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Abstract
Random reconstruction of three-dimensional (3D) digital rocks from two-dimensional (2D) slices is crucial for elucidating the
microstructure of rocks and its effects on pore-scale flow in terms of numerical modeling, since massive samples are usually
required to handle intrinsic uncertainties. Despite remarkable advances achieved by traditional process-based methods, statistical
approaches and recently famous deep learning-based models, few works have focused on producing several kinds of rocks with
one trained model and allowing the reconstructed samples to approximately satisfy certain given properties, such as porosity. To
fill this gap, we propose a new framework with deep learning, named RockGPT, which is composed of VQ-VAE and conditional
GPT, to synthesize 3D samples based on a single 2D slice from the perspective of video generation. The VQ-VAE is utilized to
compress high-dimensional input video, i.e., the sequence of continuous rock slices, to discrete latent codes and reconstruct them.
In order to obtain diverse reconstructions, the discrete latent codes are modeled using conditional GPT in an autoregressive
manner, while incorporating conditional information from a given slice, rock type, and porosity. We conduct two experiments on
five kinds of rocks, and the results demonstrate that RockGPT can produce different kinds of rocks with a single model, and the
porosities of reconstructed samples can distribute around specified targets with a narrow range. In a broader sense, through
leveraging the proposed conditioning scheme, RockGPT constitutes an effective way to build a general model to produce
multiple kinds of rocks simultaneously that also satisfy user-defined properties.
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1 Introduction

Digital characterization of rocks provides great benefits for
investigating pore-scale flow in oil reservoirs or groundwater
aquifers via the modeling method. After obtaining three-
dimensional (3D) digitalized porous structures, the research
about how the microscopic structure affects macroscopic
properties, such as permeability, can be conducted more effi-
ciently than traditional experimental methods. Due to the spa-
tial stochasticity of porous structures, a detailed understanding
of pore-scale flow and accurate structure-property mappings

usually requires a large number of digital rock samples, with
the aim to quantify intrinsic uncertainties.

Over the last few decades, the development of 3D im-
aging techniques, such as X-ray computed tomography
(e.g., Micro-CT and Nano-CT) [1–3], focused ion beam
and scanning electron microscope (FIB-SEM) [4, 5] and
helium-ion-microscope (HIM) [6–8], for ultra-high-
resolution imaging, have been widely adopted to physi-
cally scan rocks and build their digital twins. Even though
physical scanning can provide digital rock samples with
the highest fidelity, it cannot guarantee the requirements
of quantity for uncertainty analysis, due to certain factors,
such as limited access to imaging instruments, potentially
expensive cost, and insufficient expertise in rock sample
preparation and image post-processing. To overcome
these limitations, diversified mathematical methods have
been developed for random reconstruction of digital
rocks. Among them, process-based methods, statistical
approaches, and deep learning-based models are the most
broadly used categories.
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Process-based methods reconstruct digital rocks by means
of simulating rock formation processes, including sedimenta-
tion, compaction, and diagenesis. The random packing of
grains with a specified radius was commonly adopted to mim-
ic the compaction and solidification process of sedimentary
rocks, such as sandstone [9, 10]. Owing to the relatively reg-
ular grains, the synthetic structures generally possess good
connectivity and flow properties. It is difficult, however, to
apply such methods to those rocks, such as carbonate, whose
diagenetic process are not always known.

Statistical approaches work on an array of pixels in a reg-
ular grid, and leverage statistical modeling to represent binary
void-grain structures that adhere to certain geostatistical con-
straints. Among these methods, two-point statistics (TPS) and
multi-point statistics (MPS) are the most commonly used
ones. Quiblier [11] first adopted Gaussian random field, a
representative of the TPS method, to reconstruct 3D porous
media based on 2D thin section images. Adler et al. [12]
employed the auto-correlation function for the reconstruction
of Fontainebleau sandstone from 2D images. Even though the
crucial step, i.e., the matching of the two-point correlation
function, in TPS methods is relatively easy to implement, it
cannot sufficiently characterize the porous structure, especial-
ly for those structures with multi-phase and anisotropic
characteristics.

In contrast, MPS can extract local multi-point features by
scanning a training image with a certain template, which con-
tributes to the incorporation of high-order information, and
thus it achieves a better reconstruction performance than
TPS methods [13]. The early MPS approach is CPU-
intensive since it needs to rescan the whole training image to
predict a new pixel. To address this constraint, Strebelle [14]
proposed a single normal equation simulation (SNESIM)
method, which employed a searching tree to scan the training
image only once, and thus markedly improved efficiency.
This strategy, however, necessitates a great memory require-
ment, especially when a large template is used to capture the
morphological information. To overcome this limitation,
cross-correlation-based simulation (CCSIM) was developed
by Tahmasebi et al. [15] to realize MPS in a more efficient
manner. The key idea behind CCSIM is that it treats 3D re-
construction as a stack of a list of successive 2D slices, which
significantly alleviates the memory burdens. Even though
CCSIM can reduce memory load via layer-by-layer recon-
struction, its initial version possesses certain deficiencies,
which stimulated the subsequent improvements, including
MS-CCSIM for multi-scale features extraction [16], iterative
CCSIM for avoiding discontinuities between neighboring
blocks [17, 18], and the three-step sampling method (TSS)
for improving reconstruction quality along the stacking direc-
tion [19].

In recent years, with easier access to big data and advanced
supercomputers, deep learning (DL) techniques have

experienced dramatic advancements, and their successes in
image synthesis have inspired considerable applications in
digital rock reconstruction. Compared with the previous
methods, such as process-based and statistical methods, DL-
based approaches can extract image features automatically
from data, and thus avoid the necessity for prior expertise
and intensive hand-crafted feature design. AmongDLmodels,
generative adversarial networks (GANs) [20] and variational
auto-encoder (VAE) [21] have achieved the most popularity
for digital rock reconstruction since they can capture the data
distribution and reproduce it very well. Mosser et al. [22] first
adopted GANs to learn 3D images of porous structures from
different rock types, and successfully reconstructed random
samples with morphological and flow properties maintained.
Shams et al. [23] combined GANs with the auto-encoder to
reconstruct multiscale porous media, thus enabling GANs to
predict inter-grain pores while the auto-encoder provides the
inner-grain ones.

Apart from reconstructing rock samples by taking random
noise as input, the 2D slice should also be considered to serve
as an input of reconstruction models, since, in most practical
applications, 2D slices are obtained through physical scan-
ning. Zhang et al. [24] proposed a hybrid model composed
of GAN and VAE to produce 3D porous structures based on
2D images. The GAN-VAE hybrid model enables the encoder
in VAE to characterize the statistical and morphological infor-
mation of the 2D input image, and then generates a low-
dimensional vector for the generator in GAN. Feng et al.
[25] developed a BicycleGAN framework for mappings from
2D slices to 3D structures, and this method was successfully
tested on two statistically isotropic materials and a non-
stationary material with high efficiency. Although the above
works have realized 2D-to-3D mappings, they still require 3D
training data, which may pose challenges to areas where 3D
data are challenging to acquire. As a consequence, Anderson
et al. [26] first designed a new method, named RockFlow, to
synthesize 3D structures purely based on 2D training data,
whose core assumptions are that rock sample images are iso-
tropic along all dimensions, and linear interpolation in latent
space produces semantic interpolation in image space. There
is another work [27] that adopted linear interpolation in latent
space for 3D reconstruction based on 2D cross-section im-
ages, and it was realized by progressive growing GAN [28].
In addition, Kench and Cooper [29] developed a SliceGAN
framework, which sufficiently utilized information contained
in cross-sectional micrographs to statistically reconstruct 3D
samples based on a single representative 2D image.

Even though 3D reconstructions based on 2D slices using
deep learning methods have recently witnessed substantial
progress, almost all of the current approaches only incorporate
information from given 2D/3D images, while failing to explic-
itly consider other important properties, such as porosity,
which may constrain its potential to produce highly
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representative samples. In addition, almost all of the existing
models are trained on one kind of rock, which means that, for
example, a model trained on sandstone data cannot be utilized
for carbonate reconstructions. As for the reason, the current
methods lack an effective conditioning scheme to incorporate
additional information apart from image data.

In the present study, inspired by the layer-by-layer recon-
struction strategy employed in CCSIM, we treat 3D recon-
struction as an analogy of video synthesis, in which continu-
ous frames can be viewed as slices of porous structures that
are interconnected along any direction. In this setting, we pro-
pose a method, named RockGPT, which was originally devel-
oped as VideoGPT by Yan et al. [30] for video generation, to
reconstruct 3D samples based on a single 2D slice. The
RockGPT is composed of vector-quantized VAE (VQ-VAE)
[31] and conditional GPT [32], in which VQ-VAE is first
utilized to encode the input slices as discrete latent codes,
and then conditional GPT is employed to model these discrete
latent codes in an autoregressive manner while incorporating
certain additional information, such as given 2D slices, rock
type and porosity, through a proposed conditioning scheme.
The training data of RockGPT can be composed by randomly
extracting massive subvolumes, i.e., continuous slices, from a
relatively big 3D rock image.

The remainder of this paper proceeds as follows. Section 2
introduces the RockGPT architecture and its two components.
The experimental data used in this work are briefly introduced
in section 3, and the results are presented in section 4.
Conclusions are provided in section 5.

2 Methodology

2.1 Vector quantized variational auto-encoder (VQ-
VAE)

In terms of generative modeling, deep learning models
can be broadly divided into two categories [33]. One
group is explicitly likelihood-based methods, such as
PixelCNNs [34] and VAE [21]; and the other group is
l i ke l i hood - f r ee me thods , such as GANs [20 ] .
Considering that the task in this work is sequential gen-
eration, i.e., generate subsequent slices based on the initial
single slice, autoregressive models belonging to the
likelihood-based category are comparably more appropri-
ate. Regarding autoregressive modeling, it will be more
efficient to construct models in a down-sampling latent
space without spatial-temporal redundancies than that at
the atomic level of all pixels across space and time.
Therefore, it seems that building an autoregressive model
over latent codes obtained by the VAE encoder is a good
choice. However, the latent codes in VAE are continuous
vectors, which are not as suitable as discrete vectors for

adapting to cutting-edge autoregressive models, e.g., the
Transformer [35]. In addition, discrete representations are
potentially a more natural fit than continuous features for
many of the modalities in which we are interested. For
instance, language is inherently discrete, and images are
also composed of pixels whose values range from 0 to
255 with discrete integers. Therefore, it is of important
meaning to learn discrete latent representations from
high-dimensional input data, such as video, and then build
an autoregressive model over the discrete latent codes in
order to sample them and generate new realizations. VQ-
VAE, which was developed by Oord et al. [31], can suc-
cessfully accomplish this task.

As shown in Fig. 1, the VQ-VAE model takes a slice se-
quence x as input, which will be passed through an encoder to
produce the output ze(x). The output ze(x) is continuous vec-
tors, and in order to obtain posterior categorical distribution
q(z| x) of discrete latent random variables z, we need to define
a latent embedding space e∈RK�D, where K represents the
size of the discrete latent space (i.e., a K-way categorical),
and D is the dimensionality of each embedding vector ei. It
can be seen that there are K embedding vectors

ei∈RD; i ¼ 1; 2;⋯;K. Suppose that we have n vectors with
D dimensionality in ze(x), and we should traverse the embed-
ding space e to find the nearest embedding vector ek for each
component of ze(x). Then, each vector in ze(x) will find their
nearest neighbors from the embedding space, and their index k
will compose the discrete latent variables z. Therefore, the
categorical distribution q(z| x) can be defined as one-hot as
follows:

q z ¼ kjxð Þ ¼ 1 for k ¼ argmin
j

ze xð Þ−e j
�� ��

2

0 otherwise

:

8><
>: ð1Þ

Since discrete latent variable z cannot feed the decoder
directly, we replace it with the corresponding embedding vec-
tor by taking z as an index of embedding space. Thus, the
discrete embedding zq(x) is defined as below:

zq xð Þ ¼ ek ; where k ¼ argmin
j

ze xð Þ−e j
�� ��

2
; ð2Þ

where zq(x) has the same dimensionality as ze(x), but the for-
mer is more compressed than the latter, and consequently the
subsequent sampling and reconstruction based on latent space
will be more efficient. Finally, the discrete embedding zq(x)
will serve as an input of the decoder to produce new or recon-
structed videos. The network architecture of the encoder and
decoder are illustrated in Appendix 1.

Regarding the model training, the parameters coming from
encoder (E ), decoder (D ) and embedding space (e) can be
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trained using the following objective:

L ¼ x−D zq xð Þ� ��� ��2
2
þ sg ze xð Þ½ �−ek k22

þ β sg e½ �−ze xð Þk k22; ð3Þ

where sg represents the stop-gradient. The total loss L con-
tains three terms, and the first term is reconstruction loss,
which is utilized to train the encoder and decoder. Since Eq.
(2) cannot provide real gradients for back propagation, we
copy gradients ∇zL from decoder input zq(x) to encoder output
ze(x), as shown in the red line in Fig. 1. Consequently, the
embedding space cannot get updated via the reconstruction
loss due to the straight-through gradient estimation from
zq(x) to ze(x). In order to learn the embedding space, vector
quantization (VQ), which is one of the simplest dictionary
learning algorithms, can be used to move the embedding vec-
tor ei to the encoder output ze(x). In practice, it can be realized
by enforcing the second term of Eq. (3), and due to the sg
operator, which is defined as identity in forward computing
and has zero derivatives in backward propagation, only the
embedding space needs to be updated during back propaga-
tion. Furthermore, to ensure that the encoder commits to an
embedding, a commitment loss, which is defined as the third
term in Eq. (3), is added to purely train the encoder via
adopting the sg operator on the embedding space. The coeffi-
cient β was chosen as 0.25 in all experiments of [31] and
validated to facilitate a good performance, and thus we also
follow this setting in our work.

After training the encoder, the decoder and the embedding
space, the VQ-VAE has been endowed to down-sample a
high-dimensional input to low-dimensional discrete latent
codes and reconstruct the original samples. However, until
now, it has no ability to create new samples; in order to

achieve this, we need to build an autoregressive model on
q(z| x) so that we can sample it to produce new latent codes
and the corresponding output videos. In the original work of
VQ-VAE, this model was built with PixelCNN or WaveNet.
In the present work, however, it will be replaced by a new
cutting-edge autoregressive model, named GPT, which will
be introduced in the next section. For additional theoretical
details about VQ-VAE, interested readers can refer to [31].

2.2 Conditional GPT

GPT is an abbreviation of Generative Pre-Training, which was
created by Radford et al. [36] to build a language model in an
unsupervised manner, followed by supervised fine-tuning on
each specific task. GPT adopts Transformer as the model archi-
tecture [35], which has been demonstrated to achieve excellent
performance in various fields, such as machine translation in
the field of natural language processing [37, 38], image classi-
fication and generation in the field of computer vision [32, 39,
40], and speech recognition and synthesis within audio-related
applications [41, 42]. This model choice enables GPT to pro-
vide a more structured memory and higher efficiency for han-
dling long-term dependencies in sequence data due to the em-
ployment of the attention mechanism, compared to existing
alternatives, such as recurrent neural networks.

Inspired by advances in unsupervised representation learn-
ing for natural language, Chen et al. [32] developed a similar
model to learn useful representations for images, via training a
GPT model to autoregressively predict image pixels without
incorporating knowledge of image structures. Given the im-
age datam∈M being flattened as a pixel sequence with length
n, i.e.,m = (m1, m2, ⋯, mn), the density p(m) can bemodeled
autoregressively as follows:

Fig. 1 The schematic of VQ-VAE. The encoder takes video-like data x,
i.e., slice sequence, as an input, and outputs low-dimensional embedding
vectors ze(x), which are continuous variables. In order to obtain discrete
latent variables z, an embedding space e needs to be learned via the vector
quantization (VQ) algorithm, and then the discrete z can be determined by
a nearest neighbor look-up using embedding space. Afterwards, the

discrete embedding zq(x) will be constructed with the embedding space
by using discrete z as an index of embedding vectors. Finally, the zq(x)
will be taken as inputs of the decoder to produce reconstructed samples.
The posterior categorical distribution q(z| x) can be learned by an
autoregressive model, such as PixelCNN, in order to sample it and
generate new samples
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p mð Þ ¼ ∏
n

i¼1
p mijm1;m2;⋯mi−1; θð Þ; ð4Þ

where θ represents the network parameters. The model can be
trained by minimizing the negative log-likelihood of the data:

LGPT ¼ E
m∼M

−logp mð Þ½ �: ð5Þ

The Transformer decoder is adopted as the model architec-
ture for GPT, which takes an input sequencem1,m2,⋯,mn of
discrete language tokens or image pixels, and produces a d-
dimensional embedding for each position. As shown in Fig. 2,
the GPT architecture is mainly composed of a stack of N
attention blocks. Each attention block has three sub-modules
with residual connections, and each module takes layer nor-
malization (LayerNorm) firstly [43] and dropout operation in
the end. The difference lies in that the first two sub-modules
adopt multi-head attention to compute dependencies within an
input sequence, while the last sub-module utilizes fully-
connected layers to gather information. As can be seen from
Fig. 2, the discrete embeddings zq(x) produced by the trained
VQ-VAE serve as the input of GPT, and the corresponding
discrete latent codes z play the role of category targets, which
will be used to formulate the loss function (i.e., Eq. (5)) on top
of the output probabilities in each position. Therefore, we
actually utilize Eq. (4) to build an autoregressive model for
discrete latent codes z. In order to encode the order of the
sequence, the information about the relative or absolute posi-
tion of elements in the sequence should be injected before the
attention blocks by adding a positional encoding layer, which
can be realized by enforcing a sine function on the position
index [35].

Based on the original architecture of GPT, we add a condi-
tion block on it to build a conditional GPT, with an aim to
incorporate some additional information, such as the given
slice, rock type, and porosity. In particular, the conditioning
of the initial slice is the key step that contributes to the 3D
reconstruction based on one single slice. As shown in Fig. 2,
when training the model, the first slice of the input sequence is
chosen as the conditional slice, and its spatial features will be
extracted by a ResNet block [44] and a positional encoding
layer. The architecture of ResNet used in this work is demon-
strated in Appendix 2. Regarding how to fuse the information
extracted from the conditional slice, we perform cross-attention
on the ResNet output using the second sub-module of each
attention block, as illustrated by path ① in Fig. 2. In contrast,
the conditional rock type or porosity are fairly low-dimensional
data compared with the conditional slice, and we incorporate
them by designing a conditional layer normalization for each
sub-module of all attention blocks. It can be realized by
enforcing a linear transformation, i.e., ynew = yoriginal × W +
b, whose gain (W) and bias (b) are parameterized as affine
functions of the low-dimensional conditional vector, on the
output (yoriginal) of the original layer normalization, as demon-
strated by path② in Fig. 2. Therefore, two types of condition-
ing, i.e., cross attention and conditional layer normalization, are
utilized in this work to create a conditional GPT. For additional
details about the attention mechanisms, i.e., self-attention and
cross-attention, one can refer to [35].

2.3 RockGPT

Inspired by the creation of VideoGPT for generating videos
based on the initial frame, we apply this framework to 3D

Fig. 2 The architecture of the conditional GPT. The GPT is mainly
composed of N attention blocks, and each block has three sub-modules
with residual connections, which are marked as ⨁. The trained VQ-VAE
should be utilized here to take slice sequence x as input, and produce
discrete embeddings zq(x) and latent codes z. The embeddings will go
through the attention blocks after a linear transformation and positional
encoding, while the discrete latent codes will serve as targets to build the

loss function together with the output category probabilities of each
position. In order to incorporate conditional information, cross attention
and conditional layer normalization (LayerNorm) are employed, as
illustrated by path ① and ②, respectively. The former is used to fuse
information from the high-dimensional conditional slice, while the latter
is employed to incorporate low-dimensional information, such as rock
class and porosity

681Computational Geosciences (2022) 26:677–696



digital rock reconstruction based on one single 2D slice.
Considering how to produce highly representative samples,
such as structures satisfying given porosities, we explore the
conditioning scheme that can be integrated into model train-
ing. Followed by the settings of VideoGPT, when training the
GPT model, we adopt cross attention to realize the condition-
ing of the 2D slice, and leverage conditional layer normaliza-
tion to incorporate relatively low-dimensional properties, such
as rock type and porosity, as mentioned previously.
Furthermore, the conditioning of rock type allows the model
to learn several kinds of rocks simultaneously, which avoids
the situation in which one model is developed for one rock,
and seamlessly conserves computational expense. We call the
proposed framework RockGPT, and it comprises VQ-VAE
and conditional GPT.

As shown in Fig. 3, the training of RockGPT can be real-
ized by two stages in order. In the first stage, a VQ-VAE
should be trained to learn a discretized latent space from
high-dimensional data and reconstruct them via the loss func-
tion defined in Eq. (3). In order to produce diversified sam-
ples, in the second stage, the discrete latent codes can be
flattened (i.e., path ① in Fig. 3) and modeled using a condi-
tional GPT in an autoregressive manner while incorporating
certain additional information. After training the conditional
GPT, we can sample it guided by some given conditional
information to produce a new sequence of latent codes, which
will be sent to the trained decoder of VQ-VAE to generate
new samples, as illustrated by path ② in Fig. 3. It is worth
noting that the last slice of generated samples can be utilized

as a new conditional slice for the subsequent generation; there-
fore, we can stack them in order to reconstruct new samples,
which consequently have a much larger size than that of train-
ing ones along the stacking direction.

3 Experimental data

In order to evaluate the reconstruction performance of the
proposed RockGPT, we collect five kinds of rocks, i.e.,
Berea sandstone, Doddington sandstone, Estaillade carbonate,
Ketton carbonate and Sandy multiscale medium, from public
datasets, i.e., the Digital Rocks Portal (https://www.
digitalrocksportal.org/), and their basic information is
presented in Table 1. Considering that we have prepared a
large number of samples of the five rock types with size 643

voxels in our previous work [45], we can easily construct a
new training dataset based upon it. In this work, the input of
RockGPT is a sequence of slices, and it can be directly ex-
tracted with size l×64×64 voxels from the original samples.
Here, l represents the length of the slice sequence, and it at
least needs to satisfy the correlation length of porous struc-
tures, with an aim to capture the general morphological char-
acteristics of pores. However, it is not suggested to choose a
large number for l if available computing resources are limit-
ed, since memory usage will increase quadratically with the
growth of l. In order to determine an appropriate l, we calcu-
late two-point correlation functions for the training samples
used in our previous work [45], and adopt an exponential

Fig. 3 The architecture of the
proposed RockGPT. The training
of RockGPT is divided into two
stages. In the first stage, a VQ-
VAE model is trained to
compress high-dimensional slice
sequences into a discretized latent
space and reconstruct them. Then,
the discrete latent codes will be
flattened (i.e., path ①) and
modeled with conditional GPT in
the second stage, while
incorporating some additional
properties. For inference, a new
latent sequence can be sampled
from the trained GPT constrained
by some given conditional
information, and then the new
latent sequence will be sent to the
decoder in VQ-VAE for new slice
generation (i.e., path②)
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model, i.e., R(x) = exp(−x/λ), to fit these functions for
obtaining the correlation length λ and calculating their aver-
ages. In this work, we assume the samples are isotropic, so the
correlation lengths along different directions share the same
value. As shown in Table 1, Ketton carbonate has the largest
mean correlation length with size 5.68 voxels, and conse-
quently in this study, we set l = 8 voxels that can meet the
requirements of correlation length of all rock types.
Eventually, the slice sequences with size 8×64×64 voxels
can be extracted from the original training dataset utilized in
our previous work along the first axis with a spacing of four
voxels, which means that an original sample with size 643

voxels will reproduce five slice sequences with size
8×64×64 voxels. From the extracted dataset, 60,000 training
samples and 500 testing samples are randomly selected for
each rock type. It needs to bementioned that the determination
of l involves a trade-off between the accuracy and efficiency,
and there has been no established rule for choosing its optimal
value. In this work, we utilize the maximum value of mean
correlation lengths of different rock types as the bottom line,
and assign a litter larger value for l under the precondition of
limited computational budget. One can also adopt other
values, e.g., the maximum correlation lengths of different rock
types, as the bottom line to set l, if sufficient computing power
can be supplied.

4 Results

4.1 Multi-rock reconstruction conditioned on single
slice and rock type

In this case, we test the capability of RockGPT in producing
3D digital rocks of different kinds based on a single condi-
tional slice. We select three kinds of rocks from Table 1, i.e.,
Berea sandstone, Doddington sandstone and Ketton carbon-
ate, to conduct this experiment. As mentioned in the last sec-
tion, the shape of the slice sequence is 8×64×64 voxels, and
consequently the size of input for VQ-VAE should be formu-
lated as n×1×8×64×64 due to the utilization of 3D convolu-
tion. Here, n represents the batch size and it is chosen as 32 in
this work, and 1 is the number of channels.We set the shape of

embedding space e∈RK�D in VQ-VAE as 1024×256, i.e., K
= 1024 and D = 256, whose meanings were explained in
section 2.1. Meanwhile, the size of latent ze(x) is determined
as n×256×2×32×32 voxels, and it will affect the structural
design of the encoder and decoder in VQ-VAE, which are
listed in Appendix 1. In addition, the latent size
n×256×2×32×32 means that for each sample, we have
2×32×32, i.e., 2048 in total, vectors with dimensionality 256
to compute distance with the vectors in embedding space e,
and thus the length of discrete z is 2048 voxels if it is flattened.
In terms of model training, we firstly train the VQ-VAE for
50,000 iterations using the Adam optimizer [51] with the
learning rate as 3e − 4, which lasts for approximately 4.5 h
in four Tesla V100 GPUs. After obtaining the trained VQ-
VAE, we continue to train the conditional GPT, for which
the length of the input sequence, i.e., 2048, has already been
determined by the latent z obtained from VQ-VAE.
Concerning the conditional information, the initial slice with
size n×1×1×64×64 voxels of each input sequence is chosen as
the conditional slice, and the conditional rock types are
assigned as one-hot codes, i.e., [1, 0, 0] for Berea sandstone,
[0, 1, 0] for Doddington sandstone, and [0, 0, 1] for Ketton
carbonate.We train the conditional GPT for 100,000 iterations
with the same optimizer as that in VQ-VAE, and it requires
approximately 23 h in four Tesla V100 GPUs.

After training the model, we can sample the conditional
GPT autoregressively with given rock types being incorporat-
ed simultaneously to obtain a new sequence of discrete latent
codes, and it will be translated into the corresponding discrete
embeddings by looking up the embedding space in the trained
VQ-VAE. Then, the trained decoder will take the discrete
embeddings as input to generate new slice sequences. Since
the length of the slice sequence is determined as eight voxels
in this case, this means that we can only generate seven sub-
sequent slices once based on the initial slice. Therefore, in
order to generate samples with a larger size, the last slice can
be set as a new conditional slice for the next sample produc-
tion, and this operation can be iterated several times. For in-
stance, if we want to generate samples with size 643 voxels,
we can repeat the above process nine times and concatenate
the outputs of each time in order. It should be noted that the
first slice of each generated sequence is also the preset

Table 1 Basic information of the five kinds of rock samples

Rock type Original size (voxels) Original resolution (μm) Sample resolution (μm) Mean correlation length (voxels) Reference

Berea sandstone 10003 2.25 9.00 2.19 [46]

Doddington sandstone 7003 5.40 15.12 4.24 [47]

Estaillade carbonate 6503 3.31 8.60 4.17 [48]

Ketton carbonate 10003 3.00 12.00 5.68 [49]

Sandy multiscale medium 5123 3.00 6.14 5.32 [50]
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conditional slice, and thus it should be omitted to avoid repe-
tition when concatenating the outputs after the second
iteration.

From the prepared testing dataset mentioned in section 3,
we randomly select 100 samples for each rock type, and em-
ploy their first slices along the first axis as the conditional slice
to generate new samples with size 643 voxels. For metrics
comparison, we also select real samples with the same amount
and size as the fake ones from the original dataset, which is
used for creating the training dataset of this work, as men-
tioned in section 3. As shown in Fig. 4, one real sample and
three synthetic samples are randomly chosen for each rock
type to demonstrate the reconstruction performance. It should
be noted that the x-axis direction is used for stacking, and it
can be seen that the pores along the stacking direction are
highly connected, and the entire structures are visually and
geologically realistic. To quantitatively evaluate the accuracy
of conditioning on rock type, we adopt the metric Fréchet
Video Distance (FVD) [52] to measure the distance between
the samples of two rock types. Overall, the smaller is the FVD
value, the more similar will be the two sample clusters. We
utilize the real and synthetic samples prepared above to calcu-
late FVD, and the results are presented in Table 2. It is obvious
that only the combination of the fake data and real data of the
same rock type can have a small FVD, which indicates that the
conditioning of rock type has successfully guided the model to
produce samples of specified rock type.

Even though visual realism and conditioning of rock type
have been preliminarily validated, we adopt geostatistical
analysis to further assess the reconstruction performance.
The rock media used in this case can be expressed as a binary
field as follows:

F xð Þ ¼ 1 x∈Ωpore

0 x∈Ωsolid

�
; ð6Þ

where x denotes any point of the rock image; and Ωpore and
Ωsolid represent pore and grain space, respectively. The first-
and second-order moment of F(x) can be used to characterize
the structure of rocks, and they are defined as below:

ϕF ¼ F xð Þ; ð7Þ

RF x; xþ rð Þ ¼ ϕF−F xð Þ½ � � ϕF−F xþrð Þ½ �
ϕF−ϕ

2
F

; ð8Þ

where ϕF is the porosity; and RF(x, x + r), termed the nor-
malized two-point correlation function, is the probability that
two points x and x + r, separated by lag distance r, are located
in the pore space Ωpore. In addition, we also employ
Minkowski functionals, i.e., specific surface area and Euler
characteristic, to evaluate morphological realism. The specific
surface area is written as follows:

Sa ¼ 1

V
∫dS; ð9Þ

where integration occurs at the solid-pore interface S; and V is
bulk volume. The Euler characteristic is defined as below:

χV ¼ 1

4πV
∫

1

r1r2
dS; ð10Þ

where r1 and r2 are the principal radii of curvature of the solid-
pore interface. To compute the above two Minkowski func-
tionals, we utilize the BoneJ plugin [53] in the open-source
software Fiji [54].

We also use the samples prepared above, i.e., 100 real and
synthetic samples with size 643 voxels for each rock type, to
compute these metrics. As shown in Fig. 5(a), the porosity
ranges of synthetic samples agree well with those of real sam-
ples for all kinds of rocks. The results of the normalized two-
point correlation function in three directions are presented in
Fig. 6. It can be seen that both the means and ranges of the
two-point correlation function of generated samples can
match well with those of real samples in any direction. It is
worth noting that since the stacking along the x-axis direction
in this work is based on sequences of slices, rather than the
slice itself, and the length of the sequence can meet the re-
quirements of correlation length, the discontinuity along the
stacking direction, which occurs in traditional layer-by-layer
reconstruction methods (e.g., CCSIM) [55], can be avoided in
this work.

The matching performance of specific surface area and
Euler characteristic are illustrated in Fig. 5(b) and (c), respec-
tively, and it indicates that the synthetic samples can

Table 2 Fre chet Video Distance (FVD) between the fake and real dataset with sample size 100 for each kind of rock

Real dataset
Fake dataset Berea Doddington Ketton

Berea 176.5 5712.8 5903.2

Doddington 4287.0 355.4 1231.9

Ketton 5575.8 1192.9 84.8

684 Computational Geosciences (2022) 26:677–696



reproduce the real ones very well in terms of these two met-
rics. To evaluate the physical accuracy of the generated sam-
ples, especially for the stacking direction (i.e., x-axis), we
compute their absolute permeability along three directions
using the single-phase Lattice Boltzmann method [56]. It
can be seen from Fig. 7 that the permeability in three direc-
tions of fake samples has almost the same magnitude order
and range as those of real samples for each rock type. In
particular, the matching of permeability in x-axis direction
can further validate that the concatenated slices are continu-
ous, as did by the comparisons of correlation lengths above.
Through comparing two geostatistical metrics, two
Minkowski functionals and one physical property, we can
essentially conclude that the proposed RockGPT is able to
reconstruct 3D samples based on a single slice of a specified
rock type while maintaining its geological and physical
realism.

4.2 Reconstruction conditioned on single slice, rock
type, and porosity

After validating the conditioning performance of a given slice
and rock type in the last section, we proceed to enable porosity
as another conditional label in this case, with the aim to pro-
duce random samples that approximately satisfy a specified
porosity, i.e., the first-order statistical moment. Similar to rock
type, porosity information is incorporated through the condi-
tional layer normalization, and the conditioning is realized by
enforcing the following two equations in order:

yLN ¼ yiniLN � gclass þ bclass; ð11Þ
yLN ¼ yLN � gprop þ bprop; ð12Þ

where yiniLN is the original output of layer normalization, which
is in an unconditional setting; gclass and bclass are gain and bias,
respectively, and they are obtained by applying a linear trans-
formation on conditional rock type; and gprop and bprop are
similar to above, but obtained from conditional porosity.
Since porosity is a continuous value, which is different from
the one-hot encoded rock type, we assign a new transforma-
tion (i.e., Eq. (12)) to incorporate its information, rather than
concatenating it with rock type. Therefore, the four coeffi-
cients, i.e., gclass, bclass, gprop and bprop, play the role of carriers
that take the conditional rock type and porosity into the GPT
model. We select three kinds of rocks from Table 1, i.e.,
Doddington sandstone, Estaillade carbonate and Sandy
multiscale medium, to test the conditioning performance, espe-
cially porosity, since the conditioning of rock type has been
validated in the previous section. The training settings are the
same as those for the last case, i.e., 50,000 iterations for training
VQ-VAE and 100,000 for training conditional GPT, and con-
sequently the training time is also similar to that of the last case.

With the trained model, we can generate new random 3D
samples with specified porosity based on the given 2D slices
of any rock type. In this case, we set different porosity targets
for different rock types, i.e., ϕtarget = 0.21 for Doddington
sandstone, ϕtarget = 0.15 for Estaillade carbonate, and ϕtarget
= 0.34 for Sandy multiscale medium. As in the previous

Fig. 4 The real samples (the
column on the left of the red
dashed line) and the synthetic
samples (the columns on the right
of the red dashed line) of (a)
Berea sandstone, (b) Doddington
sandstone, and (c) Ketton
carbonate. All of the samples are
with size 643 voxels
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section, we also generate 100 samples with size 643 voxels for
each rock type, and randomly select real samples of the same
amount and size to make a comparison. As shown in Fig. 8,
the porosities of synthetic samples can not only gather
around the preset targets, but also have quite smaller
ranges than those of the real dataset. These results indi-
cate that the conditioning of porosity is effective. It also
needs to be mentioned that the porosities of generated
samples cannot precisely reach a fixed target, since the

conditioning scheme in RockGPT is only a soft constraint
for information incorporation, and the accurate matching
for the continuous value, i.e., porosity, is quite difficult
for such conditioning scheme. Instead, the porosity is ac-
tually the first-order moment, and the synthetic random
samples with given first-order moment can be useful for
the subsequent research on pore-scale flow modeling and
uncertainty analysis by developing moment-based stochas-
tic models [57].

Fig. 5 Comparisons of (a) porosity, (b) specific surface area, and (c) Euler characteristic of real and synthetic samples for Berea sandstone, Doddington
sandstone, and Ketton carbonate
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In order to demonstrate the conditioning performance of
porosity more vividly, we fix the conditional slice and modify
the porosity targets, with an aim to elucidate how the porous
structure evolves along the stacking direction under different
constraints of porosities. Here, we set two porosity targets for

each rock type, i.e., ϕlow
target ¼ 0:16 and ϕhigh

target ¼ 0:22 for

Doddington sandstone, ϕlow
target ¼ 0:10 and ϕhigh

target ¼ 0:17 for

Estaillade carbonate, and ϕlow
target ¼ 0:21 and ϕhigh

target ¼ 0:36 for

Sandymultiscale medium. As shown in Fig. 9, the left column
represents three fixed conditional slices for three rock types,
whose porosities are denoted as ϕcond, and the right eight
columns are eight synthetic slices. Each rock type occupies

Fig. 6 Comparisons of the normalized two-point correlation of real and synthetic samples for (a) Berea sandstone, (b) Doddington sandstone, and (c)
Ketton carbonate
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two rows, and they stand for different porosity targets, with
the upper rows having smaller targets, and the lower ones
having larger targets. It can be clearly seen from the figure

that the slices from left to right are highly interconnected, but
exhibit a dissimilar trend of porosity. The pores of slices in the
upper rows have a distinct shrinkage trend, while those in the

Fig. 7 Comparisons of the permeability along three directions of real and synthetic samples for (a) Berea sandstone, (b) Doddington sandstone, and (c)
Ketton carbonate
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lower rows show a slight expansion, since all of the ϕcond have

a larger distance to ϕlow
target than to ϕ

high
target. Moreover, we contin-

ue to produce samples with size 643 voxels based on the re-
sults of Fig. 9, and we calculate their porosities and perme-
abilities. As shown in Table 3, the porosities of synthetic sam-
ples are markedly close to the targets with small relative er-
rors, and the samples with larger porosity targets also have
larger permeabilities, which is as expected. Therefore, we
can validate that the porosity has been successfully incorpo-
rated into the model, and can effectively affect the morpholo-
gy of the porous structure while maintaining its visual and
geological realism.

5 Conclusion

Inspired by the layer-by-layer reconstruction utilized in
geostatistical methods, e.g., CCSIM, and its similarity with
video synthesis, which is usually realized in a frame-by-
frame manner, we propose to reconstruct 3D rock samples
from 2D slices in the way of video generation by leveraging
cutting-edge deep learning models. Therefore, in this work,
we proposed a framework, named RockGPT, which is com-
posed of VQ-VAE and conditional GPT, for 3D digital rock
reconstruction based on a single 2D cross-section image. In
the RockGPT architecture, VQ-VAE should be trained first to
provide a down-sampled latent space, which was discretized
and thus beneficial for autoregressive modeling, and a recon-
struction path from discretized embeddings to the original
video space. After obtaining the trained VQ-VAE, the condi-
tional GPT could be trained to model the discrete latent codes
in an autoregressive manner, in which cross-attention and
conditional layer normalization were adopted to realize the
conditioning. It should be noted that the conditioning of the
slice, which was realized by the cross-attention mechanism,

constituted the key point for 2D-to-3Dmappings in this study,
and it also enabled us to produce larger samples than the
training ones, since the generated samples could also provide
new conditional slices to make the generation proceed contin-
uously. In addition, the conditional layer normalization con-
tributed to the conditioning of rock type, which made it pos-
sible to produce multiple kinds of rocks with a single model
instead of one model being developed for only one kind of
rock, and effortlessly conserved computational resources. The
conditioning of porosity was realized in the same manner as
rock type, and it enabled us to produce 3D random samples
that approximately satisfy the given porosity, i.e., the first-
order moment from the geostatistical perspective, which will
provide certain benefits for downstream research, such as
pore-scale flow modeling and uncertainty analysis with
moment-based methods.

Even though RockGPT realized 3D reconstruction
based on 2D slices through a novel perspective, i.e., video
synthesis, it also possessed certain limitations that need to
be addressed in the future. First, the GPT model was built
on the attention mechanism, which is sensitive to the
length of the input sequence and will induce a quadratic
memory increase with sequence length, and consequently

Table 3 Porosity and permeability of generated samples with size 643

voxels using the same targets as those in Fig. 9

Rock type Porosity (relative error) Permeability (Darcy)

Doddington 0.156 (2.50%) 1.16

0.212 (3.63%) 3.42

Estaillade 0.094 (3.00%) 0.36

0.166 (2.35%) 1.30

Sandy 0.207 (1.43%) 3.76

0.355 (1.38%) 11.45

Fig. 8 Porosity of real and synthetic samples with specified porosity targets, i.e., ϕtarget = 0.21 for Doddington sandstone, ϕtarget = 0.15 for Estaillade
carbonate, and ϕtarget = 0.34 for Sandy multiscale medium
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the latent size cannot be very large. At the same time, in
order to preserve sufficient information in latent space and
guarantee the reconstruction performance, the size of dis-
crete latent codes in VQ-VAE cannot be very small.
Therefore, a trade-off exists with respect to latent size
between the VQ-VAE and GPT, which was sufficiently
discussed in [30]. The sparse Transformer [58], which is
able to handle relatively longer sequences with local and
strided attention, can be a possible method to overcome
this issue. Another limitation is that, even though we can
produce samples with a larger size than that of training
ones in the stacking direction, we still cannot enlarge the
size along the other two directions in the current frame-
work. To generate larger samples, one can consider com-
bining RockGPT and conditional GANs utilized in our
previous work [45]. Specifically, one can train RockGPT
first to produce 3D samples based on a given slice, and
then employ conditional GANs to learn the generated
samples. Finally, the 3D samples with a larger size can
be reconstructed by the trained conditional GANs.

Appendix 1

The network architecture of the encoder and decoder
in VQ-VAE

In this work, the sequence of slices with size 8×64×64
voxels is taken as input of the encoder, which is mainly
composed of a down-sampling block and several atten-
tional residual blocks. The down-sampling ratio deter-
mines how many 3D convolutions are needed for the
down-sampling block. For instance, if we want to obtain
a latent space with size 2×32×32 voxels from the input
sequence, we need two down-sampling 3D convolutions
with stride as two voxels, whose layer settings can be
seen in Table 4. In the end of the down-sampling block,
we add a 3D convolution that does not modify the shape.
The attention residual block is designed as shown in Fig.
10, where we adopt batch normalization (BN) and axial
attention layers following [59]. The 3D convolutions used
in the attention residual block only modify the number of

Fig. 9 Generated samples (eight continuous slices) with two kinds of
porosity targets based on single slices (the left column), whose
porosities are marked as ϕcond. The preset porosity targets for (a)

Doddington are 0.16 (the 1st row) and 0.22 (the 2nd row), (b)
Estaillade are 0.10 (the 3rd row) and 0.17 (the 4th row), and (c) Sandy
are 0.21 (the 5th row) and 0.36 (the 6th row)
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Fig. 10 Network architecture of (a) the encoder and (b) the decoder of VQ-VAE

Table 4 Layer settings of the
encoder in VQ-VAE Block Layer Kernel size Stride Output shape Trainable parameters

Down-sampling block Conv3D 4×4×4 2×2×2 n×240×4×32×32 15,600
ReLU – – – –
Conv3D 4×4×4 2×1×1 n×240×2×32×32 3,686,640
ReLU – – – –
Conv3D 3×3×3 1×1×1 n×240×2×32×32 1,555,440

Attention residual block 1 BN+ReLU – – – 480
Conv3D 3×3×3 1×1×1 n×128×2×32×32 829,440
BN+ReLU – – – 256
Conv3D 1×1×1 1×1×1 n×240×2×32×32 30,720
BN+ReLU – – – 480
Axial attention – – – 691,920

Attention residual block 2 BN+ReLU – – – 480
Conv3D 3×3×3 1×1×1 n×128×2×32×32 829,440
BN+ReLU – – – 256
Conv3D 1×1×1 1×1×1 n×240×2×32×32 30,720
BN+ReLU – – – 480
Axial attention – – – 691,920

Attention residual block 3 BN+ReLU – – – 480
Conv3D 3×3×3 1×1×1 n×128×2×32×32 829,440
BN+ReLU – – – 256
Conv3D 1×1×1 1×1×1 n×240×2×32×32 30,720
BN+ReLU – – – 480
Axial attention – – – 691,920

Attention residual block 4 BN+ReLU – – – 480
Conv3D 3×3×3 1×1×1 n×128×2×32×32 829,440
BN+ReLU – – – 256
Conv3D 1×1×1 1×1×1 n×240×2×32×32 30,720
BN+ReLU – – – 480
Axial attention – – – 691,920
BN+ReLU – – – 480

Total trainable parameters 11.5 M
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Table 5 Layer settings of the
decoder in VQ-VAE Block Layer Kernel

size
Stride Output shape Trainable

parameters

Conv3D 3×3×3 1×1×1 n×240×2×32×32 1,659,120

Attention residual block
1

BN+ReLU – – – 480

Conv3D 3×3×3 1×1×1 n×128×2×32×32 829,440

BN+ReLU – – – 256

Conv3D 1×1×1 1×1×1 n×240×2×32×32 30,720

BN+ReLU – – – 480

Axial
attention

– – – 691,920

Attention residual block
2

BN+ReLU – – – 480

Conv3D 3×3×3 1×1×1 n×128×2×32×32 829,440

BN+ReLU – – – 256

Conv3D 1×1×1 1×1×1 n×240×2×32×32 30,720

BN+ReLU – – – 480

Axial
attention

– – – 691,920

Attention residual block
3

BN+ReLU – – – 480

Conv3D 3×3×3 1×1×1 n×128×2×32×32 829,440

BN+ReLU – – – 256

Conv3D 1×1×1 1×1×1 n×240×2×32×32 30,720

BN+ReLU – – – 480

Axial
attention

– – – 691,920

Attention residual block
4

BN+ReLU – – – 480

Conv3D 3×3×3 1×1×1 n×128×2×32×32 829,440

BN+ReLU – – – 256

Conv3D 1×1×1 1×1×1 n×240×2×32×32 30,720

BN+ReLU – – – 480

Axial
attention

– – – 691,920

Up-sampling block Conv3D 4×4×4 2×2×2 n×240×4×64×64 3,686,640

ReLU – – – –

Conv3D 4×4×4 2×1×1 n×1×8×64×64 15,361

Total trainable parameters 11.6 M
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output channels, while keeping the size of feature maps
unchanged. In this study, there are four attention residual
blocks being utilized, followed by a BN and ReLU oper-
ation to final outputs.

The structure of the decoder is almost symmetric to that
of the encoder, and the biggest difference is that the down-
sampling block in the encoder is replaced with the up-
sampling block in the decoder. As shown in Fig. 10(b),
the discretized embedding firstly goes through a 3D con-
volution to change the number of channels. Subsequently,
four attention residual blocks are adopted, which share the
same settings as those in the encoder. Finally, the up-
sampling block is used to map the feature space into the
original video space. The number of transposed 3D convo-
lution (ConvT3D) is also determined by the up-sampling

rate, with each ConvT3D enlarging the side length as two
times that of the previous ones. The settings of kernel size,
stride, and corresponding output shape are listed in
Tables 4 and 5 for the encoder and decoder, respectively.

Appendix 2

The network structure of ResNet for extracting
information of the conditional slice

To extract the features from the conditional slice, we adopt a
convolutional neural network with ResNet architecture [44]
in this work. As shown in Fig. 11, the conditional slice with
size 1×64×64 voxels serves as an input for ResNet, and then

Fig. 11 Graphical representation
of the network architecture of
ResNet
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goes through an initial block composed of 3D convolution,
layer normalization (LN), and ReLU activation.
Subsequently, four groups containing residual connections
are employed for further representation learning, and each
group has two blocks, which differ in the first two layers

and the variables for residual connection, as illustrated in
Fig. 11. The network composition for the four groups are
identical, except for the kernel size and stride, which leads to
a gradual down-sampling from group 1 to group 4. The
kernel size, stride, and the number of trainable parameters

Table 6 Basic information of the
ResNet architecture Group Block Layer Kernel size Stride Output shape Trainable parameters

Initial block Conv3D 3×3×3 1×1×1 n×64×1×64×64 1728

LN+ReLU – – – 128

Group 1 Block 1 Conv3D 1×1×1 1×1×1 n×64×1×64×64 4096

LN – – – 128

Conv3D 3×3×3 1×1×1 n×64×1×64×64 110,592

LN+ReLU – – – 128

Conv3D 3×3×3 1×1×1 n×64×1×64×64 110,592

LN+ReLU – – – 128

Block 2 Conv3D 3×3×3 1×1×1 n×64×1×64×64 110,592

LN+ReLU – – – 128

Conv3D 3×3×3 1×1×1 n×64×1×64×64 110,592

LN+ReLU – – – 128

Group 2 Block 1 Conv3D 1×1×1 1×2×2 n×128×1×32×32 8192

LN – – – 256

Conv3D 3×3×3 1×2×2 n×128×1×32×32 221,184

LN+ReLU – – – 256

Conv3D 3×3×3 1×1×1 n×128×1×32×32 442,368

LN+ReLU – – – 256

Block 2 Conv3D 3×3×3 1×1×1 n×128×1×32×32 442,368

LN+ReLU – – – 256

Conv3D 3×3×3 1×1×1 n×128×1×32×32 442,368

LN+ReLU – – – 256

Group 3 Block 1 Conv3D 1×1×1 1×2×2 n×256×1×16×16 32,768

LN – – – 512

Conv3D 3×3×3 1×2×2 n×256×1×16×16 884,736

LN+ReLU – – – 512

Conv3D 3×3×3 1×1×1 n×256×1×16×16 1769,472

LN+ReLU – – – 512

Block 2 Conv3D 3×3×3 1×1×1 n×256×1×16×16 1769,472

LN+ReLU – – – 512

Conv3D 3×3×3 1×1×1 n×256×1×16×16 1769,472

LN+ReLU – – – 512

Group 4 Block 1 Conv3D 1×1×1 1×1×1 n×576×1×16×16 147,456

LN – – – 1152

Conv3D 3×3×3 1×1×1 n×576×1×16×16 3,981,312

LN+ReLU – – – 1152

Conv3D 3×3×3 1×1×1 n×576×1×16×16 3,981,312

LN+ReLU – – – 1152

Block 2 Conv3D 3×3×3 1×1×1 n×576×1×16×16 3,981,312

LN+ReLU – – – 1152

Conv3D 3×3×3 1×1×1 n×576×1×16×16 3,981,312

LN+ReLU – – – 1152

Total trainable parameters 24.3 M
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are listed in Table 6. It should be noted that the first dimen-
sion of the slice needs to be padded since its length cannot
be less than the kernel size. As a result, we pad zeros along
the outside of the input slice to make its shape as 3×65×65
voxels when using 3D convolutions with kernel size as three
voxels. Moreover, the LN and ReLU operation cannot mod-
ify the shape of feature maps, and thus we ignore it in
Table 6.
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