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Abstract
Carbon capture, utilization, and storage (CCUS) is a crucial part of the energy industry nowadays, aiming to reduce the
overall carbon emission into the environment. One solution to CCUS is via the means of CO2 enhanced recovery processes in
a depleted oil reservoir. In such a case, life-cycle production optimization plays a crucial component, referring to optimizing
a production-driven objective function via varying well controls during a reservoir’s lifetime. One challenge is to obtain the
optimal cash flow while trying to maintain the maximum CO2 storage. Another challenge is the nonlinear constraints (such
as field liquid production rate) which need to be honored due to the capacity of the processing facilities. This study presents
an application of a stochastic gradient-based framework to solve the CO2 storage multi-objective optimization problem. Our
study focuses on carbon capture and storage via the means of nonlinearly constrained production optimization workflow for
a CO2 enhanced recovery process, in which we aim to bi-objectively maximize both the net-present-value (NPV) and the net
present carbon tax credits (NPCTC). The main framework used in this work is line-search sequential quadratic programming
(LS-SQP) with stochastic simplex approximated gradients (StoSAG). We demonstrate the performance and results of the
algorithmic framework in a field-scale realistic problem. The case study being investigated is a multiphase flow Brugge
model under CO2 injection, simulated using a commercial compositional reservoir simulator. Results show that the LS-SQP
algorithm with StoSAG gradients performs computationally efficiently and effectively in handling nonlinear state constraints
imposed onto the problem. The workflow successfully solves both the single-objective and the multi-objective optimization
problems with minimal and acceptable constraint violations. Various numerical settings have been experimented with to
estimate the Pareto front for the bi-objective optimization problem, showing the trade-off between the two objectives NPV
and NPCTC. We have demonstrated an approach to the carbon capture, utilization, and storage (CCUS) in the context of
multi-objective production optimization of a CO2 enhanced recovery process for a field-scale realistic reservoir model. The
algorithmic framework used in this study has proven to be computationally effective on the problem and especially useful
when utilized in conjunction with commercial flow simulators that lack the capability of computing adjoint-based gradients.

Keywords Multi-objective optimization ·CCUS ·Well control optimization ·Pareto front ·Sequential quadratic programming ·
Stochastic simplex approximate gradient · Brugge model · Reservoir simulation

1 Introduction

Large-scale deployment of carbon dioxide (CO2) capture,
utilization, and storage (CCUS) technologies is a critical
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enabler for the transition to a decarbonized economy. Thus,
CCUS has become a crucial part of the energy industry
nowadays, aiming to reduce the overall carbon emission
into the environment. In subsurface engineering applications,
CCUS processes could be conducted through geological car-
bon storage (or sequestration) technology. This involves the
substantial elimination of CO2 from the Earth’s atmosphere
and permanent storage by injection into deep underground
geological formations with structural closure, such as saline
aquifers or depleted oil/gas reservoirs. Other than the per-
manent geological carbon sequestration, another solution

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-023-10213-6&domain=pdf
http://orcid.org/0000-0001-5496-2318


196 Computational Geosciences (2024) 28:195–210

to CCUS is via the means of CO2 enhanced oil recovery
(EOR) processes. Not only these processes could safely
sequester some of the CO2 from the atmosphere in some
certain degrees, but also allow additional hydrocarbons to be
recovered andmarketed, resulting inmore profit to be earned.

During the design phase of a CO2-EOR process with
specified well placement, coming up with a set of optimal
well controls is important. In such a case, life-cycle pro-
duction optimization plays a crucial component, referring to
optimizing (maximizing or minimizing) a production-driven
objective function via altering well controls during a reser-
voir’s lifetime [7, 10, 22]. One challenge arisen is to obtain
the optimal cash flow while also trying to maintain the maxi-
mumCO2 storage, which could be either in terms of quantity
such asmass or volume, or in terms of carbon tax credits [23].
This concern in the decisionmaking process is one of the situ-
ations where we have conflicting criteria or objectives, hence
a multi-objective optimization solution [2, 3, 41] needs to be
considered. Another challenge in the project design is the
nonlinear state constraints due to the capacity of the process-
ing facilities [1, 5, 25, 29, 30, 34], which need to be honored
as parts of the life-cycle production optimization process.
Therefore, it is necessary to have a computationally effective
and efficient algorithmic framework to handle these nonlin-
early constrained multi-objective optimization problems.

There exists many algorithms to solve a multi-objective
optimization problem, and they generally could be classified
as derivative-free and gradient-based. The derivative-free
algorithms such as genetic algorithms [20] or particle swarm
optimization algorithms [6] are capable of avoiding or escap-
ing from the local minima, however, the computational cost
of these methods could easily become infeasible as the
dimension of the design variable vector exceeds a hundred,
and/or if the evaluation of the objective function requires
running a complex numerical model. Isebor and Durlof-
sky [21] presented a derivative-free strategy to solve a
bi-objective optimization problem. However, their method
required on the order of 800,000 simulation runs to generate
the bi-objective Pareto front, which would be impractical
for realistic optimization problems. Thus, for large-scale
problems, gradient-based methods are much more computa-
tionally efficient, especially when the derivative information
is available. The Augmented Lagrangian method (ALM) has
been traditionally known as an external penalty method to
handle nonlinear optimization problems [35]. However, the
biggest drawback of ALM is its computational cost since the
process involves both outer-loop and inner-loop procedures,
especially in the specific context of production optimiza-
tion [9, 12, 31] in which reservoir simulations are needed
to evaluate the objective function value repetitively, mak-
ing the method particularly computationally demanding. Liu
et al. [28] demonstrated that sequential quadratic program-
ming (SQP) methods significantly outperform ALM, both in

terms of computational cost and the ability to handle nonlin-
ear constraints, thus making SQP a better and more suitable
alternative than ALM for nonlinear optimization problems.

Various methods are available to solve multi-objective
optimization problems. Popular ones such as the weighted
sum (WS) method [19, 43], the normal boundary intersec-
tion (NBI) method [15], and the lexicographic method [32]
can be implemented via the use of the gradient information.
A common feature of these three methods is that they all
transform the original multi-objective optimization problem
into one or a series of single-objective optimization prob-
lems. Liu and Reynolds [26] utilized the constrainedWS and
constrained NBI methods to solve the bi-objective produc-
tion optimization problem, with the presence of the nonlinear
constraints using ALM. In the work of [27], they also applied
the lexicographic method to solve the bound-constrained
bi-objective production optimization problem. Thework pre-
sented in both [26] and [27] is limited to adjoint gradient
solutions. To the best of our knowledge, when dealing with
commercial and proprietary reservoir simulators, typically
they either have very limited or no adjoint capability at all,
with the exception of the one described in [24]. Due to this
reason, stochastic gradients are considered as the best alter-
native approach instead [8, 18, 30], as they allow the users
to treat the reservoir simulator as a black box.

Recently, [34] have developed an efficient line-search
sequential quadratic programming (LS-SQP) algorithmic
framework coupled with stochastic simplex approximated
gradients (StoSAG)by [18] to handle nonlinearly constrained
production optimization problems. In that paper, we com-
pared the performances of ALM, LS-SQP, and trust-region
SQP (TR-SQP) for nonlinearly constrained robust optimiza-
tion problems with StoSAG gradients. The results indicate
the superiority of SQP over ALM, which is consistent with
the conclusions by [28], but with stochastic gradients. There-
fore, in this article, we are applying the LS-SQP workflow
[34] to our study focusing on CCUS in the context of non-
linearly constrainedmulti-objective deterministic production
optimization workflow for a CO2-EOR process, in which we
aim to bi-objectively maximize both the net present value
(NPV) and the net present carbon tax credit (NPCTC).

This paper is organized as follows. Firstly, we present the
theory and methodology. Then, we present the results with a
benchmark example for the Brugge field, which is a synthetic
field originally used for closed-loop reservoir management
[11, 13, 16, 37]. The specific case study being investigated
is a compositional multiphase flow Brugge model under
CO2 injection, simulated using a commercial compositional
reservoir simulator. We demonstrate the performance of the
workflow in solving the bi-objective optimization problem
using the lexicographic method with minimal constraint vio-
lations. Additionally, we also experimented with various
numerical settings to approximate the Pareto front for the
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bi-objective problem, showing the trade-off between the two
competing objectives of NPV and NPCTC.

2 Theory andmethodology

In this section, we describe the theory and methodology used
to perform bi-objective optimization of CO2 storage by SQP
based on StoSAG method.

2.1 Constrainedmulti-objective production
optimization problem

The typical single-objective deterministic production opti-
mization problem refers to the estimation of the optimal
design variables on predefined control time steps which min-
imize the negative net present value (NPV), or equivalently,
maximizing the NPV of life-cycle production. The optimiza-
tion problem is subject to bound constraints and operational
constraints which are typically represented as nonlinear state
constraints. For a three-phase flow deterministic reservoir
under CO2 injection, the negative life-cycle NPV function is
defined as

JNPV(u) = −
Nt∑

n=1

�tn

(1 + b)
tn
365

×
{

NP∑

i=1

(
co · qno,i − cw · qnw,i − cCO2-prd · qnCO2-prd,i

)

−
NI∑

j=1

(
cCO2-inj · qnCO2-inj, j

)
⎫
⎬

⎭ , (1)

where u = [u1, u2, . . . , uNu ]T = [u1,1, u1,2, . . . , uNw,Nc ]T
is the Nu-dimensional columnvector that contains all the pro-
duction and injection well controls, uk,m denotes the control
of well k at the mth control step, Nc is the number of control
time steps, and Nw is the number of wells in total. In Eq. 1,
�tn denotes the size of the nth simulation time step, whereas
tn denotes the cumulative time at the end of the nth time step;
Nt , NP, and NI denote the number of time steps, number of
producers, and number of injectors, respectively; qno,i , q

n
w,i

, and qnCO2-prd,i
denote the average oil production rate, aver-

age water production rate, and average CO2 production rate
of producer i over the nth time step, respectively, whereas
qnCO2-inj, j

denotes the average CO2 injection rate of injector

j over the nth time step; co, cw, cCO2-prd, and cCO2-inj denote
the oil price, produced water treatment cost, produced CO2

treatment and capture cost, and CO2 injection cost, respec-
tively; b denotes the annual discount rate.

For a single-objective deterministic production optimiza-
tion, the general nonlinearly constrained optimization prob-

lem for the NPV is defined as the nonlinear programming
(NLP):

minimize
u∈RNu

JNPV(u), (2a)

subject to: ulowi ≤ ui ≤ uupi , i = 1, 2, . . . , Nu,

(2b)

ci (u) ≥ 0, i = 1, 2, . . . , Nic.

(2c)

For the specific case study presented here in this paper, we
consider the most common types of well controls, which are
rate-controlled injectors and bottomhole-pressure-controlled
producers. These well controls are subject to lower and upper
bounds. The state constraints are imposed due to the lim-
itation of the surface facilities, which are upper-bounded
field liquid production rate (FLPR), and upper-bounded field
water production rate (FWPR). In Eq. 2 and throughout this
paper, ulowi and uupi denote the lower and upper bounds of
the i th control variable, respectively, for the total of Nu vari-
ables; ci (u) denotes the general form of the i th inequality
constraint, with the total of Nic inequality state constraints
enforced in the reservoir model. It is important to note that
ci (u) could be either linear or nonlinear, but without the loss
of generality, we can assume them to be nonlinear. These
nonlinear constraints are enforced at every control step, and
their values are obtained from the simulation output.

In the context of carbon capture, utilization, and stor-
age (CCUS), especially in the U.S., industrial companies
who capture and store CO2 will be provided carbon tax
credits from the U.S. federal government to further incen-
tivize investment in CCUS projects. These tax credits are
also subject to monetary depreciation and inflation, there-
fore we should consider a separate objective function [40] of
net present carbon tax credit (NPCTC), similar to the life-
cycle NPV. To balance the two objectives at the same time,
the maximization of both the life-cycle NPV and NPCTC are
important. The negative NPCTC function is defined as

JNPCTC(u) = −
Nt∑

n=1

�tn

(1 + b)
tn
365

⎧
⎨

⎩

NI∑

j=1

(
rCO2 · qnCO2-inj, j

)
⎫
⎬

⎭ ,

(3)

where rCO2 denotes the carbon tax credit. The general bi-
objective nonlinearly constrained production optimization
problem is defined as

minimize
u∈RNu

{JNPV(u), JNPCTC(u)} , (4a)
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subject to: ulowi ≤ ui ≤ uupi , i = 1, 2, . . . , Nu,

(4b)

ci (u)≥0, i = 1, 2, . . . , Nic.

(4c)

2.2 Normalization of the design variables
and constraints

The magnitude of every design variable affects the perfor-
mance of gradient-based optimization algorithms in general
[4, 35]. Normalizing the design variables makes the step-size
selection process stable, especially in a line-search method
we used that will be discussed later in this paper. In our
study, the design variables are min-max normalized using
their original lower and upper bounds as

ūi = ui − ulowi

uupi − ulowi

, (5)

for all i = 1, 2, . . . , Nu. After normalization, the normal-
ized design variables ūi will have the lower and upper bound
constraints to be 0 and 1, respectively. Likewise, to prevent
numerical ill-conditioning caused by the difference in the
magnitudes of the nonlinear constraint values, these con-
straints are normalized using the imposed lower or upper
bound limits as the scaling factors. For example, the upper-
bounded FLPR constraints are scaled by its upper limit value
denoted by FLPRup, so instead of directly enforcing the con-
straints given by

c j (ū) = −FLPR j + FLPRup ≥ 0, (6)

for each of the control time step j where j = 1, 2, . . . , Nc,
we enforce the following normalized constraints

c̄ j (ū) = − FLPR j

FLPRup + 1 ≥ 0. (7)

Therefore, the post-normalization single-objective optimiza-
tion problem as shown in Eq. 2 becomes

minimize
ū∈RNu

JNPV(ū), (8a)

subject to: 0 ≤ ūi ≤ 1, i = 1, 2, . . . , Nu, (8b)

c̄i (ū) ≥ 0, i = 1, 2, . . . , Nic. (8c)

Likewise, the post-normalization bi-objective optimiza-
tion problem given by Eq. 4 transforms to

minimize
ū∈RNu

{JNPV(ū), JNPCTC(ū)} , (9a)

subject to: 0 ≤ ūi ≤ 1, i = 1, 2, . . . , Nu,

(9b)

c̄i (ū) ≥ 0, i = 1, 2, . . . , Nic.

(9c)

2.3 Lexicographic method

The lexicographic method is known as one of the most effi-
cient ways to solve a multi-objective optimization problem
[32]. Its basic idea is to solvemultiple individual optimization
problems whose number is equal to the number of objec-
tive functions. The order of which optimization problem to
be solved first depends on the order of importance of the
objective functions. Consider the following general multi-
objective optimization problem consisting of n objective
functions:

minimize
ū∈RNu

{ f1(ū), f2(ū), . . . , fn(ū)} , (10a)

subject to: c̄i (ū) ≥ 0, i = 1, 2, . . . , Ncons, (10b)

where Ncons represents the total number of inequality con-
straints in general, and in Eq. 10a, the objective functions are
decreasingly ranked from the highest order of importance
( f1(ū)) to the lowest order of importance ( fn(ū)). The main
idea of the lexicographic method is to sequentially solve n
optimization problems in total. For every k = 2, 3, . . . , n,
the following kth subproblem is solved:

minimize
ū∈RNu

fk(ū), (11a)

subject to: f j (ū) ≤ f j (ū∗
j ), j = 1, 2, . . . , (k − 1),

(11b)

c̄i (ū) ≥ 0, i = 1, 2, . . . , Ncons.

(11c)

Note that the constraint in Eq. 11b is not imposed for
the first subproblem where k = 1, and in which ū∗

j denotes
the optimal solution of every subproblem j prior to k for
j = 1, 2, . . . , (k−1).Also, note that for j ≥ 2, the functional
value f j (ū∗

j ) is not necessarily the same as the independent
single-objective optimal value of f j (ū) due to new addi-
tional constraints imposed on each j th subproblem. In our
case where we are focusing on a bi-objective problem as
shown in Eq. 9 with the primary objective function being
JNPV(ū), there are two optimization problems that need to
be solved. The first step is to solve the single-objective NPV
optimization problem as defined in Eq. 8 to determine the
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optimal well controls ū∗ and the corresponding optimal neg-
ative life-cycle NPV JNPV(ū∗). Then, we proceed to solve
the second optimization problem to minimize the secondary
objective function JNPCTC(ū), subject to an additional con-
straint on the primary objective function JNPV(ū), defined as
follows:

minimize
ū∈RNu

JNPCTC(ū), (12a)

subject to: JNPV(ū) ≤ γ JNPV(ū∗), (12b)

0 ≤ ūi ≤ 1, i = 1, 2, . . . , Nu,

(12c)

c̄i (ū) ≥ 0, i = 1, 2, . . . , Nic,

(12d)

where γ ∈ (0, 1] is a preset value of relaxation or toler-
ance that indicates the fraction of decrease in life-cycle NPV
(or increase in negative life-cycle NPV JNPV(ū)) that the
operation is willing to sacrifice in order to exchange for an
improvement (or decrease) in the secondary objective func-
tion. For example, if γ = 0.95 is selected, it means that the
relaxation on the nonlinear state constraint given by Eq. 12b
enforced on JNPV(ū) would allow us to tolerate at most 5%
increase in the negative life-cycle NPV, which is equivalent
to 5% decrease in the life-cycle NPV, to further decrease the
value of the negative NPCTC JNPCTC(ū).

As stated previously, in [34], we showed that LS-SQP
and TR-SQP optimization frameworks significantly out-
perform popular used ALM in nonlinearly constrained
single-objective production optimization on a deterministic
oil-water Brugge model [37]. This is the main motivation
for us to utilize an SQP-based framework and extend it to
multi-objective optimization. We also showed the similar
convergence between our proposed LS-SQP and ∞-norm
TR-SQP. Therefore, either one could be chosen as the main
optimizer, and in this work, we choose LS-SQP. The details
of the algorithm are described in a later section.

2.4 Stochastic Simplex Approximate Gradient
(StoSAG)

The algorithm is introduced by [18] as a stochastic gradient
approach based on Np perturbations for robust optimization
with geological uncertainty (NE realizations). For our case,
we only consider deterministic optimization with NE = 1,
whose gradient is usually referred to as the "Simplex gra-
dient" [17]. At each optimization iteration ν, we have the
normalized design vector ūν and the corresponding arbitrary
objective function value J (ūν). Note that in our specific case
of bi-objective production optimization, the arbitrary objec-
tive function J (ū) could be either JNPV(ū) or JNPCTC(ū). In
the StoSAGprocedures, each perturbation ūp is then assumed

to be sampled from the normal distribution with mean
ūν

ūp ∼ N (ūν,CU),

where CU is the block diagonal spherical covariance matrix
with Nw blocks and each block sub-matrix,Cw

U, corresponds
to the correlation matrix over Nc control steps of well w
whose elements are normally computed from a spherical
covariance function given by

Cw
U,i, j =

{
σ 2

[
1 − 3

2
h
L + 1

2

( h
L

)3]
, h ≤ L,

0, h > L,
(13)

where σ is the standard deviation of the perturbations (or
referred to as the perturbation size) for the normalized design
variables within the interval of [0, 1], h = |ti − t j |, where
ti and t j represent the times corresponding to the middle of
the i th and j th control step intervals, respectively, and L is
the temporal correlation length which we wish the control
variables of well w to be correlated.

For each perturbation vector ūp, we can evaluate the cor-
responding objective function J (ūp). We can then form the
corresponding Nu × Np perturbation matrix

�Uν
p =

[
(ūν

1 − ūν), (ūν
2 − ūν), . . . , (ūν

Np
− ūν)

]
, (14)

and the Np × 1 perturbed objective function vector

�jνp = [
(J (ūν

1) − J (ūν)), (J (ūν
2)

−J (ūν)), . . . , (J (ūν
Np

) − J (ūν))
]T

. (15)

The stochastic gradient of the objective function could be
then computed as

∇ J (ūν) =
[(

�Uν
p

)T]†
�jνp, (16)

where the superscript † denotes the Moore-Penrose pseudo-
inverse [33, 36]. Note that we can use Eq. 15 to form the Np×
1 perturbation vectors �jνNPV,p and �jνNPCTC,p for the two
corresponding objective functions JNPV(ūν) or JNPCTC(ūν),
respectively. The same approach could be used to compute
each of the nonlinear constraint gradients ∇ c̄i (ūν). For each
of the nonlinear constraint c̄i (ūν), where i = 1, 2, . . . , Nic,
we can compute the following Np × 1 perturbation vector:

�c̄ν
i,p = [(

c̄i (ūν
1) − c̄i (ūν)

)
,
(
c̄i (ūν

2) − c̄i (ūν)
)
, . . . ,

(
c̄i (ūν

Np
) − c̄i (ūν)

)]T
, (17)
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which could be used directly in Eq. 16 instead of �jνp to
compute the stochastic gradient ∇ c̄i (ūν). Algorithm 1 sum-
marizes the overall StoSAG procedures.

Algorithm 1 StoSAG for nonlinearly constrained bi-
objective optimization problem
1. Preset the number of perturbations Np, the perturbation size σ ,

and the temporal correlation length L . Generate the block-diagonal
covariance matrix CU from spherical variogram given by Eq. 13.

2. Sample the perturbations ūp ∼ N (ūν ,CU). Construct the Nu ×Np
perturbation matrix �Uν

p as described in Eq. 14.
3. Construct the Np × 1 perturbation vectors �jνNPV,p and �jνNPCTC,p

using Eq. 15. Compute the objective function gradients∇ JNPV(ūν)

and ∇ JNPCTC(ūν) using Eq. 16.
4. For each nonlinear constraint c̄i (ūν), where i = 1, 2, . . . , Nic,

construct the Np × 1 perturbation vector �c̄ν
i,p using Eq. 17, and

compute the nonlinear constraint gradient ∇ c̄i (ūν) using Eq. 16
with �c̄ν

i,p instead of �jνp.

2.5 Line-search Sequential Quadratic Programming
(LS-SQP)

As introduced in [34], the Line-search Sequential Quadratic
Programming (LS-SQP) coupled with StoSAG gradients is a
powerful and efficient method to solve the nonlinearly con-
strained deterministic optimization problems. Consider the
following post-normalization optimization problem:

minimize
ū∈RNu

J (ū), (18a)

subject to: c̄i (ū) ≥ 0, i = 1, 2, . . . , Ncons, (18b)

where the arbitrary objective function J (ū) could be either
JNPV(ū) or JNPCTC(ū). Similar to what has been defined in
Eq. 11, Ncons is the total number of inequality constraints,
which accounts for the fact that each individual bound con-
straint from the general optimization problem defined in Eqs.
8, 9, and 12 has been decomposed into two corresponding
general linear inequality constraints. Note that in the lexi-
cographic method, we have Ncons = (Nic + 2Nu) for the
first-step single-objective optimization problem defined by
Eq. 8, whereas Ncons = (Nic + 2Nu + 1) for the second-
step optimization problem given by Eq. 12 as there is an
additional state constraint imposed on JNPV(ū). To solve the
general NLP as given by Eq. 18, the Lagrangian is firstly
defined as

L(ū,λ) = J (ū) −
Ncons∑

i=1

λi c̄i (ū), (19)

where λ = [
λ1, λ2, ..., λNcons

]T is a Ncons-dimensional col-
umn vector consisting of the Lagrangemultipliers for each of

the corresponding inequality constraints. The Lagrange dual
problem of the NLP given by Eq. 18 is as follows:

maximize
λ∈RNcons

(
minimize
ū∈RNu

L(ū,λ)

)
, (20a)

subject to: c̄i (ū) ≥ 0, i = 1, 2, . . . , Ncons.

(20b)

Successfully solving the dual problem defined by Eq. 20
provides the lower bound of the optimal solution of the orig-
inal primal problem given by Eq. 18. When strong duality
holds, both the primal optimality and dual optimality are
equal to each other [35]. The first order optimality condi-
tions, or Karush-Kuhn-Tucker (KKT) conditions, associated
with the dual problem Eq. 20, are given by

∇ūL(ū,λ) = 0, (21a)

c̄i (ū) ≥ 0, i = 1, 2, ..., Ncons, (21b)

λi ≥ 0, i = 1, 2, ..., Ncons, (21c)

λi c̄i (ū) = 0, i = 1, 2, ..., Ncons. (21d)

Sequential Quadratic Programming (SQP) is known as a
powerful family of methods to handle the nonlinear min-
imization problem as described by Eq. 20 by sequentially
satisfying the KKT conditions at each iteration. The basic
idea of SQP methods is to linearize the KKT conditions at
the current iteration (ν + 1) using the information from the
previous iteration ν. The linearized KKT conditions [4, 35]
for the original KKT equations defined by Eq. 21 are given
by

Hνdν + ∇ J (ūν) − (
Aν
c

)T
λν+1 = 0, (22a)

(∇ c̄i (ūν)
)T dν + c̄i (ūν) ≥ 0, i=1, 2, . . . , Ncons,

(22b)

λν+1
i ≥ 0, i=1, 2, . . . , Ncons,

(22c)

λν+1
i

[
c̄i (ūν) + (∇ c̄i (ūν)

)T dν
]

= 0, i=1, 2, . . . , Ncons,

(22d)

where Hν is the Hessian matrix of the Lagrangian func-
tion defined by Eq. 19 at the previous iteration ν, Aν

c =[∇ c̄1(ūν),∇ c̄2(ūν), ...,∇ c̄Ncons(ū
ν)

]T is the Ncons×Nu Jaco-
bianmatrix of the inequality constraints, and dν = ūν+1−ūν

is the update vector of the design variables. At each optimiza-
tion itereation, the following quadratic programming (QP)
subproblem [35] is solved:

minimize
dν∈RNu

1

2

(
dν

)THνdν + [∇ J (ūν)
]T dν, (23a)

subject to: Aν
cd

ν + c̄(ūν) ≥ 0, (23b)
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where c̄(ūν) = [
c̄1(ūν), c̄2(ūν), . . . , c̄Ncons(ū

ν)
]T is the vec-

tor consisting of all inequality constraints. Once the QP
search direction dν has been successfully solved, the cor-
responding Lagrange multipliers [4] can be computed from
Eq. 22a as

λ̂
ν+1 = [Aac (Aac)

T]−1Aac
[
Hνdν + ∇ J (ūν)

]
, (24)

where λ̂
ν+1

and Aac denote the vector of Lagrange multi-
pliers and the Jacobian of the active linearized inequality
constraints given in Eq. 22b, respectively. Note that Aac is a
sub-matrix of the full Jacobian matrixAν

c . Moreover, we can
reconstruct the the full Lagrange multiplier vector λν+1 by

reinserting zeroes into λ̂
ν+1

wherever appropriate.
A general NLP can be viewed as a bi-objective numerical

optimization problem, in which we opt to minimize both the
original objective function and the constraint violation. The
LS-SQP approach introduced by [34] combines both said
objectives into a singlemerit function, formulated as follows:

�(ūν + αdν) = J (ūν + αdν)

−
Ncons∑

i=1

λν+1
i min

{
c̄i (ūν + αdν), 0

}
, (25)

where α denotes the backtracking step size for the line-
search procedure. The minimum operator on the right-hand
side of Eq. 25 is to prevent from over-penalizing inviolate
(or satisfied) constraints. During backtracking, the step size
is inexactly solved by reducing by a predefined factor ρ

(detailed in Algorithm 2) if the following Armijo-Goldstein
condition [4, 35] is not satisfied:

�(ūν + αdν) ≤ �(ūν) + ηαD(�(ūν),dν), (26)

where η ∈ (0, 1) is a small positive constant. The operator
D(�(ūν),dν) is the directional derivative of the merit func-
tion �(ūν) along the search direction dν , which is defined in
[34] as

D(�(ūν),dν) = (∇�(ūν)
)T dν

=
[(∇ J (ūν)

)T −
(
λν+1

)T
Aν
c

]
dν. (27)

It is crucial to note that the Lagrange multiplier vector
λν+1 has been computed as if the operation takes the full
QP search direction dν from Eq. 22a. In such case, some
of the linearized inequality constraints could be set active
[34]. Due to this fact, the vector λν+1 might contain zero
values, which do not contribute to the penalty term indicated
by the summation in the merit function defined by Eq. 25.

Therefore, it is necessary to perform the following secondary
violation check:

c̄ j (ūν + αdν) ≥ 0, ∀ j ∈ J : λν+1
j = 0. (28)

This step is to ensure that the inequality constraints
associated with the zero-valued Lagrange multipliers are
not violated [34]. Algorithm 2 summarizes the LS-SQP
backtracking procedure by [34]. At every LS-SQP optimiza-
tion iteration ν, the Hessian matrix of the Lagrangian Hν

is updated using the Damped Broyden-Fletcher-Goldfarb-
Shanno (Damped BFGS) algorithm [4, 35]. The complete
workflow of the LS-SQP algorithm coupled with StoSAG
gradients for general nonlinearly constrained production
optimization problem is summarized in Algorithm 3 and
Fig. 1.

Algorithm 2 Backtracking
1. Initialize initial step size α = αmax, step size reduction factor ρ,

and maximum number of step size cut ncuts, max. Choose the small
constant parameter η ∈ (0, 1). Set the step size cut counter ncuts =
0.

2. Extract the subset J =
{
j ∈ J : λν+1

j = 0
}
from the Lagrange

multiplier vector λν+1 computed from Eq. 24.
3. WHILE {�(ūν + αdν) > �(ūν) + ηαD(�(ūν),dν) OR

∃ j ∈ J : c̄ j (ūν + αdν) < 0
}
AND ncuts ≤ ncuts, max:

• Step size reduction: α ← ρα.
• Set backtracking cut counter: ncuts ← ncuts + 1.
• Loop.

4. If backtracking succeeds, return the step sizeα and the actual search
direction dν ← αdν .

3 Reservoir model description

In this section, we describe the reservoir model and opti-
mization settings used to apply the proposed methodology to
perform bi-objective optimization of CO2 storage into an oil
reservoir.

3.1 Physical model

In this study, we perform bi-objective optimization on the
Brugge model. The Brugge model is originally an oil-water
synthetic reservoir model created by TNO as a compara-
tive study for closed-loop reservoir management [37], which
consists of 104 different realizations due to geological uncer-
tainty. The reservoir model has 60,048 gridblocks with a total
of 30 wells - 10 injectors and 20 producers (NI = 10, NP =

123



202 Computational Geosciences (2024) 28:195–210

Fig. 1 Simplified flowchart of
the LS-SQP algorithmic
framework

20), as shown in Fig. 2. In this study, we only consider the
base case (58th realization) for deterministic production opti-
mization. Additionally, for the purpose of simulating the
CO2 utilization and storage processes, the Brugge model
has been modified from the original oil-water model to a
compositional model, simulated using CMG-GEM commer-

cial compositional reservoir simulator. During the simulation
process, as the producers are located at the center of the reser-
voir model and are surrounded by the injectors, the CO2

injection displaces the in-situ fluids towards the central area
for production and stays trapped, both in the pore spaces and
via dissolution.

Fig. 2 Three-dimensional
log-permeability visualization
(units: mD) of the Brugge
reservoir model with 30 wells
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The initial reservoir pressure is 3, 500 psi, and the com-
positional fluid model is similar to the one used in [42]. For
more details regarding the compositional data, please refer to
Table 4 and Table 5 in theAppendix A.Note that there is still
some oil production in the system, which is a major reason

Algorithm 3 LS-SQP algorithm coupled with StoSAG gra-
dients for production optimization
1. Preset maximum number of gradient recomputations ngrad,max,

maximum number of backtracking cuts ncuts,max, maximum back-
tracking step size αmax, step size reduction factor ρ, objective
function change tolerance εJ, design vector change tolerance εu,
and the maximum number of optimization iterations Niter. Specify
the number of perturbations Np, the perturbation size σ , and the
temporal correlation length L for StoSAG.

2. Initialize the following: optimization iteration index ν = 0, the
normalized well control vector ū0, and the Hessian matrix H0 =
INu where INu is the Nu × Nu identity matrix.

3. Set the gradient counter ngrad = 1, backtracking cut counter ncuts =
0, and a boolean variable ResetH = FALSE.

4. Compute the objective function gradient∇ J (ūν), and the constraint
Jacobian matrix Aν

c using the StoSAG procedures in Algorithm 1.
5. QP solver for the search direction dν :

(a) Hessian matrix update:
• IfResetH = FALSE, update theHessianmatrixHν using

Damped BFGS procedure [4, 35].
• Else, skip this step and proceed to Step 5b.

(b) Solve the QP subproblem given by Eq. 23 for the search
direction dν . If the QP subproblem is infeasible, set ngrad ←
ngrad + 1 and go back to Step 4 to recompute the stochastic
gradients. If ngrad = ngrad,max then:

• If ResetH = FALSE, go to Step 8.
• Else, terminate the algorithm.

(c) Go to Step 6 if the QP search direction dν from Step 5b has
been computed successfully.

6. Compute the associated Lagrange multiplier vector λν+1 from Eq.
24, then go to Step 7.

7. Perform backtracking as described in Algorithm 2 to find the step
size α and the actual search direction. If backtracking succeeds,
go to Step 9, else set ngrad ← ngrad + 1 and go back to Step 4. If
ngrad = ngrad,max then:

• If ResetH = FALSE, go to Step 8.
• Else, terminate the algorithm.

8. Set ResetH = TRUE, reset the Hessian matrix to the identity
matrix INu , reset ngrad = 1 and go back to Step 4.

9. Return the line-search step size α and the corresponding actual
search direction dν ← αdν from backtracking procedure in Algo-
rithm 2. Recompute the actual Lagrange multiplier vector λν+1

using this actual search direction in Eq. 24. Set ūν+1 = ūν + dν

and return the objective function value J (ūν+1). Go to Step 10.
10. Check for convergence criteria:

∣∣J (ūν+1) − J (ūν)
∣∣

|J (ūν)| ≤ εJ AND ‖ūν+1 − ūν‖2 ≤ εu

• If not converged, save the following parameters as prior infor-
mation: ∇ J (ūν), Aν

c , H
ν , and λν+1 as these variables are

needed for Damped BFGS update in Step 5a. Increment ν ←
ν + 1 and go back to Step 3.

• Else, terminate the algorithm.

Table 1 Lower and upper limits of the well controls

Variable Units Lower limit Upper limit

Production BHP psi 1,000 3,000

CO2 injection rate MMscf/d 10 15

for considering amulti-objective optimization solution in this
work.

3.2 Optimization settings

In our study, we consider a 3600-day life-cycle production
optimization, with 20 uniform control steps of 180 days each.
Hence, the number of control variables in this bi-objective
optimization problem is 600, and their lower and upper
bounds are given in Table 1. The enforced nonlinear state
constraints are shown in Table 2.

Table 3 summarizes the economical values that are used
in the objective functions defined by Eqs. 1 and 3. For the
carbon-related parameters specifically, please refer to [38],
[23], and [39]. The parameter settings for the LS-SQP frame-
work by [34], as shown in Algorithm 3, are summarized in
Table 6 in the Appendix A.

4 Computational results

In this section, we present our computation results obtained
by applying the methodology introduced in this work on the
compositional Brugge model.

4.1 Single-objective production optimization

As explained earlier previously, performing bi-objective pro-
duction optimization with the lexicographic method requires
the solution of the single-objective NPV optimization prob-
lem as defined by Eq. 8. The well controls are uniformly
initialized as ū0i = 0.5 for all i = 1, 2, . . . , Nu (midpoint
initialization). The NPV optimization results are shown in
Fig. 3, while the optimal well controls (ū∗ in Eq. 12) are
shown as heatmap schedules in Fig. 4. It can be seen that
the LS-SQP framework solves the NPV optimization prob-
lem after 57 optimization iterations, which corresponds to
1, 248 objective function evaluation (reservoir simulation)

Table 2 Summary of the imposed nonlinear state constraints

Constraint Type Units Type of inequality Value

FLPR stb/d ≤ (upper-bounded) 50,000

FWPR stb/d ≤ (upper-bounded) 7,000
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Table 3 Summary of the economical parameters used in the objective
functions

Economic Parameter Notation Units Value

Oil price co $/stb 82

Water treatment cost cw $/stb 5

CO2 injection cost cCO2-inj $/tCO(∗)
2 10

CO2 capture cost cCO2-prd $/tCO(∗)
2 47

Carbon tax credit rCO2 $/tCO(∗)
2 35

Annual discount rate b fraction 0.1

(∗): tCO2 = metric ton of CO2

calls. The optimal NPV found by LS-SQP is NPVmax =
−JNPV(ū∗) = 10.04 × 109 USD.

Figure 5 shows the values of the nonlinear state constraints
(FLPR and FWPR) imposed on the optimization problem.
We can see that the LS-SQP algorithm honors these con-
straints very well with no violation at the optimum ū∗. It can
be observed that the maximum value of FLPR is obtained at
the first control step, while the maximum FWPR is observed
at the second control step.

4.2 Bi-objective production optimization

Here, we demonstrate the performance of the LS-SQP frame-
work in solving the NPCTC optimization problem, or the
second-step lexicographic optimization problem as given by
Eq. 12. Note that for this optimization problem, the design
vector is initialized at the solution of the single-objective
optimum ū∗ found previously, since it is the most feasi-
ble solution that satisfy all the imposed constraints. The
negative-NPV state constraint given by Eq. 12b is upper-
bounded using the value of JNPV(ū∗) = −10.04×109 USD,
while the initial negative NPCTC objective function value is
JNPCTC(ū∗) = −5.12 × 108 USD.

The optimization results are shown for γ = 0.99, which
corresponds to the maximum allowance of 1% increase in
the negative life-cycle NPV function JNPV(ū). The moti-
vation for this choice of γ value, rather than exactly equal
to 1 in the formal formulation of the lexicographic method
defined by Eq. 11, is for the purposes of allowing a small tol-
erance window in the NPV state constraint that still ensures
the numerical stability due to the errors in stochastic gradi-
ent estimations. Also, as γ = 0.99 is very close to 1, it is a
good representative value to benchmark the performance of
our proposed methodology to confirm we achieve solution
feasibility at the end of optimization.

Figure 6 shows the bi-objective optimization results for
the NPCTC and NPV, in which the green dashed lines rep-
resent the upper bound γ JNPV(ū∗) of the negative NPV
constraint (or lower bound of the NPV). The LS-SQP frame-
work successfully optimizes the two objective functions after
71 optimization iterations, corresponding to 1,064 reservoir
simulation calls, which results in the optimal NPCTC of
JNPCTC(ūopt) = −5.826×108 USD. It can be observed from
Figure 6 that for most iterations, the NPV state constraint Eq.
12b is violated as the NPV is lower than the NPV bound. It is
worth noting that during intermediate optimization iterations,
the solver does not have to always guarantee constraint feasi-
bility. Although not shown here, our numerical experiments
confirm that rigorously enforcing the solution to always be
feasible at every optimization iteration would yield a sub-
optimal result, as good directions that make good progress
are repeatedly rejected, eventually forcing the optimizer to
stop. Thus, by allowing some small violations during inter-
mediate iterations, we can achieve much better convergence.
The solver will always try to gradually restore feasibility at
later iterations, whose speed depends on the quality of the
stochastic gradient estimation. Despite such said inaccuracy,
at the optimum, the LS-SQP algorithm is still able to restore
the NPV constraint feasibility.

Fig. 3 Single-objective NPV optimization results using the LS-SQP workflow: (a) NPV vs. number of iterations and (b) NPV vs. number of
reservoir simulation runs
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Fig. 4 Optimal well control schedules for the single-objective NPV optimization problem: (a) Injection rates for 10 wells and (b) Bottom-hole
pressures for 20 producers

Fig. 5 Enforced nonlinear constraint values at the optimum of the single-objective problem: (a) Field liquid production rate vs. control steps and
(b) Field water production rate vs. control steps

Fig. 6 Bi-objective NPCTC and NPV optimization results for γ = 0.99: (a) NPCTC and NPV vs. number of iterations and (b) NPCTC and NPV
vs. number of reservoir simulation runs. The green dashed lines in both figures indicate the lower bound of NPV state constraint
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Fig. 7 Optimal well control schedules for the bi-objective optimization problem. (a) Injection rates for 10 wells and (b) Bottom-hole pressures for
20 producers

Another important remark is that, although in this specific
example, the NPCTC ismuch lower than theNPV in terms of
monetary value, it does not directly translate to a lower order
of importance. For the energy industry, the carbon credit itself
also represents the capability of one to compensate for their
greenhouse emission. The real market of carbon credits is
very complex, so focusing on it is not the scope of our study,
but we convey our point of NPCTC being much more impor-
tant than its monetary value.

The heatmaps at the bi-objective optimum shown in Fig.
7 differ from the ones in Fig. 4, especially the injection
rates to maximize the amount of CO2 storage, contributing
directly to the negative NPCTC objective function. Figure
8 shows the values of enforced nonlinear state constraints
onto the optimization problem.Again, the LS-SQP algorithm
honors these constraints accurately with no violation at the
bi-objective optimum. This result is also consistent with the
observations in Fig. 5, as the maximum values of FLPR and

FWPR occur at the same control time steps as of the single-
objective optimum.

Figure 9 compares the trapped (or sequestered) CO2 sat-
uration distributions after 3600-day life-cycle simulation for
the uniformmidpoint initialization, the single-objectiveNPV
optimum, and the bi-objective optimum with γ = 0.99,
respectively. We observe that at the bi-objective optimum,
the amount of CO2 trapped increases quite significantly com-
pared to the one at the single-objective optimum.

We also construct the approximation of the Pareto front
by repeatedly solving the bi-objective optimization problem
with different values of γ . Lower values of γ means more
relaxation on the NPV constraint, resulting in a larger fea-
sible region for the objective function JNPCTC(ū) to further
decrease. Figure 10 shows the numerical construction of the
Pareto front for γ = {0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99}.
Note that on for each datapoint generated, the optimal NPV
value found does not necessarily have to be close (or even

Fig. 8 Enforced nonlinear constraint values at the optimum of the bi-objective problem. (a) Field liquid production rate vs. control steps and (b)
Field water production rate vs. control steps
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Fig. 9 Top-viewcomparisonof the trappedCO2 saturation distributions
after life-cycle simulation: (a) Initial distribution of CO2 concentration,
(b) Distribution of CO2 concentration after single-objective optimiza-

tion, and (c) Distribution of CO2 concentration after bi-objective
optimization with γ = 0.99. Color bars in the figures represent CO2
concentration in fraction

Fig. 10 Numerical
approximation of the Pareto
front of the bi-objective
optimization problem
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equal) to the bound value
∣∣γ JNPV(ū∗)

∣∣ as specified in the
constraint Eq. 12b. We also observe that there is no signifi-
cant improvement on the value of NPCTC for γ ≤ 0.8.

5 Summary and conclusions

In this paper, we extend and apply the LS-SQPworkflow [34]
to efficiently handle the production optimization problem as
part of the CO2-EOR design process on the Brugge model. A
compositional fluid description is used for flow simulations
performed within the context of optimization work. In the
optimization procedure, we utilize the lexicographic method
of solving the bi-objective optimization problem in order to
achieve both the maximum NPV and NPCTC. The conclu-
sions of this study can be stated as follows:

• TheLS-SQPworkflowsolves thenonlinearly constrained
single-objective optimization problem to find the max-
imum NPV of 10.04 × 109 USD. The corresponding
NPCTC value is 5.12 × 108 USD.

• Using the lexicographic method, the LS-SQP work-
flow also efficiently solves the nonlinearly constrained
bi-objective optimization problem. By allowing the max-
imum of 1% decrease (γ = 0.99) in the maximum NPV
from the single-objective problem, the algorithm found
an optimal NPCTC of 5.826 × 108 USD, resulting in a
13.8% uplift in the NPCTC compared to its value at the
single-objective optimum. It is important to note that,
depending on CCUS practitioners’ priorities, the carbon
credit can be more important than its mere monetary
value.

• A numerical approximation of the Pareto front is con-
structed by varying the values of γ in the bi-objective
optimization problem. Results showed that there is no
significant increase in NPCTC for γ ≤ 0.8 for the inves-
tigated compositional Brugge model.

6 Future work

Wewould like to extend our work here to robust optimization
where multiple realizations are considered due to geological
uncertainty, such as the Brugge case with 104 realizations
or larger datasets like in [14]. The optimization procedures
with different constraint handling methods presented in [34]
could be useful in maintaining accuracy and efficiency due
to an increasing number of constraints from uncertainty.
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Appendix: supplemental data

Table 4 Compositional fluid data for Peng-Robinson EOS

Component Molar
Fraction

Critical
Pressure
(atm)

Critical
Tempera-
ture
(K)

Critical
Volume
(L/mol)

Molar
Weight
(g/gmol)

Acentric
Factor

Parachor
Coefficient

CO2 0.0001 72.80 304.20 0.0940 44.01 0.2250 78.0

N2-C1 0.2203 45.24 189.67 0.0989 16.21 0.0084 76.5

C1-C4 0.2063 43.49 412.47 0.2039 44.79 0.1481 150.5

C5-C7 0.1170 37.69 556.92 0.3324 83.46 0.2486 248.5

C8-C12 0.2815 31.04 667.52 0.4559 120.52 0.3279 344.9

C13-C19 0.0940 19.29 673.76 0.7649 220.34 0.5672 570.1

C20-C30 0.0808 15.38 792.40 1.2521 321.52 0.9422 905.7
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Table 5 Binary interaction
parameters for the
compositional fluid

Component CO2 N2-C1 C1-C4 C5-C7 C8-C12 C13-C19 C20-C30

CO2 0 0.1013 0.1317 0.1421 0.1501 0.1502 0.1503

N2-C1 0.1013 0 0.0130 0.0358 0.0561 0.0976 0.1449

C1-C4 0.1317 0.0130 0 0.0059 0.0160 0.0424 0.0779

C5-C7 0.1421 0.0358 0.0059 0 0.0025 0.0172 0.0427

C8-C12 0.1501 0.0561 0.0160 0.0025 0 0.0067 0.0251

C13-C19 0.1502 0.0976 0.0424 0.0172 0.0067 0 0.0061

C20-C30 0.1503 0.1449 0.0779 0.0427 0.0251 0.0061 0

Table 6 Summary of the
LS-SQP optimization
parameters

LS-SQP Parameter Notation Value

Maximum number of gradient recomputations ngrad,max 3

Maximum number of backtracking cuts ncuts,max 5

Maximum backtracking step size α 1

Backtracking step size cut factor ρ 0.5

Maximum number of optimization iterations Niter 200

Maximum objective function change tolerance εJ 10−3

Maximum design vector change tolerance εu 10−3

StoSAG number of perturbations Np 10

StoSAG variance σ 2 0.012

StoSAG temporal length of correlation L 5

Fig. 11 Relative permeability data: (a) Water-oil and (b) Gas-liquid
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