STRidge) [14, 
15], and sparse Bayesian regression [16], the genetic algo-
rithm does not need a complete candidate library beforehand 
[17], which may be impossible for many real-world applica-
tions. Meanwhile, the integral form is an efficient approach 
to facilitate the PDE discovery process and increase the 
accuracy of discovered PDEs [18].

In this work, we attempt to employ the deep learning based 
PDE discovery framework [18] to discover unknown macro-
scopic equations for a real geophysical process, i.e., viscous 
gravity current. Viscous gravity current is an important natu-
ral phenomenon in geophysics [19–21], and typical scenarios 
include displacement flows in oil reservoirs [22], sea water 
intrusion [23, 24], water injection in geothermal reservoirs 
[25], pollutant dispersion through groundwater [26], and 
proppant transport in hydraulic fractures [21, 27]. Investigat-
ing its one-dimensional governing equation has wide practical 
application significance. Essentially, viscous gravity current is 
a gravity-driven flow constrained in porous media or narrow 
vertical fractures due to the density difference between intrud-
ing and in-situ fluid, which forms a remarkable sharp interface 

at macro-scale, i.e., the current front. As a consequence, iden-
tification of a macroscopic equation for describing the evolu-
tion of current front height is a crucial issue. In the existing 
literature, there exist many theoretically derived macroscopic 
equations for viscous gravity currents under various condi-
tions, such as different viscosity ratio [19], multi-layer porous 
media [28], non-Newtonian intruding fluid [29–31], and vary-
ing horizontal permeability [32]. However, these works largely 
focus on long-term asymptotic behaviors of viscous gravity 
currents, and macroscopic equations for capturing short-term 
behaviors remain undetermined.

Different from previous works in data-driven PDE discovery, 
the training data of current front height are directly extracted from 
high-resolution microscopic simulation results instead of solving 
already-known model equations, and the long-term theoretical 
PDEs are only utilized in posterior tests as a reference. Conse-
quently, no prior knowledge about the underlying equations is 
needed or utilized in the proposed method. With the assistance of 
the deep learning based PDE discovery method, on the one hand, 
we are able to validate the method by quantitative comparison of 
discovered PDEs and theoretical PDEs for long-term behaviors of 
viscous gravity currents both in data space and scientific semantic 
space. On the other hand, it is also possible for us to transform 
raw simulation data for describing short-term behaviors from data 
space into discovered PDEs in scientific semantic space. Subse-
quently, by quantitatively comparing discovered PDEs with theo-
retical PDEs, the hidden mechanisms can be elucidated, which 
can be expressed as compensation terms for modifying the origi-
nal theoretically derived PDEs to capture short-term behaviors in 
viscous gravity currents.

The remainder of this paper is organized as follows. 
In Section 2, the two-dimensional microscopic governing 
equation and numerical solution of viscous gravity current 
related to training data preparation are introduced. Theoreti-
cal derivations of one-dimensional governing equations for 
viscous gravity currents are also briefly reviewed as refer-
ences for subsequential quantitative comparisons. Then, the 
proposed deep learning based PDE discovery framework is 
introduced. In Section 3, PDE discovery results based on the 
deep learning framework for both long-term and short-term 
regimes of viscous gravity currents are demonstrated, and 
the effects of data noise are discussed. Finally, the conclu-
sions are drawn in Section 4.

2  Methodology

2.1  Preparation for training data of viscous gravity 
current

Generally, for investigating fluid mechanics, such as vis-
cous gravity currents, three fundamental approaches usually 
exist, i.e., theoretical analysis, physical experiments, and 
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numerical simulation [33]. Particularly, theoretical analy-
sis offers strong explainability and scientific consistency. 
Macroscopic equations can be rigorously derived based on 
fundamental laws and rational assumptions, and conveni-
ently extended for investigating similar physical processes. 
The prediction accuracy of theoretical analysis, however, 
depends greatly on the validity assumption. On the other 
hand, although physical experiments and microscopic 
numerical simulations can provide a large amount of obser-
vation data and accurate prediction results, they are both 
time-consuming and possess poor transferring capability. 
Different from conventional theoretical analysis for obtain-
ing macroscopic equations, we aim to find one-dimensional 
macroscopic PDEs in scientific semantic space to describe 
the evolving behaviors of front height based on raw obser-
vation data in data space. In this work, the raw observation 
data are extracted from refined numerical simulation, also 
referred to as microscopic simulation.

Particularly, we consider a viscous gravity current process 
in a two-dimensional rectangle vertical fracture with non-
penetration boundaries, as shown in Fig. 1(a). The permea-
bility and porosity of the fracture are considered as constant, 
and fluid leak-off, as well as other source terms, are ignored 
for simplicity. The domain is initially vertically divided by 
two types of fluid with different density, i.e., �1 and �2 , and 
different viscosity, i.e., �1 and �2 . Then, determination of 
how the current front height h(t, x) evolves at macro-scale 
constitutes the primary aim.

In fact, the fluid motion in this two-dimensional system is 
governed by Darcy’s equation and the continuity equation:

where k is the permeability of fracture; � and � are the fluid 
viscosity and density, respectively; P is the pressure; �⃗g is the 
gravity acceleration; and �⃗u is the two-dimensional velocity 
of fluid.

The interface between two fluids can be tracked with a con-
servative level-set equation [34]:

where C is the level set function or color function; �⃗u is the 
two-dimensional velocity of fluid; � is the artificial time; 
and � is the artificial viscosity. Note that Eq. (3) and (4) have 
been written in a conservative form by utilizing Eq. (2), and 
the artificial viscosity � is introduced in consideration of 
numerical stability. The above equations indicate the advec-
tion step and the artificial compression step, respectively.

Furthermore, by substituting Eq. (1) into the Eq. (2), a Pois-
son equation for pressure independent of fluid velocity can be 
obtained:

(1)�⃗u = −(k∕𝜇)
(
∇P − 𝜌�⃗g

)
,

(2)∇ ⋅ �⃗u = 0,

(3)
𝜕C

𝜕t
+ ∇ ⋅

(
C �⃗u

)
= 0

(4)
�C

��
+ ∇ ⋅

�
C(1 − C)

∇C

‖∇C‖

�
= �ΔC

(5)∇2P =
g�

k

��

�z

Fig. 1  Illustrations of viscos-
ity gravity currents. (a) Sketch 
of viscous gravity current in 
a rectangle vertical fracture 
( 𝜌1 > 𝜌2 ). The green dashed 
vertical line indicates the initial 
interface between the two fluids, 
and the green solid curve h(t, x) 
indicates the spatio-temporal 
evolving current front height. 
(b) Evolution of viscous gravity 
current for case I, where viscos-
ity of two fluids satisfy �1 = �2 . 
The yellow region (level-set 
function C = 1 ) indicates heavy 
fluid, and the blue region 
( C = 0 ) indicates light fluid. 
(c) Evolution of viscous grav-
ity current for case II, where 
viscosity of two fluids satisfy 
𝜇1 >> 𝜇2
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Based on the domain setting as illustrated in Fig. 1(a), 
the initial and boundary conditions for the above two-
dimensional problem can be defined as follows:

where L and H are the length and height of simulation 
domain Ω , respectively; �⃗n indicates the normal direction of 
four non-penetration domain boundaries; �Ω indicates the 
non-penetration boundaries.

To obtain the solution of the above two-dimensional 
system, for each time step, fluid pressure and velocity 
are first determined by solving the pressure equation, and 
color function C is then updated according to Eq. (3) and 
(4). Pressure calculation and evolution of color function 
are sequentially solved through the simulation timeline. 
Numerically, the pressure equation is discretized with the 
center difference scheme, and the AGMG solver based on 
the multi-grid technique [35, 36] is adopted to solve the 
discretized linear system. For the advection step (3), the 
third-order Runge–Kutta TVD scheme [36] and fifth-order 
WENO scheme [37, 38] are applied for temporal and spa-
tial discretizations, respectively. For the artificial compres-
sion step (4), a center difference scheme is adopted, and 
after several artificial time steps, the color function con-
verges to maintain a constant interface width. The compu-
tational bottleneck of the above procedure is solving the 
pressure equation. During each timestep, a large sparse 
linear system needs to be solved. The computational com-
plexity of the multi-grid method is of O(Nlog(N)), where 
N is the 2D mesh number. Besides, memory requirement 
is another computational constraint if full matrix storage 
is adopted instead of sparse matrix storage.

In this work, two typical scenarios of viscous gravity cur-
rents are investigated. For case I, viscosity of the heavy fluid 
is assumed to be equal to that of light fluid, i.e., �1 = �2 ; 
whereas, for case II, it is assumed that 𝜇1 >> 𝜇2 . Figure 1(b) 
and (c) illustrate the short-term evolving history of current 
fronts in the two cases. It is observed that the current front 
tends to be linear-shaped in case I, while a curve-shaped 
front is seen in case II, during the late time of simulation. By 
tracking the contour line of level set function C = 0.5 in the 
microscopic simulation results, the spatio-temporal evolving 
history of current front height h(t, x) is then obtained.

Without loss of generality, related variables, including 
front height h , horizontal location x , and time t  , are nor-
malized through non-dimensional analysis prior to sub-
sequential deep learning based PDE discovery, and the 
dimensionless variables are defined as:

(6)C(t = 0, x, z) =

⎧
⎪
⎨
⎪
⎩

1 x ≤ L∕2

0 x > L∕2
,P(t = 0, x, z) =

�
C𝜌1 + (1 − C)𝜌2

�
g(H − z);

(7)�⃗n ⋅ ∇C = 0, �⃗n ⋅
(
∇P − 𝜌�⃗g

)
= 0,∀(x, z) ∈ 𝜕Ω;

where Δ� = �1 − �2 is the density difference between the two 
fluids. It is worth noting that, through the nondimensionali-
zation formula above, changing related physical parameters, 
including Δ� , g , k , �1 , and H , does not affect the spatio-
temporal evolution of dimensionless front height h∗(t∗, x∗) . 
In other words, the obtained PDEs by the deep learning 
framework are indeed universal forms for similar processes 
if simulation data are nondimensionalized by Eq. (8).

2.2  Theoretically derived PDEs for viscous gravity 
currents

Although the theoretically derived PDEs are obtained 
based on various assumptions and their applications are 
usually limited, they can still be regarded as baselines, 
or asymptotic solutions for the to-be-investigated physi-
cal process. In this part, we briefly review the details of 
theoretically derived PDEs for viscous gravity currents 
following Gardner et al.’s work [19], which describes the 
long-term asymptotic behavior of current front height.

Basically, it is assumed that the vertical flow is suffi-
ciently smaller than the horizontal flow, i.e., uz << k𝜌g∕𝜇 , 
where uz indicates the vertical component of fluid velocity. 
Under this condition, the pressure gradient in the vertical 
direction can be simplified as �P∕�z = −�g . Let P1 and P2 
denote the fluid pressure in fluid 1 and 2 across a vertical 
line inside the domain, respectively. Then, the pressure can 
be analytically expressed as:

where h(x) indicates the horizontally varying current front 
height; H is the total domain height; and � is the reference 
pressure in the horizontal direction.

Then, by utilizing Darcy’s law and the mass conserva-
tion equation along vertical lines, it is not difficult to find 
the velocity solution for one fluid:

Note that, for phase 1, we also have the continuity 
equation:

By substituting Eq. (11) into (12), the PDE of current 
height can finally be determined as:

(8)h∗ =
h

H
;x∗ =

x

H
;t∗ =

tΔ�gk

�1H

(9)P2 = 𝜋 + 𝜌2g(H − z), z > h(x)

(10)P1 = � + �2g(H − h) + �1g(h − z), z ≤ h(x)

(11)ux,1 = kΔ�g
�h

�x
∕
(
�1 + �2

h

H − h

)

(12)�h

�t
+

�
(
ux,1h

)

�x
= 0
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Considering the two cases in this work, i.e., �1 = �2 and 
𝜇1 >> 𝜇2 , and nondimensionalizing the above equation 
based on Eq. (8), the theoretically derived dimensionless 
PDEs can be written as:

To numerically solve Eq.  (14) and (15), initial and 
boundary conditions need to be specified. As illustrated in 
Fig. 1(a), the initial condition for dimensionless front height 
h∗ can be expressed as:

where L∗ = L∕H is the dimensionless domain length. As for 
the left and right non-penetration solid boundaries, it is clear 
that ux,1 = 0 should be satisfied, which implies that:

In this work, two regimes are investigated for both cases, 
i.e., long-term and short-term regimes. As mentioned previ-
ously, long-term regimes imply that nondimensional vertical 
velocity is sufficiently small, i.e., u∗

z
= uz𝜇1∕(Δ𝜌gk) << 1 

[19]. Here, we distinguish these two regimes through another 
more intuitive indicator, i.e., the dimensionless horizontal 
spanning distance Δx∗ = ‖x��h∗→0 − x��h∗→1

‖ of the current 
front interface. The long-term regime is defined as Δx∗ > 6 , 
and the short-term regime as 0 ≤ Δx∗ ≤ 6 . Under this condi-
tion, for both cases, the calculated average nondimensional 
vertical velocities of long-term regimes are less than 0.05, 
which is acceptably small. Furthermore, for subsequential 
deep learning, the amount of training data (spatio-temporal 
points of front height) of the two regimes is set as the same 
size.

2.3  Deep learning based PDE discovery

In fact, if ignoring source/sink terms and inhomogeneity of 
vertical permeability, one-dimensional macroscopic equa-
tions for all viscous gravity currents can be expressed in a 
unified conservative form, i.e., �h∗∕�t∗ + �F∗∕�x∗ = 0 , 
where F∗ indicates dimensionless flux. Then, for a to-be-
investigated viscous gravity current process, the goal of dis-
covering a concise PDE for front height evolution can be 

(13)
�h

�t
− kΔ�g

�

�x

(
h(H − h)

�1(H − h) + �2h

�h

�x

)
= 0

(14)
�h∗

�t∗
=

�

�x∗

(
h∗

�h∗

�x∗
− h∗2

�h∗

�x∗

)

(15)
�h∗

�t∗
=

�

�x∗

(
h∗

�h∗

�x∗

)

(16)h∗(t∗ = 0, x∗) =

{
1 x∗ ≤ L∗∕2

0 x∗ > L∗∕2

(17)
�h∗

�x∗
= 0, x∗ = 0or1

converted into a sparse regression problem of approximating 
flux F∗ through basic algebraic combinations of height h∗ 
and its arbitrary-order derivatives, such as �h∗∕�x∗ and 
�2h∗∕�x∗2 . Above all, prior to regression, flux and various 
derivatives should be calculated in advance based on raw 
training data. Particularly, flux F∗ can be calculated through 
integration F∗(t∗, x∗) = ∫

x∗

x∗
0

(−�h∗∕�t∗)dx∗.
Based on this insight, a natural approach is to calculate 

the derivatives and integration. First, one may fit the data 
with smoothing techniques, such as Gaussian process, and 
then the derivatives and integration can be calculated using 
conventional numerical difference and integration schemes. 
However, it has been proven in previous literature [39] that 
these conventional approaches are sensitive to data noise. 
Usually, there is no guarantee about the quality of collected 
data in reality. Therefore, when investigating a physical 
process without any prior knowledge, the PDE discovery 
approach is expected to be robust enough while accuracy of 
data reconstruction, as well as derivative and integral cal-
culation, can also be maintained. To solve the mentioned 
issues, here we apply a well-balanced framework based on 
deep learning for discovering macroscopic PDEs of viscous 
gravity currents, as illustrated in Fig. 2. Basically, it consists 
of the following three main steps:

(1) Data reconstruction or surrogate training. As previ-
ously mentioned, in practical scenarios, raw training 
data can be noisy, or deviate from ground truth, and 
randomly distributed in the spatio-temporal domain, 
which will influence derivative/integral calculations 
and PDE discovery. Therefore, a deep neural network 
h∗ = NN(t∗, x∗, �) , where � is the training parameters in 
the DNN, is first trained by available data to reconstruct 
the spatio-temporal evolution of front height. Note that, 
in the DNN, the nondimensional time and location are 
the only two input variables in the first layer (or input 
layer), and the nondimensional height is the only output 
variable in the last layer (or output layer). Theoretically, 
the neural network can fit any complex mapping rela-
tionship. Compared to other reconstruction methods, 
neural-network based data reconstruction shows good 
anti-noise and global fitness capability [10]. In addi-
tion, the neural network can effectively generate large 
amounts of meta-data, which is essential for subsequent 
integral calculation [18].

(2) Semantic fragments construction or derivative/integral 
calculation. As the neural-network based surrogate is 
built up, derivatives of various orders are calculated by 
automatic differentiation if a smooth activation func-
tion is adopted for neural network training. Moreover, 
sufficient meta-data are generated on a regular lattice, 
and numerical integration is accomplished based on 
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conventional approaches, such as Gauss–Legendre 
quadrature. Within this step, flux F∗ , original variable 
h∗ and its various spatial derivatives, such as �h∗∕�x∗ , 
�2h∗∕�x∗2 and �3h∗∕�x∗3 , can be obtained simultane-
ously, and these variables are considered as semantic 
fragments ready for the subsequent step.

(3) Semantic integration or sparse regression. Within this 
step, the possible semantic fragments are discovered 
and form the eventual explainable governing equation. 
Generally, regression methods with parsimonious con-
straints, such as LASSO and genetic algorithm, can be 
employed to discover the possible PDE terms and cor-
responding coefficients. Particularly, the genetic algo-

rithm (GA) [7] is adopted in this work. Compared to 
other sparse regression methods [9, 14, 40] that must 
specify a large number of potential terms and their 
combinations in the candidate library, the main advan-
tage of GA is that the scale of the candidate library can 
be much smaller, which is composed of several basic 
genes, and numerous combinations can be achieved by 
automatic generation evolution. For example, a high-
order derivative combination of (h∗)3(�h∗∕�x∗)2 can be 
recursively generated through mutation and cross-over 
operations during the GA process with only two basis 
genes h∗ and �h∗∕�x∗ . As a consequence, the GA-based 
deep learning framework does not need to include the 

Fig. 2  Flowchart of the deep learning based PDE discovery frame-
work. In order to transform raw simulation data in data space into 
explainable physical laws (PDEs) in semantic space, the following 
three steps are necessary. (1) Data reconstruction: training the sur-

rogate based on the deep neural network (DNN); (2) constructing 
semantic fragments: calculating spatial derivatives and integrated 
flux; and (3) semantic integration: finding a parsimonious PDE based 
on sparse regression methods

992 Computational Geosciences (2023) 27:987–1000
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true terms of the underlying equation in the initial can-
didate library, which greatly increases computation 
efficiency and sparse regression accuracy.

It is worth noting that if only consider the first step 
“data reconstruction”, it is non-explainable because DNN 
is a black-box surrogate. However, through two subse-
quential steps, i.e., semantic fragment construction and 
semantic integration, the eventual results are scientifically 
explainable because we can obtain a partial differential 
equation, in which the effect of each term can be rigor-
ously analyzed with mathematical tools, such as advec-
tion and diffusion effects. Therefore, from the viewpoint 
of eventual results, the proposed framework is explainable. 
Here, it is necessary to clarify the function of DNN in this 
framework. The first step of building a DNN surrogate is 
mainly designed as a global smoother for anti-noise of 
raw training data, and furthermore DNN allows convenient 
calculation of possible derivative and integral terms for the 
next step based on its features of automatic differentiation 
and providing sufficient meta data. These two functions are 
crucial, and considerably increase the robustness and effi-
ciency for preparation work of PDE discovery compared 
to other conventional approach such as Gaussian process 
based smoother. Another feature of this work is the adop-
tion of GA for sparse regression. It allows an incomplete 
candidate library, and complex terms can be automati-
cally generated through genome mutation and cross-over 
operations. Moreover, during the optimized process, the 
parsimonious constraint can be also maintained to a large 
extent.

Above all, a highly compatible and robust PDE discovery 
method should be introduced for solving a practical problem 
without any prior knowledge on the potential equation form. 
And in this work, the DLGA-PDE framework is adopted 
based on our previous studies.

3  Results and discussion

3.1  Validation for long‑term regimes

First, to validate the proposed deep learning framework for 
discovering macroscopic PDEs, microscopic simulation data 
of long-term regimes are utilized for investigation. Training 
details and parameter settings used in this work during the 
three steps are listed as follows:

(1) For the data reconstruction step, based on our expe-
riences in previous works for finding various model 
equations, a five-layer fully-connected neural network 
with 100 neurons per layer, and soft-plus activation 

function, are sufficiently accurate for training. The 
learning rate is set as 0.001 and Adam optimizer is 
adopted. Besides, the “early stopping” technique is 
used to avoid over-fitting. For each case, a total of 80% 
of 500 × 500 spatial–temporal points are chosen as the 
training dataset, while the rest 20% points are regarded 
as the validation set. Along with the DNN training pro-
cess, the trend of the mean square error (MSE) esti-
mated from the training set keeps decreasing, while 
the trend from the validation set shall first decrease and 
then increase. Such a turning point is considered as a 
criterion to diagnose over-fitting. After training approx-
imately 100,000 epochs, the mean square error (MSE) 
between raw data and prediction results decreases to a 
minimal level of 10−7 , which is considered to be suf-
ficiently converged.

(2) For derivative/integration calculation, 300 × 300 lat-
tice points of the inner spatial–temporal domain are 
selected, and a five-point Gauss–Legendre quadrature 
scheme is adopted here to calculate flux. In order to 
improve the regression performance, a large amount 
of trivial samples out of the mentioned 90,000 lat-
tice points, e.g., h∗ ≈ 1 and h∗ ≈ 0 , need to be omitted 
because flux is also trivial in these regions, i.e., F∗ ≈ 0

.
(3) For the sparse regression step, four basic genes are cho-

s e n  a s  t h e  c a n d i d a t e  l i b r a r y,  i . e . , (
h∗, �h∗∕�x∗, �2h∗∕�x∗2, �3h∗∕�x∗3

)
 . Population size is 

set as 200 per generation, and genes are randomly com-
bined with each other as the initial generation. Muta-
tion rate and cross-over rate are set as 20% and 80%, 
respectively. The maximum evolving epoch number is 
set as 100. Fitness function is defined as 
Fitness = −

∑���F
∗
ref

− F∗
ga

���∕N − �
∑

ai∕
��ai�� , where N is 

the number of sample data; and ai is the coefficient of 
the i-th derivative combination. The first term indicates 
data fitness between reference flux value F∗

ref
 and esti-

mated value F∗
ga

 , and the last term indicates the parsi-
mony constraint, i.e., the total number of terms, which 
is controlled by hyper-parameter � . In this work, � is set 
as 0.002 for most cases.

It is worth noting that there exist several hyper-parameters 
in the deep learning framework, such as number of hidden 
layers, choosing strategy of candidate library, and parsimony 
constraint coefficient. Most of these parameters are deter-
mined by experience via an ad hoc procedure. For instance, 
the number of neuron layers in the neural networks during 
the data reconstruction step is determined when further add-
ing the number of layers does not significantly affect the 
eventual data loss. Sensitivity studies with different high-
order derivatives are carried out in constituting the candidate 

993Computational Geosciences (2023) 27:987–1000



1 3

library, and it is found that there is no necessity to intro-
duce derivatives over third-order in the candidate library. 
The parsimony constraint coefficient is so determined that 
the regression quality is achieved while not sacrificing the 
parsimony (with as small a number of PDE terms as pos-
sible). Above all, the primary objective of training the deep 
learning framework is to discover an accurate yet parsimoni-
ous PDE, so that the prediction based on the PDE through 
posterior tests can well match the raw training data and the 
learned PDE can reveal the physical insight.

Eventually, for describing long-term behaviors, the 
obtained deep learning based PDEs (DL-PDEs) of the two 
cases are expressed as follows:

To provide insight into how GA works to find 
the optimized solution, Table  1 lists the GA solu-
tion paths for the two cases. For case I, the discovered 
best child for flux in the first generation is found to be 
a set of 

{
h∗, h∗2, �2h∗∕�x∗2

}
 , which contains second-

order derivative �2h∗∕�x∗2 . However, after only three 
generations, the optimized genomes are converged 
to 

{
h∗�h∗∕�x∗, h∗2�h∗∕�x∗

}
 . Quantitatively, the fit-

ness loss eventually decreases to 0.0048 from 0.0077 
of the first generation. From the solution path, it is 
clearly seen that the initial candidate library, i.e., {
h∗, �h∗∕�x∗, �2h∗∕�x∗2, �3h∗∕�x∗3

}
 , does not need to 

be complete to include eventual terms in this approach. 
Indeed, to construct a complete candidate library would 
usually mean to include an overwhelmingly large number 
of possible terms, which may greatly increase the com-
putational cost and diminish the performance of sparse 
regression. It is clear that, to describe the long-term 
behaviors of viscous gravity currents, the form of flux is 
highly concise. Since in each generation, a total of 200 
children are generated for evolution, the optimized solu-
tion can be determined without much difficulty.

(18)
�h∗

�t∗
=

�

�x∗

(
0.872 ⋅ h∗

�h∗

�x∗
− 0.881 ⋅ h∗2

�h∗

�x∗

)

(19)
�h∗

�t∗
=

�

�x∗

(
0.988 ⋅ h∗

�h∗

�x∗
+ 0.0325 ⋅ h∗2

)

It can be seen that the trained long-term DL-PDEs (18) 
and (19) are highly similar to the theoretically derived 
Eq. (14) and (15), while coefficients are slightly dissimi-
lar for both cases, and an additional term appears for case 
II. Particularly for case I, the corresponding coefficients of 
dominant terms h∗�h∗∕�x∗ and h∗2�h∗∕�x∗ deviate approxi-
mately 12% from the theoretical PDE. For case II, the coef-
ficients of dominant term h∗�h∗∕�x∗ deviate approximately 
only 2% from the theoretical PDE, and the coefficient of the 
compensation term is 0.0325, which is also much smaller 
compared to the dominant term.

Because the long-term DL-PDEs are directly learned 
from the microscopic simulation data, it is difficult to dis-
cern the error sources resulting in the deviations between 
DL-PDEs and theoretical-PDEs. The deviations may be 
attributed to the training error of deep learning or the inva-
lidity of assumptions for deriving theoretical PDEs. To 
clarify this problem, it is necessary to carry out further 
quantitative comparisons among microscopic simulation 
data, DL-PDEs, and theoretical PDEs. However, Eq. (18) 
and (19) are expressed as PDEs in scientific semantic space, 
while simulation results are expressed in data space. Since it 
is impossible to directly compare two different spaces, one 
must solve Eq. (18) and (19) numerically, and compare the 
posterior results with microscopic simulation results in data 
space. Particularly, to obtain a numerical solution for deep 
learning based PDEs, the center difference scheme is first 
applied for calculating the flux in the cell center, and then 
the WENO scheme is utilized for flux reconstruction similar 
to solving Eq. (4).

The posterior results are illustrated in Fig. 3(a) and 
(b). It is clear that the characteristic contour lines of the 
three data sets are close to each other. Quantitatively, for 
case I, the total relative errors are estimated as 0.45% and 
0.75% for DL-PDE and theoretical PDE, respectively. 
For case II, the errors are 0.47% and 1.1%, respectively. 
Therefore, the prediction results of DL-PDEs achieve a 
superior match with the microscopic simulation results 
compared to those of theoretical PDEs, irrespective of the 
training error. This finding implies that modifications are 
necessary, including smaller coefficients and secondary 
terms, to better describe viscous gravity currents, even 
for long-term regimes. More importantly, it is proven that 
the proposed deep learning framework is highly capable 
and accurate to discover macroscopic equations from raw 
microscopic simulation data.

3.2  PDE discovery for short‑term regimes

Although the theoretical equations perform well for predict-
ing the long-term asymptotic behaviors, there still exist no 
parsimonious theoretical PDEs for describing the early-time 
or short-term pre-asymptotic regimes, which are important 

Table 1  GA solution path of long-term regimes for two cases

Generations 
for case I

Structure of discov-
ered best child for 
case I

Generations 
for case II

Structure of dis-
covered best child 
for case II

1 h∗, h∗2,
�2h∗

�x∗2
1 h∗, h∗

�h∗

�x∗

2 h∗, h∗2 4 h∗3, h∗
�h∗

�x∗

4 h∗
�h∗

�x∗
, h∗2

�h∗

�x∗
5 h∗2, h∗

�h∗

�x∗

100 h∗
�h∗

�x∗
, h∗2

�h∗

�x∗
100 h∗2, h∗

�h∗

�x∗
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for rapid processes such as proppant transport. Therefore, 
in this part, we aim to utilize the deep learning framework 
to discover the macroscopic PDEs for describing short-term 
behaviors, and elucidate the hidden macroscopic mecha-
nisms to identify how deviation between theoretical assump-
tions and actual situations influences the macroscopic 
equations. Here, the training parameters of deep learning 
are similar to those for long-term DL-PDEs. The eventual 
learned PDEs for cases I and II are given as follows:

(20)
�h∗

�t∗
=

�

�x∗

(
a1 ⋅ h

∗ �h
∗

�x∗
+ b1 ⋅ h

∗2 �h
∗

�x∗
+ c1 ⋅

(
�h∗

�x∗

)2
)

(21)

�h∗

�t∗
=

�

�x∗

(
a2 ⋅ h

∗ �h
∗

�x∗
+ b2 ⋅ h

∗
(
�h∗

�x∗

)2

+ c2 ⋅ h
∗4 �h

∗

�x∗

)

where a1 = 0.894 ; b1 = −0.881 ; c1 = 0.0757 ; and a2 = 1.01 ; 
b2 = 0.215 ; c2 = −0.571.

Compared to the DL-PDEs of long-term regimes, it is 
evident that flux expressions of Eq. (20) and (21) are more 
complex, and the GA solution path indicates that many more 
generations (57 for case I, and 77 for case II) are necessary 
for convergence, as demonstrated in Table 2. Indeed, at the 
early stage of viscous gravity currents, the fluid field has not 
yet been fully developed, and theoretical assumptions are too 
ideal to reflect the actual scenario, suggesting that a more 
complex high-dimensional nonlinear mapping relationship is 
required for describing short-term spatio-temporal evolution 
of current front height.

By comparing the above deep learning trained PDEs (DL-
PDE) with theoretically derived Eq. (14) and (15), the fol-
lowing findings are determined:

Fig. 3  Contour lines of esti-
mated evolving current front 
height h∗ in posterior tests 
for two cases: (a) long-term 
behaviors of case I; (b) long-
term behaviors of case II; (c) 
short-term behaviors of case 
I; (d) short-term behaviors of 
case II. The black solid lines are 
reference values extracted from 
two-dimensional microscopic 
simulation results, the long 
red dashed lines are posterior 
results of deep learning based 
PDEs, and the short blue dashed 
lines are posterior results of 
theoretical PDEs

Table 2  GA solution paths 
of short-term regimes for two 
cases

Generations 
for case I

Structure of discovered best 
child for case I

Generations 
for case II

Structure of discovered best child for case II

1 �h∗

�x∗
1

h∗, h∗
�2h∗

�x∗2
�3h∗

�x∗3
, h∗2, h∗

�h∗

�x∗
,

(
�h∗

�x∗

)2

2 h∗,
�h∗

�x∗
, h∗2 3 �3h∗

�x∗3
, h∗, h∗

�h∗

�x∗
, h∗3

3
h∗2

(
�h∗

�x∗

)3

, h∗
�h∗

�x∗
, h∗2

�h∗

�x∗

4 h∗, h∗
�h∗

�x∗
, h∗2

20 h∗
�h∗

�x∗
, h∗2

�h∗

�x∗
6

h∗, h∗
�h∗

�x∗
, h∗2, h∗2

(
�h∗

�x∗

)2

57
h∗

�h∗

�x∗
, h∗2

�h∗

�x∗
,

(
�h∗

�x∗

)2 18
h∗3

�h∗

�x∗
, h∗

�h∗

�x∗
, h∗

(
�h∗

�x∗

)2

100
h∗

�h∗

�x∗
, h∗2

�h∗

�x∗
,

(
�h∗

�x∗

)2 77 ~ 100
h∗

�h∗

�x∗
, h∗

(
�h∗

�x∗

)2

, h∗4
�h∗

�x∗
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(1) For both cases, it is clear from Eq. (20) and (21) that 
high-order derivatives, i.e., �2h∗∕�x∗2 and �3h∗∕�x∗3 , 
make no contribution to the flux construction. It seems 
that flux can be considered as a bivariate function of 
h and �h∗∕�x∗ . As mentioned previously, high-order 
derivatives temporally appear in the GA solution path. 
However, through fitness selection, these terms are 
automatically eliminated from the optimized genomes. 
This fact is also verified from DL-PDEs (18) and (19) 
of the long-term regime, as well as theoretical PDEs 
(14) and (15). In fact, in viscous gravity current pro-
cesses, these two terms have strong physical meanings 
according to theoretical analysis, as illustrated in Sec-
tion 2.2. Specifically, h represents vertical length allow-
ing flux transfer, and �h∗∕�x∗ is proportional to average 
horizontal velocity.

(2) Flux terms in theoretical PDEs are exactly captured in 
DL-PDEs, regardless of slightly different coefficients. 
Particularly for case I, coefficients of h∗�h∗∕�x∗ and 
h∗2�h∗∕�x∗ are 0.894 and -0.881, while being 1 and -1 
in theoretical PDEs, respectively. Obviously, the char-
acteristic of mutual additive inverse for these two coef-
ficients is not an accidental consequence, but instead 
reflects the symmetry characteristic of the solution, i.e., 
F(h∗, �h∗∕�x∗) = F(1 − h∗, �h∗∕�x∗) . It is worth noting 
that this relationship is not satisfied in case II. For case 
II, the coefficient of leading term h∗�h∗∕�x∗ is 1.01, 
which is very close to the theoretical value of 1.

(3) Excluding the different coefficients of leading terms, 
it is observed that DL-PDEs provide additional terms 
for two cases, i.e., 0.0757 ⋅ (�h∗∕�x∗)2 for case I and 
0.215 ⋅ h∗(�h∗∕�x∗)2 − 0.571 ⋅ h∗4�h∗∕�x∗ for case II. It 
should be emphasized that theoretical PDEs are derived 
for describing long-term behaviors of viscous gravity 
currents; whereas, in this work, we extend the training 
data to the whole range, including short-term behav-
iors. Therefore, we aim to find a global solution for vis-
cous gravity currents, which implies that the additional 
terms in DL-PDEs and modified coefficients of leading 
terms may be considered as compensation terms for 
describing short-term range behaviors.

It is worth noting that it is not guaranteed that the 
deep learning based PDEs are exactly numerically stable 
because of training error, and the negative diffusion term 
in Eq. (20) and (21) at the early time can dominate the 
process at the early time, where −�h∗∕�x∗ is very large 
and leads to computational divergence, which is a conse-
quence of the training error tolerance. To solve this issue, 
necessary artificial viscosity is introduced to counter the 
negative diffusion under these circumstances. To illustrate 
this, let us take Eq. (20) as an example. Equation (20) can 
be rewritten as follows:

The two terms on the right-hand side can be regarded 
as parametric convection and diffusion terms, respectively. 
In this case, if the coefficient of the diffusion term is posi-
tive, i.e., a1h∗ + b1h

∗2 + 2c1𝜕h
∗∕𝜕x∗ > 0 , then the system is 

numerically stable. If the coefficient is negative, however, 
the system will break down due to anti-diffusion. According 
to our numerical experiments, it is found that the system is 
more likely to collapse where −�h∗∕�x∗ is very large, which 
corresponds to the early time in the viscous gravity current.

To suppress the non-physical anti-diffusion terms, artifi-
cial viscosity � is introduced for deep learning based PDEs 
when needed, which is written as:

where � = −min
(
0, a1h

∗ + b1h
∗2 + 2c1�h

∗∕�x∗
)
 . Similar 

remedies are adopted for other DL-PDEs when needed dur-
ing posterior tests, such as in Eq. (21).

For quantitative comparisons, posterior tests are also 
carried out, and the evolving front height of two-dimen-
sional simulation results, DL-PDEs, and theoretical PDEs 
are illustrated in Fig. 3(c) and (d). Clearly, when describ-
ing the short-term or early-time pre-asymptotic behaviors, 
there exist remarkable deviation between the prediction 
of theoretical derived PDEs and reference data. From the 
characteristic lines of current height in the t − x domain, 
it is inferred that wave structures of current height in the 
short-term can be considered as rarefaction waves with time-
dependent characteristic velocities. The comparison results 
demonstrate that prediction results of DL-PDEs match the 
microscopic simulation results better than those of theoreti-
cal PDEs. Quantitatively, for case I, the total relative errors 
are estimated as 1.06% and 2.75% for DL-PDE and theoreti-
cal PDE, respectively. For case II, however, the errors are 
0.85% and 2.72%, respectively.

As previously mentioned, deviation between refer-
ence data and theoretical results is mainly attributed to the 
assumptions when deriving theoretical PDEs. In theoretical 
analysis, it is assumed that vertical velocity is zero for the 
whole domain, while microscopic simulation results infer 
that this condition is not fulfilled, particularly near the inter-
face and during the short-term period. It is seen from Fig. 4 
that, over the whole simulation period, the absolute relative 
magnitude of vertical velocity ranges markedly from 0.5 
to 1. Moreover, the vertical velocity is fairly comparable 
to the horizontal velocity, which is particularly significant 
near two interface tails. Therefore, the assumption of zero 
vertical velocity is not valid, and theoretical PDEs cannot 
precisely reproduce the evolving process of viscous gravity 

(22)

�h∗

�t∗
=
(
a1 + 2b1h

∗
)�h∗
�x∗

�h∗

�x∗
+
(
a1h

∗ + b1h
∗2 + 2c1

�h∗

�x∗

)
�2h∗

�x∗2

(23)

�h∗

�t∗
−

�

�x∗

(
a1 ⋅ h

∗ �h
∗

�x∗
+ b1 ⋅ h

∗2 �h
∗

�x∗
+ c1 ⋅

(
�h∗

�x∗

)2
)

= �
�2h∗

�x∗2

996 Computational Geosciences (2023) 27:987–1000



1 3

current. As a consequence, the transverse spreading length 
in the t − x domain predicted by theoretical PDEs is larger 
than ground truth. Modified coefficients and compensation 
terms are necessary to be introduced for improvement. On 
the other hand, because DL-PDEs are discovered directly 
from observation data, once training is converged, the poste-
rior performance is reasonably better than that of theoretical 
PDEs.

From the above discussions, the following key points can 
be inferred for the mechanisms hidden in DL-PDEs:

(1) Smaller coefficients in leading terms for case I weaken 
the strength of the rarefaction wave and adjust theoreti-
cal PDEs towards ground truth.

(2) Compensation terms for cases I and II essentially 
represent negative-diffusion mechanisms, which 
also suppress the over-spreading trend for theoreti-
cal PDEs. For cases I and II, the compensation dif-
fusion terms are 0.151 ⋅ �h∗∕�x∗

(
�2h∗∕�x∗2

)
 and 

0.43 ⋅ h∗�h∗∕�x∗
(
�2h∗∕�x∗2

)
− 0.571 ⋅ h∗4�2h∗∕�x∗2  , 

respectively. Furthermore, since in this work we have  
0 ≤ h∗ ≤ 1 and �h∗∕�x∗ ≤ 0 , the coefficients of the 
compensation diffusion terms are negative for both 
cases.

3.3  Effects of data noise

Usually, data noise is a nonnegligible factor when collect-
ing raw training data, especially in physical experiments. 
Excessive data noise can dramatically affect the validity of 
the discovered PDEs. To elucidate the robustness of the pro-
posed deep learning framework, in this part raw simulation 
data with appended random noise are utilized to discover 
the PDEs for short-term regimes. Here, case II is taken as 
an example, and Fig. 5(a) and (c) illustrate the 3D surfaces 
of raw training data with 10% and 20% non-biased noise. 
Although a large number of burrs due to data noise are 
observed, the basic evolving trend of dimensionless current 
front height can be still maintained in the raw data to some 

extent. Figure 5(b) and (d) illustrate the DNN surrogate con-
structed from simulation data with 10% and 20% non-biased 
noise, respectively. In this part, the training parameters of 
DNN are all the same as those mentioned in Section 3.1. 
Due to the data noise, the training loss finally keeps a level 
of  10–4 after training 100,000 epochs. Clearly, burrs due to 
data noise no longer exist in the surrogate, which proves that 
DNN is actually a powerful global smoother to construct a 
smooth-enough surrogate for subsequential derivative/inte-
gral calculations.

Table 3 lists the discovered PDEs based on the deep 
learning framework for these cases. Essentially, as the 
magnitude of appended noise increases, the fitness loss in 
the genetic algorithm monotonically increases. Even so, for 
case I with 10% data noise, the form of discovered PDE is 
exactly the same as that discovered from clean simulation 
data. The relative error of the coefficients of leading terms 
for the clean case and the 10% noise case is smaller than 
2%, and the relative error of compensation terms is approx-
imately 15%. On the other hand, for case I with 20% noise, 
it seems that the proposed deep learning framework fails to 
find the aforementioned compensation terms. Instead, the 
coefficients of leading terms are much smaller than those 
of the clean data case. As mentioned previously, smaller 
coefficients and compensation terms both contributed to 
weaker rarefaction mechanisms. Therefore, even with 
20% data noise, the discovered PDE also demonstrates the 
necessity of leading terms and modifications in the effec-
tive direction.

For case II, it is clear that despite data noise, all of 
the discovered PDEs possess consistent forms. The coef-
ficient of the leading term is always approximately 1, and 
the relative errors of compensation terms are less than 
20%. It is also clear that, although the training loss in this 
part is much higher than the results with no data noise, 
the basic structure of the obtained DL-PDEs can still be 
maintained. Above all, through the numerical tests in this 
section, it is proven that the proposed DLGA framework 
is quite robust to discover the explainable PDEs even 

Fig. 4  Contour of relative 
magnitude of vertical velocity 
component uz∕

√
u2
x
+ u2

z
 at various 

time instances for two cases: (a) 
case I; (b) case II
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within 20% data noise for the viscous gravity current pro-
cesses. From the authors’ point of view, the robustness of 
the proposed framework is to a great extent attributable 
to the strong data fitting and smoothing capability of the 
neural network. It should be noted that although the data 
noise is assumed to be non-biased in this part, advanced 
approaches, such as the ‘robust DLGA’ framework [41], 
can be utilized to solve more complex problems that con-
tain biased data noise.

4  Conclusion

In summary, we proposed a deep learning framework 
to elucidate the macroscopic equations of viscous grav-
ity currents based on microscopic simulation data. The 
problem of discovering macroscopic PDEs is converted 
to a sparse regression problem of representing flux with 
primitive variables and corresponding spatial deriva-
tives. With the assistance of the deep neural network and 

Fig. 5  3D illustrations of raw 
training data ((a) and (c)) and 
DNN surrogate ((b) and (d)). 
(a) and (b): 10% data noise; (c) 
and (d): 20% data noise

Table 3  DL-PDEs for viscous gravity current (short-term regimes) at different noise levels

Noise level Case I Fitness loss Case II Fitness loss

0% �h∗

�t∗
=

�

�x∗

(
0.894h∗

�h∗

�x∗
− 0.881h∗2

�h∗

�x∗
+ 0.0757

(
�h∗

�x∗

)2
)

0.00716 �h∗

�t∗
=

�

�x∗

(
1.006h∗

�h∗

�x∗
+ 0.215h∗

(
�h∗

�x∗

)2

− 0.571h∗4
�h∗

�x∗

)
0.0133

10% �h∗

�t∗
=

�

�x∗

(
0.912h∗

�h∗

�x∗
− 0.900h∗2

�h∗

�x∗
+ 0.0876

(
�h∗

�x∗

)2
)

0.00883 �h∗

�t∗
=

�

�x∗

(
1.031h∗

�h∗

�x∗
+ 0.245h∗

(
�h∗

�x∗

)2

− 0.600h∗4
�h∗

�x∗

)
0.0162

20% �h∗

�t∗
=

�

�x∗

(
0.737h∗

�h∗

�x∗
− 0.741h∗2

�h∗

�x∗

)
0.0159 �h∗

�t∗
=

�

�x∗

(
1.046h∗

�h∗

�x∗
+ 0.233h∗

(
�h∗

�x∗

)2

− 0.600h∗4
�h∗

�x∗

)
0.0550
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genetic algorithm, PDEs with parsimonious forms for both 
long-term and short-term behaviors for two typical vis-
cous gravity current processes are obtained. By quantita-
tive comparison between theoretical PDEs and DL-PDEs 
for describing long-term behaviors, it is proven that the 
proposed framework is highly capable and accurate for 
discovering physical laws from raw data. The short-term 
simulation data are then utilized for discovering unknown 
macroscopic equations.

We show that the proposed deep learning based PDE dis-
covery framework is essentially an explainable machine-learn-
ing approach. Microscopic simulation results in data space are 
eventually transformed into parsimonious PDEs in scientific 
semantic space through the PDE discovery method. With this 
framework, explainable compensation terms can be intro-
duced to capture the short-term behaviors more accurately. 
It is found that, in posterior tests, DL-PDEs perform better 
than the theoretically derived equations. Moreover, the frame-
work is proven to be very robust against approximately 20% 
non-biased data noise. Consequently, the proposed method 
is demonstrated to be highly beneficial to compensate for the 
drawbacks of ideal assumptions during theoretical derivation 
and construct more accurate governing equations, which fits 
observation data better for practical physical problems.

Overall, for a certain physical process, obtained experimen-
tal or simulation data contain all kinds of information in data 
space. However, one needs to extract the most valuable and sig-
nificant content, and ideally determine intrinsic laws in scien-
tific semantic space. This work demonstrates that the proposed 
deep learning based PDE discovery framework constitutes a 
feasible and efficient approach to solve this problem. It is also 
worth noting that the proposed framework follows a pure data-
driven approach, and the hyper-parameters are still manually 
tuned to achieve parsimony principles, which still need further 
improvements to consider more prior physics and avoid sub-
jective decisions. Physics-informed structures and Lagrangian 
dual optimization approaches may be good solutions for these 
problems. In future research, we will continue to consider these 
issues and extend the framework for learning multi-dimensional 
equations and for more challenging scenarios.
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