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Abstract
Trajectory data can objectively reflect the moving law of moving objects. Therefore, trajectory prediction has high
application value. Hurricanes often cause incalculable losses of life and property, trajectory prediction can be an effective
means to mitigate damage caused by hurricanes. With the popularization and wide application of artificial intelligence
technology, from the perspective of machine learning, this paper trains a trajectory prediction model through historical
trajectory data based on a long short-term memory (LSTM) network. An improved LSTM (ILSTM) trajectory prediction
algorithm that improves the prediction of the simple LSTM is proposed, and the Kalman filter is used to filter the prediction
results of the improved LSTM algorithm, which is called LSTM-KF. Through simulation experiments of Atlantic hurricane
data from 1851 to 2016, compared to other LSTM and ILSTM algorithms, it is found that the LSTM-KF trajectory prediction
algorithm has the lowest prediction error and the best prediction effect.

Keywords LSTM · Kalman filtering · One-hot · Trajectory prediction · Hurricane

1 Introduction

With the continuous development of satellite navigation,
wireless communication and other technologies, mobile
intelligent devices with positioning functions are currently
widely used. When people use these devices, they also
actively or passively record a large number of historical
trajectories, leading to the formation of spatiotemporal
trajectories [1, 2]. Spatiotemporal trajectory data can
accurately record the activity of moving objects over a long
period of time and objectively reflect the law of the activity
of moving objects. Mobile communication equipment,
animal migration, transportation and meteorological clouds
are examples of moving objects in specific application
fields. Therefore, mining the temporal and spatial patterns
contained in the historical trajectories and predicting the
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future position of a moving object have high application
value. Trajectory prediction of a moving object has become
a hot topic in many research fields. Hurricanes, for example,
which is a strong and deep tropical cyclone produced in
the Atlantic Ocean and the eastern part of the North Pacific
Ocean and is also known as a typhoon or cyclone, are a
potentially valuable application [3]. Hurricane trajectories
are one type of spatiotemporal trajectory. As a common
natural phenomenon, hurricanes often cause great losses
of life and property. On October 12, 2019, the typhoon
‘Hagibis’ landed on the Izu Peninsula in Shizuoka-ken,
Japan. This typhoon killed 88 people, and 7 people went
missing. More than 3900 people were affected during this
typhoon. In addition, the ‘Hagibis’ typhoon caused 102.73
billion yen of losses in Japan’s agriculture, forestry, fishery
and other related industries. It is very important to monitor
and record the trajectory of hurricanes and provide support
for the analysis and forecast of hurricanes [4].

The moving object studied in this paper is the hurri-
cane. Trajectory prediction, as the most important method
to reduce the damage caused by a hurricane, has become
a hot issue in the field of trajectory research. The com-
mon hurricane prediction involves climate persistence, inte-
grated forecasting and probability forecasting [5, 6]. These
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prediction methods are complex because of involving many
factors such as phase transition, vertical advection and the
influence of the boundary layer. DeMaria [7] introduced sta-
tistical methods to predict the intensity of hurricanes in the
Atlantic Ocean and the East Pacific Ocean, delaying the
forecast time from three days to five days. In [8], a new
spatiotemporal multivariate function model was proposed
to improve prediction. This model regarded the dimensions,
accuracy and wind speed of hurricanes as time functions to
understand the spatial and temporal trends of the path and
intensity of a hurricane.

Machine learning is a part of artificial intelligence. In
essence, machine learning enables computers to simulate
human learning behaviour, automatically acquire knowl-
edge and skills through learning, continuously improve
performance and realize artificial intelligence [9]. The com-
mon algorithms of machine learning include regression
algorithm, algorithm, support vector machine (SVM), clus-
tering algorithm, dimension reduction algorithm and neural
network [10]. Neural networks are currently the most influ-
ential algorithms in machine learning. With the popular-
ization and application of new meteorological observation
equipment, it is possible to obtain a large amount of ground
and upper-air data frommeteorological observation stations,
as well as satellite and radar detection data. These data
are in different formats, such as numbers, text and images,
and have spatial and temporal characteristics [11]. Machine
learning methods can provide new information regarding
how to deeply excavate the physical mechanism of weather
changes hidden in these massive data, explore signals that
indicate the evolution law of weather and establish a new
weather forecasting method. In recent years, it has become
a hot spot in the fields of meteorology, mathematics or
computer to study the effective weather forecasting meth-
ods combined with machine learning. The application of
machine learning to hurricane prediction has also achieved
some fruitful achievements. In [12], the method of fuzzy
c-means clustering was used to classify typhoon trajecto-
ries and forecast them, which is suitable for moving objects
with fuzzy trajectory boundaries. Song [13] combined big
data and data mining technology, trained a long short-term
memory (LSTM) neural network, and established a typhoon
path prediction model based on machine learning. In [14],
a sparse recurrent neural network (RNN) combined with a
flexible topological structure was proposed to predict the
trajectory of Atlantic hurricanes. The dynamic time warping
(DTW) distance between the direction of target hurricanes
and other hurricanes in the dataset was determined and com-
pared to predict their future trajectories. Baik [15, 16] used a
backpropagation (BP) network to forecast typhoon intensity
and compared it with results from the regression method.
The results showed that the error of the BP network’s

typhoon intensity forecast model is lower than that of the
regression method, demonstrating the application prospects
of BP networks in typhoon intensity forecasting. The appli-
cation of machine learning methods to hurricane prediction
is still a new research field. These methods have a good abil-
ity to deal with nonlinear problems and is especially suitable
for solving nonlinear problems with complex internal mech-
anisms. Therefore, the machine learning methods can be
applied in meteorology.

LSTM as a neural network has been widely and used
in text sequences or images for a long time. In this paper,
an LSTM-KF trajectory prediction algorithm is proposed
by combining LSTM and Kalman filter. The simulation
results show that the LSTM-KF algorithm has a good effect.
The rest of the paper is organized as follows: Section 2
introduces the correlation method of trajectory prediction
and the basic mechanism of the neural network. The relevant
methods and technologies used in trajectory prediction are
described in Section 3. In Section 4, the improved LSTM
trajectory prediction algorithm and a trajectory prediction
algorithm based on LSTM and Kalman filter (LSTM-KF)
are proposed. Finally, Atlantic hurricane data are used in
a simulation experiment to verify the rationality of the
improved LSTM and the LSTM-KF trajectory prediction
algorithm in Section 5.

2 Related work

2.1 Trajectory predictionmethod

At present, the active space of moving objects can be
divided into restricted movement [17, 18, 31] and free
movement [19–22]. Current trajectory prediction methods
mainly focus on restricted movement trajectory prediction
with certain constraints (such as road networks). Because
this kind of trajectory follows specific behaviour habits or
motion patterns, useful patterns are easily found and the
prediction results are satisfactory regardless of the accuracy
or effectiveness. However, in nature, free movement is more
frequent than limited movement and is more important to
predict, especially for disaster prevention and mitigation.
The sampling interval of free movement trajectory data are
sparse, and it is difficult to accurately capture the moving
direction, turning position and other moving characteristics
of moving objects, which makes the prediction of the
sparse trajectory in free space difficult in trajectory data
research. Hurricane trajectory prediction is a kind of free
movement trajectory prediction. According to the prediction
cycle, trajectory prediction can be divided into short-
term trajectory prediction [23] and long-term trajectory
prediction [24].
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Trajectory prediction methods can be divided into tradi-
tional prediction methods based on a construction motion
model [25–28], methods based on frequent pattern min-
ing technology [29–31] and methods based on a machine
learning [32–36]. The prediction methods based on the
construction of a motion model mainly consider the cur-
rent movement of moving objects, such as their speed and
direction, and matches the predicted movement with the
constructed motion function for prediction. Wolfson [25]
et al. proposed a spatiotemporal model of moving objects
(MOST) that took location as a dynamic attribute and then
predicted the location of a mobile object based on lin-
ear constraints. Junghans et al. [26] proposed a model and
prediction method of a moving area that used the mini-
mum closed box to model the moving area and used linear
regression (LR) and recursive motion (RMF) functions to
determine the evolution mode of the area.

Trajectory prediction based on frequent pattern min-
ing technology achieves the goal of trajectory prediction
by analysing historical data in a moving object database,
processing the historical data and mining the matching
pattern. Monreale [29] comprehensively considered the
spatiotemporal information of moving objects to build a
T-pattern tree and mined the motion law of the mov-
ing objects. Long [30] mined frequent paths based on an
FP growth algorithm that introduced the speed of mov-
ing objects into the prediction and proposed a simple and
effective trajectory prediction algorithm (E3TP). Kim et al.
[31] combined the characteristics of road networks, cal-
culated the similarity between trajectories to search for
candidate trajectories, evaluated the historical trajectories
stored in a historical mobile database to determine the sub-
trajectories with similar trajectories, and finally, predicted
a future path by analysing the direction of the candidate
trajectories.

Machine learning methods mainly aim at mining the
behaviour characteristics of moving objects in a historical
trajectory and perform trajectory prediction by improving
the Markov model, probability graph model, support vector
machine model and neural network model. Based on the
hidden Markov model, Qiao [32] proposed an adaptive
parameter selection algorithm to improve the adaptability
of trajectory prediction in a big data environment. Li [33]
introduced the concept of fuzzy trajectory to solve the
sharp boundary problem caused by fixed mesh generation
and improved the traditional LSTM model to make full
use of the proximity and periodic characteristics of the
historical trajectory to improve the prediction accuracy
of the trajectory position. Leege [34] proposed a path
prediction method based on machine learning that combined
and sorted the traffic flow of fixed arrival routes of airplanes
by their actual flight path and meteorological data and
trained the model by using historical data to perform time

prediction. Related technologies used for moving object
trajectory prediction are listed in Table 1.

2.2 Overview of neural network

Neural networks (also known as artificial neural networks
or ANNs) are among most powerful machine learning algo-
rithms. The general idea of a neural network is to adopt
learning and training. First, the input is calculated by pro-
cessing the neurons in the hidden layer and the output layer,
which are compared with the expected output. Then, a back-
propagation learning algorithm is used to repeatedly correct
the connection weight coefficient from the input layer to
the hidden layer and from the hidden layer to the output
layer. When the error between the output and the expected
output of the neural network reaches the preset error conver-
gence standard, the training is stopped to obtain a network
model with an improved generalization ability [37].

Figure 1 shows the general structure of a neural network
that consists of an input layer, hidden layer and output
layer. The input layer is responsible for receiving the signal,
the hidden layer is responsible for the decomposition and
processing of data, and the final result is integrated into the
output layer. The circles in each layer in Fig. 1 represent
processing units that can be thought of as simulating a
neuron. Neurons are connected by nerve wires, which can be
assigned different weights. The core task of neural network
is to train a set of nearly perfect weights. Several processing
neuron make up a layer, and several layers make up a
network, which is known as a neural network. When there is
more than one hidden layer of the neural network is called a
deep neural network.

The BP neural network was the first neural network
described.Werbos [38] first proposed the BP neural network
in 1974, and Rumelhart et al. [39] developed the theory
of the network. The learning process of a BP neural
network consists of the forward propagation of a signal
and the backpropagation of error. The cell structure of a
BP neural network is shown in Fig. 2. In Fig. 2, Sj =∑n

i=1 wijxi + bj and yj = f (Sj ). f (·) represents the
transfer function, Wij represents weight, bj represents bias.
The weight and bias are acquired by the neural network
through constant training. In forward propagation, yj is the
output of neuron. If the actual output does not match the
expected output, then the error backpropagation stage is
entered. The purpose of backpropagation process is to adjust
weights and bias to reduce the error between the output
value and the expected value. The backpropagation process
is summarized in references [38, 39]. When there is more
than one hidden layer of the neural network is called a
deep neural network. At present, many advances in image
recognition and speech recognition technology are derived
from the development of deep neural network.
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Table 1 Comparison of trajectory prediction methods

Method Restricted movement Free movement Tectonic movement model Frequent pattern mining Machine learning

Wolfson [25] � � �
Junghans [26] � �
Prevost [27] � �
Jeung [28] � � �
Monreale [29] � �
Long [30] � � �
Kim [31] � �
Qiao [32] � �
Li [33] � � �
Leege [34] � �

3 Trajectory definition and long short-term
memory

Trajectory data store large amounts of position information
of moving objects at different times. A collection of data in
chronological order is called a trajectory T rj .

Definition 1 Trajectory. Moving objects move in geospatial
space, and their positions change with time. The ordered
sequence of m discrete position points and related auxiliary
information is defined as trajectories.

T rj = {(P1, I1) , (P2, I2) , · · · , (Pm, Im)} (1)

where Pm represents the spatial position information of the
m-th trajectory point and Im represents the relevant infor-
mation of the m-th trajectory point. Taking hurricane data

as an example, Im can represent the maximum sustained
wind speed and status of system.

Definition 2 Subtrajectory. A subtrajectory refers to the
ordered set of trajectory points within a certain trajectory, as
shown in Eq. 2.

Seq = {(Pm, Im) , (Pm+1, Im+1) , · · · ,

(Pm+k−1, Im+k−1)} (2)

Where k is the length of subtrajectory.

Definition 3 Grid trajectory. The geographic space of a
moving object is divided into different space areas by fixed
grids (such as squares, triangles or hexagons), and a single
coordinate point of the trajectory is mapped to the space

Fig. 1 General structure of a
neural network
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Fig. 2 Cell structure of BP
neural network
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area. The representation of the grid trajectory of the original
trajectory T rj after gridding is shown in Eq. 3:

G T rj = {(S1, I1) , (S2, I2) , · · · , (Sm, Im)} (3)

where Sm represents the spatial position information of
the m-th trajectory point mapped to the corresponding
grid index on the grid space. As shown in Fig. 3, the
corresponding grid trajectory is T rj = {(P1, I1), (P2, I2),

· · · , (P5, I5)} is G T rj ={(S1, I1), (S2, I2), · · · , (S5, I5)}.

The long short-term memory (LSTM) network [40]
is a kind of time recurrent neural network (RNN) that
is specially designed to solve the long-term dependence
problem of the general RNN. LSTM is widely used in
temporal sequences now. Trajectory data is also a kind of
temporal data, so LSTM can be applied to the trajectory [13,
33]. The cell structure of LSTM is shown in Fig. 4. The
cell generally includes a forget gate, an input gate and an
output gate. And it is like a memory machine that constantly
forgets some information, remembers some information,
and takes into account previous input before output. In the
cell structure of LSTM, xt is the input at current moment,
ht−1 is the output at last movement, and Ct generally
referred to as the cell state, which is a cell state of long-term
memory.

The forget gate, as the name implies, controls whether
information should be forgotten. In LSTM, the forget gate
controls how much information about the cell state of

long-termmemory at last momentCt−1 can be retained until
the present moment, as shown in Eq. 4.

ft = σ
(
Wf · [

ht−1, xt

] + bf

)
(4)

The value of ft in each dimension is in the range of (0,
1). The information will be forgotten when ft is close to 0,
and the information will be retained when ft is close to 1.
WhereWf represents weight matrix, and bf represents bias.
• represents the matrix product. σ represents a Sigmoid
function, as shown in Eq. 5.

σ(x) = 1

1 − e−x
(5)

The input gate is responsible for processing the current
input and updates new information selectively. The input
gate has two steps. In Eq. 6, it can be used to control how
much of the current input can be stored. The value of it
in each dimension is in the range of (0, 1). In Eq. 7, the
tanh function generates a new candidate vector C̃t . The
C̃t represents cell state of short-term memory at current
moment.

it = σ
(
Wi · [

ht−1, xt

] + bi

)
(6)

C̃t = tanh
(
WC · [ht−1, xt

] + bC

)
(7)

where Wi, Wc represent weight matrix and bi, bc represent
bias. The tanh function is as shown in Eq. 8.

tanh(x) = ex − e−x

ex + e−x
(8)

Fig. 3 Gridding of trajectory
sequence
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Fig. 4 Cell structure of LSTM

Before output gate, the cell state of long-term memory
needs to be updated, as shown in Eq. 9. The cell state of
short-term memory at current movement C̃t and cell state of
long-term memory at last movement Ct−1 are form new cell
state.

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

where ∗ represents the elementwise product.
The output gate is used to selectively output information

from the cell. As shown in Eqs. 10 and 11, ot is a probability
that controls how much of Ct can be used as the current
output. The value of ot in each dimension is in the range of
(0, 1). ht−1 is the output at time t and it is hidden state.

ot = σ
(
Wo · [

ht−1, xt

] + bo

)
(10)

ht = ot ∗ tanh(Ct ) (11)

where Wo is weight matrix and bo is bias. Wf , Wi, Wt , Wo

and bf , bi, bt , bo represents respectively weights and bias
of different gate. These two parameters are obtained by
continuous training of LSTM network using historical
training data. The notations referred to in Section 3 are listed
in Table 2.

4 Proposed LSTM-KF

4.1 Encoding of trajectory data

Hurricane trajectory data should be converted into data that
can be received by the LSTM network through trajectory
data encoding. In this paper, the latitude and longitude
coordinates, maximum sustained wind speed and status
of system of hurricane are selected. When the hurricane
trajectory is meshed, the size of the mesh blocks is 1 × 1

degree. Because of the spherical nature of the earth, the
area of each grid block is not uniform across square miles,
but since most points surround the earth’s equator, the size
difference between each grid block is negligible. The grid
trajectory, as shown in Fig. 3, is taken as the input of LSTM.
The encoding of trajectory data can be divided into three
steps:

Step 1: One-hot encoding for categorical data. The grid
index Sm in the grid trajectory can be one-hot
encoded. The status of system of hurricane data
is also a kind of categorical data, which can also
be one-hot encoded. The status of system has
nine types, which can also be one-hot encoded,
such as tropical cyclone of tropical depression
intensity (TD), tropical cyclone of tropical storm

Table 2 Nnotations in Section 3

Notation Description

T rj Trajectory

Seq Subtrajectory

G T rj Grid trajectory

σ Sigmoid function

tanh tanh function

Wf , Wi, Wt , Wo Weight matrix

bf , bi , bt , bo Bias

ft , it , ot Output of the forget gate, input

gate and output gate, between 0 and 1

• matrix product

∗ elementwise product

Ct Cell state of long-term memory

C̃t Cell state of short-term memory

ht Hidden state output at time t
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intensity(TS), tropical cyclone of hurricane inten-
sity(HU), extratropical cyclone(EX), subtropical
cyclone of subtropical depression intensity(SD),
subtropical cyclone of subtropical storm inten-
sity(SS), a low that is neither a tropical cyclone
(LO), tropical wave(WV) and disturbance(DB).
One-hot encoding is the most commonly used and
basic coding method to convert tags into vectors.
One-hot encoding first requires categorical values
to be mapped to integer values. Each integer value
is then represented as a binary vector with zero
values except for the index position, which has
a value of 1. One-hot encoding diagram of grid
index is shown in Fig. 5a and one-hot encoding
diagram of status of system is shown in Fig. 5b.

Step 2: The numerical data are standardized so that
the range of numerical data is between [0 1].
To eliminate the dimensional impact between
indicators, data standardization is needed to solve
the comparability between data indicators. After
the original data are standardized, each index is
on the same order of magnitude, which is suitable
for a comprehensive comparative evaluation. The
numerical data in Im are standardized by Eq. 12.
The maximum sustained wind speed of hurricane
data is numerical data, so it can be normalized
between [0,1].

z′ = z − min (z))

max (z) − min (z)
(12)

Step 3: Connect the categorical data and numerical data
to form a complete trajectory vector. The transfor-
mation from grid trajectory to a trajectory vector
is realized by one-hot encoding and standardiza-
tion. The trajectory data coding process is shown
in Fig. 6.

4.2 Improved LSTM (ILSTM)

The simple LSTM trajectory prediction algorithm selects
the subtrajectory with a sequence length of K . Then, the
subtrajectories are meshed and encoded into the LSTM
network to predict the index of (K + 1)-th grid. The
flow diagram of the simple LSTM trajectory prediction
algorithm is shown in Fig. 7. The simple LSTM trajectory
prediction algorithm is divided into three modules: data
preprocessing, model training and prediction. The data
preprocessing modules involves gridding and coding the
trajectory data to produce an acceptable trajectory vector
for LSTM. The training module is to finds the best LSTM
prediction model. The prediction module predicts the next
grid index according to the trained prediction model.

The LSTM network can learn historical knowledge, but
it may not be suitable for learning new knowledge. For
example, the area where the hurricane trajectory appears
may not have occurred in history or occurred only a few
times, so the LSTM network may produce a large error
between the predicted position and the real position due
to insufficient learning. At the same time, there are few
feature data available for hurricane data, and the Atlantic
hurricane data used in this paper only include coordinates,
maximum sustained wind speed, status of system, so a lack
of features is also an important factor that restricts neural
network learning.

On average, hurricanes move at speeds ranging from
15 km/h to 20 km/h and can be as fast as 30 km/h
according to hurricane trajectory analysis [41, 42]. With
data intervals of 6 h, the distance a hurricane can travel
is limited. The result of the simple LSTM trajectory
prediction algorithm selects the grid corresponding to the
highest probability value as the prediction position. The
prediction of a single position may be take extreme case
as the prediction result, that is, the predicted grid position
significantly deviates from the normal position range. If
the hurricane position predicted by the simple LSTM
trajectory prediction algorithm exceeds a certain limit, then
it needs to be corrected. In this case, we improve the
simple LSTM trajectory prediction algorithm. We select a
reasonable position from the candidate set by predicting
multiple possible positions and filter out positions with a
high probability of being extreme positions. The ILSTM
trajectory prediction algorithm is an improvement of the
prediction module of the simple LSTM algorithm. And it
is consistent with the simple LSTM algorithm in regard to
the data preprocessing module and model training module.
First, the following definitions are given:

Definition 4 Subtrajectory marker point seq f lag. The
last point in subtrajectory Seq = {(Pm, Im) , (Pm+1,

Im+1), · · · , (Pm+k−1, Im+k−1)} is taken as the mark point
of the subtrajectory, that is, seq f lag=(Pm+k−1, Im+k−1).

Definition 5 Grid centre coordinate Psi central , represents
the coordinate corresponding to the centre point of grid Si ,
that is,

(
lonsi central, latsi central

)
.

Multiple grids are selected as a candidate set, and the
order of the candidate set is sorted according to probability
predicted by the simple LSTM. That is, the grid correspond-
ing to the first top N probability value is selected as the
candidate set C = {

S1, S2, · · · , Stop N

}
of the prediction

results. The first grid whose Euclidean distance (13) from
the centre coordinates to the coordinates of seq f lag is less
than the threshold τ is selected as predicted grid from candi-
date set C. Then, the centre coordinates of the grid selected
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Fig. 5 One-hot encoding
diagram of a grid trajectory
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from the candidate set are the predicted coordinates. If
there is no grid located less than threshold τ in candidate
set C, then the grid centre coordinates of seq f lag are
taken as the predicted coordinates in this paper. That is,(
lonseq f lag central, latseq f lag central

)
are used as the coor-

dinates of the predicted trajectory. The selection of τ is
based on experience. The ILSTM trajectory prediction algo-
rithm modifies the position of predicted extreme cases in
a few cases. In most cases, the first grid in the candidate
set satisfies the conditions. The improved LSTM trajectory
prediction algorithm is shown in Fig. 8.

dist=
√
(
lonsi central−lonseq flag

)2 +(
latsi central−latseq flag

)2

(13)

4.3 Trajectory prediction based on LSTM
and Kalman filter

The Kalman filter [43], as a data processing technology
that removes noise and restores real data, has been applied
in fields such as communication, navigation, guidance
and control. Kalman filtering estimates the state of a
system optimally through the observation of the input and
output. Because the observation data include the influence
of system noise and external interference, the optimal
estimation can also be regarded as a filtering process.

Definition 6 Prediction trajectory sequence Z. For a
trajectory T rj with length n, step is used as the
extraction interval of the subtrajectory and k is the
extraction length of the subtrajectory, and the coordinates

of the next point of each subtrajectory are predicted. If
step = 1, then n − k subtrajectory sequences will be
obtained, so n − k predicted coordinates will also be
generated. These sequences generated by the predicted
coordinates are called predicted trajectory sequences Z =
{(lon1, lat1) , (lon2, lat2) , · · · , (lonn−k, latn−k)}.

In this paper, it is assumed that the generated predicted
trajectory sequence Z by the ILSTM method is a kind of
observation data. Then, the Kalman filter will filter the
predicted trajectory sequence to produce a more accurate
and optimal estimation.

Definition 7 Trajectory marker point T rj f lag. The sub-
trajectory marker point seq f lag of the first subtrajectory
sequence extracted from each trajectory is taken as the
trajectory marker point T rj f lag of the whole trajectory.

The Kalman filter is used to filter the predicted trajectory
sequence. First, the state vector of the hurricane movement
is defined. In this paper, the state vector of a hurricane, as
shown in Eq. 14, is used.

X(m) = [lonm, latm, Vlon, Vlat ]T (14)

where Vlon, Vlat represent velocity components in longitude
and latitude, respectively. In hurricane trajectory data, there
is no hurricane velocity information at the current moment,
so for convenience we set the initial moment Vlon, Vlat

to 0. In this paper, when the Kalman filter is used, the
system state vector of the trajectory mark point T rj f lag

is input into the system as the initial value, that is, X(0) =
[lonT rj f lag, latT rj f lag, 0, 0]T .

Fig. 8 ILSTM trajectory
prediction algorithmv
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Kalman filtering requires a discrete control process
system. The system state equation (15) and observation
equation (16) of hurricane movement are as follows:

X (m + 1) = AX (m) + W (m) (15)

Z (m) = HX (m) + V (m) (16)

where X(m) represents the system state vector and
describes the state vector of the hurricane at time m

(14). A represents the state transition matrix, which is
used to describe the motion state transition mode from
the previous time to the current time.W(m) represents the
system noise, whose statistical characteristics are similar to
white noise or Gaussian noise. Z(m) = [lonm, latm]T is
the observation vector.In this paper, the prediction trajectory
sequence Z is used to represent the observation sequence,
which represents m-th predicted value. H is the observation
matrix, and V (m) is the observation noise.

The core of the Kalman filter algorithm uses a recursive
algorithm to achieve the optimal state estimation model
and update the current state variables by using the previous
estimated value and the current observed value. The state
equation of the system is used to estimate the state of the
system at the next time point. If the current time of system is
m, then it can be estimated to the current state based on the
previous state according to the state equation of the system.

x(m|m − 1) = AX(m − 1) + W(m) (17)

where X(m|m − 1) is the previous state estimation and
X(m − 1|m − 1) is the previous state optimal estimation.
The system result has been updated, but the covariance
corresponding to X(m|m − 1) has not been updated.
Equation 18 represents the covariance.

ρ(m|m − 1) = Aρ(m − 1|m − 1)AT + Q (18)

where ρ(m|m−1) is the covariance of X(m|m−1). ρ(m−
1|m − 1) is the covariance of X(m − 1|m − 1). AT is the
transpose matrix of A.

The present state X(m|m − 1) has been estimated. Then,
we obtain the measured values of the current state, that
is, the trajectory coordinates Z(m) predicted by ILSTM
algorithm. Combining the estimated value and the measured
value, we can obtain the optimal estimated value X(m|m) at
time m, as shown in Eq. 19.

X(m|m) = X(m|m−1)+K(Z(m)−HX(m|m−1)) (19)

where K is the Kalman gain matrix that is shown in Eq. 20.
In this paper, K is a 4 × 2 matrix.

K = ρ(m|m − 1)HT (Hρ(m|m − 1)HT + R)−1 (20)

Until now, we produced the best estimate value X(m|m)

at time m. However, to keep the Kalman filter running

until the end of the system process, we need to update the
covariance of X(m|m) at time m.

ρ(m|m) = (I − KH)ρ(m|m − 1) (21)

So far, the entire Kalman filtering process of trajectory
prediction has been completed. The function of the Kalman
filter in this paper is to estimate the optimal trajectory
coordinates predicted by ILSTM algorithm. The notations
referred to in Section 4 are listed in Table 3.

5 Experimental results and discussion

5.1 Description of Data set

Atlantic hurricane data released by the National Hurricane
Centre of the United States (www.nhc.noaa.gov/data) is
used in the experiment. The dataset includes the longitude
and latitude, maximum sustained wind speed, minimum
central pressure, time and other information of hurricanes.
The sampling interval of this data set is 6 h. This experment
mainly deals with the latitude and longitude, maximum
sustained wind speed and the status of the system. The
165 years of hurricane data from 1851 to 2015 are selected
as training sets to train the LSTM prediction model. The
hurricane data from 1851 to 2015 include 1780 hurricane
trajectories and 49139 sampling points.First, the dataset
is preprocessed, and the missing data are filled with
the linear interpolation method. The trajectory map of
Atlantic hurricanes from 1851 to 2015 is shown in Fig. 9
(East longitude is represented by positive values and west
longitude is represented by negative values).

5.2 Prediction error comparison experiment

The real trajectories are T = {T rj1, T rj2, · · · , T rjn}. The
predicted trajectories are T = {

T rj ′
1, T rj ′

2, · · · , T rj ′
n

}
.

Table 3 Notations in Section 4

Notation Description

seq f lag Subtrajectory marker point

Psi central Grid centre coordinate

τ Distance threshold

Z Prediction trajectory sequence

T rj f lag Trajectory marker point

X(m) State vector of hurricane movement

K Kalman gain matrix

A State transition matrix

H Observation matrix

Q System noise covariance matrix

R Observation noise covariance matrix
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Fig. 9 Atlantic hurricane
trajectories from 1851 to 2015

The geometric space error between the predicted trajectory
point and the actual trajectory point is used as the prediction
error. As shown in Eq. 22, the root mean square error
(RMSE ) unit is degrees.

RMSE= 1

n

n∑

i=1

∑m
k=1

√
(lonik−lon′

ik)
2 + (latik−lat ′ik)2

m

(22)

Here, n represents the number of predicted trajectories
and m represents the number of predicted trajectory points
contained in each predicted trajectory.

In this experiment, hurricanes in 2016 are used as the
verification set. The prediction errors of the simple LSTM
algorithm, ILSTM algorithm and LSTM-KF algorithm are
compared. The setting of experimental parameters is shown
in Table 4. Figures 10 and 11 show the change of RSME
value with the neural network training epochs. Figure 10
indicates that Q is [1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1],
and Fig. 11 indicates that Q is [2,0,0,0; 0,2,0,0; 0,0,2,0;
0,0,0,2].

Table 4 Parameter settings of the prediction error comparison experiment

Parameter Value

Network structure of LSTM 128*128*256; 128*256*512;

256*256; 256*256*256

Distance threshold τ 6

top N 20

State transition matrix A [1,0,1,0; 0,1,0,1; 0,0,1,0; 0,0,0,1]

Observation matrix H [1,0,0,0; 0,1,0,0]

System noise covariance [1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1]

matrix Q or [2,0,0,0; 0,2,0,0; 0,0,2,0; 0,0,0,2]

Observation noise covariance [0.3,0; 0, 0.3]

matrix R

The structure of LSTM network shown in Figs. 10a and
11a is 128 * 128 * 256, the structure of LSTM network
shown in Figs. 10b and 11b is 128 * 256 * 512, the structure
of LSTM network shown in Figs. 10c and 11c is 256 *
256, and the structure of LSTM network shown in Figs. 10d
and 11d is 256 * 256. It can be seen from Figs. 10 and 11
that the RMSE of the simple LSTM trajectory prediction
algorithm is initially large. The LSTM network does not
learn enough at the initial moment, and the prediction error
of simple LSTM algorithm is initially large. However, the
RMSE of the ILSTM and LSTM-KF trajectory prediction
algorithms are significantly lower than those of the simple
LSTM. With an increase in the LSTM network training
epochs, the RMSE of the simple LSTM algorithm gradually
decreases and becomes stable. However, the prediction
error of the simple LSTM is also significantly higher than
that of the ILSTM and LSTM-KF trajectory prediction
algorithms.

To better display the RMSE of the three methods, the
RMSEs of epoch 71 to epoch 80 shown in Figs. 10b and
11b are listed in Table 5. The system noise covariance
matrix Q in Figs. 10b and 11b are [1,0,0,0; 0,1,0,0; 0,0,1,0;
0,0,0,1] and [2,0,0,0; 0,2,0,0; 0,0,2,0; 0,0,0,2], respectively.
The Network structure of LSTM in Figs. 10b and 11b are
both 128*256*512. The observation matrix H in Figs. 10b
and 11b are both [1,0,0,0; 0,1,0,0]. The observation noise
covariance matrix R in Figs. 10b and 11b are both [0.3,
0, 0, 0.3]. It can be seen from Table 5 that the RMSE of
each epoch of LSTM-KF is smaller than that of ILSTM
and simple LSTM. In other words, the prediction effect
of LSTM-KF should be the best of the three methods. In
Fig. 10b, the average prediction error of the simple LSTM
from epoch 71 to epoch 80 is 2.1065◦, that of the ILSTM is
1.4690◦, and that of the LSTM-KF is 1.4605◦. In Fig. 11b,
the average prediction error of the simple LSTM from epoch
71 to epoch 80 is 2.3865◦, that of the ILSTM is 1.5141◦, and
that of the LSTM-KF is 1.5017◦. Therefore, the prediction
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Fig. 10 Change of the RMSE with LSTM network training epochs when Q = [1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1]

error of LSTM-KF is the smallest of the three methods. The
prediction error of the simple LSTM trajectory prediction
algorithm is approximately 2◦, and its effect is the worst of
the three methods. However, the prediction error of LSTM-
KF is slightly smaller than that of ILSTM, which shows that
the trajectory coordinates predicted by LSTM-KF are more
precise than those predicted by ILSTM. It can be concluded
that LSTM-KF has the best prediction effect of the three
methods.

5.3 Comparison experiment of single hurricane
trajectory prediction

In this experiment, five hurricanes named ‘KARL’,
‘MATTHEW’, ‘NICOLE’, ‘BONNIE’ and ‘ALEX’ are
selected from hurricanes that occurred in 2016. The simple
LSTM, ILSTM and LSTM-KF algorithms are used to pre-
dict the trajectories of these hurricanes. The experimental
parameters are set as shown in Table 6.

Fig. 11 Change of the RMSE with LSTM network training epochs when Q = [2,0,0,0; 0,2,0,0; 0,0,2,0; 0,0,0,2]
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Table 5 RMSEs of epoch 71 to epoch 80 in Figs. 10b and 11b (4 decimal places are reserved)

Epochs Fig. 10b Fig. 11b

LSTM ILSTM LSTM-KF LSTM ILSTM LSTM-KF

71 1.9795 1.4897 1.4854 2.7606 1.5401 1.5268

72 2.1406 1.4681 1.4584 2.0849 1.4859 1.4807

73 2.2656 1.4557 1.4515 2.2552 1.5472 1.5331

74 2.3020 1.4398 1.4359 3.0540 1.4551 1.4370

75 2.1322 1.4748 1.4669 2.9492 1.5269 1.5167

76 1.8742 1.4817 1.4717 2.1975 1.4902 1.4782

77 2.1561 1.4827 1.4731 2.1008 1.5131 1.4955

78 2.2247 1.4572 1.4523 2.1516 1.4858 1.4751

79 1.9575 1.4850 1.4772 2.2730 1.5291 1.5167

80 2.0322 1.4554 1.4373 2.0382 1.5680 1.5569

Averaging 2.1065 1.4690 1.4610 2.3865 1.5141 1.5017

First, the simple LSTM, ILSTM and LSTM-KF tra-
jectory prediction algorithms are used to predict hurri-
canes KARL and MATTHEW. The results are compared in
Figs. 12 and 13 respectively (the trajectory sequence used
for training is not shown in the figures.). In Figs. 12 and
13, the blue dotted line represents the original trajectory, the
black dotted line represents the trajectory predicted by the
simple LSTM algorithm, the green dotted line represents
the trajectory predicted by the ILSTM algorithm, and the
red line represents the trajectory predicted by the LSTM-
KF algorithm. From Figs. 12 and 13, the simple LSTM,
ILSTM and LSTM-KF all show good prediction results,
almost according to the change trend of the original tra-
jectory, which shows that according to the learning of the
history track, the neural network still has great advantages.
While LSTM is effective, ILSTM and LSTM-KF produce
better prediction results.

Then, the simple LSTM, ILSTM and LSTM-KF trajec-
tory prediction algorithms are used to predict hurricanes
NICOLE, BONNIE and ALEX. The results are shown in
Figs. 14, 15 and 16, respectively. From Figs. 14, 15 and

Table 6 Parameter settings of comparison experiment of single
hurricane trajectory prediction

Parameter Value

Network structure of LSTM 256*256*256

Distance threshold τ 6

top N 20

State transition matrix A [1,0,1,0; 0,1,0,1; 0,0,1,0; 0,0,0,1]

Observation matrix H [1,0,0,0; 0,1,0,0]

System noise covariance matrix Q [1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1]

Observation noise covariance [0.3,0; 0, 0.3]

matrix R

16, some predicted points of the simple LSTM algorithm
deviate significantly from the original trajectory. Figure 15
shows the last two predicted points of the elliptical cir-
cle in hurricane NICOLE, and Fig. 16 shows the predicted
points of the elliptical circle in hurricane BONNIE. These
predicted trajectories deviated significantly from the orig-
inal hurricane orbit. In Fig. 16, the parts marked by the
boxes ‘Contrast 1’ and ‘Contrast 2’ indicate that the pre-
dicted trajectory points of the simple LSTM algorithm show
obvious confusion, while the predicted trajectory points of
ILSTM and LSTM-KF basically follow the original trajec-
tory. Therefore, there are some defects in the simple LSTM
trajectory prediction. The prediction accuracy of the sim-
ple LSTM trajectory prediction algorithm is greatly reduced
without adequate learning. The simple LSTM trajectory
prediction algorithm has a good advantage for learning
historical knowledge, but for time-series data with fewer
sample data and high mutation, the simple LSTM algo-
rithm easily produces a large range of prediction errors. The
ILSTM and LSTM-KF algorithm, which modify the simple
LSTM algorithm, show better robustness and can reduce the
errors of the simple LSTM algorithm. It can be seen from
Table 5 that ILSTM performs a rough prediction of trajec-
tory coordinates, while LSTM-KF performs a more precise
prediction of trajectory coordinates.

5.4 Parameter sensitivity experiment and time
performance analysis

In order to verify the influence of different system noise
covariance matrix Q and observation noise covariance
matrix R on the prediction results of LSTM-KF algorithm,
different experimental parameters Q and R are selected for
the experiment. TheRMSE difference between ILSTM and
LSTM-KF is used to measure the impact of Q and R on the
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Fig. 12 Comparison of the
trajectory prediction results of
the simple LSTM, ILSTM and
LSTM-KF trajectory prediction
algorithms for hurricane KARL

Fig. 13 Comparison of the
trajectory prediction results of
the simple LSTM, ILSTM and
LSTM-KF trajectory prediction
algorithms for hurricane
MATTHEW

Fig. 14 Comparison of the
trajectory prediction results of
the simple LSTM, ILSTM and
LSTM-KF trajectory prediction
algorithms for hurricane
NICOLE
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Fig. 15 Comparison of the
trajectory prediction results of
the simple LSTM, ILSTM and
LSTM-KF trajectory prediction
algorithms for hurricane
BONNIE

prediction results, as shown in Eq. 23. This neural network
structure is set to 256 * 256 * 256, the state transition matrix
A = [1,0,1,0; 0,1,0,1; 0,0,1,0; 0,0,0,1], the observation
matrix H = [1,0,0,0; 0,1,0,0]. We select hurricane data
from 1895–2015 for training and forecast hurricanes in
2016. When the system noise covariance matrix Q are set
to [1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1] and [2,0,0,0; 0,2,0,0;
0,0,2,0; 0,0,0,2], the observation noise covariance matrix R,
respectively, using the following parameters are shown in
Table 7.

ΔRMSE= 1

epochs

epochs∑

i=1

RMSEILSTM−RMSELSTM−KF (23)

Where RMSELST M−KF represents the root mean
square error of LSTM-KF algorithm. RMSEILST M repre-
sents the root mean square error of LSTM-KF algorithm.
epochs represent the training rounds, and epochs are set to
100.

When Q = [1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1], the result
of ΔRMSE changes with R is shown in Fig. 17a. When

Q = [2,0,0,0; 0,2,0,0; 0,0,2,0; 0,0,0,2], the result of
ΔRMSE changes with R is shown in Fig. 17b. It can be
seen from Fig. 17 that the observation noise covariance
matrix R will have an impact on the prediction accuracy of
LSTM-KF algorithm. Figure 17a and b show that ΔRMSE

tend to increase and then decrease rather than increase
indefinitely as R increases. In Fig. 17a, the maximum
ΔRMSE is 0.0419 when R = R2, and the minimum
ΔRMSE is -0.0033 when R = R10. In Fig. 17b, the
maximum ΔRMSE is 0.0404 when R = R4, and the
minimum ΔRMSE is 0.0077 when R = R0.1. Therefore,
different R will have different influences on the accuracy
of the predicted trajectory, and if the selected R is not
appropriate, it may also have a negative effect on the
predicted results. For example, ΔRMSE is negative when
R = R10 in Fig. 17a.

Then, the observation noiseR is set as [1, 0; 0, 1], [2, 0; 0,
2], [3, 0; 0, 3], [4, 0; 0, 4], and the system noise covariance
matrix Q is set as the parameters shown in Table 8. The
result of ΔRMSE changes with system noise covariance
matrix Q as shown in Fig. 18.

Fig. 16 Comparison of the
trajectory prediction results of
the simple LSTM, ILSTM and
LSTM-KF trajectory prediction
algorithms for hurricane ALEX

Comparison 1

Comparison 2
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Table 7 Parameter Settings of observation noise covariance matrix R

R Value R Value

R0.1 [0.1,0; 0, 0.1] R1 [1, 0; 0, 1]

R0.2 [0.2,0; 0, 0.2] R2 [2, 0; 0, 2]

R0.2 [0.3,0; 0, 0.3] R3 [3, 0; 0, 3]

R0.4 [0.4,0; 0, 0.4] R4 [4, 0; 0, 4]

R0.5 [0.5,0; 0, 0.5] R5 [5, 0; 0, 5]

R0.6 [0.6,0; 0, 0.6] R6 [6, 0; 0, 6]

R0.7 [0.7,0; 0, 0.7] R7 [7, 0; 0, 7]

R0.8 [0.8,0; 0, 0.8] R8 [8, 0; 0, 8]

R0.9 [0.9,0; 0, 0.9] R9 [9, 0; 0, 9]

R10 [10, 0; 0, 10]

When R = [1, 0; 0, 1], the result of ΔRMSE changes
with Q are shown in Fig. 18a. When R = [2, 0; 0, 2], the
result of ΔRMSE changes with Q are shown in Fig. 18b.
When R = [3, 0; 0, 3], the result of ΔRMSE changes
with Q are shown in Fig. 18c, and When R = [4, 0; 0,
4], the result of ΔRMSE changes with Q are shown in
Fig. 18d. As shown in Fig. 18a, b, c, and d, ΔRMSE

also approximate a trend of increasing and then decreasing.
Therefore, different system noise covariance matrix Q will
have an impact on the prediction accuracy of LSTM-KF
algorithm, and inappropriate values may have a negative
impact. For example, in Fig. 18b, c, and d, ΔRMSE is
negative when Q is compared at the beginning. However, it
is worth noting that the better effect of Q and R is around
0.05. As shown in Fig. 17a, the maximum ΔRMSE is
0.0419 when R = R2. As shown in Fig. 18a, the maximum
ΔRMSE is 0.0535 when Q = Q0.6. As shown in Fig. 18b,
the maximum ΔRMSE is 0.0556 when Q = Q0.9. As
shown in Fig. 18d, the maximum ΔRMSE is 0.0512
when Q = Q5. Selecting the appropriate value of Q and
R will produce better optimization effect on the predicted

Table 8 Parameter Settings of system noise covariance matrix Q

Q Value Q Value

Q0.1 [0.1,0; 0, 0.1] Q1 [1, 0; 0, 1]

Q0.2 [0.2,0; 0, 0.2] Q2 [2, 0; 0, 2]

Q0.2 [0.3,0; 0, 0.3] Q3 [3, 0; 0, 3]

Q0.4 [0.4,0; 0, 0.4] Q4 [4, 0; 0, 4]

Q0.5 [0.5,0; 0, 0.5] Q5 [5, 0; 0, 5]

Q0.6 [0.6,0; 0, 0.6] Q6 [6, 0; 0, 6]

Q0.7 [0.7,0; 0, 0.7] Q7 [7, 0; 0, 7]

Q0.8 [0.8,0; 0, 0.8] Q8 [8, 0; 0, 8]

Q0.9 [0.9,0; 0, 0.9] Q9 [9, 0; 0, 9]

Q10 [10, 0; 0, 10]

results, but the effect of prediction optimization may be in a
small range.

In order to test the time performance of LSTM-KF
algorithm, this experiment tested the time performance by
counting model training time and predicted response time of
different network structures. The hardware platform of this
experiment is CPU Intel(R) Core(TM) i7-9850h, 2.60 Ghz,
16G memory, GPU Quadro RTX 3000. We select hurricane
data from 1895 to 2015 for training and statistic the model
training time, as shown in Fig. 19. Forecast the hurricane
trajectory in 2016 and statistic their predicted response
time, as shown in Fig. 20. It can be seen from Fig. 19
that the neural network structure is 128*128*256, 256*256
*256, 128*256 *512, 256 *256, and the training time of
the model is 870s, 929s, 913s and 817s, respectively. As
shown in Fig. 20, the structure of the neural network is
128*128*256, 256*256 *256, 128*256 *512, 256 *256,
and the response time of model is 5s, 6s, 6s and 4s
respectively. The predicted response time of the whole year
of 2016 has remained at a few seconds. Although LSTM-
KF algorithm takes more time in model training, the time

Fig. 17 Result of ΔRMSE changes with observation noise covariance matrix R
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Fig. 18 Result of ΔRMSE changes with system noise covariance matrix Q

interval of hurricane trajectory prediction is 6 h, so the
model training time is much lower than the time interval
between the sampling points. Meanwhile, the LSTM-KF
algorithm only needs to train the trajectory prediction model
before each hurricane arrives and it is not necessary to
train the model for each prediction. The time spent in the

prediction process of trajectory is response time. As shown
in Fig. 20, the predicted response time of the whole year of
2016 is very short, only within a few seconds. And the better
the hardware platform, the shorter the time. Therefore,
LSTM-KF algorithm can meet the requirements of real-time
hurricane prediction.

Fig. 19 Model training time for
different network structures
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Fig. 20 The predicted response
time of different network
structures
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6 Conclusion

Trajectory prediction has become a research hotspot in
many fields. Hurricanes are serious threats to people’s lives
and cause significant economic losses. Effective prediction
of the trajectory of a hurricane has good application value.
In this paper, from the perspective of machine learning,
using real Atlantic hurricane data, an LSTM network is
applied to hurricane trajectory prediction, and the prediction
model is trained using historical hurricane data. The main
contributions of this paper are as follows: 1. In the stage of
data preprocessing, the trajectories are gridded and encoded,
and a trajectory vector is generated by combining numerical
data with categorical data to input into the LSTM. 2.
Based on the simple LSTM trajectory prediction algorithm,
this paper improves the prediction module and proposes
an improved LSTM trajectory prediction algorithm. 3.
Combined with a Kalman filter, the predicted coordinates
of the improved LSTM trajectory prediction algorithm are
filtered, and the LSTM-KF trajectory prediction algorithm
is proposed. 4. Real Atlantic hurricane data from 1851 to
2016 are used in simulation experiments. The prediction
results of the LSTM-KF trajectory prediction algorithm
are better than those of the improved LSTM algorithm
and the simple LSTM algorithm. The trajectory prediction
algorithm proposed in this paper only considers several
factors, such as latitude and longitude, maximum sustained
wind speed and the system state, but its prediction error is
still very large. It is hoped that more meteorological factors
can be considered in future studies to establish a more
complete prediction model.
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23. Wiest, J., Höffken, M., Kreßel, U., Dietmayer, K.: Probabilistic
trajectory prediction with gaussian mixture models. In: 2012
IEEE Intelligent Vehicles Symposium, pp. 141–146. IEEE, Alcala
(2012)

24. Chapuis, B., Moro, A., Kulkarni, V., Garbinato, B.: Capturing
complex behaviour for predicting distant future trajectories.
In: Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Mobile Geographic Information Systems, pp. 64–
73. ACM, California (2016)

25. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving
objects databases: issues and solutions. In: Proceedings. Tenth

International Conference on Scientific and Statistical Database
Management (Cat. No. 98TB100243), pp. 111–122. IEEE, DC
(1998)

26. Junghans, C., Gertz, M.: Modeling and prediction of moving
region trajectories. In: Proceedings of the ACM SIGSPATIAL
International Workshop on GeoStreaming 2010, pp. 23–30. ACM,
New York (2010)

27. Prevost, C.G., Desbiens, A., Gagnon, E.: Extended Kalman filter
for state estimation and trajectory prediction of a moving object
detected by an unmanned aerial vehicle. In: 2007 American
Control Conference, pp. 1805–1810. IEEE, New York (2007)

28. Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A hybrid prediction
model for moving objects. In: 2008 IEEE 24th International
Conference on Data Engineering, pp. 70–79. IEEE, Cancun (2008)

29. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a
location predictor on trajectory pattern mining. In: Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 637–646. ACM, Paris (2009)

30. Long, T., Qiao, S., Tang, C., Liu, L., Li, T., Wu, J.: E 3 TP: a novel
trajectory prediction algorithm in moving objects databases. In:
Pacific-Asia Workshop on Intelligence and Security Informatics,
pp. 76–88. Springer, Heidelberg (2009)

31. Kim, S.-W., Won, J.-I., Kim, J.-D., Shin, M., Lee, J., Kim, H.: Path
prediction of moving objects on road networks through analyzing
past trajectories. In: International Conference on Knowledge-
Based and Intelligent Information and Engineering Systems,
pp. 379–389. Springer, Heidelberg (2007)

32. Qiao, S., Shen, D., Wang, X., Han, N., Zhu, W.: A self-adaptive
parameter selection trajectory prediction approach via hidden
Markov models. IEEE Trans. Intell. Transp. Syst. 16(1), 284–296
(2014)

33. Li, M., Lu, F., Zhang, H., Chen, J.: Predicting future locations of
moving objects with deep fuzzy-LSTM networks. Transportmet-
rica A: Transp. Sci. 16(1), 119–136 (2020)

34. De Leege, A., van Paassen, M., Mulder, M.: A machine learning
approach to trajectory prediction. In: AIAAGuidance, Navigation,
and Control (GNC) Conference 2013, p. 4782. AIAA, MA (2013)

35. Chen, M., Liu, Y., Yu, X.: Predicting next locations with object
clustering and trajectory clustering. In: Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pp. 344–356.
Springer, Heidelberg (2015)

36. Shah, R., Romijnders, R.: Applying deep learning to basketball
trajectories. Applying deep learning to basketball trajectories. Last
revised 16 Aug 2016 (2016)

37. Plaut, D.C.: Experiments on Learning by Back Propagation.
Technical Report CMU-CS-86-126. Department of Computer
Science Carnegie-Mellon University (1986)

38. Werbos, P.: Beyond regression: new tools for prediction and
analysis in the behavioral sciences. Ph.D. dissertation, Harvard
University (1974)

39. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning represen-
tations by back-propagating errors. Nature 323(6088), 533–536
(1986)

40. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

41. Mann, M.E., Woodruff, J.D., Donnelly, J.P., Zhang, Z.: Atlantic
hurricanes and climate over the past 1,500 years. Nature
460(7257), 880–883 (2009)

42. Elsner, J.B.: Tracking hurricanes. Bull. Am. Meteorol. Soc. 84(3),
353–356 (2003)

43. Kalman, R.E.: A new approach to linear filtering and prediction
problems. J. Basic Eng. 82D(1), 35–45 (1960)

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Comput Geosci (2021) 25:1005–1023 1023


	Trajectory prediction based on long short-term memory network and Kalman filter using hurricanes as an example
	Abstract
	Introduction
	Related work
	Trajectory prediction method
	Overview of neural network

	Trajectory definition and long short-term memory
	Proposed LSTM-KF
	Encoding of trajectory data
	Improved LSTM (ILSTM)
	Trajectory prediction based on LSTM and Kalman filter

	Experimental results and discussion
	Description of Data set
	Prediction error comparison experiment
	Comparison experiment of single hurricane trajectory prediction
	Parameter sensitivity experiment and time performance analysis

	Conclusion
	Declarations
	References


