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Abstract
Bayesian model selection objectively ranks competing models by computing Bayesian Model Evidence (BME) against test
data. BME is the likelihood of data to occur under each model, averaged over uncertain parameters. Computing BME can
be problematic: exact analytical solutions require strong assumptions; mathematical approximations (information criteria)
are often strongly biased; assumption-free numerical methods (like Monte Carlo) are computationally impossible if the data
set is large, for example like high-resolution snapshots from experimental movies. To use BME as ranking criterion in such
cases, we develop the “Method of Forced Probabilities (MFP)”. MFP swaps the direction of evaluation: instead of comparing
thousands of model runs on random model realizations with the observed movie snapshots, we force models to reproduce
the data in each time step and record the individual probabilities of the model following these exact transitions. MFP is fast
and accurate for models that fulfil the Markov property in time, paired with high-quality data sets that resolve all individual
events. We demonstrate our approach on stochastic macro-invasion percolation models that simulate gas migration in porous
media, and list additional examples of probable applications. The corresponding experimental movie was obtained from
slow gas injection into water-saturated, homogeneous sand in a 25 x 25 x 1 cm acrylic glass tank. Despite the movie not
always satisfying the high demands (resolving all individual events), we can apply MFP by suggesting a few workarounds.
Results confirm that the proposed method can compute BME in previously unfeasible scenarios, facilitating a ranking among
competing model versions for future model improvement.
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1 Introduction

Many competing conceptual models can be used to
represent real-world systems. These models differ in their
underlying hypotheses, which need to be tested against real-
world observation data for their accuracy in representing
the featured real-world system. Bayesian model selection is
a statistical method used for testing competing conceptual
models against each other by ranking them based on Bayes’
Theorem. Bayesian model selection involves computing
Bayesian Model Evidence (BME), which is the likelihood
of a model producing the observed data, given the prior
distribution of its parameters.

Computing BME using analytical solutions is applicable
only under strongly limiting assumptions, which generally
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do not hold in real-world applications [1]. So, other
techniques involving mathematical approximations and
numerical methods have been developed, but they all
have their own limitations. Mathematical approximations
(commonly known as Information Criteria (IC)) include
the Kashyap information criterion (KIC) [2], the Bayesian
information criterion (BIC) [3], the Akaike information
criterion (AIC) [4] and so on. They are based on different
assumptions and/or asymptotics. These criteria have been
shown to yield misleading model ranking results in real
applications if their assumptions are violated [5–13].
Using numerical methods [3] to compute BME avoids
such assumptions but requires high computational effort.
Numerical approximations that are commonly used for
highly complex models are Monte Carlo (MC) methods
with various sampling strategies, such as brute-force MC
integration, MC integration with importance sampling, or
MC integration with posterior sampling [1, 14, 15]. MC
methods generally require large ensemble sizes and a good
overlap between the likelihood function and the parameter
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prior. The latter corresponds to a well-specified prior and
relatively uninformative data sets. This, in turn, means
that practical applications can require extremely (up to
prohibitively) large MC ensembles.

The size of the sampling ensemble for these methods
is limited by the available computational resources. For
high-dimensional problems (i.e. with many uncertain
parameters), the so-called curse of dimensionality kicks
in, requiring an exponential number of model evaluations
[16, 17]. Additionally, for highly accurate or informative
data sets, the overlap between predictive distributions and
observed data may be so small that MC methods may not
result in a meaningful BME value (> 0) at all.

For a model-data system involving binary (yes/no)
decision output, the likelihood function becomes a Dirac-
delta function, thus leading to likelihood values of zero for
practically all sampled parameter values of the model. Thus,
the BME value would tend to zero, and any model would
be rejected as infinitely poor. This becomes a problem,
especially for long-time sequences of repeated outputs. For
example, in a lotto game, getting the first number right is not
that difficult, but getting the exact sequence of six numbers
in a row right is almost impossible.

For such model-data systems involving binary output,
with highly discretized atomic-event-type data and Markov
chain models, we propose a method to compute BME with
a reasonably low computational effort. Observed states are
called atomic events if each individual possible outcome
can be enumerated and they are mutually exclusive and
collectively exhaustive.Markov Chain models are stochastic
models that fulfil the Markov Chain property, i.e. the
probability distribution of model states in the next (time)
step depends solely on the previous step, not on any prior
state to that. We call our method of BME computation the
Method of Forced Probabilities (MFP) due to its core idea:
instead of evaluating millions of forward runs that may fit
the data by random chance, the model is forced to follow
the data during each time step. We record the individual
probabilities of the model performing these exact transitions
as if they were done without any constraints. Following
a strict mathematical derivation, we compute BME as the
product of these probabilities. By exploiting the Markov
Chain property of the model with this procedure, we are
able to compute BME in previously nearly impossible cases
without resorting to any kind of approximations.

Model order reduction techniques offer an alternative
approach for optimization, parameter sampling or Bayesian
analysis of high-dimensional problems. Reduced-order mod-
els are a computationally cheap abstraction of the origi-
nal, high-fidelity models [18]. Examples of such reduced-
order modelling techniques include, but are not limited
to, models obtained using projection-based model reduc-
tion method (e.g., polynomial chaos expansion [19], proper

orthogonal decomposition [20]), response surface models
(e.g., polynomials, kriging, radial basis functions, artifi-
cial neural networks, etc.[21]) and, lower-fidelity mod-
els (physically reliable simple abstractions of the system
under study [21]). Although such reduced-order models
assist in solving the computing time problem, they are
only approximate. In contrast, our method (MFP) is exact.
Also, our method tackles the challenge of evaluating BME
rather than the computational efficiency issue of complex
high-fidelity models. Further, our method can be used in
combination with all reduced-order modelling approaches
that maintain the Markov property. Other options include
an abstraction of summary statistics from data (so-called
approximate Bayesian computation [22]), manual-visible
techniques (like moments matching [23]), or the use of
plausible, non-Bayesian metrics [24].

In Section 2, we discuss the mathematical formulation
of BME (Section 2.1), introduce our MFP approach for
computing BME (Section 2.2), and illustrate it on a didactic
example (Section 2.3). In Section 3, we introduce our
test case for demonstration: we apply the method on a
Stochastic Macro-Invasion Percolation (SIP) model that
simulates multiphase flow in porous media (Section 3.1).
The corresponding highly resolved data set was obtained
from an experiment with slow gas injection into water-
saturated, homogeneous sand in an acrylic glass cell
(Section 3.2). We also design a synthetic data scenario for
the proof-of-concept of our method (Section 3.3), and we
list the implementation steps of the MFP for the SIP model
under the different data scenarios (Section 3.4). Further, we
add a list of general algorithmic steps of MFP in Section 3.5.
In a previous study [24], we used the (Diffused) Jaccard
coefficient to facilitate a quantitative comparison of an
invasion percolation model to the experimental data set used
in this study. This technique only works on image-type
data and is not free from information losses. Therefore,
our proposal MFP is the first method ever that facilitates a
fully Bayesian assessment of the SIP model and is free of
information loss. Section 4 discusses the results obtained
from the synthetic (Section 4.1) and real-data scenarios
(Section 4.2). Finally, we summarize the contributions of
this study, draw conclusions, provide an outlook towards
future work, and list a few examples of applications where
our method can be applied in Section 5.

2 Bayesianmodel evidence
and its evaluation via the proposedmethod
of forced probabilities

We present the concept and mathematical formulation of
Bayesian Model Evidence (BME) in Section 2.1. Then, we
introduce the concept of our approach to computing BME
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(MFP) in Section 2.2. We illustrate our proposed method
with the help of a didactic example in Section 2.3.

2.1 Bayesianmodel evidence

For Nm competing models Mk , k = 1...Nm and observation
data y0, the BME value BMEk of any model Mk can be
evaluated as (Bayesian integral from [25]):

BMEk = p (y0 | Mk)

=
∫

Uk

p (y0 | uk, Mk) · p (uk | Mk) duk

≡ Ik, (1)

where Uk denotes the model’s parameter space, uk

represents a random parameter vector with prior distribution
p(uk | Mk), and p (y0 |uk, Mk) is the probability or likeli-
hood of the parameter set uk of the model Mk to have
generated the observed data set y0.

The integral Ik over the entire parameter space is
computationally expensive and can become infeasible (with
no meaningful BME value) in the cases discussed in
Section 1. A review of existing methods to determine BME
can be found in [1]. To facilitate the introduction of our
proposed method, MFP, we present here the approach of
simple (or: brute-force) MC integration [26] of Eq. 1. The
integrand is evaluated at randomly chosen points (uk,r )
of the parameter space Uk , which are drawn from their
prior distribution p(uk | Mk). The mean of the evaluated
likelihoods (p (y0 | uk, Mk)) provides the approximate value
of the integral (referred to as Îk):

Îk = 1

N

N∑
r=1

p
(
y0 | Mk, uk,r

) ≈ Ik, (2)

with N being the number of MC realizations (ensemble
size). To re-stress the problem: in applications with many
precise data, the summands in this equation are (close
to) zero with a probability very close to one, such that
convergence can be prohibitively slow.

To rank models against each other, one can directly
compare their BME values (the larger, the better) or their
negative logarithmic BME values (the smaller, the better).
Alternatively, one computes so-called Bayes factors (BF)
[25] for two models k1 and k2:

BF k2
k1

= BMEk2

BMEk1
, (3)

with a scale for interpretation provided by, e.g., [27].

2.2 Method of forced probabilities (MFP): key idea

For our purposes, we redefine Eq. 1 as:

Ik =
∫∫

Uk

p (y0 | ωk, θk, Mk) · p (ωk, θk | Mk) dωk dθk .

(4)

Here, the parameter space Uk is split into uncertain
parameters θk and random events ωk , p(y0 | ωk, θk, Mk) is
the likelihood of the parameters ωk and θk of model Mk

to have generated the data set y0, and p(ωk, θk | Mk) is
the prior probability density of these parameters. Uncertain
parameters θk comprise those parameters and inputs of the
model with unknown or non-measurable values. Random
events within the model ωk represent apparently stochastic
system behaviour that cannot be explained deterministically
(but only distribution-wise) by the model’s equations,
assumptions or mechanisms (see also Section 3.1).

Using the law of total probability [28], we split the
double integral of Eq. 4 into an inner integral over random
events and an outer integral over uncertain parameters:

Ik =
∫ [∫

p (y0 | ωk, θk, Mk) · p (ωk | θk, Mk) dωk

]

·p (θk | Mk) dθk

=
∫

p (y0 | θk, Mk) · p (θk | Mk) dθk . (5)

The key idea of the Method of Forced Probabilities is
to replace the inner integral (over random events) with
a single analytical solution and use an MC integration
(Eq. 2) only for solving the outer integral over uncertain
parameters (θk), for models obeying the Markov Chain
property. This means that for random events ωk , as opposed
to simulating thousands of forward model runs and waiting
for a random match with the observed data, we instead
record the individual probabilities p(ωk | θk, Mk) of the
model performing the exact transitions observed in the data
at each time step. Using the Markov chain property, the
product of these probabilities corresponds to p(y0 | θk, Mk)

in Eq. 5:

p(y0 | θk, Mk) =
tmax−1∏

t=0

P (y0(t + 1) | y0(t), θk, Mk) , (6)

where P (y0(t + 1) | y0(t), θk, Mk) is the probability of
transition in y0 (in accordance with the data) from time step
t to t + 1, and tmax is the total number of time steps in the
experimental data. The idea is to plug this exact analytical
solution into Eq. 5 and use the MC method only for the
uncertain parameters.
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Fig. 1 Transition graph of toy
Markov chain model

If numerical scaling becomes an issue for Eq. 6, one can
simply work in (negative) logarithmic scale:

− lnp(y0 | θk, Mk)

= −
tmax−1∑

t=0

lnP (y0(t + 1) | y0(t), θk, Mk) . (7)

Further, even after using the logarithmic scale, numerical
issues with the BME values can arise during averaging (after
exponentiating Eq. 7) for the outer integral of Eq. 5 due to
the scale and span of individual values. We address this by
a numerical trick that involves subtracting a common BME
value at the logarithmic scale, such that the exponent of
Eq. 7 (Eq. 5) is closer to zero, see Appendix B.

One may argue that the act of multiplying individual like-
lihoods in order of appearance in a time sequence is close
to the process done in data assimilation methods, where a
time series of time slice-wise likelihoods and cumulative
BME values can be spit out as a simple by-product. This
analogy is most apparent when comparing to particle-filter-
like schemes for data assimilation [29]. Moreover, just like
our BME computation can be used for parameter selec-
tion / Bayesian update of parameters, this could also offer
the path to parameter estimation in data-assimilation mode.
Some data assimilation schemes perform a joint estima-
tion of system states and uncertain parameters, typically
called augmented state vector approaches (e.g., [30]) or

parameter-space schemes (e.g., [31, 32]). Without going
into further detail, this opens a future pathway to apply our
MFP method in (real-time) data assimilation for either state
forecasting, parameter updating, or both at once.

2.3 MFP: implementation illustrated with a didactic
example

As a toy model for demonstrating our method, let us
consider a simple Markov Chain with two output states (0
and 1) and a fixed (instead of uncertain) parameter πk (e.g.,
a repeated coin flip experiment). Thus, the Bayesian integral
in Eq. 4 simplifies to:

p (y0 | Mk)

= ∫
Uk

p(y0 | ωk, θk, Mk) · p(ωk | θk, Mk)dωk, (8)

i.e. θk is fixed, and the outer integral disappears. Note here
that Uk only contains the random events. The transition
probabilities of the model are defined as:

Pk(b | a) =
{

πk if b �= a

1 − πk if b = a
(9)

Here, b is an output state at a particular flip, and a is an
output state in the previous flip (see Fig. 1).

For a number of flips tmax = 3 (i.e., t = 0, 1, 2, 3),
the possible predictions by the model are shown in the

Fig. 2 Probability tree diagram
for the toy Markov chain model
with tmax = 3. The true
sequence or observed series of
outcomes is highlighted in red
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probability tree diagram in Fig. 2. Additionally, in this
diagram we fix the initial condition at t = 0 to y(0) = 0. Let
us assume that the true observation data sequence is 0110
(highlighted in red in Fig. 2).

In such a simple tree structure with equiprobable
branching (πk = 0.5), it is obvious that the probability
(BME) of observing the single true path with likelihood
one is 1

number of paths . Now imagine if the sequences’ length
tmax increases (a deeper tree) or the dimension of the
state space is increased (more than two branches for each
node), the complexity of the probability tree diagram will
increase exponentially (see Appendix A for more details).
For example, for a binary tree with tmax = 100, we end
up with 2100 different paths. This would further diminish
the BME value and increase the computational effort to
completely sample all possible paths in direct MC-based
approaches based on the conventional Eq. 2.

Most real-world applications involve a more complex
structure, where the branches are not equiprobable or
complete enumeration is not possible anymore. In such
cases, an MC approach would be used to sample each
random path in proportion to its probability, requiring
an even more significant number of samples to represent
all paths, including the ones with very low probability,
statistically sufficiently well. Note that it is not enough to
“hit” the one path that coincides with the observation, but
for an accurate approximation of BME, we need an accurate
representation of low probabilities just as well (zeros play
an essential role in arithmetic averaging), see, e.g. [1].

In contrast, the MFP simply calculates BME as the prob-
ability of mimicking the observed state changes, i.e., a flip
from 0 to 1 and then staying at 1 and finally flip again to 0:

p(y0 | θk, Mk) = πk · (1 − πk) · πk .

With πk = 0.5, this equals to the enumeration or MC solution
of 1

8 . This means that we only need to calculate a finite product
over a set of tmax (here: three) values. Therefore, our method
(MFP) scales linearly with tmax and does not exponentially
explode like full enumeration or MC methods.

3 Demonstration on a real case study

In this section, we demonstrate the applicability of our
method on a more complex model with Markov Chain
property: a Stochastic Macro-Invasion Percolation model
(SIP), see Section 3.1. Invasion percolation (IP) models
are discrete growth models, which repeatedly apply so-
called rules that specify why which model block is invaded
by the wetting or non-wetting fluid in the next step, see
Section 3.1. Macro-Invasion Percolation (Macro-IP) models
are an upscaled abstraction of pore-scale IP models. We

have used a Macro-IP model with the experimental data
used in this study in a previous study [24]. The SIP model
is conceptually similar to the Macro-IP model of [24]. The
difference between the SIP model and the Macro-IP model
of [24] is an additional rule for stochastic selection from
the Stochastic Selection and Invasion (SSI) model of [33].
Thus, to describe the SIP model, we describe the model
formulation of the Macro-IP model [24] and the additional
rule for stochastic selection in Section 3.1. We compare
the SIP model to experimental binary-image data from gas-
injection in homogeneous, water-saturated sand [34], see
Section 3.2. For a test in the absence of all problems that
real experimental data bring about, we also use synthetic
model-generated data, see Section 3.3. Then, we discuss the
implementation of MFP on the SIP model in Section 3.4 for
both the synthetic and the real data sets. Before discussing
the results of this case study, in Section 3.5, we list the
general algorithmic steps of MFP.

3.1 Stochastic macro-invasion percolationmodel
(SIP)

Originally derived from the Percolation theory of [35],
Invasion Percolation (IP) models are often used for
simulating multiphase flow in porous media (E.g., [23, 33,
36–46]). Various versions of IP models have been used in
literature, but all of them have a similar implementation
structure (illustrated in Fig. 3):

• The porous medium is conceptualized as a network of
2-dimensional (2D) or 3-dimensional (3D) blocks or
nodes, with a given connectivity, by assigning threshold
values to the blocks from a distribution (depending on
the specific porous medium).

• Initially, all the blocks are occupied by one (defending)
fluid. Then the invading fluid is placed in one of the blocks,
depending on its source or injection site (see Fig. 3a).

• The neighbouring blocks of the invading fluid block
are evaluated for their entry thresholds (pressure) and
based on some rules (mostly minimum entry threshold,
see below) one of the connecting blocks is filled by the
invading fluid (see Fig. 3b & c). The filling process of
one block can occur in a single step or in multiple steps.

Macro-IP models differ from traditional IP models in
scale, i.e. the blocks in Macro-IP models represent a sub-
network of pores and throats in contrast to individual pores
as in IP models [24]. We use a 2D representation of these
models to mimic the quasi-2D setup of the experimental
data (Section 3.2) and then to simulate gas invasion in
homogeneous water-saturated sand.

In the Macro-IP model [24], at each time step, the gas
invades one of its neighbouring water-filled blocks using
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Fig. 3 Schematic to illustrate a general 2D Invasion Percolation (IP) model. Blue blocks are blocks filled with the invading fluid, and all other blocks
are filled with the defending fluid. The hatched light blue block shows the next block to be filled and, the red-rimmed neighbouring blocks are the
ones evaluated for invasion at each step

a rule that searches the block with the smallest invasion
threshold Te calculated using:

Te = Pe + Pw, (10)

where Pe is the local entry pressure in each block, which
is the capillary pressure (Pc) required by gas to invade a
water-occupied block. Pw is the pressure of the water phase,
calculated with the hydrostatic pressure assumption as:

Pw = ρwgz, (11)

where ρw is the water density, g is the acceleration due
to gravity, and z is the height from the top of the acrylic
glass cell. Pe is calculated from the Brooks-Corey capillary
pressure (Pc) - saturation (S) curve [47]:

Se = Sw − Sr

1 − Sr

=
(

Pc

Pd

)−λ

, (12)

where Se is the effective wetting-phase saturation, Sw is
the wetting-phase saturation, Sr is the residual wetting sat-
uration, Pc is the capillary pressure, Pd is the macroscopic
displacement pressure, and λ is the pore-size distribution
index, the value of which typically ranges between 1 − 4
and can be up to 7 for very uniform sands. Please note that
Pe is a specific value of Pc (a point on the Pc − S curve),
and that we provide the term: Sw−Sr

1−Sr
of the Eq. 12 only

to correspond with the general form of the Brooks-Corey
pressure-saturation relation prevalent in literature. The term
Sw−Sr

1−Sr
has no further use in our model description.

At the scale of the model, the exact pore-scale
arrangement is unknown. Thus, the capillary pressure Pc is
randomized per block using the Inverse transform sampling
method, the details of which have been discussed in [24]:

Pc = PdU− 1
λ , (13)

with U being a random number from a standard uniform
distribution on the interval [0, 1].

Since the Macro-IP model from [24] is deterministic
for any given value of θ and a frozen set of random Pc

values, we would have no random events ω within the
model. That means computing BME would focus only on
the outer parameter-related integral of Eq. 5. The inner
integral would degenerate to a simple yes or no problem.
Without addressing measurement errors or any other form of
randomness between the model and data, the answer would
be a straightforward rejection with BME = 0. Thus, to
include this model in our BME comparison, a modification
of the model to include random events ω is required. This is
achieved by using the SIP model.

SIP differs from the Macro-IP in the way that instead
of gas selecting the block with the minimum invasion
threshold (Te) for invasion, it invades based on a slightly
modified rule for stochastic selection from the Stochastical
Selection and Invasion (SSI) model of [33]. The stochastic
selection rule of the SSI model accounted for viscous
effects (randomness brought into the system by the fluids)
and was originally applied to dense non-aqueous phase
liquid (DNAPL) migration. At the injection rate of the
experimental data used in this study, viscous forces are
negligible. However, viscous forces come into play at other
injection regimes or even for different fluids. This stochastic
selection rule has been modified to be applicable for our gas
invasion in water-saturated sand [23], instead of the DNAPL
invasion of the original work, and is explained below.

In the modified stochastic selection rule of the SSI
model, the decision of gas invasion is still proportional to the
Te values of the neighbouring blocks but is slightly modified
using an additional parameter: c called the cell selection
weighting factor [33]. In this rule, the list of Te values of

50 Computational Geosciences (2023) 27:45–62



Fig. 4 To visualize the different SIP model versions and the synthetic scenarios (Section 3.4.1): this figure shows a sample of 10 model runs for each
combination and compares them to the synthetic data set. More frequently invaded cells appear more opaque, and their colour shading indicates the
relative time from the first to the last invaded cell. From left to right c values are 5, 15, and 100
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the neighbouring blocks (n) of the current gas cluster are
arranged in an ascending order Te,asc and the cumulative
sum Te,cum is evaluated:

Te,cum[i] =
j=i∑
j=1

Te,asc[j ]; i = 1, 2, 3, . . . , n (14)

Then, the first block (value of i) where the rule specified
in Eq. 15 is found true is invaded by the gas:

Te,cum[i] > Rc ×
j=n∑
j=1

Te[j ] (15)

Here, R is a uniformly distributed random number
between [0,1], and c, in the range of [0....∞], controls
the strength of randomness in the stochastic selection rule.
When c → ∞, the value of Rc → 0 for almost all values
of R. In this case, the block with the lowest Te value, first
on the list of Te,asc, will be selected for invasion. This
results in lightning-bolt-like gas fingers. The lower the c

value, the higher the RHS of Eq. 15, which ensures that
the higher Te[j ] are picked more often; hence we observe a
gas finger that is not moving strictly upward, but resulting
in a gas finger pattern with a wider spatial distribution.
Example simulations for c = 5, 15, 100 will be provided in
Section 3.3, see, e.g., Fig. 4. Once the gas invades a block, it
is assigned a gas-saturation value of 1. Thus, the model has
a binary (gas or no gas) type of image data as output.

Furthermore, in our SIP model, we also include the
additional re-invasion rule of the Macro-IP model from
[24] to incorporate fragmentation and mobilization events
[23, 41, 48] observed at low gas flow rates. This re-invasion
rule is based on the terminal thresholds (Tt ):

Tt = Pt + Pw, (16)

where Pt is the terminal pressure calculated from the Pe-to-
Pt ratio (α), which can be obtained from the characteristic
drainage and imbibition curves of the corresponding porous
medium, including capillary pressure hysteresis [49]:

Pt = αPe, (17)

where α accounts for capillary hysteresis between drainage
and imbibition [50]. Water re-invades the gas-occupied
blocks if

Tt,g > Te,w, (18)

where the subscripts g and w stand for the gas- and
water-occupied blocks, respectively. When the re-invasion
of water occurs on the peripheral blocks of the gas cluster,
mobilization of the gas cluster occurs. If the re-invasion
of water disconnects the gas clusters, a fragmentation of
the gas cluster occurs. Therefore, gas invasion can only
occur at a block connected to the gas cluster containing the
gas-injection port. Hence, the other gas clusters can have
a re-arrangement of blocks, but no further growth. This
mimics the trapping of the gas phase at this scale.

The model parameters used in this study are given
in Table 1. Out of the list of model parameters, Pc per
block calculated using Pd (Eq. 13) is surely an uncertain
parameter to enter into θ . We assume that the other
parameters are known in this study.

3.2 Gas injection experimental data

We use the experimental data from a quasi-2D gas injection
experiment in an acrylic glass cell of dimensions 250mm ×
250mm × 10mm filled with homogeneous, water-saturated
sand of 0.7 mm average grain size from the set of
experiments in [34]. The gas is injected at a rate of
0.1ml/min (Experiment 0.1-A of [34]). At this injection
rate, gas migrates along with fragmenting and coalescing
events on their way. The discontinuous nature of the gas
flow is further confirmed by continuously measuring the
pressure at the injection point during the experiment [34].
The experimental setup, data collection, and processing are
described in detail in [34]. We present a brief overview of
the experiment we use in this study.

The experimental data is a time series of 2D binary
images (around 10,000 images) obtained using a light
transmission technique [53–55]. The images are obtained
at the rate of 30 frames per second for a total of 330s.
Optical density (OD) [55] values are used to detect gas in

Table 1 Parameter values used
in the SIP model (table taken
from [24])

Parameter Symbol Values Units

Density of water ρw 1000 kg/m3

Acceleration due to gravity g 9.82 m/s2

Average Pt − Pe ratio α 0.6 – [51]

Displacement pressure Pd 8.66 cm of H2O [52]

Pore-Size distribution index λ 5.57 – [52]

Model domain size Lx − Lz 250 × 250 mm2

Block discretization �x − �z 1 × 1 mm2

Cell selection weighting factor c [5, 15, 100] –
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the system. Gas is considered to be present in a block above
an OD threshold value of 0.02.

An ideal data set for our method would be where each
atomic step (individual invasion events or re-invasion events
for each block) is separately visible in time. We pick this
particular data set because of its high resolution in both
space and time. However, the data obtained is not free from
some challenges that we need to overcome to use MFP to
evaluate the BME for the SIP model.

• Firstly, non-atomic events are observed in the data set
even at this high temporal resolution. This means that,
from one time step to the next step, multiple atomic
events (e.g. invasions, re-invasions) are found to occur
so that their exact sequence is not given uniquely.

• Secondly, at some time steps, the experimental data
shows re-invasion at a block not as expected by the
model’s deterministic re-invasion rule as specified in
Eq. 18.

• Thirdly, at some time steps, invasion of gas occurs at a
block that does not appear to be connected to the cluster
containing the original gas injection block, violating
the SIP model’s assumptions. This disconnection could
result from the data’s optical detection limits.

• Fourthly, in some time steps, the number of gas pixels
also decreases from the previous time step. This violates
the mass conservation principle that the model (in the
absence of a variable gas density) simplifies to a volume
balance.

With the current configuration of the SIP model, using
MFP would thus lead to zero-probability events because of
the aforementioned observations (second to fourth) in the
data set. This would lead to, within the scope of the present
work, meaningless BME computations. This is not an
artefact of MFP but would also occur in all other methods to
compute BME. TheMFP is able to map it to individual zero-
probability events, while other BME computation methods
would merely return an overall zero value for the entire
inner integral of Eq. 5.

That is why we first test our method on synthetic
data, as will be discussed in the next section. We then
slowly introduce the above-mentioned irregularities in our
synthetic data set, and we also introduce some workarounds
(discussed later) to be able to use MFP despite the non-
ideal data set and the non-ideal model assumptions. The
first problem leads to an extension of MFP towards non-
atomic data events, while the second problem leads to an
augmented probabilistic interpretation of zero-probability
events. After that, we use the longest sub-sequence of
the real-experimental data with non-decreasing ninvasions ≥
nre−invasions number of invaded gas blocks (7 steps between
image number 239 and 246), which excludes the third and

fourth problem. Within that sub-sequence, the workarounds
can be implemented without computational difficulties.

3.3 Synthetic data

We begin with testing our method on the SIP model
with synthetic data. By using synthetic data, we first test
our method under ideal conditions. Next, we introduce
irregularities in the data set in a controlled manner. To that
purpose, we run the SIP model, with c = 15 on a particular
invasion threshold field (Te,syn) with no re-invasion events
(i.e. the rule given by Eq. 18 is removed) and use the
results instead of a real data set. Thus, our synthetic data set
consists of a sequence of atomic events and no measurement
errors. It is now guaranteed that the models can follow the
data with a non-zero probability. Figure 4(a) shows this
synthetic truth.

As a next step, we add non-atomicity to the synthetic
data set, which is also observed in the real data set
(see Section 3.2). To make non-atomic synthetic data, we
regularly omit time steps, such that the SIP model would
need nev = 2, 3, 6 iterations to get from one state to the
next. This means we keep only every second, third, and sixth
state from our atomic data set.

3.4 Implementation of theMFP on the SIPmodel

In this section, we discuss the setup and implementation of
the MFP on the SIP model for both a synthetic data set and
the sub-sequence from a real data set. First, we describe
the common implementation setup for both types of data
sets. Then, in Sections 3.4.1 and 3.4.2 we will highlight the
difference in scenario setups for the corresponding data set.

We choose three cell selection weighting factors to
correspond to one rather random (c = 5), one more
deterministic (c = 100) and one model version in between
(c = 15) of the SIP model. This results in three model
versions. The choice of these three different cell selection
weighting factors can be thought of as representative sand
pack experiments with different force-dominated regimes:
viscous (c = 5) or capillary (c = 100) [34]. The invasion
threshold field makes up the uncertain parameters θk over
which we have to marginalize the inner integral (random
gas-invasion decisions of SIP) through the outer integral of
Eq. 5 to obtain BME. Figure 4 visualizes the randomness
of the SIP model with 10 model runs for each of the model
versions (c = 5 or 15 or 100). In contrast to the didactic
example of Section 2.3 (Fig. 2), for SIP model we consider
at each “node” of the decision tree a random decision of
gas migration. These random decisions each have multiple,
situation-specific possibilities for invasion and re-invasion
(illustrated in Fig. 5) instead of binary decisions.
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Fig. 5 Schematic to visualize the SIP model (especially their
difference to the didactic example in Fig. 2); The blue block marks
the injection block. The red-filled blocks mark the currently invaded
blocks. In the next step, any block on the interface (red-rimmed blocks)
might be invaded, and any one of the red-filled blocks or none might
be re-invaded

Also, unlike the didactic example in Section 2.3, the
probabilities for each forced time-step in SIP will not be a
constant πk , or 1 − πk , but they will depend on multiple
factors, namely: (1) the cell selection weighting factor (c),
(2) the invasion threshold (Te) field that depends on the
randomized Pc fields and, (3) the current shape of the cluster
of gas-invaded blocks at the current time-step. We would
like to recall, from Section 3.1, the cumulative sum Te,cum

(Eq. 14) and its connection to the uniformly distributed
random variable R in Eq. 15. The model chooses to invade
the block with the index i (of the ascending order structure)
and not any other neighbouring block if and only if Eq. 15
is fulfilled for i and not for i − 1, i.e.,

Te,cum[i − 1] ≤ Rc ×
j=n∑
j=1

Te[j ] < Te,cum[i] (19)

Rearranging the terms in the equation above gives us two
bounds, and R must be between

⎛
⎝Te,cum[i − 1]∑j=n

j=1 Te[j ]

⎞
⎠

1
c

≤ R <

⎛
⎝ Te,cum[i]∑j=n

j=1 Te[j ]

⎞
⎠

1
c

. (20)

The interval width between these bounds is the probabil-
ity of this exact invasion at the block i. Note here that, for the
block with index i = 1, the lower bound remains undefined
by Eq. 14 and is set to zero.

When we investigate non-atomic steps in the data, we
cannot simply evaluate the transition kernel of our model
implied by Eq. 20 but must think about a workaround.
One can view it like an excerpt of a complete probability
tree diagram as shown in Fig. 2, where nev atomic events
occur. The difficulty lies in not knowing the states and their
ordering in between. We know the start and the end and
can only guess the sequence of atomic events that happened
in between. This means that any permutation of the events
could be a suitable choice.

A reasonable treatment is to consider all the permuta-
tions, i.e. compute the BME over all these possible permu-
tations. Only permutations that do not lead to a path the
model can traverse by its underlying rules (see Section 3.1)
and give by definition a probability of zero can be excluded.
Moreover, further, to not favour any specific one of the
remaining permutations, it is reasonable (and statistically

Fig. 6 Schematic for the workaround for non-atomic data steps. In the
experiment path y0,a, the step from a = 2 to a = 3 consists of 5
atomic events. Each blue path corresponds to one out of n paths of
atomic events leading to y0,3, with n being the number of possible
permutations of the order of the atomic events. (Here, in the schematic
it is n = 5! = 120)
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correct) to average their BME (see Fig. 6). We call this
workaround a mini-Monte Carlo (mini-MC) approach.

If we assume that the number nev of the non-atomic events
is bounded by a constant m throughout the whole experiment,
we increase computational effort by a factor of m!, but we
preserve the linear complexity of our method in tmax as
mentioned in Section 2.3. It is reasonable to assume m 	
tmax , and thus we only employ an exhaustive search on a
small scale and do not affect the overall effort significantly.

3.4.1 Synthetic scenarios

This section specifies scenario setups to treat the synthetic
data set from Section 3.3. We split up our evaluations into
three synthetic data scenarios as follows.

Scenario 1: In this scenario, we plug in the true invasion
threshold field from Section 3.3 (i.e. the field
Te,syn used to generate the synthetic data set)
for all 3 model versions (visualization in
Fig. 4(b)) and evaluate BME with our method
on the atomic synthetic data and the non-atomic
synthetic data (i.e, with 2, or 3, or 6 − step
jumps). This scenario represents gas-injection
experiment repetitions in the same sand pack
without any disturbances to the setup (ideally).

Scenario 2: In this scenario, we draw an ensemble of 1000
invasion threshold fields by adding small,
random noise to the true invasion threshold
field (Te,syn). Then, we plug each of these
fields into the 3 model versions (visualiza-
tion in Fig. 4(c)) for both the atomic and
non-atomic synthetic data (with 2, or 3 −
step jumps). This scenario represents gas-
injection experiment repetitions in the same
sand pack with smoothed-out local hetero-
geneities or disturbances, e.g. due to grain
re-arrangement during the injection of gas.

Scenario 3: This scenario involves an ensemble of 1000
independent random invasion threshold fields,
each of which is plugged into the 3 model ver-
sions (visualization in Fig. 4 (d)) for both the
atomic and non-atomic synthetic data (with
2,or 3− step jumps). This scenario represents
gas-injection experiment repetitions, where
the sand is repacked after each experiment.

3.4.2 Real data scenario

When using the real data sequence as mentioned in
Section 3.2, we use a setup similar to Scenario 3 of
Section 3.4.1 with 7000 random invasion threshold fields.

The difference being that we now use the SIP model with
the ability for re-invasions (recall that Section 3.4.1 uses
SIP model without Eq. 18), so that they can better resemble
the real data set from Section 3.2. An immediate evaluation
of these models leads to BME=0 for almost all invasion
threshold fields; because of its deterministic re-invasion
decision (rule specified in Eq. 18), the model wants to
re-invade a wrong block and is punished with complete
Bayesian rejection. Theoretically, the BME value of 0 is
correct, but it has no practical significance.

The focus of this study is primarily method development
and not model development. Therefore, we probabilistically
change the model. We assign a 90% probability to the
model’s decision to re-invade the block obtained from
the rule specified in Eq. 18 or not-reinvade any block.
The remaining probability of 10% is uniformly distributed
among the other blocks of the gas cluster for the re-invasion
of water. That means, any block of the current gas cluster
can be re-invaded with a probability of at least 0.1

ngas,cluster
, see

Fig. 7. Note, that ngas,cluster only accounts for the blocks in
the respective cluster. Also, we have to treat the injection
cluster differently as we have one less choice since the
injection block cannot be re-invaded.

We also need to adjust our workaround for the non-atomic
data (Fig. 6) because we now have a re-invasion rule

Fig. 7 Illustration of the modification to tackle the second challenge in
data from Section 3.2, where water re-invasion in gas-occupied blocks
occur not according to the model’s choice (guided by Eq. 18): The blue
block marks the injection block. The red blocks are gas-occupied. In
this example, top gas cluster has a probability of 0.1

ngas,top
= 0.1

5 and the

injection cluster has a probability of 0.1
ngas,injection

= 0.1
6 , for a re-invasion

of water in the respective cluster
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in the models. To do that, we combine the different
orderings of re-invasions with the orderings of inva-
sions from before and leave the rest of the non-
atomic modification unchanged. Note, that an atomic
time-step may also have no re-invasion at all, since
ninvasions ≥ nre−invasions. The total number of orderings
is then norderings = (ninvasions!)2/(ninvasions − nre−invasions)!.
For example, a combination of non-atomic events with 5
invasions and 2 re-invasions leads to 2400 different order-
ings, which happens to be the maximum number for the
sub-sequence mentioned in Section 3.2

3.5 MFP: list of algorithmic steps

Before we discuss the results from our case study, we summa-
rize the general algorithmic steps of the MFP. These steps
are the same for all models obeying the Markov Chain prop-
erty combined with exact data (knowledge of each atomic
event).

(1) List all possible events in the data, both reproducible
and non-reproducible, by the model. For example,
in the case of our demonstration case study, the
data’s non-atomic events fall under the model non-
reproducible events category.

(2) State the formula for the probabilities of events being
executed by the model. These could be individual,
fixed values, evaluations of a probability distribution
function or a combination of both. In our case study, it
is stated by Eq. 20.

(3) In the original model code, code a new update rule
to force the next model state, similar to a restart
capability of a code.

(4) Propagate and accumulate probabilities through all
time steps, i.e. a simple multiplication. At this stage, a
possible code break-off criterion can also be included
to identify and flag zero-probability events.

The implementation of our code is mostly non-intrusive
because no re-writing of the code is necessary. However,
step (3) requires good restart abilities of the model code with
forced model states per time step. Also, the simplest way
to achieve step (2) is to add a line to the original code that
outputs the probability of the forced event.

4 Results and discussion

This section discusses the results obtained from our
analysis. Table 2 contains the BME values on a negative
logarithmic scale (the smaller these values are, the better the
model) obtained using MFP on the SIP model for both our
synthetic-data case as well as our real-data case.

4.1 Results from the synthetic data case

In both Scenario 1 and 2, the model version with c = 15 has
the best BME values (see bold font in Synthetic Scenario 1
and 2 of Table 2). For Scenario 1, this is what we expect
because this model version and threshold field were used

Table 2 Table containing the BME values obtained in the three synthetic scenarios and the real scenario on a negative logarithm scale, the
ensemble sizes nMC , number of atomic events nev occurring within a non-atomic step and, computed Bayes factors BF k2

k1

Note, here the model versions (k1, k2), are denoted by their respective c values. The best performing model is highlighted with bold font − ln
BME value
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to generate the synthetic data. For Scenario 2, the threshold
fields were close to the synthetic data setup; therefore,
the correct model version still had the best BME value.
Also, according to expectations, all the model versions
had significantly worse BME values for Scenario 3, where
entirely random entry threshold fields were used. However,
the ranking also changed, and the more random model
version (c = 5) emerged as the best model in Scenario 3.

4.1.1 Why does the model ranking change for Scenario 3?

Let us first look at the two extreme model versions to
understand why the ranking changes. The model version
with c = 100 is almost deterministic in its choice of a gas
pathway, which is different for each invasion threshold field.
This is why this model version can get good BME values
(small − lnBME) if and only if the invasion threshold
field closely matches the true field (Te,syn), which is highly
unlikely when we use entirely random invasion threshold
fields. If this is put colloquially, the few good predictions
of the c = 100 model version do not make up for the many
bad ones. The more random (c = 5) model version is not
as deterministic in its choice of the gas pathway as c = 100
is, and so, it is largely unimpaired by the choice of the
invasion threshold field. This is why the random model
version (c = 5) achieves mediocre values for any invasion
threshold field. Thus, in the scenario where the invasion
threshold field is highly uncertain, it has an advantage that
helps it emerge as the best model version in Scenario 3.
The model version with c = 15 is not identified as the best
model when we increase the uncertainty in the threshold
field. This indicates that the entry threshold field is a highly
sensitive and important parameter for the SIP model to
function correctly.

4.1.2 Effect of non-atomic synthetic data

The introduction of non-atomicity in the synthetic data does
not change the ranking of the models in any scenario (see,
− lnBME values for nev values other than 1 for Synthetic
Scenarios (1, 2, and 3) in Table 2) but makes it slightly
less decisive in comparison to nev = 1 for all the synthetic
scenarios of Table 2. This coincides with the synthetic data
set becoming, in a sense, weaker or less informative if parts
of it are unknown in ordering. This is visible in Table 2 as,
despite the general rise of − ln BME values with increasing
nev , their differences become slightly smaller. Looking at
the Bayes factors between the competing models makes
it easier to see this effect: they generally decrease with
increasing nev . There are only a few exceptions to this
observation. For example, the Bayes Factors BF15

5
between

the models in Scenario 2 increases with the increased non-
atomicity in the synthetic data. However, looking at the

orders of magnitude of the values in comparison, it can be
safely concluded that this does not affect or change the level
of decisiveness.

4.2 Results from real data scenario

Initially, we evaluate the model versions on the complete
real data set. This helps us gather information on the
magnitude of the effect of the challenges in the real data
for implementation of MFP, as discussed in Section 3.2.
We find that non-atomic events with a very high number of
events nev are pretty common in the data set, which leads
to very high computation time for the mini-MC workaround
explained in Section 3.4, thus making a BME evaluation
infeasible even with MFP.

The events of wrong block re-invasion (the second
problem in data discussed in Section 3.2) in the data set are
plenty, but we are able to tackle them with our workaround
mentioned in Section 3.4.2. In the later time-steps of the
data, block invasion in non-gas injection clusters (Third
problem in data discussed in Section 3.2) or events with
decreasing numbers of invaded gas blocks (Fourth problem
in data discussed in Section 3.2) are predominant. However,
we have no fix to this problem in the real data set.

Thus, we decide to look for a sub-sequence of time steps
in the data that aligns with the model’s assumptions and
has a reasonably small number of non-atomic events (for
reasonable computation time of mini-MC runs, see Fig. 6).
The resulting sequence of time steps in the data is the
one mentioned in Section 3.2. For that sequence, − lnBME
is between 269 and 360 for the probability of correctly
predicting seven steps, which is a small probability already.
This is not a fault of our method MFP. We hope that the
models to which our readers may decide to apply MFP
match their corresponding data set better than in our case.

Regarding the ranking of the model versions, we see
a similar pattern as in the synthetic Scenario 3. The best
model version is the one with c = 5, followed by c = 15
and then c = 100 (see Row: Real from Table 2). The
uncertainty in the invasion threshold fields is handled better
by a random (c=5) model than by the more deterministic
models. Therefore, more information about the invasion
threshold fields is necessary for these models to accurately
predict the gas path under the experimental data’s conditions
and scale.

5 Conclusions and outlook

In conclusion, our method MFP makes it possible to
calculate BME for Markov-Chain type models and discrete
atomic data in previously impossible cases. The method
works well, is non-intrusive to the model and has a linear
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computational cost. In our case study, the method was
demonstrated only on a relatively small sequence of real
data. This is because the large distance between the model
outputs and the real data leads to many zero-probability
events. So, for more conclusive results, better models or
more-informative data are required, i.e. data with no or few
non-atomic events and an improved SIP model.

When we use MFP to evaluate the BME for imperfect
models or data or both, resulting in practically futile BME
values (BME = 0), we can adapt our approach and use MFP
to detect events leading to such values in the model and
the data by flagging them. This exercise helps determine
the structural errors in the model, or mismatch between the
model concepts and the observations.

From our implementation of MFP on the SIP model
and gas-injection experimental data used in this study, we
can conclude that both the model and the experimental
data have a scope for improvement. The rules in the SIP
model could be updated by looking at specific types of
events, e.g. the ones that get the model rejected or result in
poor performance (like the deterministic re-invasion events
in the current version). The experimental data technique
processing could be updated to have more discrete and
atomic data steps. However, experimental data or model
improvement is beyond the scope of the present research
work.

Our method, in its current stage of development, requires
that the data be noise-free. Further research is needed to
apply MFP to noisy data (e.g. with statistical assumptions
on the distribution of black/white detection errors). A
straightforward idea would be to perturb the available data
with several realizations of randomly generated noise and
then handle each realization with our method. However, this
multiplies computational costs by a substantial factor to host
these repetitions.

Our method enables a fully Bayesian assessment of
the SIP model for the first time. Besides the SIP model
and gas-injection experimental data, this method can be
applied to gas (fluid) migration in fractured-porous media
under the conditions of Markov-style model formulation
and complete observations (e.g. in thin slices or with
high-resolution 3D micro-tomography). It can also be
applied to systems involving experiments and models at the
microscopic scale, where individual pores are resolved by
appropriate monitoring techniques (e.g., [56]).

Apart from multiphase flow in porous media problems,
this method can be used in applications such as counting
processes (e.g. as in traffic), discrete computerized systems
(e.g. network traffic), probabilistic Markov-style model-
based river water quality monitoring [57], tracer experiments
/ Lagrangian movement (e.g. fluorescent microparticles to

monitor turbulent flow [58]), stochastic models for discrete,
dynamic systems and complete observation (e.g. chemical
reaction modelling), statistics-based data-driven soil-plant-
atmosphere modelling [59] and micro-seismic modelling
[60] to name a few.

Appendix A: Monte Carlo simulations grow
exponentially in tmax

We will prove here that the required size of MC simulations
grows exponentially in tmax . Based on the tree structure
in the didactic example from Section 2.3, we can see that
there are N = 2tmax equiprobable branches. Therefore, the
probability of the correct branch (the one with non-zero
likelihood) is exactly:

Ptrue = 1

N
= 1

2tmax
= 2−tmax = BME, (21)

which apparently is the situation-specific definition of
BME. When approximating BME via MC sampling with
i = 1 . . . n independent random realizations, then each
realization i has a constant and independent probability of
finding or not finding the correct branch. This situation
is described exactly by the Binomial distribution. The
Binomial distribution is a discrete probability distribution of
the number of success events k out of n independent trials:

P(X = k) =
(

n

k

)
pk (1 − p)(n−k) (22)

where p is the probability of success and 1 − p is the
probability of not obtaining success. Here, we define n as
number of MC trials, X is the (random under repetition of
the entire MC simulation) number of times the MC finds
the correct branch (i.e., the one with Likelihood = 1). For
a given execution of MC with given n, we will find k

times the correct branch and n − k times any branch with
Likelihood = 0.

Also, in the context of our example, the probability
parameter p of the Binomial distribution is equal to
BME = Ptrue. From the MC results, one would estimate:

̂BMEMC = k

n
= p̂ ≈ BME

Just for reassurance, the asymptotic MC result for BME
at n → ∞ converges to the exact solution:

E

[
X

n

]
= 1

n
E [X] = p = BME.
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But can we estimate the MC error in this approximation,
e.g., expressed as the coefficient of variation (CV). For the
Binomial distribution, we know that:

Variance of X: Var[X] = n · p · (1 − p)

Mean of X: E[X] = n · p

As the conversion from k to the estimate of p is simply
a division by n, we apply the rules of linearized uncertainty
quantification to see that:

Variance of
X

n
: Var

[
X
n

] = p·(1−p)
n

Mean of
X

n
: E

[
X
n

] = p

Using this in the definition of the coefficient of variation:

CV of
X

n
= CV

[
̂BME

]
=

√
Var

[
X
n

]
E

[
X
n

]

=
√
1 − p√
n · √

p

For small values of p as in the given example with p =
2−tmax , we can replace 1 − p ≈ 1, and hence:

CV of
X

n
for small p: CV = 1√

n · √
p

= 1√
n · √

2−tmax

= 2
tmax
2√
n

.

Thus, the number of MC runs required for a desired
accuracy (expressed as a desired value of the CV) is:

nrequired = 2tmax

CV 2
desired

.

This shows that the number n of required MC samples
increases, for a given precision requirement, exponentially
in tmax . The base 2 of the exponent originates from the
tree structure, where each node expands into two further
branches. In real applications, where the evolution of the
model over time has more than two possibilities, the base
will simply increase, so the exponential growth will be even
stronger.

Appendix B: Tackling numerical instabilities
in computation of BME

Here, we provide details on the approach of handling
numerical instabilities in the BME computation when using
MC integration (Eq. 2) for the uncertain parameters in Eq. 5.

To avoid very small likelihoods (BME values from the
perspective of random events ω) turning into numerical

zeros, we divide each sample likelihood by the maximum
likelihood encountered in the whole ensemble, max{p(y0 |
θk, Mk)}, yielding values between 0 and 1. Then, Eq. 5
rewrites as:

Ik = max{p(y0 | θk, Mk)}
∫ p(y0|θk,Mk)

max{p(y0|θk,Mk)}
·p (θk | Mk) dθk .

Taking the logarithm and applying the MC approxima-
tion of the integral yields:

ln Ik = lnmax{p(y0 | θk, Mk)} − lnN

+ ln
∑N

r=1
p(y0|θk,r ,Mk)

max{p(y0|θk,Mk)} .

Acknowledgements The authors would like to thank the German
Research Foundation (DFG) for financial support of this project within
the Research Training Group GRK1829 “Integrated Hydrosystem
Modelling” and the Cluster of Excellence EXC 2075 “Data-integrated
Simulation Science (SimTech)” at the University of Stuttgart under
Germany’s Excellence Strategy - EXC 2075 - 39074001. The authors
would also like to thank Assistant Professor Dr. Cole Van De Ven,
Carleton University, Canada, for his assistance with the provisioning,
handling and processing of the experimental data used in this study.

Author Contributions ‘Not applicable’

Funding Open Access funding enabled and organized by Projekt
DEAL. The authors would like to thank the German Research
Foundation (DFG) for financial support of this project within
the Research Training Group GRK1829 “Integrated Hydrosystem
Modelling” and the Cluster of Excellence EXC 2075 “Data-integrated
Simulation Science (SimTech)” at the University of Stuttgart under
Germany’s Excellence Strategy - EXC 2075 - 39074001.

Data Availability The experimental data set used in this study is made
available by [61] at Scholars Portal Dataverse: https://doi.org/10.5683/
SP2/RQKOCN.

Code Availability The modelling data and codes used in this study are
available as a data set [62] in the DaRUS dataverse for Stochastic
Simulation and Safety Research for Hydrosystems (LS3):https://doi.
org/10.18419/darus-2815.

Declarations

Ethics approval and consent to participate ‘Not applicable’

Consent for Publication ‘Not applicable’

Conflict of Interests The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

59Computational Geosciences (2023) 27:45–62

https://doi.org/10.5683/SP2/RQKOCN
https://doi.org/10.5683/SP2/RQKOCN
https://doi.org/10.18419/darus-2815
https://doi.org/10.18419/darus-2815
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References
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