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Abstract
Iterative ensemble smoothers (IES) are among the state-of-the-art approaches to solving history matching problems. From
an optimization-theoretic point of view, these algorithms can be derived by solving certain stochastic nonlinear-least-squares
problems. In a broader picture, history matching is essentially an inverse problem, which is often ill-posed and may not
possess a unique solution. To mitigate the ill-posedness, in the course of solving an inverse problem, prior knowledge
and domain experience are often incorporated, as a regularization term, into a suitable cost function within a respective
optimization problem. Whereas in the inverse theory there is a rich class of inversion algorithms resulting from various
choices of regularized cost functions, there are few ensemble data assimilation algorithms (including IES) which in their
practical uses are implemented in a form beyond nonlinear-least-squares. This work aims to narrow this noticed gap.
Specifically, we consider a class of more generalized cost functions, and establish a unified formula that can be used
to construct a corresponding group of novel ensemble data assimilation algorithms, called generalized IES (GIES), in a
principled and systematic way. For demonstration, we choose a subset (up to 30+) of the GIES algorithms derived from the
unified formula, and apply them to two history matching problems. Experiment results indicate that many of the tested GIES
algorithms exhibit superior performance to that of an original IES developed in a previous work, showcasing the potential
benefit of designing new ensemble data assimilation algorithms through the proposed framework.

Keywords Inverse problem · Data assimilation · History matching · Generalized iterative ensemble smoothers ·
Mixture of p norms

1 Introduction

A typical inverse problem involves finding one (or multiple)
set(s) of model variables m, as inputs to a numerical
forward simulator g, in such a way that the generated
outputs g(m) from the simulator can match a collection of
observed data do, or other relevant quantities of interest
(e.g., a probability density function conditioned on do),
to a good extent. Inverse theory is one of the important
areas in various science and engineering disciplines, and
finds wide applications in different areas, such as system
identification, signal/image processing, computer vision,
machine learning, meteorology, oceanography, geophysics,
petroleum engineering, to name but a few. Depending on
the field, inverse theory may have diverse names. For
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instance, it is known as estimation theory in statistical
signal processing [1], or data assimilation in meteorology
and oceanography [2, 3], or history matching in reservoir
engineering [4]. In the current work, both the terms “data
assimilation” and “history matching” will be adopted and
used interchangeably.

To find a solution to an inverse problem, there
are two major schools of methods, from the Bayesian
and optimization-theoretic perspectives, respectively. A
Bayesian approach focuses on updating a prior probability
density function (PDF) p(m) of model variables to the
posterior one p(m|do) based on Bayes’ theorem, whereas
the forward simulator (together with the PDF of observation
noise) is used to calculate the likelihood p(do|m) that
the observations do are caused by a specific set of model
variables m [5]. After the posterior PDF is obtained, point
estimates, such as the corresponding mean, median or mode,
can be generated accordingly.

In a conventional optimization-based inversion algorithm
[6], one first defines a certain cost function C(m;do,m0)
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that describes the discrepancies between the observations
do and the outputs g(m) of the forward simulator, where
m0 represents an initial guess of the unknown model
variables1. The solution to the inverse problem then
boils down to finding one (or multiple) set(s) of model
variables m that approximately minimize the cost function
C(m;do,m0). Often, inverse problems are ill-posed, e.g.,
in the sense that there can exist an infinite number of
models m that match the observations do equally well. To
mitigate the ill-posedness, it is customary to introduce a
certain regularization term to the cost function, such that
the regularized cost function is typically in the form of
C(m;do,m0) = D(do − g(m)) + γR(m − m0), where
the operator D defines the discrepancies (or mismatch)
between the observations do and the simulated data g(m) of
the forward simulator, the operator R specifies the amount
of deviation of m from the initial guess m0, and γ is
a regularization parameter associated with R. As will be
shown later, one can slightly extend the form of the cost
function C(m;do,m0), by allowing D and/or R to act
on transformed data and/or model variables. For ease of
reference, hereafter we call D(do − g(m)) and γR(m −
m0) (or simply R(m − m0) ) the data mismatch and
regularization terms, respectively.

Under certain circumstances, connections between
Bayesian and optimization-based inversion approaches can
be established. For instance, if one lets the prior PDF
p(m) ∝ exp(−γR(m − m0)), and the likelihood function
p(do|m) ∝ exp(−D(do −g(m))), then according to Bayes’
theorem, the posterior PDF p(m|do) ∝ exp(−D(do −
g(m))−γR(m−m0)). Hence, an inverse-problem solution
obtained by minimizing the cost function D(do − g(m)) +
γR(m−m0) is equivalent to a maximum a posterior (MAP)
estimate of the PDF p(m|do) derived from the Bayesian
approach.

Although theoretically sound, computational issues
may arise in applications of the conventional Bayesian
and optimization-based inversion approaches to practical
inverse problems. For a Bayesian approach, the involved
PDFs are often replaced by certain Monte Carlo approxi-
mations, which typically require to adopt a large number
of samples in order to achieve a decent approximation
accuracy, and may thus become prohibitively expensive
in large-scale problems, where even running a single for-
ward simulation would require substantial computational
resources. In contrast, a conventional optimization-based
inversion approach tends to be computationally more effi-
cient than a Bayesian approach, as it requires only a few
forward simulations per iteration step. However, in many

1In the context of atmospheric data assimilation problems, the
conventional (either three- or four-dimensional) variational data
assimilation methods [3] can be considered to belong to this class of
inversion algorithms

cases, solving the optimization problem itself may become
more complicated. For instance, if a gradient-based local
optimization method is adopted to solve the optimization
problem, the exact gradient may not always be available,
e.g., in case that the forward simulator is a black-box sys-
tem provided by a third party. In addition, aiming to obtain
a single point estimate, an optimization-based inversion
approach would not be able to quantify the uncertainties
associated with the estimated model variables in general.

Recent years have witnessed the developments of new
algorithms that are able to mitigate some of the noticed
computational issues in Bayesian and/or optimization-based
inversion approaches, among which we focus here on
iterative ensemble smoothers (IES) that are among the
state-of-the-art approaches to large-scale history matching
problems. In this regard, different forms of IES are
developed from either a Bayesian or an optimization-
theoretic point of view, for example, see, [7–15].

Although in principle one can iteratively update the
posterior PDF within the framework of IES, in such a
way that the prior and final posterior PDF can satisfy
Bayes’ theorem [10, 13, 15], in practical implementations
it is rare that PDFs are explicitly involved in numerical
computations. Instead, the more common choice is to adopt
a relatively small ensemble of model variables to represent
the whole space that the model variables may span, and
the iteration process aims to update the ensemble of model
variables under a certain criterion, derived from either
the Bayesian or the optimization-theoretic perspective.
For a Bayesian approach, e.g., the ensemble smoother
with multiple data assimilation (ES-MDA) [10], such an
ensemble can be treated as an Monte Carlo approximation to
the corresponding PDF, but with a relatively small ensemble
size to reduce the computational cost. The iteration process
is then designed with the goal that the Monte Carlo
approximations of PDFs (approximately) satisfy Bayes’
theorem.

Meanwhile, for an optimization-based approach, e.g.,
[7, 11, 13, 14], the ensemble of model variables leads
to an ensemble of cost functions, and the objective is to
update the ensemble of model variables to minimize either
each individual cost function [8, 11], or the average of
the cost functions [13, 14]. Compared to the conventional
optimization-based inversion approaches, ensemble-based
methods are non-intrusive, and do not require explicit
knowledge of the gradients of a cost function with
respect to the model variables. As such, ensemble-based
methods are derivative-free and applicable to black-box
systems, and are more flexible and convenient in terms of
algorithm implementations. Moreover, instead of producing
a single point estimate as in a conventional optimization-
based approach, an ensemble-based method generates
an ensemble of estimates, which provides a means of
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uncertainty quantification to some extent. On the other
hand, an open problem for ensemble-based methods is that,
except for some special cases, in general the final ensemble
of estimated model variables may not be considered as
samples drawn from the correct posterior PDF, which
satisfies Bayes’ theorem with respect to the corresponding
prior PDF and the likelihood function [16].

For IES developed from either the Bayesian or the
optimization-theoretical perspective, a less explored issue is
that, in practical applications, the underlying cost functions
are typically limited to the forms of nonlinear least
squares, in which both the data mismatch and regularization
operators, namely D and R, are some quadratic functions
with respect to the simulated data and the model variables,
respectively. In contrast, for the conventional optimization-
based inversion approaches, there exist richer types of
cost functions. For instance, in terms of the regularization
operator R, except for the conventional quadratic form
(known as Tikonov or 2-norm regularization) as adopted in
the IES, other types of regularization methods, such as total
variation regularization [17], p regularization in which p

may not be equal to 2 [18], mixed-norm regularization
[19] etc, are also proposed in the literature to improve
the performance of inversion algorithms. However, to the
best of our knowledge, in the literature there seem to lack
such ensemble-based iterative inversion algorithms that are
developed based on cost functions beyond the conventional
forms of nonlinear least squares.

This work aims to narrow this noticed gap between
the conventional optimization-based inversion approaches
and the ensemble-based ones, in terms of the varieties
of the underlying cost functions used to establish the
corresponding inversion algorithms. The motivation for
us to consider other types of cost functions can also
be understood from a Bayesian perspective. Indeed, as
aforementioned, the Bayesian formulation can have an
underlying cost function if we make a connection between
the Bayesian and optimization-based approaches under the
MAP criterion. For a cost function in the form of nonlinear
least squares, it is equivalent for a Bayesian approach
to assume that both the prior model variables and the
observation noise follow certain Gaussian distributions. In
practice, however, it may also be desirable to consider other
statistical distributions. One good example in this regard
is the Bayesian LASSO regression [20], which equips the
regularization term with the 1 norm, corresponding to a
Laplacian prior. Another good example is the Bayesian
elastic net [21], which admits a mixture of 1 and 2

norms for the regularization term, corresponding to a prior
resulting from the combined use of Gaussian and Laplacian
distributions.

The rest of this paper is organized as follows: We
first present a unified ensemble-based model update

formula, which provides solutions to a class of inverse
problems, in the form of generalized minimum average
cost (GMAC) problems. Underlying the GMAC problems
is a corresponding class of regularized cost functions
that generalize and go beyond the form of nonlinear
least squares in general. As such, the presented update
formula provides a principled and systematic way to
derive a group of novel ensemble-based data assimilation
algorithms, called (more) generalized iterative ensemble
smoothers (GIES) in this work. We show that the
update formula of the GIES algorithms bear certain
structural similarities to those of the IES in the literature.
Consequently, previous experience in implementing and
applying the IES algorithms can be naturally transferred
to the implementations and applications of the GIES.
For demonstration, we compare the performance of a
subset (up to 30+) of the GIES algorithms (including one
original IES developed in a previous work) in two history
matching problems. Experiment results indicate that many
of the tested GIES algorithms outperform the original IES
in the case studies, manifesting the potential benefit of
designing new ensemble data assimilation algorithms under
the GMAC framework.

2 Generalized iterative ensemble smoothers
(GIES)

2.1 Original IES derived from a stochastic
nonlinear-least-squares problem

Given the following noisy observation system

do = g mtr + , (1)

where do ∈ R
d stands for a d-dimensional vector of

observations; g : R
m → R

d for a forward simulator that
maps an m-dimensional model vector mtr ∈ R

m onto the
observation space; and ∈ R

d for contamination noise
following a certain distribution.

In ensemble-based data assimilation, our objective is to
estimate a set of possible model vectors m that may explain
the observations do to a good extent, given the forward
simulator g and possibly certain prior knowledge of m.
Without loss of generality, we assume that the forward
simulator g is perfect.

Since the forward simulator g is nonlinear in general,
we employ a certain iterative algorithm to solve the data
assimilation problem. To this end, let us assume that at the
ith iteration step, we have an ensemble of Ne model vectors,
denoted by Mi ≡ {mi

j }Ne

j=1, as the initial guess, where j

is the index of ensemble members. Following the previous
work [13], our objective is to find a new ensemble Mi+1 ≡
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{mi+1
j }Ne

j=1 of model vectors that approximately solves the
following minimum-average-cost (MAC) problem, in the
form of stochastic nonlinear-least-squares, at the (i + 1)th
iteration step:

arg min
{mi+1

j }Ne
j=1

1

2Ne

Ne

j=1

dj − g mi+1
j

T

C−1
d dj − g mi+1

j

+γ i mi+1
j − mi

j

T

Ci
m

−1
mi+1

j − mi
j , (2)

where dj is a data vector being either the observation vector
do itself or a perturbed version of do; Ci

m is the sample
covariance matrix induced by the ensemble Mi , in the form

of Ci
m = Si

I Si
I

T
, with the square-root matrix Si

I being
defined later (cf. Eq. (6)); and γ i is a parameter that is
adaptive to the iteration process, following certain preset
rules [13].

The main idea in Eq. 2 is to minimize the average of an
ensemble of cost functions. Each cost function consists of
two parts, namely, the data mismatch term which measures
the weighted euclidean distance between simulated and
observed data, and the quadratic regularization term which
is introduced to mitigate the ill-posedness in the history
matching problem, and also to prevent the IES from
overfitting the observations.

Through a linearization-based approximation strategy,
Eq. 2 can be solved as follows [13]:

mi+1
j = mi

j + Ki dj − g mi
j , j = 1, 2, · · · , Ne; (3)

Ki ≡ Si
I (Si

g)
T Si

g(S
i
g)

T + γ iCd

−1
(4)

= Si
I Si

g

T

C−1
d Si

g + γ i INe

−1

Si
g

T

C−1
d ;

m̄i ≡ 1

Ne

Ne

j=1

mi
j ; (5)

Si
I ≡ 1√

Ne − 1
mi

1 − m̄i ,mi
2 − m̄i , · · · ,mi

Ne
− m̄i ; (6)

Si
g ≡ 1√

Ne − 1
g mi

1 − g m̄i , g mi
2 − g m̄i , · · · , g mi

Ne
− g m̄i . (7)

For the proof of the matrix identity in Eq. 4, readers are
referred to Appendix A.

For notational convenience, the square-root matrices in
Eqs. 6 and 7 can be expressed in a unified way as follows:

Si
O ≡ 1√

Ne − 1
O mi

1 − O m̄i ,O mi
2 − O m̄i , · · · ,O mi

Ne
− O m̄i , (8)

where O represents a certain operator that maps a reservoir
model into another domain. In Eq. 6, O is reduced to the
identity operator I, such that I (m) = m for a reservoir
model m. Similarly, in Eq. 7, the operator O equals the
forward reservoir simulator g. The custom in Eq. 8 will be
adopted throughout this work.

2.2 GIES derived from a class of generalized cost
functions

In the sequel, we consider the following generalized MAC
(GMAC) problem

arg min
{mi+1

j }Ne
j=1

1

Ne

Ne

j=1

Ci+1
j , (9)

Ci+1
j ≡ D T dj − T g mi+1

j (10)

+γ i R S mi+1
j − S mi

j ,

with a class of more general cost functions, in comparison
to the original MAC problem in Eq. 2. According to Eq. 10,
in the GMAC problem, each of the cost functions also
consists of two terms, namely, the data mismatch term with
respect to the distance metric D : R

t → [0, +∞), and
the regularization term with respect to the regularization
operator R : Rs → [0, +∞).

Within the data mismatch term, a transform operator
T : R

d → R
t is introduced to accommodate the

possibility that the observed and simulated data may be
transformed into another domain, e.g., through discrete
wavelet transform [22, 23] or learned dictionary [24],
before computing respective data mismatch between them.
Similarly, within the regularization term, a transform
operator S : Rm → R

s is present to take into account the
possibility that regularization may be applied to transformed
model variables, rather than directly to the model variables
themselves. For example, see [25–27]. In this regard, S may
also be considered as a re-parametrization strategy, if one
assumes that the transform operator S is (approximately)
invertible, so that in the data mismatch term, one can
re-write

T g mi+1
j = T ◦ g ◦ S−1 S mi+1

j ,

where T ◦ g ◦S−1 denotes the composition of the operators
T , g and S−1, and acts as an effective forward simulator

for the effective input S mi+1
j . On the other hand, we

note that in Eq. (10), the invertibility of S is not formally
required.

As a special case, given a dummy vector x, if one takes

D (x) ≡ 1

2
xT C−1

d x, (11)

R (x) ≡ 1

2
xT Ci

m

−1
x, (12)

where Cd and Ci
m represent the observation error covariance

matrix and the sample model error covariance matrix,
respectively, as in the original MAC problem (2); and also
lets both T and S be identity operators, then up to a constant
factor, the GMAC problem in Eqs. 9 and 10 is reduced to the
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stochastic nonlinear-least-squares problem in Eq. 2, which
leads to the IES derived in [13], and is also closely related
to the cost functions in other variants of the IES, e.g., [7, 10,
14].

In Appendices A and B, we show that the GMAC
problem can be approximately solved under different
scenarios, depending on whether relevant gradient and/or
Hessian information is available or not. When all relevant
gradient and/or Hessian information is provided, then the
GMAC problem is solved by the formulas in Eqs. 62–66.
Otherwise, ensemble-based approximate solutions can be
obtained, by combining the formulas in Eqs. 74 and 75 and
the approximation strategies in Appendix B.

In the current work, we assume that both the distance
metric D and the regularization operator R are relatively
simple (e.g., as in Eqs. 11 and 12), such that the analytic
forms of gradient and Hessian of D (with respect to T ) and
R (with respect to S) are available.

Under this setting, it can be shown (cf. Appendix A)
that an ensemble-based approximate solution to the GMAC
problem in Eqs. 9 and 10 is given by

mi+1
j = mi

j + K̃i
j∇D T dj − T ◦ g mi

j ; (13)

K̃i
j ≡ Si

I Mi
D dj + γ iMi

R mi
j

−1
Si
T ◦g

T ; (14)

Mi
D dj ≡ Si

T ◦g
T ∇2

D T dj − T ◦ g m̄i Si
T ◦g; (15)

Mi
R mi

j ≡ Si
S

T ∇2
R S m̄i − S mi

j Si
S , (16)

where, given an operator O and a dummy vector variable x
(and a concrete value of x at x0),

∇O[x0] ≡ ∂O
∂x x0

;

∇2
O[x0] ≡ ∂2O

∂x2
x0

, (17)

and the definitions of the square-root matrices Si
T ◦g and Si

S
follow the custom in Eq. 8.

If the distance metric D and the regularization operator R
take the form in Eqs. 11 and 12, respectively, and both T and
S are identity operators, then it can be shown (cf. Appendix
A) that the update formula, Eqs. 13–16, is reduced to that in
the original IES, Eqs. 3–7. For this reason, we call the IES
resulting from Eqs. 13–16 the generalized IES (GIES).

Comparing the update formulas of the original IES and
the GIES, one can see that they bear certain structural
similarities, as is evidenced in the correspondence between
the original IES and the GIES (cf. Table 1). In both update
formulas, the model changes, in terms of mi+1

j − mi
j ,

can be expressed as the product between an “effective”

Kalman-gain-like matrix and an “effective” innovation
term. In the GIES, the effective innovation term can be
interpreted as a gradient with respect to (w.r.t) the data
mismatch (after data transform) of the respective ensemble
member.

Of particular interest here is the dependence of the
effective Kalman-gain-like matrix on individual ensemble
members in the GIES, which is a phenomenon not observed
in the original IES. Indeed, as indicated in Table 1, the
effective Kalman-gain-like matrix in the original IES is
common to all ensemble members, for which the reason
is the quadratic forms of the distance metric D and the
regularization operator R adopted in Eqs. 11 and 12,
such that the corresponding local Hessian matrices, C−1

d

and C−1
m , respectively, are independent of model variables.

In contrast, in the GIES, the distance metric D and
the regularization operator R may not necessarily admit
constant Hessian matrices everywhere. Instead, in general,
these Hessian matrices may vary for different ensemble
members, and thus depend on the iteration path of the
ensemble algorithm.

In implementation, the dependence of the Kalman-gain-
like matrix on individual ensemble members implies that the
GIES would require more computational time and computer
memory than the original IES does. Fortunately, since both
the projected local Hessian (PLH) matrices, Mi

D dj and

Mi
R mi

j , respectively, are in the dimension of Ne×Ne, the

additional memory consumption would not be significant
when the ensemble size Ne is not too big. On the other hand,
in terms of the computational complexity, the numbers of

flops required to evaluate Mi
D dj and Mi

R mi
j are in

the orders of t2 × Ne and s2 × Ne, respectively, where t

and s are the sizes of transformed data and model, after
applying the transform operators T and S. Based on these
observations, there are a few strategies that can be exploited
to help reduce the required computational resources. For
instance, if one chooses not to perturb the observations, then
the PLH Mi

D dj will be the same for all reservoir models.
On the other hand, sparse representations of model and/or
data, e.g., [22, 24, 26, 27], can also be adopted to render
reduced sizes for transformed data and model.

2.3 A subclass of the GIES: The q
p-GIES

For illustration, in this work we consider a subclass of the
GIES algorithms, which approximately solves the following
GMAC problem

arg min
{mi+1

j }Ne
j=1

1

Ne

Ne

j=1

Ci+1
j ; (18)
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Table 1 Correspondence between the original IES and the GIES

Original IES GIES

Effective Kalman-gain-like matrix Si
I Si

g

T

C−1
d Si

g + γ iINe

−1

Si
g

T

Si
I Mi

D dj + γ iMi
R mi

j

−1
Si
T ◦g

T

Effective innovation term C−1
d dj − g mi

j ∇D T dj − T ◦ g mi
j

Local Hessian
C−1

d
∇2

D T dj − T ◦ g m̄i

w.r.t the data mismatch term

Local Hessian
Ci

m
−1 ∇2

R S m̄i − S mi
jw.r.t the regularization term

Projected local Hessian
Si
g

T

C−1
d Si

g Mi
D dj ≡ Si

T ◦g
T ∇2

D T dj − T ◦ g m̄i Si
T ◦gw.r.t the data mismatch term

Projected local Hessian
INe Mi

R mi
j ≡ Si

S
T ∇2

R S m̄i − S mi
j Si

Sw.r.t the regularization term

Square-root matrix
Si
g Si

T ◦gin the (transformed) data space

Square-root matrix
Si
I Si

Sin the (transformed) model space

Ci+1
j = 1

2
dj − g mi+1

j

T

C−1
d dj − g mi+1

j (19)

+γ i R S mi+1
j − S mi

j ;

R S mi+1
j − S mi

j ≡ (20)

1

2

Kmix

k=1

wk Bk Sk mi+1
j − Sk mi

j
qk
pk

; wk ≥ 0,

where for a Nb ×mx matrix B and a mx-dimensional vector
x = [x1, x2, · · · , xmx ]T , we have the q

p metric Bx q
p

defined as

Bx q
p =

⎛

⎝
Nb

e=1

| (Bx)e |p
⎞

⎠

q/p

;

(Bx)e ≡
mx

f =1

Be,f xf .

Here, | • | is the operator taking absolute values element-
wise, e.g., |x| = [|x1|, |x2|, · · · ]T ; (Bx)e stands for the eth
element of the vector Bx, xf for the f th element of the
vector x, and Be,f for the element of the matrix B on the eth
row and the f th column.

In this GMAC problem, the data mismatch term is in
the conventional form of nonlinear least-squares, which
corresponds to the distance metric D in Eq. 11, with T

being an identity transform operator. On the other hand,
the regularization term consists of a mixture of distance

metrics Bk Sk mi+1
j − Sk mi

j
qk
pk

, weighted by

non-negative coefficients wk . For brevity, we refer to
Bkx

qk
pk

as the qk
pk

metric w.r.t Bkx, and call the resulting
subclass of inversion algorithms q

p-GIES. Although not
considered in the current work, the derivation to be
presented below can be similarly applied to establish
variants of the q

p-GIES, for which the corresponding
distance metric D also consists of a mixture of different
operators.

According to the update formula of the GIES, Eqs. 13–
16, we have

∇D T dj − T ◦ g mi
j = C−1

d dj − g mi
j ; (21)

Mi
D dj = Si

g

T

C−1
d Si

g; (22)

mi+1
j = mi

j + Si
I Si

g

T

C−1
d Si

g + γ iMi
R mi

j

−1

(23)

Si
g

T

C−1
d dj − g mi

j .

By applying the matrix identity (49) of Appendix A
to Eq. 23, one obtains the following alternative update
formula

mi+1
j = mi

j + Si
I Mi

R mi
j

−1
S̃i
g

T

S̃i
g Mi

R mi
j

−1
S̃i
g

T + γ i I
−1

(24)

d̃j − g̃ mi
j ;

S̃i
g ≡ C−1/2

d Si
g; d̃j ≡ C−1/2

d dj ; g̃ mi
j ≡ C−1/2

d g mi
j . (25)

The reason for us to present the alternative update
formula (24) is that, when combining with a truncated
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eigenvalue decomposition, adopting (24) tends to achieve
better history matching performance than a straightforward
implementation of Eq. 23, in some of the experiments
conducted in the current work (not reported here for
brevity).

Next, we explain how to evaluate the PLH Mi
R mi

j .

By treating Rk(•) Bk (•)
qk
pk

as individual operators in
the mixture (20), a combination of the analytic results in
Appendices C and D leads to the following results for the
PLH Mi

R mi
j , namely,

Mi
R mi

j = 1

2

Kmix

k=1

wk Si
Sk

T ∇2
Bk(•)

qk
pk

Sk m̄i − Sk mi
j Si

Sk
; (26)

∇2
Bk(•)

qk
pk

Sk m̄i − Sk mi
j = qk (qk − pk) Bk Sk m̄i − Sk mi

j
qk−2pk
pk

BT
k akaT

k Bk

+qk (pk − 1) Bk Sk m̄i − Sk mi
j

qk−pk
pk

(Bk Ck)
T (Bk Ck) ; (27)

ak ≡ Bk Sk m̄i − Sk mi
j

∧̇(pk−2)

Bk Sk m̄i − Sk mi
j ; (28)

Ck ≡ Bk Sk m̄i − Sk mi
j

∧̇(pk/2−1)

1T . (29)

In Eqs. 28 and 29, the operator ∧̇ raises all elements
of a vector to a certain power, e.g., given a vector

x = [x1, x2, · · · ]T , one has x∧̇p = x
p

1 , x
p

2 , · · · T
; the

operator stands for element-wise product (i.e., Hadamard
product); and 1 for a vector whose elements are all equal to
1.

3 A comparison study on q
p-GIES algorithms

applied to a history matching problem

The focus of this section is to show the abundance of
the GIES algorithms, illustrated by applying a set of q

p-
GIES algorithms derived from the previous section to
a channelized reservoir characterization problem below.
Another set of q

p-GIES algorithms is also applied to
history matching in a 5-spots problem. To limit the
length of the main text, however, numerical results
with respect to the 5-spots problem are presented in
Appendix E.

3.1 Experiment settings of the history matching
problem

3.1.1 The reservoir model

The case study considers a 2D channelized reservoir model
in the dimension of 45 × 45, with oil/water two-phase flow,
as described in the previous work [28]. Figure 1 shows
the geological structure of the permeability map in the
reference model. The porosity of the reference model is
spatially constant, and is set to 0.1. On the other hand, the

reservoir has isotropic permeability (PERM), whose values
is set to 10000 md within the channel, and to 500 md
in the background. The reservoir has 8 injectors (labeled
as I1, I2, etc) and 8 producers (labeled as P 1, P 2, etc),
whose positions are indicated in Figure 1. The injectors
are constrained by injection rates, and the producers by
bottom-hole pressures.

The reference model in Fig. 1 is used to generate produc-
tion data every 190 days, for a total period of 3800 days. The
production data consists of well oil/water production rates
(WOPR/WWPR) from 8 producers, and well bottom-hole
pressures (WBHP) from 8 injectors. In the case study, we
divide the production data into two parts. We use the pro-
duction data (with observation noise) within the first 1900
days for history matching through the q

p-GIES algorithms,
while reserving the production data (without observation
noise) within the second 1900 days for performance valida-
tion. The numbers of production data in both time intervals
are equal to 240. The observed production data within
the history matching period are contaminated by certain
zero-mean Gaussian noise. For WOPR/WWPR data, the
standard deviations (STDs) of observation noise are 0.2236
m3/d , whereas for WBHP data, their STDs are 0.2646
bar.

In the current case study, permeability values (in the unit
of md) are the unknown parameters to be estimated through
certain q

p-GIES algorithms. An initial ensemble of 100
PERM maps is generated by SNESIM [29], following the
procedure explained in [28]. For illustration, Fig. 2 shows
the mean (top left) and STD (top right) maps of the initial
ensemble, as well as two sample reservoir models from the
initial ensemble.
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3.1.2 The chosen q
p -GIES algorithms for comparison

In the experiment, the orders of pk and qk in Eq. 20 are
set to either (case 2

1) pk = 1 and qk = 2; or (case 2
2)

pk = qk = 2, while the settings of the matrices Bk and the
transform operators Sk will be specified later. According to
Eqs. (27) – (29) , the corresponding Hessian matrices are
then given by

∇2
Bk(•) 2

1
Sk m̄i − Sk mi

j = 2BT
k ˙sgn Bk Sk m̄i − Sk mi

j ˙sgn Bk Sk m̄i − Sk mi
j

T

Bk

= 2BT
k ˙sgn Bk Sk m̄i − Sk mi

j Sk m̄i − Sk mi
j

T

BT
k Bk; (30)

∇2
Bk(•) 2

2
Sk m̄i − Sk mi

j = 2BT
k Bk . (31)

In Eq. 30, ˙sgn (x) = x ./ |x| represents the sign function
applying element-wise to its argument x, with ./ denoting
the element-wise division operator. To derive the second
line of Eq. 30 from the first one, we have exploited the fact
that ˙sgn (x) ˙sgn xT = ˙sgn xxT . Another remark is that

∇2
Bk(•) 1

1
Sk m̄i − Sk mi

j = 0 almost everywhere, as

shown in Appendix C, and this is the reason that we do not
consider the 1

1 metric here.
Regarding the transform operator Sk , we consider three

possible scenarios: (S-I) Sk is the identity operator I; (S-II)
Sk calculates the first-order variations of the permeability
map of a reservoir model; and (S-III) Sk generates the
histogram of the permeability map of a reservoir model, and
converts the histogram values into information entropies.

For distinction later, we denote the identity operator in
S-I by I, such that I (m) = m. Here we only consider
case 2

2, as this leads to the original IES, and serves as
the base case for our comparison study later. Indeed, with
pk = qk = 2, the corresponding Hessian is given by Eq. 31.

If we let Bk = Si
I

−T
(SI is the square-root matrix defined

in Eq. 6), such that BkBT
k = Si

I Si
I

T −1 = Ci
m

−1
in

Eq. 31; and also choose Bk mi+1
j − mi

j
2
2 as the only

metric in the regularization term (and the associated weight
w1 = 1), then according to Eq. 26, the PLH, denoted by

Mi
2
2

mi
j , equals

1

2
×2 Si

I
T
BkBT

k S
i
I = INe . As a result,

the update formula of the q
p-GIES, Eq. 23, reduces to that

of the original IES, Eqs. 3–4. Note that the subscript of

the PLH Mi
2
2

mi
j , 2

2, combines the information of the

transform operator (“I” for identity here) and the q
p metric.

The same custom will be adopted for other PLHs later on.
In S-II, the transform operator calculates the first-order

spatial variations of permeability maps. For this reason, we
denote this operator by SV hereafter. In the current case
study, a permeability map can be represented by a 45 × 45
matrix. Let P stand for such a matrix, then one can compute
the first-order variations of P along both the horizontal and
vertical directions, denoted by Ph and Pv , respectively.
Specifically, suppose that P consists of a set of column
vectors ck , for k = 1, 2, · · · , 45, and a set of row vectors
r for = 1, 2, · · · , 45, such that P = [c1, c2, · · · , c45] =
(r1)

T , (r2)
T , · · · , (r45)

T T
, then we define

Ph ≡ [c2 − c1, c3 − c2, · · · , c45 − c44] ; (32)

Pv ≡ (r2)
T − (r1)

T , (r3)
T − (r2)

T , · · · , (r45)
T − (r44)

T
T

.(33)

For illustration, Fig. 3a shows the permeability map
of sample realization 1 from the initial ensemble, and
Fig. 3b and c indicate the first-order spatial variations of the
permeability map, along horizontal and vertical directions,
respectively. Clearly, in this case, non-zero variation values
are able to capture the positions of boundaries between the
channel and the background regions.

In addition, the transform operator SV further augments
the column vectors of both Ph and Pv into a super
column vector. As such, given two reservoir models, say
m1 and m2, the difference SV (m1) − SV (m2) equals the
difference between the augmented variation vectors of m1

and m2. With the operator SV , we let the matrix Bk in
both (30) and (31) be the identity matrix, such that the
corresponding Hessian matrices become

∇2
2
1

SV m̄i − SV mi
j = 2 ˙sgn SV m̄i − SV mi

j SV m̄i − SV mi
j

T ; (34)

∇2
2
2

SV m̄i − SV mi
j = 2I. (35)
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Fig. 1 Reference model used in
the synthetic case study, with
well positions marked by white
ellipses. Well names (in green)
starting with the letter “I” stand
for injection wells, while those
with the letter “P” for
production wells
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According to Eq. 26, the corresponding PLHs with
respect to the reservoir model mi

j are given by

Mi
2
1

mi
j ≡ Si

SV

T ˙sgn SV m̄i − SV mi
j SV m̄i − SV mi

j

T

(36)

Si
SV

, (case 2
1)

and

Mi
2
2

mi
j ≡ Si

SV

T

Si
SV

, (case 2
2), (37)

respectively, where the square-root matrix Si
SV

is computed
according to Eq. 8, with the operator O therein replaced by

the operator SV , and “V” in the subscript of the PLHs stands
for variation. Note that in Eq. 36, the component

SV m̄i − SV mi
j SV m̄i − SV mi

j

T

is a rank-1 matrix. As a result, we expect the corresponding

PLH Mi
2
1

mi
j may be of much lower rank, in

comparison to the PLH Mi
2
2

mi
j in Eq. 37, whose rank

would be Ne −1 given independent ensemble members mi
j .

In S-III, the transform operator first calculates the
histogram of a permeability map. For distinction, we denote
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Fig. 2 Mean (top left) and STD (top right) maps of the initial ensemble
of permeability (PERM), and two sample reservoir models of the ini-
tial ensemble (bottom). a Mean map of the initial ensemble of PERM.

b STD map of the initial ensemble of PERM. c Sample realization 1
of the initial ensemble. d Sample realization 2 of the initial ensemble
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Fig. 3 Left: Permeability map of sample realization 1 of the ini-
tial ensemble, as also indicated in Fig. 2c; Middle: Spatial vari-
ation of the permeability map along the horizontal direction;

Right: Spatial variation of the permeability map along the vertical
direction. a Sample realization 1 of the initial. b Horizontal variations.
c Vertical variations

this operator by SH . Suppose that the total number of
permeability values is Mp (Mp = 45 × 45 = 2025 in
this case study), the number of bins of the histogram is
Nbin (set to 100 in the experiment), and the number of
permeability values falling into the kth bin is Mbk

, such
that Nbin

k=1 Mbk
= Mp. For each bin, say, the kth one, we

assign to it a value Ek ≡ −Mp pk ln(pk), where pk =
Mbk

/Mp is the empirical probability (or relative frequency)
that a permeability value falls into the kth bin. We note
that Ek can be considered as the component-wise Shannon’s
information entropy [30], scaled by the factor Mp. By
definition, we also have Ek = Mbk

× ln Mp − ln Mbk
,

which is the formula used in our computation. For numerical
evaluations, we adopt the custom that 0 × ln(0) = 0.

Furthermore, the transform operator SH augments the
entropies of all histogram bins into a column vector. For
two reservoir models, say m1 and m2, the difference
SH (m1) − SH (m2) is then equal to the difference between
the augmented information-entropy vectors of m1 and m2.
We note that the Hessian and the PLH in S-III bear
similarities to those in S-II. We let the matrix Bk in both
Eqs. 30 and 31 be the identity matrix again, so that the
corresponding Hessian matrices in S-III become

∇2
2
1

SH m̄i − SH mi
j = 2 ˙sgn SH m̄i − SH mi

j (38)

SH m̄i − SH mi
j

T ;

∇2
2
2

SH m̄i − SH mi
j = 2I, (39)

and the corresponding PLHs can be expressed as

Mi
2
1

mi
j ≡ Si

SH

T ˙sgn SH m̄i − SH mi
j SH m̄i − SH mi

j

T

(40)

Si
SH

, (case 2
1)

and

Mi
2
2

mi
j ≡ Si

SH

T

Si
SH

, (case 2
2), (41)

respectively, where the square-root matrix Si
SH

is again
computed according to Eq. 8, and “H” in the subscript of the
PLHs stands for histogram. Similar to the situation in S-II,
the PLH Mi

2
1

is be of much lower rank, in comparison to

Mi
2
2
.

Combing different q
p metrics and transform operators,

one can establish a set of q
p-GIES algorithms according to

Eq. 24, with a mixture Mi
R mi

j of PLHs in the form of

Mi
R mi

j = w1 Mi
2
2

mi
j + w2 Mi

2
2

mi
j +

w3 Mi
2
1

mi
j + w4 Mi

2
2

mi
j + w5 Mi

2
1

mi
j

= w1 INe + w2 Mi
2
2

mi
j + w3 Mi

2
1

mi
j +

w4 Mi
2
2

mi
j + w5 Mi

2
1

mi
j . (42)

For ease of reference later, we adopt a 5-bit binary
code to represent the q

p-GIES algorithms. In each bit, “1”
represents the presence of the corresponding PLH, while
“0” means the absence of such a PLH. For instance, the
code “10000” stands for the original IES with Mi

R mi
j =

w1 INe , and “10100” for the q
p-GIES algorithm in which

Mi
R mi

j = w1 INe + w3 Mi
2
1

mi
j . As a result,

following Eq. 42, we end up with 25 − 1 = 31 q
p-GIES

algorithms in total, after excluding the case with the binary
code “00000” (i.e., no regularization). Table 2 lists these
considered q

p-GIES algorithms, where the information of
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Table 2 Characteristics of the tested q
p-GIES algorithms

Rank Binary code With the individual regularization term in the cost function?

mi+1
j − mi

j

T

Ci
m

−1
mi+1

j − mi
j SV mi+1

j − SV mi
j

2
2 SV mi+1

j − SV mi
j

2
1 SH mi+1

j −SH mi
j

2
2 SH mi+1

j −SH mi
j

2
1

1 11000 Yes Yes No No No

2 10011 Yes No No Yes Yes

3 01001 No Yes No No Yes

4 10010 Yes No No Yes No

5 01111 No Yes Yes Yes Yes

6 01011 No Yes No Yes Yes

7 10001 Yes No No No Yes

8 11001 Yes Yes No No Yes

9 01010 No Yes No Yes No

10 11100 Yes Yes Yes No No

11 01101 No Yes Yes No Yes

12 01110 No Yes Yes Yes No

13 10110 Yes No Yes Yes No

14 10111 Yes No Yes Yes Yes

15 10000 Yes No No No No

16 11010 Yes Yes No Yes No

17 01100 No Yes Yes No No

18 10100 Yes No Yes No No

19 11011 Yes Yes No Yes Yes

20 10101 Yes No Yes No Yes

21 01000 No Yes No No No

22 11101 Yes Yes Yes No Yes

23 11111 Yes Yes Yes Yes Yes

24 11110 Yes Yes Yes Yes No

25 00011 No No No Yes Yes

26 00010 No No No Yes No

27 00100 No No Yes No No

28 00001 No No No No Yes

29 00101 No No Yes No Yes

30 00110 No No Yes Yes No

31 00111 No No Yes Yes Yes

The algorithms are ranked in terms of mean data mismatch values during the forecast period (see Table 3). Definitions of the matrix Ci
m and the

transform operators SV and SH are provided in the text, whereas the weights associated with the individual regularization terms are specified in
Table 3

presence or absence of individual regularization terms in the
cost function is provided.

The PLHs in S-II and S-III are rank-deficient in general,
and this deficiency would be particularly serious when using
the 2

1 metric, as in M 2
1

and M 2
1
. Yet, the mixture

Mi
R mi

j of PLHs may still be of full-rank if the PLH

Mi
2
2

is present, otherwise it will be rank-deficient as well.

As such, to compute the inverse of Mi
R mi

j in Eq. 24, we

first conduct an eigenvalue decomposition on Mi
R mi

j ,

whether it is rank-deficient or not. We then keep the leading
eigenvalues (and the corresponding eigenvectors) which add
up to 99% or more of the sum of all eigenvalues. The inverse

of Mi
R mi

j is a sudo-inverse, computed based on the

truncated eigenvalue decomposition, with the corresponding
eigenvalues being the inverse of the kept eigenvalues of

Mi
R mi

j .

Comput Geosci (2021) 25:1159–1189 1169



There could be different ways in specifying the weight
coefficients wk , k = 1, 2, · · · , 5, in Eq. 42. In the current
work, we follow the strategy in [13], and set wk as follows:

w1 = α1; w2 = α2
Ne

trace Mi
2
2

; w3 = α3
Ne

trace Mi
2
1

;

w4 = α4
Ne

trace Mi
2
2

; w5 = α5
Ne

trace Mi
2
1

, (43)

where αk (k = 1, 2, · · · , 5) are some non-negative coeffi-
cients satisfying the constraints αk ∈ [0, 1]; 5

k=1 αk =
1. The rationale behind Eq. 43 is to balance the relative
weights of individual PLHs, such that the trace of each non-
vanishing PLH term is roughly comparable to the trace of
INe (equal to Ne). Typically, this strategy can help to avoid
the situation that an ill-conditioned PLH term has a domi-
nating weight over other existing terms, and thus improve
the numerical stability in algorithm implementation. After

Mi
R mi

j is determined, the value of γ i in Eq. 24 is chosen

following the same rule as in [13].
To mitigate the adverse effects of sampling errors due

to the relatively small ensemble size in use, we equip all
the q

p-GIES algorithms with an automatic and adaptive
localization scheme, labeled as RndShfl-GC in [31]. The
stopping criteria of the q

p-GIES include: (1) the iteration
process reaches a maximum of 50 iteration steps; (2) the
change of data mismatch values during two consecutive
iteration steps is less than 0.01%. An q

p-GIES algorithm
will stop if either of these two criteria is satisfied.

3.2 Experiment results

This sub-section compares the performance of the chosen
q
p-GIES algorithms, in terms of data mismatch values

during the history matching and forecast periods. Given an
ensemble Mi = {mi

j }Ne

j=1 of Ne reservoir models at the ith
iteration step, and a collection of observations do (with the
associated observation error covariance matrix Cd ) within
a given period, we compute an ensemble Mi ) of data
mismatch values (normalized by the number d of production
data) as follows:

Mi ) ≡ i
j | i

j = 1

d
do − g mi

j

T

C−1
d do − g mi

j

Ne

j=1
,(44)

with d = 240 in this case study.
In the experiment, we update the reservoir models by

assimilating the observations within the history matching
period, and cross-validate the qualities of the estimated
reservoir models by comparing the fitness of the simulated
data of the estimated reservoir models to those of the
reference model within the forecast period. As a result, in
the sequel, we use the (mean) forecast data mismatch as a
measure of the quality of an estimated reservoir model.

Table 3 reports the performance of all 31 q
p-GIES

algorithms, in terms of data mismatch values (in the form
of mean ± STD) during the history matching and forecast
periods, and the associated weight coefficients αk . For the
purpose of demonstration, it would be sufficient to select
some set of the αk values without fine-tuning to optimize
the performance of each individual q

p-GIES algorithm. For
ease of comparison, the q

p-GIES algorithms are listed in an
ascending order of their mean data mismatch values within
the forecast period, such that a lower rank implies better
performance. Before history matching is conducted, the data
mismatch values for the initial ensemble are 24.1399 ±
9.3804 and 31.6418 ± 15.7455 within the history matching
and forecast periods, respectively.

Some observations can be made based on the
results in Table 3. First of all, in this case study,
using only one of the five q

p metrics, namely,

mi+1
j − mi

j

T

Ci
m

−1
mi+1

j − mi
j (equal to

Si
I

−T
mi+1

j − mi
j

2
2), SV mi+1

j − SV mi
j

2
2,

SV mi+1
j − SV mi

j
2
1, SH mi+1

j − SH mi
j

2
2

or SH mi+1
j − SH mi

j
2
1, in the regularization

term would not result in the best possible perfor-
mance. Take the original IES (binary code 10000) as

an example, it adopts Si
I

−T
mi+1

j − mi
j

2
2 as the

regularization term in Eq. 19. As highlighted (in red)
in the table, in terms of mean forecast data mismatch,
it is ranked the 15th. In contrast, better performance
can be obtained by using as the regularization term a
certain mixture of the five q

p metrics. For instance, a

mixture of the metrics Si
I

−T
mi+1

j − mi
j

2
2 and

SV mi+1
j − SV mi

j
2
2 (binary code 11000) leads

to the best performance in the experiment, with the
mean forecast data mismatch being around 20% lower
than that of the original IES. The next best performance
is achieved by adopting a combination of the metrics

Si
I

−T
mi+1

j − mi
j

2
2, SH mi+1

j − SH mi
j

2
2

and SH mi+1
j − SH mi

j
2
1 (binary code 10011), or a

combination of the metrics SV mi+1
j −SV mi

j
2
2 and

SH mi+1
j − SH mi

j
2
1 (binary code 01001), and so

on and so forth.
On the other hand, among all five q

p metrics, it seems that

Si
I

−T
mi+1

j − mi
j

2
2 and SV mi+1

j −SV mi
j

2
2

have the dominant influence on algorithm performance
in this particular case study. In fact, among all q

p-
GIES algorithms that outperform the original IES, either

Si
I

−T
mi+1

j − mi
j

2
2 or SV mi+1

j − SV mi
j

2
2

should be absorbed into the regularization term. Otherwise,
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Table 3 Performance of q
p-GIES algorithms in terms of data mismatch values during the history matching and forecast periods, which are

evaluated with respect to the ensembles of reservoir models at the final iteration steps

Rank Binary code History-matching data mismatch Forecast data mismatch Weights

(mean ± STD) (mean ± STD) (α1, α2, α3, α4, α5)

1 11000 5.6651 ± 1.4907 11.2295 ± 2.1320 (0.8,0.2,0,0,0)
2 10011 5.3117 ± 1.4697 11.4270 ± 2.2018 (0.4,0,0,0.3,0.3)
3 01001 4.4136 ± 1.6987 11.4477 ± 3.1040 (0,0.5,0,0,0.5)
4 10010 6.7852 ± 1.7765 11.5952 ± 2.4197 (0.8,0,0,0.2,0)
5 01111 5.4465 ± 2.3342 11.7825 ± 2.6476 (0,0.25,0.25,0.25,0.25)
6 01011 5.3752 ± 1.4194 11.8857 ± 2.5042 (0,0.2,0,0.4,0.4)
7 10001 5.7308 ± 1.6847 12.0399 ± 1.8364 (0.8,0,0,0,0.2)
8 11001 6.8318 ± 1.6571 12.3625 ± 2.8368 (0.4,0.3,0,0,0.3)
9 01010 5.1996 ± 1.2851 12.6262 ± 2.697 (0,0.5,0,0.5,0)
10 11100 5.5461 ± 1.9041 12.8776 ± 2.7141 (0.4,0.3,0.3,0,0)
11 01101 5.9634 ± 3.7488 12.9788 ± 6.6565 (0,0.4,0.4,0,0.2)
12 01110 5.4560 ± 1.9779 13.4668 ± 3.6107 (0,0.4,0.4,0.2,0)
13 10110 6.1372 ± 2.7614 13.7114 ± 4.5172 (0.4,0,0.3,0.3,0)
14 10111 6.1220 ± 2.8016 13.9228 ± 4.7956 (0.25,0,0.25,0.25,0.25)
15 10000 9.5685 ± 4.789 14.0500 ± 4.1426 (1,0,0,0,0)

16 11010 6.8273 ± 1.9882 14.0611 ± 2.9402 (0.4,0.3,0,0.3,0)
17 01100 6.1362 ± 3.6115 14.0987 ± 8.0402 (0,0.5,0.5,0,0)
18 10100 8.973 ± 4.3793 14.3571 ± 4.5162 (0.8,0,0.2,0,0)
19 11011 5.9859 ± 1.7851 14.3768 ± 3.1043 (0.25,0.25,0,0.25,0.25)
20 10101 6.7457 ± 2.0475 14.4018 ± 4.8584 (0.4,0,0.3,0,0.3)
21 01000 6.9022 ± 2.8426 14.5511 ± 6.4825 (0,1,0,0,0)

22 11101 4.6991 ± 1.8031 14.9612 ± 3.7313 (0.25,0.25,0.25,0,0.25)
23 11111 5.6104 ± 2.5165 16.4231 ± 3.6174 (0.2,0.2,0.2,0.2,0.2)
24 11110 5.2775 ± 2.2947 16.858 ± 3.8077 (0.25,0.25,0.25,0.25,0)
25 00011 24.1399 ± 9.3804 31.6418 ± 15.7455 (0,0,0,0.5,0.5)
26 00010 24.1399 ± 9.3804 31.6418 ± 15.7455 (0,0,0,1,0)
27 00100 24.1399 ± 9.3804 31.6419 ± 15.7456 (0,0,1,0,0)
28 00001 24.1399 ± 9.3803 31.6419 ± 15.7457 (0,0,0,0,1)
29 00101 24.1399 ± 9.3804 31.6419 ± 15.7457 (0,0,0.5,0,0.5)
30 00110 24.1399 ± 9.3804 31.6419 ± 15.7457 (0,0,0.5,0.5,0)
31 00111 24.1399 ± 9.3803 31.6419 ± 15.7457 (0,0,0.2,0.4,0.4)

The q
p-GIES algorithms are listed in an ascending order of mean values of forecast data mismatch. In particular, performance of the q

p-GIES
algorithm corresponding to the original IES is highlighted (in red)

the performance of the q
p-GIES algorithms would be

degraded, see, for example, the results for those ranked
from the 25th to the 31th in the table. As a conjecture,
the reason for the under-performance of these q

p-GIES
algorithms is possibly due to the relatively low ranks in the

PLHs Mi
2
1

mi
j , Mi

2
2

mi
j , Mi

2
1

mi
j . As discussed

previously, Mi
2
1

mi
j and Mi

2
1

mi
j have relatively

low ranks due to the presence of the rank-1 matrices in their
computations, as can be seen in Eqs. 34 and 38. On the other

hand, Mi
2
2

mi
j may also have relatively low ranks due to

the possible correlations among the histograms of the initial
ensemble of reservoir models, which was generated using
the SNESIM with a common training image [28]. With

the low-rank PLHs, the corresponding q
p-GIES algorithms

are not able to find new reservoir models that significantly
reduce the data mismatch values. As a result, one can see
that the data mismatch values for reservoir models obtained
by these q

p-GIES algorithms remain very close to those of
the initial ensemble.

For conciseness, in the sequel we present some additional
experiment results with respect to some of the selected q

p-
GIES algorithms, which correspond to binary codes 10000
(original IES, ranked the 15th), 11000 (ranked the first),
10011 (ranked the second) and 01001 (ranked the third),
respectively, in Table 3.

Figure 4 reports the box plots of data mismatch within
the history matching period at different iteration steps. As
indicated in Table 3, in terms of mean data mismatch
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Fig. 4 Box plots of the ensembles of data mismatch values at different iteration steps of history matching, for the q
p-GIES algorithms

corresponding to binary codes: a 10000 (original IES); b 11000; c 10011 and d 01001, respectively

values, the q
p-GIES algorithm with the code 01001 results

in the lowest mismatch values, and is followed by the q
p-

GIES algorithms with the codes 10011 and 11000, whereas
the original IES (code 10000) leads to the highest data
mismatch. Meanwhile, it should be noted that, lower data
mismatch within the history matching period does not
necessarily imply lower data mismatch within the forecast
period. In fact, it is the q

p-GIES algorithm with the
code 11000 that achieves the lowest mean data mismatch
within the forecast period. A possible explanation for this
performance-inconsistency is that some of the q

p-GIES
algorithms may have overfitted the noisy observations
within the history matching period, in comparison to others.

For illustration, Fig. 5 shows the profiles of simulated
well oil production rates (WOPR) at P 5 within both the
history matching and forecast periods, with respect to the
initial ensemble and the final ensembles obtained through
the selected q

p-GIES algorithms, respectively. As can be
seen from Fig. 5a, all the simulated WOPR of the initial
ensemble (blue curves) under-forecasts the WOPR of the
reference model. This is possibly due to the fact that, in
the reference model, the rectangular area with the wells

I5, I6, P5 and P6 being the vertices (upper right region of
Figs. 1 or 7(a)) contains a relatively large portion of high-
permeability values2. In contrast, in the initial ensemble, the
same rectangular area is filled with more low-permeability
values instead (cf Fig. 2a or 7b). After applying the q

p-GIES
algorithms to update the reservoir models, the simulated
data of the final ensembles tend to match the WOPR of the
reference model better, although we still see the tendency
of under-forecasting the WOPR for most of the updated
reservoir models. On the other hand, better data match can
be found in other wells, as illustrated in Fig. 6.

Figure 7 presents the mean permeability maps of the
final ensembles obtained by the q

p-GIES algorithms. For
ease of comparison, we also re-plot the reference model and
the mean map of the initial ensemble here. Comparing the
mean of the initial ensemble to the reference model, one
can see that the initial mean model captures some of the
geological structures in the reference model, e.g., in terms

2For ease of reference later, we will simply say such an area is
surrounded by wells I5, I6, P5 and P6, and adopt the same custom to
refer to other areas.
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Fig. 5 Forecasts of WOPR at
well P5 within both the history
matching and forecast periods.
In each sub-figure, the orange
curve represents the true WOPR
generated by the reference
model, without any observation
noise; the red dots denote the
noisy observations within the
history matching period; the
blue curves stand for the
forecasts from either the initial
or the final ensembles of
reservoir models (in case of final
ensembles, we mark the adopted
history matching algorithms by
their corresponding binary codes
in the captions of sub-figures);
and finally, the vertical dashed
green lines separate the history
matching and forecast periods. a
Initial ensemble. b Binary code
10000 (original IES). c Binary
code 11000. d Binary code
10011. e Binary code 01001
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Fig. 6 As in Fig. 5, but for
forecasts of WOPR at well P3. a
Initial ensemble. b Binary code
10000 (original IES). c Binary
code 11000. d Binary code
10011. e Binary code 01001
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Fig. 7 Reference model, and mean maps of reservoir models with
respect to the initial or final ensemble(s). In case of final ensembles,
the captions of corresponding sub-figures indicate the binary codes of

adopted history matching algorithms. a Referen model. b Initial mean
map. c Final mean map (code 10000). d Final mean map (code 11000).
e Final mean map (code 10011). f Final mean map (code 01001)

of the lower channel closer to the bottom. On the other hand,
there are also some noticeable differences, e.g., in the areas
surrounded by the wells I1, I2, P1 and P2 (upper left parts of
the maps), or the areas surrounded by the wells I5, I6, P5 and
P6 (upper right parts of the maps). After history matching,
the final mean maps are able to capture the geological
structures better in the areas surrounded by the wells I1, I2,
P1 and P2, and by the wells I5, I6, P5 and P6, respectively.
The connectivities of the channels in the final ensembles
of updated reservoir models appear to be a problem. We
expect that this issue may be mitigated by adopting a

more sophisticated reparameterization strategy [25–27] in
the course of history matching, which is, however, beyond
the scope of the current study. For more information, in
Figs. 8 and 9 we also report the STD maps with respect to
the initial ensemble and final ones obtained by the q

p-GIES
algorithms, and sample reservoir models before and after
history matching, respectively.

Finally, Fig. 10 plots the histograms with respect to
the reference model, and the mean models of the initial
and final ensembles. While the histogram of the reference
model takes two separate points as its support, those of
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Fig. 8 As in Fig. 7, but for STD maps instead. a Initial STD map. b Final STD map (code 10000). c Final STD map (code 11000). d Final STD
map (code 10011). e Final STD map (code 01001)

the mean models of the initial and final ensembles exhibit
(approximately) bi-modal distributions. Roughly speaking,
the two main modes of the distributions appear to coincide
with the true permeability values of the channel (10000 md)
and the background (500 md), although their magnitudes
(defined as the numbers of permeability values falling into
the bins at the modes) seem to vary. For instance, for
the dominant mode (10000 md), the q

p-GIES algorithms
with the codes 11000 and 10011 lead to higher magnitudes
(> 300) than those with the codes 10000 and 01001. On
the other hand, regarding the magnitudes of the secondary
modes (500 md), the q

p-GIES algorithm with the code
01001 results in the highest value (> 100), whereas the

magnitudes of the other q
p-GIES algorithms remain close.

4 Discussion and conclusion

This work investigates the feasibility to derive novel ensem-
ble data assimilation algorithms in a principled and system-
atic way, and applies some newly derived algorithms to two
history matching problems for performance comparison.

We start from establishing an ensemble-based model
update formula, which can be considered as an approximate
solution to a generalized minimum-average-cost (GMAC)
problem. In the GMAC problem, one aims to find an
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Fig. 9 An individual reservoir model (sample realization 1, cf.
Figure 2) before and after history matching. For ease of comparison,
the reference model and the binary codes of adopted history match-
ing algorithms are also presented, similar to Fig. 7. a Referen model.

b Initial map (sample realization 1). c Final mean map (sample real-
ization 1, code 10000). d Final mean map (sample realization 1, code
11000). e Final mean map (sample realization 1, code 10011). f Final
mean map (sample realization 1, code 01001)

ensemble of inputs (e.g., model parameters) to a given
forward simulator, in such a way that the corresponding
outputs of the simulator can match the observed data
to a good extent. As such, solving the GMAC problem
corresponds to finding an ensemble of solutions to the
underlying inverse problem. Similar to the transition
from variational data assimilation to ensemble-based data
assimilation, the solution to the GMAC problem can
be deemed as an “ensemblized” version of a certain
deterministic approach to solving the inverse problem.
However, in the literature, various deterministic inversion
algorithms have been developed by minimizing different
types of (regularized) cost functions. In contrast, for
ensemble-based data assimilation algorithms in practical

use, such a variety (in terms of the underlying cost
functions) does not seem to exist, to the best of our
knowledge. The current work narrows this noticed gap
between the varieties of the deterministic and ensemble-
based inversion algorithms, by showing that one can derive
novel ensemble data assimilation algorithms from a class
of generalized cost functions, which in general go beyond
the form of nonlinear-least-squares in the conventional
ensemble-based data assimilation algorithms.

For demonstration, we investigate a sub-class of newly
derived ensemble data assimilation algorithms, called the
q
p-GIES algorithms. The underlying cost functions of

these algorithms share the same data mismatch term,
but differ in their regularization terms, which consist of
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Fig. 10 Similar to Fig. 7, but for
histograms of the reference
model, and mean reservoir
models with respect to the initial
and final ensembles. a Referen
model. b Initial mean map. c
Final mean map (code 10000). d
Final mean map (code 11000). e
Final mean map (code 10011). f
Final mean map (code 01001)
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mixtures of various q
p metrics of different transformed

model variables. It can be shown that the original iterative
ensemble smoother (IES) corresponds to a special case of
the q

p-GIES algorithms. In applications of the q
p-GIES

algorithms to two history matching problems, we show that
many tested q

p-GIES algorithms outperform the original
IES in these case studies. In a bigger picture, given the
richness of the ensemble-based data assimilation algorithms
that can be derived from the general model update formula,
it appears sensible to believe that one may find certain
algorithms that perform better than the original IES in

various inverse problems. On the other hand, though, how to
find the optimal designs of such ensemble-based algorithms
would remain to be an open research question.

Appendix A: Iterative ensemble smoothers
derived from a class of generalized cost
functions

In the sequel, we proceed to develop an approximate
solution to the generalized MAC problem in Eqs. 9 and 10,
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in a way similar to that in [13]. To this end, we need to
assume certain regularity conditions, namely, the operators
D, R, T , S and g are (locally) differentiable up to relevant
orders in our derivations below.

We start from considering the first order Taylor
approximation

f (x0 + δx) ≈ f (x0) + ∇f (x0)
T

δx, (45)

∇f (x0) ≡ ∂f (x)
∂x x=x0

, (46)

where f is a vector-valued function, x0 is an input vector
associated with a (relatively small) perturbation vector δx,
and ∇f (x0), as defined in Eq. 46, represents the gradient
with respect to f evaluated at the point x0. Note that
throughout this work, we adopt the following convention:
given the mx-dimensional vector x0 and the function f :
R

mx → R
mf , the gradient ∇f (x0) is a matrix in the

dimension of mx × mf .
The following formulas of matrix calculus [32]

∂f (u (x))
∂x

= ∂u (x)
∂x

∂f (u)

∂u
= ∇u (x)∇f (u) , (47)

∂Mu (x)
∂x

= ∂u (x)
∂x

MT = ∇u (x)MT . (48)

will get involved in our derivation later. In Eq. 47,
f (u (x)) represents the composition of two vector functions
f and u, with the dummy input vector x. Equation 48
may be considered as a special case of Eq. 47, where
f (u (x)) = Mu (x), with M being a constant matrix, such
that ∂Mu/∂u = MT .

In addition, the follow matrix identity

CmHT HCmHT + Cd

−1 = C−1
m + HT C−1

d H
−1

HT C−1
d , (49)

will also be found useful for our derivation later. The left-
hand-side (LHS) of Eq. 49 would correspond to the Kalman
gain matrix in the Kalman filter, if one treats Cm as the prior
model error covariance matrix, H as a linear observation
operator that maps a model vector onto the observation
space, and Cd as the observation error covariance matrix.
The right-hand-side (RHS) of Eq. 49 is another way to
represent the Kalman gain matrix, and is often used to
formulate the information filter [33].

To solve the minimization problem in Eqs. 9–10, we aim
to set

∂Ci+1
j /∂mi+1

j = 0. (50)

To this end, the follow linearization [13] strategy, through
the first Taylor approximation (45), is adopted.

T ◦ g mi+1
j ≡ T g mi+1

j ≈ T ◦ g mi
c + ∇T ◦g mi

c

T

mi+1
j − mi

c , (51)

S mi+1
j ≈ S mi

c + ∇S mi
c

T

mi+1
j − mi

c , (52)

where mi
c is a “common” point with respect to the

(background) ensemble Mi . The motivation to use this
“common” point is to avoid evaluating the gradients with
respect to the operators T ◦ g and S at multiple points.
There could be various choices for mi

c, e.g., by setting mi
c

as the ensemble mean of Mi , or as one ensemble member
closest to the ensemble mean [13]. In the current work, by
default we will let mi

c be the ensemble mean of Mi , unless
otherwise stated. We note that the choice of mi

c does not
affect the deviations below.

Inserting (51) into the data mismatch term D of Eq. 10,
then we have

A ≡ D T dj − T g mi+1
j ≈ (53)

D T dj − T ◦ g mi
c − ∇T ◦g mi

c

T

mi+1
j − mi

c .

Accordingly, we have

∂A/∂mi+1
j = −∇T ◦g mi

c ∇D T dj − T ◦ g mi
c − ∇T ◦g mi

c

T

mi+1
j − mi

c

≈ −∇T ◦g mi
c ∇D T dj − T ◦ g mi

c − ∇∇D T dj − T ◦ g mi
c

T ∇T ◦g mi
c

T

mi+1
j − mi

c

≡ −∇T ◦g mi
c ∇D T dj − T ◦ g mi

c − ∇2
D T dj − T ◦ g mi

c

T ∇T ◦g mi
c

T

mi+1
j − mi

c . (54)

In Eq. 54, we use Eqs. 47 and 48 to derive the first
line. In the second line, we then apply the first Taylor
approximation (45), around the point T dj − T ◦ g mi

c ,
to the function ∇D in the first line. As a result, we come out
with a second-order gradient (i.e., Hessian) ∇∇D , which is
denoted as ∇2

D in the third line for short.

Similarly, by inserting (52) into the regularization term
R of Eq. 10, we have

B ≡ R S mi+1
j − S mi

j ≈ (55)

R S mi
c − S mi

j + ∇S mi
c

T

mi+1
j − mi

c ,
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and the corresponding derivative is

∂B/∂mi+1
j ≈ ∇S mi

c ∇R S mi
c − S mi

j + (56)

∇2
R S mi

c − S mi
j

T ∇S mi
c

T

mi+1
j − mi

c .

Combing (10), (50), (54) and (56) and with some linear
algebra, one has

∇T ◦g mi
c ∇2

D T dj − T ◦ g mi
c

T ∇T ◦g mi
c

T

+γ i∇S mi
c ∇2

R S mi
c − S mi

j

T ∇S mi
c

T

mi+1
j − mi

c

= ∇T ◦g mi
c ∇D T dj − T ◦ g mi

c − γ i∇S mi
c ∇R S mi

c − S mi
j .

(57)

As in the ensemble-based methods, the model variables
mi+1

j are updated from mi
j , rather than from mi

c, we re-
arrange (57) as follows:

∇T ◦g mi
c ∇2

D T dj − T ◦ g mi
c

T ∇T ◦g mi
c

T

+γ i∇S mi
c ∇2

R S mi
c − S mi

j

T ∇S mi
c

T

mi+1
j − mi

j

= ∇T ◦g mi
c ∇D T dj − T ◦ g mi

c − γ i∇S mi
c ∇R S mi

c − S mi
j

+ ∇T ◦g mi
c ∇2

D T dj − T ◦ g mi
c

T ∇T ◦g mi
c

T

+γ i∇S mi
c ∇2

R S mi
c − S mi

j

T ∇S mi
c

T

mi
c − mi

j .

(58)

After regrouping different terms, the RHS of Eq. 58 can
be rewritten as E + F , with

E ≡ ∇T ◦g mi
c ∇D T dj − T ◦ g mi

c + ∇2
D T dj − T ◦ g mi

c

T ∇T ◦g mi
c

T

mi
c − mi

j

≈ ∇T ◦g mi
c ∇D T dj − T ◦ g mi

c + ∇T ◦g mi
c

T

mi
c − mi

j

≈ ∇T ◦g mi
c ∇D T dj − T ◦ g mi

j . (59)

In Eq. 59, the second line is obtained by applying
the Taylor approximation (45) (in a reverse order) to the
function ∇D, around the point T dj − T ◦ g mi

c .

Likewise, the third line is derived by applying (45) again,
now to the function T ◦ g, around the point mi

c.
Likewise, we have

F ≡ −γ i∇S mi
c ∇R S mi

c − S mi
j − ∇2

R S mi
c − S mi

j

T ∇S mi
c

T

mi
c − mi

j

≈ −γ i∇S mi
c ∇R S mi

c − S mi
j − ∇S mi

c

T

mi
c − mi

j

≈ −γ i∇S mi
c ∇R S mi

j − S mi
j

= 0. (60)

To derive the final result in Eq. 60, we make the following
assumption: ∇R (0) = 0. The rationale behind this
assumption is that, in a conventional setting of regularized
inverse-problem theory [6], the regularization term would
typically achieve the minimum value (and actually vanish)
at the zero value.

Combining (58) – (60), one obtains

∇T ◦g mi
c ∇2

D T dj − T ◦ g mi
c

T ∇T ◦g mi
c

T

+γ i∇S mi
c ∇2

R S mi
c − S mi

j

T ∇S mi
c

T

mi+1
j − mi

j

= ∇T ◦g mi
c ∇D T dj − T ◦ g mi

j . (61)

As the Hessian ∇2
D T dj − T ◦ g mi

c and

∇2
R S mi

c − S mi
j are symmetric, we discard the

transpose operator T hereafter. To proceed further, we
need to apply (49)–(61). To this end, we do the following
assignments:

Ci
m,j

−1 = ∇S mi
c ∇2

R S mi
c − S mi

j ∇S mi
c

T ; (62)

Ci
d,j

−1 = ∇2
D T dj − T ◦ g mi

c ; (63)

Hi = ∇T ◦g mi
c

T

. (64)
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Then using Eq. 49 and with some algebra, one has the
following update formula:

mi+1
j = mi

j + Ki
jC

i
d,j ∇D T dj − T ◦ g mi

j

= mi
j + Ki

j ∇2
D T dj − T ◦ g mi

c

−1 ∇D T dj − T ◦ g mi
j , (65)

Ki
j ≡ Ci

m,j Hi
T

HiCi
m,j Hi

T + γ iCi
d,j

−1

. (66)

Before proceeding further, we have a few remarks.
First, the assimilation algorithm presented in Eqs. 62–66
provides an approximation solution to the GMAC problem,
but without using ensemble approximations to the first-
and second-order gradients therein yet. If one already has
access to all required gradients, then they can be used in
the assimilation algorithm, and this may lead to improved
performance of history matching. On the other hand, if
some of the gradients are not available or impractical to
compute and/or store, then one may employ ensemble
approximations to obtain certain (sometimes partially)
derivative-free algorithms, as will be discussed later.

Second, in the original IES algorithm (3)–(7), the
Kalman-gain-like matrix, Ki in Eq. 4, is common to
all ensemble members. In contrast, in the case with
a generalized cost function, e.g., that in Eq. 10, the
corresponding Kalman-gain-like matrix, Ki

j in Eq. (66),

depends on both the individual ensemble member mi
j and

even the (potentially) perturbed data dj in general, as one
can see from Eqs. 62–63. While the diversity of Ki

j may
be of theoretical interest, in practice one of the implications
is the increased memory consumption for storing these
Kalman-gain-like matrices. This problem can be avoided if
one lets both the distance metric D and the regularization
operator R be some quadratic functions, as in the problem
formulation that leads to the original IES, cf. Equations 2 or
Eqs. 11 and 12; or partially mitigated if one adopts ensemble
approximations to compute Ki

j , as will be shown below.
To obtain ensemble-based approximation, we start

from computing the product Ci
m,j Hi T

involved in the

computation of Ki
j . Let

T1 ≡ Ci
m,j Hi

T

= ∇S mi
c ∇2

R S mi
c − S mi

j ∇S mi
c

T −1

∇T ◦g mi
c

= Si
I Si

I
T ∇S mi

c ∇2
R S mi

c − S mi
j ∇S mi

c

T

Si
I

−1

(67)

Si
I

T ∇T ◦g mi
c ,

where SI is an (ensemble-induced) square-root matrix, as
defined in Eqs. 6 and 8. Now, for a generic function f with
suitable regularity conditions, we have

Si
I

T ∇f mi
c = 1√

Ne − 1
mi

1 − m̄i
T ∇f mi

c , mi
2 − m̄i

T ∇f mi
c , · · · , mi

Ne
− m̄i

T ∇f mi
c

≈ 1√
Ne − 1

f mi
1 − f mi

c , f mi
2 − f mi

c , · · · , f mi
Ne

− f mi
c

T

≡ Si
f

T

. (68)

To drive the results in Eq. 68, we have used the fact that
m̄i = mi

c, and applied the first order Taylor approximation
(45), in the reverse order, to derive the result in the second
line.

With Eq. 68, we then have

T1 ≈ Si
I Si

S
T ∇2

R S mi
c − S mi

j Si
S

−1

Si
T ◦g

T

= Si
I Mi

R mi
j

−1
Si
T ◦g

T

. (69)

Mi
R mi

j ≡ Si
S

T ∇2
R S mi

c − S mi
j Si

S . (70)

If one does not have the analytic form of the Hessian ∇2
R

of the regularization operator R, then an ensemble-based
approximation strategy can be further deployed to compute

Mi
R mi

j , which will be presented separately later.

Now we consider the computation of the product

Hi Ci
m,j Hi T

. Following the previous deduction, we
have

T2 ≡ HiCi
m,j Hi

T

≈ Si
T ◦g Mi

R mi
j

−1
Si
T ◦g

T

. (71)

On the other hand, we have

Ci
d,j = ∇2

D T dj − T ◦ g mi
c

−1

= Si
T ◦g Si

T ◦g
T ∇2

D T dj − T ◦ g mi
c Si

T ◦g
−1

Si
T ◦g

T

= Si
T ◦g Mi

D dj

−1
Si
T ◦g

T

(72)

Mi
D dj ≡ Si

T ◦g
T ∇2

D T dj − T ◦ g mi
c Si

T ◦g. (73)
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Again, if ∇2
D cannot be evaluated exactly, then an

ensemble-based approximation can be adopted, which will
be discussed later. Assembling the results from Eqs. 67–73

into Eq. 65, we derive the following ensemble-based model
update formula:

mi+1
j = mi

j + Si
I Mi

R mi
j

−1
Si
T ◦g

T

Si
T ◦g Mi

R mi
j

−1
Si
T ◦g

T + γ iSi
T ◦g Mi

D dj

−1
Si
T ◦g

T −1

×

Si
T ◦g Mi

D dj

−1
Si
T ◦g

T ∇D T dj − T ◦ g mi
j

= mi
j + Si

I Mi
R mi

j

−1
Mi

R mi
j

−1 + γ i Mi
D dj

−1 −1

Mi
D dj

−1
Si
T ◦g

T ∇D T dj − T ◦ g mi
j

= mi
j + Si

I Mi
D dj + γ iMi

R mi
j

−1
Si
T ◦g

T ∇D T dj − T ◦ g mi
j

= mi
j + K̃i

j∇D T dj − T ◦ g mi
j . (74)

K̃i
j ≡ Si

I Mi
D dj + γ iMi

R mi
j

−1
Si
T ◦g

T

. (75)

In Eq. 74, if the analytic form of the gradient ∇D is not
available, then an ensemble-based approximation strategy
can be adopted for its computation, as will be discussed
later. Equation 75 defines an effective Kalman-gain-like
matrix K̃i

j involved in the model update formula (74).

For the purpose of calculating K̃i
j , the involved square-

root matrices Si
I and Si

T ◦g are common to all ensemble
members. The differences among ensemble members reside

in the matrices Mi
D dj and Mi

R mi
j , which are both in

the dimension of Ne × Ne. Assuming that Mi
D dj and

Mi
R mi

j vary over all ensemble members, then the storage

costs of Mi
D dj and Mi

R mi
j are in the order of N3

e ,

which is normally affordable in practice, with the typical
ensemble size Ne being in the order of 102.

Below we show that the original IES algorithm 3 is a
special case of the more general formula in Eq. 74. To this
end, let the distance metric D and the regularization operator
R be some quadratic mappings as defined in Eqs. 11 and
12. In addition, let both the transform operators T and S be
identity, such that

Si
S = Si

I;
Si
T ◦g = Si

g;
∇D T dj − T ◦ g mi

j = C−1
d dj − g mi

j ;

Mi
D dj = Si

g

T

C−1
d Si

g;

Mi
R mi

j = Si
I

T

Ci
m

−1
Si
I = INe , (76)

where INe is the identity matrix in the dimension of
Ne × Ne. As a result, the update formula (74) is reduced to

mi+1
j = mi

j + Si
I Si

g

T

C−1
d Si

g + γ i INe

−1

Si
g

T

C−1
d dj − g mi

j . (77)

According to Eq. 49, one has

Si
g

T

C−1
d Si

g + γ i INe

−1

Si
g

T

C−1
d = (Si

g)
T Si

g(S
i
g)

T + γ iCd

−1
. (78)

Therefore, Eq. 77 is equivalent to

mi+1
j = mi

j + Si
I(Si

g)
T Si

g(S
i
g)

T + γ iCd

−1
dj − g mi

j , (79)

which is exactly the same as the update formula induced by
Eqs. 3–7.

Appendix B: Approximations to the products
between gradient or Hessian and certain
ensemble-induced square-root matrices

Here, we consider ensemble-based approximations to the

term Si
T ◦g

T ∇D T dj − T ◦ g mi
j in Eq. 74, the

term Mi
R mi

j defined in Eq. 70, and the term Mi
D dj

defined in Eq. 73, when the analytic forms of ∇D, ∇2
R and

∇2
D are not available.
Similar to Eq. 68, by applying the first order Taylor

approximation (45), one has
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Si
T ◦g

T ∇D T dj − T ◦ g mi
j

= 1√
Ne − 1

T ◦ g mi
1 − T ◦ g mi

c , · · · , T ◦ g mi
Ne

− T ◦ g mi
c

T × ∇D T dj − T ◦ g mi
j

= 1√
Ne − 1

T ◦ g mi
1 − T ◦ g mi

j + T ◦ g mi
j − T ◦ g mi

c , · · · ,

T ◦ g mi
Ne

− T ◦ g mi
j + T ◦ g mi

j − T ◦ g mi
c

T × ∇D T dj − T ◦ g mi
j

≈ 1√
Ne − 1

D T dj − T ◦ g mi
j − D T dj − T ◦ g mi

1 +

D T dj − T ◦ g mi
c − D T dj − T ◦ g mi

j ,

· · · · · ·
D T dj − T ◦ g mi

j − D T dj − T ◦ g mi
Ne

+
D T dj − T ◦ g mi

c − D T dj − T ◦ g mi
j

= D T dj − T ◦ g mi
c√

Ne − 1
1Ne − 1√

Ne − 1
D T dj − T ◦ g mi

1 , · · · ,D T dj − T ◦ g mi
Ne

T

, (80)

where 1Ne is a Ne-long vector whose elements are all equal
to 1.

Next, consider the ensemble approximation to

Mi
R mi

j . First, let us evaluate

P1 = ∇2
R S mi

c − S mi
j Si

S

= 1√
Ne − 1

∇2
R S mi

c − S mi
j

S mi
1 − S mi

c , · · · ,S mi
Ne

− S mi
c

≈ 1√
Ne − 1

∇R S mi
1 − S mi

j − ∇R S mi
c − S mi

j , · · · ,

∇R S mi
Ne

− S mi
j − ∇R S mi

c − S mi
j . (81)

Then we have

Mi
R mi

j = Si
S

T

P1

≈ 1

Ne − 1
S mi

1 − S mi
c , · · · ,S mi

Ne
− S mi

c

T

× ∇R S mi
1 − S mi

j − ∇R S mi
c − S mi

j , · · · ,

∇R S mi
Ne

− S mi
j − ∇R S mi

c − S mi
j . (82)

The element of Mi
R mi

j on the kth row (k =
1, 2, · · · , Ne) and the th column ( = 1, 2, · · · , Ne),

denoted by Mi
R mi

j
k,l

, is then given by

Mi
R mi

j = 1

Ne − 1
S mi

k − S mi
c

T ∇R S mi − S mi
j − ∇R S mi

c − S mi
j

≈ 1

Ne − 1
R S mi

k + S mi − S mi
j − S mi

c + R S mi
c − S mi

j

−R S mi
k − S mi

j − R S mi − S mi
j . (83)

Clearly, one has Mi
R mi

j = Mi
R mi

j ,

meaning that the ensemble approximation leads to a
symmetric matrix.

In a similar way, the elements of the ensemble
approximation to the term Mi

D dj can be obtained as
follows:

Mi
D dj ≈ 1

Ne − 1
D T dj + T ◦ g mi

c − T ◦ g mi
k − T ◦ g mi + D T dj − T ◦ g mi

c

−D T dj − T ◦ g mi
k − D T dj − T ◦ g mi . (84)
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Again, the ensemble approximation leads to a symmetric
matrix, since Mi

D dj = Mi
D dj .

Appendix C: Analytic forms of gradient
and Hessian with respect to the q

p metric

In the sequel, we derive the analytic forms of gradient
and Hessian of the distance metric Bx q

p, where x is an
mx-dimensional vector, and B a matrix in the dimension
of Nb × mx . As a result, the product Bx leads to a Nb-
dimensional vector, while the meaning of Bx q

p is to raise
the p norm of Bx to the qth power. In short, we call Bx q

p

a q
p metric hereafter.
By definition, we have the q

p metric

Bx q
p =

⎛

⎝
Nb

e=1

| (Bx)e |p
⎞

⎠

q/p

; (85)

(Bx)e ≡
mx

f =1

Be,f xf , (86)

where (Bx)e stands for the eth element of the vector Bx, xf

for the f th element of the vector x (f = 1, 2, · · · , mx), and
Be,f for the element of the matrix B on the eth row and the
f th column.

With some algebra, one has

Bx q
p

∂xk

= ∂

∂xk

⎛

⎝
Nb

e=1

|
mx

f =1

Be,f xf |p
⎞

⎠

q/p

= q

p

⎛

⎝
Nb

e=1

|
mx

f =1

Be,f xf |p
⎞

⎠

(q−p)/p ⎡

⎣
Nb

e=1

p |
mx

f =1

Be,f xf |p−1 ∂

∂xk

|
mx

f =1

Be,f xf |
⎤

⎦

= q

⎛

⎝
Nb

e=1

|
mx

f =1

Be,f xf |p
⎞

⎠

(q−p)/p ⎡

⎣
Nb

e=1

|
mx

f =1

Be,f xf |p−2

⎛

⎝
mx

f =1

Be,f xf

⎞

⎠ Be,k

⎤

⎦

= q Bx q−p
p

⎡

⎣
Nb

e=1

| (Bx)e |p−2 (Bx)e Be,k

⎤

⎦ . (87)

Note that to derive the result in the third line of Eq. 87
from the second one, we have used the result that d|x|/dx =
sgn(x) = x/|x| (with sgn being the sign function), while
ignoring the singularity of the derivative at x = 0. In
the context of ensemble-based data assimilation, this way
of handling the singularity at x = 0 may work well in
general, since we are typically dealing with gradient and
Hessian evaluated at local points away from 0, due to the
deviations of ensemble members from the ensemble mean.
For example, see the formula in Eq. 16.

Based on Eq. 87, one has

∇ Bx q
p
(x) ≡ ∂ Bx q

p

∂x
= q Bx q−p

p BT a; (88)

a ≡ |Bx|∧̇(p−2) (Bx) . (89)

In Eq. 89, the operator ∧̇ raises the elements of a
vector to a certain power, e.g., for a (column) vector y =
[y1, y2, · · · ]T , one has |y|∧̇p = |y1|p, |y2|p, · · · T . On the
other hand, the operator stands for element-wise product
(i.e., Hadamard product), such that for x = [x1, x2, · · · ]T
and y = [y1, y2, · · · ]T , one has x y = [x1y1, x2y2, · · · ]T .

As special cases, if p = q = 2 or p = q = 1, then
Eqs. 88 and 89 lead to

∇ Bx 2
2
(x) = 2BT Bx,

or

∇ Bx 1
1
(x) = BT ˙sgn(Bx),

where ˙sgn denotes the sign function applied element-wise
to its input.

In a similar way, we can proceed to compute the Hessian
of Bx q

p. With some algebra, we obtain

Bx q
p

∂xk ∂xs

= q (q − p) Bx q−2p
p

⎡

⎣
Nb

e=1

| (Bx)e |p−2 (Bx)e Be,k

⎤

⎦

⎡

⎣
Nb

e=1

| (Bx)e |p−2 (Bx)e Be,s

⎤

⎦+ q (p − 1) Bx q−p
p

⎡

⎣
Nb

e=1

Be,k Be,s | (Bx)e |p−2

⎤

⎦ . (90)

As a result, we have

∇2
Bx q

p
(x) = q (q − p) Bx q−2p

p BT aaT B + q (p − 1) Bx q−p
p (B C)T (B C) ; (91)

C ≡ |Bx|∧̇(p/2−1) 1T
mx

, (92)

where 1mx stands for a mx-dimensional vector whose
elements are all equal to 1. As is evident in Eq. 91,
∇2

Bx q
p
(x) is symmetric. Interestingly, if 0 < q = p <

1, one can see that ∇2
Bx q

p
(x) is negative semi-definite,

reflecting the fact that the metric Bx q
p is non-convex in

this case.
Again, if p = q = 2 or p = q = 1, then Eqs. 91 and 92

lead to

∇2
Bx 2

2
(x) = 2BT B,
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or

∇2
Bx 1

1
(x) = 0,Bx = 0.

The latter result implies that the Hessian of Bx 1
1

vanishes almost everywhere (except at Bx = 0).

Appendix D: Gradient and Hessian
of amixture of regularization operators

Here we aim to evaluate the gradient and Hessian of a
mixture of Kmix regularization operators in the transformed
model space, in the form of

Kmix

k=1

wkRk (Sk (x)) , (93)

where wk is a scalar, representing the weight associated
with the kth regularization operator Rk , which acts
on the transformed model variables Sk (x), obtained by
applying the transform operator Sk to the model variables
x.

For ease of comprehension, in the sequel we adopt the
method of induction. To start, consider the case with a
single regularization operator R, such that the regularization
term is simply in the form of R (S (x)). In this case, we
have

∇R (x) ≡ ∂R (S (x))
∂x

= ∂S
∂x

∂R (S)

∂S = ∇S (x) ∇R (S) . (94)

To get the Hessian, we have

∇2
R (x) = ∂

∂x
∂S
∂x

∂R (S)

∂S

= ∂

∂x
∂S
∂x

T
∂R (S)

∂S
+ ∂

∂x
∂R (S)

∂S
∂S
∂x

T

≈ ∂S
∂x

∂

∂S
∂R (S)

∂S
∂S
∂x

T

= ∇S (x) ∇2
R (S) (∇S (x))T . (95)

To derive the third line of Eq. 95, we ignore the
Hessian of the transform operator S with respect to x, in
light of the strategy of first-order Taylor approximation in
Eq. 55.

Now let us consider the case of a mixture of two
regularization operators, in terms of w1R1 (S1 (x)) +
w2R2 (S2 (x)). In this case, we define

R (S (x)) ≡ w1R1 (S1 (x)) + w2R2 (S2 (x))

= wT R̃ (S (x)) ; (96)

S (x) ≡ (S1 (x))T , (S2 (x))T
T ; (97)

w = [w1, w2]T , (98)

R̃ (S (x)) = (R1 (S1 (x)))T , (R2 (S2 (x)))T
T

. (99)

As a result, we obtain

∇R (x) ≡ ∂R (S (x))
∂x

= ∂S
∂x

∂R̃ (S)

∂S w = ∇S (x) ∇R̃ (S)w; (100)

∇S (x) = ∇S1 (x) , ∇S2 (x) ; (101)

∇R̃ (S) = ∇R1 (S1) 0
0 ∇R2 (S2)

. (102)

(103)

Therefore, we have the gradient of R with respect to S,
in terms of

∇R (S) ≡ ∇R̃ (S)w = w1 ∇R1 (S1)
T

, w2 ∇R2 (S2)
T T

. (104)

In addition, we have

∇2
R (x) = ∂

∂x
∇S (x) ∇R̃ (S)w

≈ ∂

∂x
∇R̃ (S)w (∇S (x))T (105)

= ∇S (x)
∂

∂S ∇R̃ (S)w (∇S (x))T . (106)

Hence the Hessian of R with respect to S is given by

∇2
R (S) ≡ ∂

∂S ∇R̃ (S)w

= w1∇2
R1

(S1) 0
0 w2∇2

R2
(S2)

. (107)

To obtain (107), we have used the fact that
∂∇Ri

(Si ) /∂Sj = 0, for i = j, i, j ∈ {1, 2}.
Similarly, for a mixture of Kmix regularization operators,

i.e.,

R (S (x)) ≡
Kmix

k=1

wkRk (Sk (x)) ,
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one has its gradient and Hessian in the transformed model
space given by

S (x) ≡ (S1 (x))T , (S2 (x))T , · · · , SKmix (x) T T ; (108)

∇R (S) = w1 ∇R1 (S1)
T

, w2 ∇R2 (S2)
T

, · · · , wKmix
∇RKmix

SKmix

T T

; (109)

∇2
R (S) =

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

w1∇2
R1

(S1) 0 · · · 0

0 w2∇2
R2

(S2) · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · wKmix
∇2
RKmix

SKmix

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

. (110)

Appendix E: Additional results in a 5-spots
example

The reservoir model

Here we present some additional numerical results obtained
by applying a subset of q

p-GIES algorithms to a 2D 5-
spots example, wherein the numerical reservoir model is in
the dimension of 50 × 50 (in the unit of gridblocks), with
oil, water and gas phases. There are four producers (labeled
as P1 – P4) on the corners of the model, and one injector
(labeled as I1) in the center, as indicated in Fig. 11. The
locations of these wells, in terms of Cartesian coordinates
(x, y), are as follows: P1 at (2, 2); P2 at (49, 2); P3 at (2,
49); P4 at (49, 49) and I1 at (25, 25).

The parameters to be estimated consist of x-dimensional
permeability (PERMX) and porosity (PORO) on all
reservoir gridblocks. Initial ensembles for PERMX and
PORO (with 100 ensemble members) are generated through
sequential Gaussian simulation. Figure 11 shows the
PERMX and PORO maps in the reference model, which
is used to generate production data every 30 days, for
a total period of 1500 days. One of the producers,
P4, is shut in during history matching, therefore the
production data consist of well oil/water/gas production
rates (WOPR/WWPR/WGPR) from the other 3 producers,
and well bottom-hole pressures (WBHP) from wells P1 –
P3 and I1 every 30 days. The number of production data
used for history matching is 650 in total. The observed
production data are contaminated by certain zero-mean
Gaussian white noise. For WOPR/WWPR/WGPR data, the
standard deviations (STDs) of observation noise are either
10% of their magnitudes, or set to 10−6 if the observed
production data (e.g., WWPR) are equal to zero; whereas
for WBHP, their STDs are 1 bar.

The q
p-GIES algorithms adopted for this case study

are constructed based on the following considerations. As
Figure 11 indicates, there are also spatial patterns in the
reservoir models that can be exploited by the algorithms,
e.g., through the calculations of the first-order variations
of PERMX and PORO maps, similar to the previous

channelized reservoir characterization problem. On the
other hand, histograms of PERMX and PORO in the current
case study do not provide particularly useful information of
spatial patterns. As such, we choose to construct the q

p-
GIES algorithms by solving the GMAC problem with the
following cost function:

Ci+1
j = 1

2
dj − g mi+1

j

T

C−1
d dj − g mi+1

j (111)

+γ i R S mi+1
j − S mi

j ;

R S mi+1
j − S mi

j = 1

2
w1 mi+1

j − mi
j

T

Ci
m

−1
mi+1

j − mi
j (112)

+w2 SV mi+1
j − SV mi

j
2
2

+w3 SV mi+1
j − SV mi

j
2
1 ,

where SV is a transform operator similar to that in the
channelized reservoir characterization problem, but applied
to both PERMX and PORO maps; and the weights wi (i =
1, 2, 3) are determined in a way similar to that in Eq. 43,
which leads to the scalar coefficients αi (i = 1, 2, 3) in
Table 4.

Similar to the situation in the channelized reservoir char-
acterization problem, we adopt 3-bit binary codes to refer
to the q

p-GIES algorithms derived from Eq. 111, which
leads to 7 algorithms after excluding the one with the
code 000 (i.e., no regularization). The characteristics of
these 7 algorithms are the same as those summarized in
Table 2, except that here only three individual regulariza-

tion terms, namely, mi+1
j − mi

j

T

Ci
m

−1
mi+1

j − mi
j ,

SV mi+1
j −SV mi

j
2
2 and SV mi+1

j −SV mi
j

2
1,

are adopted. All these q
p-GIES algorithms are equipped

with an automatic and adaptive localization scheme,
RndShfl-GC, of [31] during history matching, and are run
with 10 iteration steps.

In the example here, we use root mean square error
(RMSE) as a measure to cross-validate the history matching
performance. Given an m-dimensional reference model
mref and an ensemble Mi = {mi

j }Ne

j=1 of reservoir models

at the ith iteration step, we compute an ensemble Ω(Mi ) of
RMSE as follows:

Ω(Mi ) ≡ ζ i
j |ζ i

j = mi
j − mref 2

2√
m

Ne

j=1

. (113)

Table 4 reports data mismatch and RMSE values (in the
form of mean ± STD) with respect to the final ensembles
of the 7 q

p-GIES algorithms. The RMSE values are listed
for both PERMX and PORO. For reference, data mismatch,
RMSE of PORO and RMSE of PERMX with respect to
the initial ensemble are (1.7376 ± 4.3294) × 104, 0.0644 ±
0.0037 and 0.4367 ± 0.0263, respectively. For performance
assessment, we adopt the average RMSE over PERMX
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Fig. 11 Reference PERMX and
PORO maps used in the
synthetic case study, with well
positions marked by white
ellipses (four producers on the
corners and one injector in the
center). a Reference PERMX
map. b Reference PORO map
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and PORO (with equal weights). Following this setting, the
original IES (code 100) is ranked as the 6th, meaning that
there are a few other q

p-GIES algorithms that outperform
the original IES. As such, one can draw a conclusion similar
to that in the previous channelized reservoir characterization
problem, that is, it is possible to design through the GIES
framework new ensemble history matching algorithms that
may perform better than the original IES algorithm in
certain circumstances.

In the current case study, except for the q
p-GIES

algorithm with the code 001 (for convenience, hereafter we
simply call it algorithm 001, and the same custom will be
applied to other algorithms), the other algorithms result in
very similar RMSE values for the estimated PORO maps.
On the other hand, the differences among the RMSE values
of PERMX are more substantial. In particular, for algorithm
001, although its mean data mismatch value is higher, its
RMSE values for both PORO and PERMX are the lowest
among the tested algorithms.

To limit the length of the current work, we do not
proceed to present the full numerical results. Instead,

we focus on inspecting the impacts of a few q
p-GIES

algorithms on model updates. To this end, Fig. 12 reports
the PERMX and PORO maps of one initial reservoir model,
and the corresponding maps of the final models obtained
by algorithms 100 (i.e., the original IES), 001 and 010,
respectively. In line with the results in Table 4, the PORO
maps obtained by algorithms 100 and 010, respectively, are
very similar. In comparison to the initial PORO map, a
noticeable difference can be observed in the area around the
coordinate (45, 15). On the other hand, the final PORO map
obtained by algorithm 001 bears more structural differences
from those of the other two algorithms. Meanwhile,
compared to the initial PORO map, the final PORO map
of algorithm 001 also exhibits some clear differences in the
area around the coordinate (12, 7). A similar conclusion can
be drawn for PERMX maps, especially if one compares the
PERMX maps in the area around the coordinate (18, 12). As
such, in this particular case study, it appears that, due to the

use of the regularization term SV mi+1
j − SV mi

j
2
1

with the 1 norm, algorithm 001 is able to produce flatter

Table 4 Performance of q
p-GIES algorithms in terms of RMSE, which are evaluated with respect to the ensembles of reservoir models at the final

iteration steps

The q
p-GIES algorithms are listed in an ascending order of mean RMSE values. In particular, performance of the q

p-GIES algorithm
corresponding to the original IES is highlighted (in red)
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Fig. 12 PERMX (top) and PORO (bottom) maps. The first column
corresponds to the maps of one of the initial (Init.) reservoir models,
whereas the second to the fourth columns are with respect to the final
estimated (Est.) reservoirs, obtained by the q

p-GIES algorithms with

the codes 100 (i.e., the original IES), 001 and 010, respectively. a Init.
PERMX. b Est. (100). c Est. (001). d Est. (010). e Init. PORO. f Est.
(100). g Est. (001). h Est. (010)

regions, in which the estimated parameters (PERMX and
PORO) exhibit less spatial variations. This property is less
noticeable in algorithms 100 and 010, in which the distance
is measured by the 2 norm instead.
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