
https://doi.org/10.1007/s10596-021-10035-4

ORIGINAL PAPER

An efficient ensemble Kalman Filter implementation via shrinkage
covariance matrix estimation: exploiting prior knowledge

Santiago Lopez-Restrepo1,2 · Elias D. Nino-Ruiz3 · Luis G. Guzman-Reyes3 · Andres Yarce1,2 ·O. L. Quintero1 ·
Nicolas Pinel4 · Arjo Segers5 · A. W. Heemink2

Received: 10 June 2020 / Accepted: 14 January 2021
© The Author(s) 2021

Abstract
In this paper, we propose an efficient and practical implementation of the ensemble Kalman filter via shrinkage covariance
matrix estimation. Our filter implementation combines information brought by an ensemble of model realizations, and that
based on our prior knowledge about the dynamical system of interest. We perform the combination of both sources of
information via optimal shrinkage factors. The method exploits the rank-deficiency of ensemble covariance matrices to
provide an efficient and practical implementation of the analysis step in EnKF based formulations. Localization and inflation
aspects are discussed, as well. Experimental tests are performed to assess the accuracy of our proposed filter implementation
by employing an Advection Diffusion Model and an Atmospheric General Circulation Model. The experimental results
reveal that the use of our proposed filter implementation can mitigate the impact of sampling noise, and even more, it can
avoid the impact of spurious correlations during assimilation steps.

Keywords Data assimilation · Air quality · Chemical transport model · Ensemble Kalman Filter ·
Background error covariance matrix
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1 Introduction

A dynamical system approximately evolves according to
some imperfect numerical model:

xcurrent = Mtprevious→tcurrent

(
xprevious

)
, (1)

where n and m are the model resolution and the number of
observations, respectively, and M : R

n×1 → R
n×1 is an

imperfect model operator which mimics the behavior of a
very highly non-linear system such as the ocean and/or the
atmosphere.

On the former representation, the model operator maps
the state variable into a sequential time steps realization
of the behavior of the dynamical system. In most of the
cases, there is a control variable included on the operator
that related external inputs to the system and allows for the
representation of the interactions between the system and
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the external world. The state variable may or may not be
directly measurable and is used as a memory of the system.
As seen in Eq. 1, the past behavior of the system affects
its future development, but the lack of representation of the
state variable may be a pitfall on the full representation of
the real world. The relationship between the state space and
the real noisy observation y ∈ R

m×1 is sometimes a useful
tool for the proper understanding and representation of the
full system.

Controllability is a property of the dynamical system
that allows measuring the ability of a particular control
input to manipulate all the states of the system, taking them
from point A to the point B in finite time. On the other
hand, observability measures the ability of the particular
sensor configuration to supply all the information necessary
to estimate all the states of the system. State estimation
and Parameter estimation are typically the main concerns
in control and systems theory. They are required for the
proper control law design and are mandatory for the full
observability of the system.

In cases when there is a lack of observability, the problem
of state estimation and parameter estimation arose, and it
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can be solved by means of the solution to the optimal
filtering problem. That requires an analytical solution of
the Bayes theorem by means of the Kushner or Zakai
Equation. These are not feasible for non-linear and non-
Gaussian systems. They are approximated most often via
particle filters [34, 35]. The linear and Gaussian case is
solved by the well known Kalman filter, and its extension
to non-linear and Gaussian cases can be found extensively
in the literature. For Large scale systems, the solutions to
complete the full observability of the system are not straight
forward because the course of dimensionality and more
sophisticated solutions to the optimal filtering problem were
derived.

Sequential Data Assimilation (DA) is a statistical
process that optimally combines information brought by an
imperfect numerical forecast xb ∈ R

n×1 and a real noisy
observation y ∈ R

m×1 [2, 9] to estimate the actual state x∗ ∈
R

n×1 of a dynamic system such as Eq. 1. When Gaussian
assumptions are made over prior and observational errors
via Bayes’ rule, the posterior estimate has the form:

xa = xb + B · HT · A−1 · d ∈ R
n×1 , (2)

where B ∈ R
n×n is the background error covariance matrix,

d = y − H
(
xb

) ∈ R
m×1 is the vector of innovations (on

the observations), H(x) : Rn×1 → R
m×1 is the observation

operator (which maps vector states to observations), H(x) ≈
H

(
xb

) + H · [
x − xb

] ∈ R
m×n, H ∈ R

m×n is the Jacobian
of H(x) at xb, the information matrix reads:

A =
[
R + H · B · HT

]
∈ R

m×m , (3)

and R ∈ R
m×m is the estimated data-error covariance

matrix. In practice, an ensemble of model realizations can
be employed to estimate the parameters xb and B of prior
error distributions. However, given the computational cost
of a single model propagation, ensemble sizes are con-
strained by the hundreds while their underlying error dis-
tribution by the millions. Consequently, sampling errors
impact the quality of analysis innovations: ensemble covari-
ances are rank-deficient, and even more, they are ill-con-
ditioned [1, 32]. Thus, spurious correlations among distant
model components are developed in the ensemble covari-
ance [29]. Localization methods are commonly employed
during assimilation steps to mitigate the impact of sampling
noise. In this context, well-known methods are covariance
matrix localization, precision matrix localization, spatial
domain localization, and observation impact localization.
The selection of one method over the others relies on
computational aspects. Yet another manner to mitigate the
impact of spurious correlations is based on Shrinkage
Covariance Matrix Estimation. In this family of covariance
matrix estimators, the background error covariance matrix

is estimated as the convex combination of a target matrix
T ∈ R

n×n, and the ensemble covariance Pb ∈ R
n×n:

B̂ = γ · T + (1 − γ ) · Pb ∈ R
n×n , for γ ∈ [0, 1] . (4)

The current literature proposes ensemble-based formula-
tions via the covariance estimator (4) in which:

1. the target matrix T is diagonal (no prior structure is
assumed for B), and the weight γ is optimally computed
via loss functions [30, 31], or

2. the target matrix T is static (i.e., it retains climatological
information), and the weight γ is ranged in γ ∈ [0, 1]
[43, 44].

We exploit the opportunity to include our prior knowl-
edge about the structure of B, the information brought by
samples from the model dynamics, and the optimal esti-
mation of γ . In this manner, we can obtain a covariance
matrix estimator of B that optimally combines all sources of
information. While several techniques have been proposed
to reduce spurious correlations, most of them are designed
for a specific problem, and it is not possible to general-
ize them for other DA implementations [10, 24]. We are
looking for a robust and generalizable manner to include
previous knowledge of the system to a large scale Chemi-
cal Transport Model (CTM) for air quality purposes. Data
assimilation is not necessarily the most popular technique
to incorporate reality into a CTM model. Some practitioners
prefer to spend more time developing emissions inventories
rather than incorporate ground data, satellite information
or vertical measurements. Nevertheless, some applications
have been made recently for the CTM LOTOS-EUROS [10,
17, 24], and the particularity of the advection and diffusion
dynamics govern and condition the emission and deposi-
tion processes. For the north of South America, the highly
non-linear and chaotic behavior of weather dynamics mixed
with a complex topography and a lack of emissions inven-
tory is indeed a challenge for description and forecast of
air pollution. Figure 1 shows an example based on the
high-resolution application of the LOTOS-EUROS model to
study the behavior of PM10 and PM2.5 over the Metropolitan
Area of the Aburrá Valley in Colombia [23].

Here, it is possible to see how the complex topography
that is not well captured by the meteorology and the model
conditions the dynamical relations between the states. Tra-
ditional localization techniques as covariance localization
to avoid spurious correlations are not suitable nor direct
applicable to this problem. The idea of design a covariance
matrix where the knowledge of the system can be integrated
into the DA process comes from this application and its
related difficulties using current localization techniques.

This paper is organized as follows: Section 2 discusses
well-known issues in ensemble-based data assimilation and
how to overcome those. In Section 3, we propose an efficient
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Fig. 1 Topography and
correction emission factors for
different localization radius
using and standard localization
technique [23]

ensemble-based method via Shrinkage Covariance Matrix
Estimation, which accounts for Prior Knowledge about the
background error correlations, localization, and inflation
aspects are discussed as well. Experimental tests are
performed in Section 4. Two models are employed during
the experiments: the Advection Diffusion Model and the
high-nonlinear model SPEEDY. Conclusions from this
research are stated in Section 5.

2 Preliminaries

In order to state the value of the current contribution, several
questions must be solved to demonstrate the feasibility
of the new data assimilation technique in an operational
fashion [46]: Does the new method provide guidance that

is of higher quality or more use than existing methods?
Is the potential benefit of running a new technique cost-
effective? Is the new method sufficient with respect to old
methods?. In this section, we discuss ensemble-based data
assimilation methods and how those can be implemented in
current operational settings. These concepts are necessary
to develop our filter formulation.

2.1 Ensemble-based data assimilation

In ensemble-based data assimilation, an ensemble of model
realizations

Xb =
[
xb[1], xb[2], . . . , xb[N]] ∈ R

n×N , (5)

is employed to estimate the parameters xb and B of prior
error distributions, where xb[e] ∈ R

n×1 is the e-th ensemble
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member, for 1 ≤ e ≤ N , and N stands for ensemble size.
Hence:

xb ≈ xb = 1

N
·

N∑

e=1

xb[e] ∈ R
n×1 , (6)

and

B ≈ Pb = 1

N
· ΔX · ΔXT ∈ R

n×n , (7)

where

ΔX = Xb − xb · 1T ∈ R
n×N , (8)

is the matrix of member deviations, xb is the ensemble
mean, Pb is the ensemble covariance, and 1 is a vector of
the consistent dimension whose components are all ones.
Once an observation is available, the posterior state can
be computed via the stochastic Ensemble Kalman Filter
(EnKF) [9]:

Xa =Xb+Pb · HT ·
[
R + H · Pb · HT

]−1 · D ∈ R
n×N , (9)

where the e-th column of the innovation matrix on the
synthetic observations D ∈ R

n×N reads d[e] = y +
ε[e] − H

(
xb[e]) ∈ R

m×1, with ε[e] ∼ N (0, R). In
practice, ensemble sizes are constrained by the hundreds,
while model resolutions are bounded by the millions, which
mainly obey computational aspects. Consequently, the
quality of analysis corrections can be impacted by spurious
correlations. Hence, localization methods can be employed
to mitigate the impacts of sampling errors. Well-known
methods in this context are covariance matrix localization,
spatial domain localization, and observation localization.

2.2 Covariance Matrix Localization

For small ensemble sizes, sampling errors can impact the
quality of covariances in Eq. 7. As a direct consequence
problems such as filter divergence and long range spuri-
ous correlations can appear [1]. Localization is based on the
assumption that two distant parts of the system are inde-
pendent for most geophysical systems. The two main local-
ization methods are: domain localization and covariance
localization. Domain localization, also called local analy-
sis, instructs that instead of performing a global analysis for
the complete domain, a local analysis can be applied using
just local observations [3]. Covariance localization cuts off
longer-range correlations in the error covariances at a spec-
ified distance [13, 33]. The localization is performed throw
Schur product denoted by ◦:

[ρ ◦ P b]i,j = [Pb]i,j · [ρ]i,j . (10)

Positive definite covariance matrices can be built with the
Gaspari-Cohn function G(d) [11]:

G(d)=
⎧
⎨

⎩

if 0 ≤ d < 1 : 1 − 5
3 r2 + 5

8 r3 + 1
2 r4 − 1

4 r5

if 1≤d <2 : 4−5r+ 5
3 r2+ 5

8 r3− 1
2 r4+ 1

12 r5− 2
3r

if d > 2 : 0
.

(11)

A cutoff function would be defined by d ∈ R
+ → G(d/r),

where r is a length scaled called the localization radius [3,
37]. The regularized ρ ◦ Pb is used as a replacement for Pb.

2.3 Shrinkage covariancematrix estimation

A more robust family of covariance estimators under the DA
case n 	 N are the shrinkage based estimators [8, 42]. This
kind of estimators follow the form [22]:

B ≈ B̂(α) = α · T + (1 − α) · Pb ∈ R
n×n , (12)

where α ∈ [0, 1], and T ∈ R
n×n is known as the Target

matrix. The resulting estimator is a convex combination
of the ensemble covariance matrix and the pre-defined T
matrix. When there is not available information about the
structure of B, an alternative for T is [31]:

T = trace
(
Pb

)

n
· I , (13)

where I ∈ R
n×n is the identity matrix. The value of α is

chosen to minimize the loss function

α∗ = arg min
α

E

[∥
∥B − B̂(α)

∥
∥2

F

]
, (14)

where ‖•‖F represents the Frobenius norm. For target
matrices of the form Eq. 13, a distribution-free formulation
for the optimal α∗

LW is proposed by Ledoit and Wolf in [20]:

α∗
LW = min

⎛

⎜
⎜
⎝

∑N
e=1

∥
∥
∥Pb − �x[e] · �x[e]T

∥
∥
∥

2

F

N2 ·
[
trace

(
Pb2

)
− trace

(
Pb

)2

n

] , 1

⎞

⎟
⎟
⎠ , (15)

where �x[e] ∈ R
n×1 denotes the e-th column of the matrix

(8). Based on the LW estimator, for Gaussian samples, the
Rao-Blackwell Ledoit and Wolf (RBLW) one is proposed.
In the RBLW estimator, the optimal weight is defined by:

α∗
RBLW =min

⎛

⎜
⎜
⎝

N−2
n

· trace
(
Pb2

)
+ trace2

(
Pb

)

(N + 2) ·
[
trace

(
Pb2

)
− trace2

(
Pb

)

n

] , 1

⎞

⎟
⎟
⎠ .

(16)

An EnKF implementation which exploits the special
structure of this estimator is the EnKF based on the RBLW
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estimator (EnKF-RBLW) wherein the posterior ensemble
can be built as follows [30, 31]:

B̂RBLW = α∗
RBLW · μ · I + (1 − α∗

RBLW ) · Pb , (17a)

Xa
RBLW = Xb + B̂RBLW · HT

·
[
R + H · B̂RBLW · HT

]−1 · D , (17b)

μ = trace
(
Pb

)

n
. (17c)

Since numerical models can be highly non-linear, Gaus-
sian assumptions on prior members are commonly bro-
ken. This assumption can be relaxed in the EnKF context
by employing, for instance, the LW estimator for the esti-
mation of background error covariance matrices during
assimilation steps [28]. Besides, different prior structures
can be treated in T to enrich the covariance matrix esti-
mation, this is, to account for prior information about the
dynamical system.

3 An ensemble Kalman Filter via shrinkage
covariancematrix estimation and prior
knowledge

In this Section, a novel EnKF implementation that incorpo-
rates prior knowledge of the background error covariance
matrix in a practical manner to improve the DA process is
presented. The method is based on a shrinkage estimator
using a general target matrix. An efficient and totally par-
allelizable implementation of the method for high-dimen-
sional systems is also proposed.

3.1 Filter derivation

As was mentioned above, shrinkage based covariance matrix
estimators which allow the use of a target matrix T to struc-
ture the covariance matrix, are limited to a target matrix with
identity matrix structure [31, 39]. Although matrix iden-
tity structure can reduce the spurious correlations caused
by the ill-conditioned approximation of the error covariance
matrix [7, 21, 30], the assumption of a covariance struc-
ture without correlation between the states is not always
valid or desirable. Using a general target matrix enables the
incorporation of prior information about the system into the
error covariance matrix. This prior information can be infor-
mation about the system physics as for instance, parameters,
topography, transport phenomena and environmental infor-
mation, or knowledge about the covariance structure coming
from experts or previous experiments. A close formulation

to calculate the weight value α using a general target matrix
TKA is proposed in [39, 45],

αKA = min

⎛

⎝
1

N2 · ∑N
e=1

∥
∥�x[e]∥∥4 − 1

N
· ∥
∥Pb

∥
∥2

∥∥Pb − TKA

∥∥2
, 1

⎞

⎠ .

(18a)

and the KA (Knowledge-Aided) estimator is obtained using
(18a) in

B̂KA = αKA · TKA + (1 − αKA) · Pb ∈ R
n×n, (18b)

It is important to note that no assumptions about the
structure of TKA are made to calculate αKA. This approach
can be seen as an extension of that in [6, 21] to a general
target matrix and is usable for complex-value data case 1.
Similar to the EnKF-RBLW an implementation of the EnKF
can be obtained using the KA shrinkage-based estimator
presented in Eq. 18:

Xa = Xb + B̂KA · HT · [R + H · B̂KA · HT ] · D,

Since the target matrix TKA in the EnKF-KA is not nec-
essarily a matrix with identity structure, information about
the dynamical system can be integrated into the data assim-
ilation process. The prior information is directly related to
the error covariance of the model states; this means that it
is possible to integrate information of the system and guide
the dynamical relationship between the states and the rela-
tion between states and observations. Although there are
no restrictions in the structure of TKA, it is important to
remarks that TKA is still a covariance matrix, so all the
related conditions have to be accomplished. In Section 4 are
shown examples of how to select TKA properly.

3.2 Domain localization

Both most popular concepts of localization can be applied
in the EnKF-KA approach: covariance localization [13,
14], and local domain analysis [32]. We explore the
implementation of local domain analysis due to the
advantages not only in the spurious correlation mitigation
but also in the implementations. Since the main idea of the
EnKF-KA is to incorporate prior information of the system
in the DA framework, it is inherent that this information
has to be saved and available in all the DA processes. In
high-dimensional applications, it is not convenient and, in
some cases, prohibitive to save a matrix of the dimension
of TKA ∈ R

n×n, and calculate Pb ∈ R
n×n directly. It

is here where the concept of local domains is crucial for

1The reader can consult [39, 45] for additional information.
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the implementations of the EnKF-KA for high-dimensional
systems. In local domains, a box of radius r of components
around the state of interest is created, and just the states
and observations within this box (local domain) are used
in the analysis step [16, 32, 38]. This process is repeated
for all the state components, doing multiple local analysis
(in a smaller dimension) instead of a unique and global
analysis (in a higher dimension). Another advantage of this
implementation is that it facilitates the parallelization of
the analysis since each local analysis can be performed in
an independent core [12, 31]. The implementation of the
EnKF-KA using local domains analysis is summarized in
the next steps:

1. A local domain of radius r is created for any model
component. The k − th local domain is formed by nr

(nr << n) and mr observation. The use of domain
decomposition is applied, so that boundary information
is shared across neighboring domains. In this manner,
we preserve the continuous dynamics of some physical
variables such as Temperature, Wind Components,
and Pressure. Figure 2 illustrates this strategy. The
background ensemble and the analysis ensemble into
the box is denoted by Xb

k ∈ R
nr×N and Xa

k ∈ R
nr×1

respectively. The covariance model error into the box
are denoted by Bk ∈ R

nr×nr , the local observation is
denoted by yk ∈ R

mr×1 with observation covariance

Rk ∈ R
mr×mr , and the local innovation matrix is

denoted by Dk ∈ R
mr×N .

2. Compute the local sample covariance matrix Pb
k ∈

R
nr×nr

ΔXb
k = Xb

k − xb
k · 1T

N , (19a)

Pb
k = 1

(N − 1)
· ΔXk · (ΔXk)

T . (19b)

3. Define the local target matrix Tk ∈ R
nr×nr . On this

step, the use of previous knowledge of the model
dynamics is required. Knowledge is understood as
the human-based experience in front of a large scale
model used to represent reality. Large scale models
for atmospheric dynamics, weather, water and ocean,
reservoir modeling are used normally by experts in their
fields. Even if the data to be assimilated is measured,
some details and specifications are not captured on the
model or included on it. Other possible causes are that
due to the spatial-temporal resolution chosen for the
numerical solution of the equations, it does not allow
to capture intrinsic relationships between the states. We
suggest a matrix Tk built on the basis of that specific
knowledge. Although Tk must meet all requirements of
a covariance matrix, the main contribution is that the
matrix Tk must not fulfill any requirement about its
structure and also can change dynamically.

Fig. 2 Domain decomposition is
exploited to reduce the
computational cost of our
proposed method. Dashed
regions denote the shared
boundary information to be
employed during assimilation
steps
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4. Estimate the local error covariance Bk throw the KA
shrinkage-based estimator B̂k using

αk = min

⎛

⎜
⎝

1
N2 ·∑N

e=1

∥∥
∥�x[e]

k

∥∥
∥

4− 1
N

·∥∥Pb
k

∥
∥2

∥∥Pb
k − Tk

∥∥2
, 1

⎞

⎟
⎠ , (20a)

B̂k = αk · Tk + (1 − αk)·Pb
k ∈ R

nr×nr . (20b)

5. Perform the local analysis step

Xa
k = Xb

k + B̂k · HT
k · [Rk + Hk · B̂k·HT

k ] · Dk . (21)

6. Once all the local analyses are performed, map those
to the global domain. The global analysis state is then
obtained. This does not mean to perform a new global
analysis. In [32] two map approaches are proposed. The
first one uses only the analysis results at the center point
of each local region to form the global analysis vectors.
The second one uses the average of all the local analysis
where a grid cell is involved in obtaining the global
analysis.

Note that with a correct selection of r , the matrix
computations in each local domain are inexpensive, so
Eq. 20 can be computed efficiently for high-dimensional
systems.

3.3 Inflation aspects

In the context of EnKF-KA, the covariance inflation can be
efficiently performed increasing the dispersion of matrix (8)
by a inflation factor βinf :

Δ̂X = βinf · ΔX ∈ R
n×N , (22)

and by noting that:

tr
(
β2

inf · Pb
)

= β2
inf · tr

(
Pb

)
,

where tr represent the trace of the matrix. For instance, we
can see that covariance inflation on the optimal factor (18a)
reads:

αinf
KA =min

⎛

⎝
1

N2 ·∑N
e=1 β8

inf ·
∥
∥�x[e]∥∥4− 1

N
·β2

inf ·
∥
∥Pb

∥
∥2

∥
∥β2

inf · Pb − TKA

∥
∥2

, 1

⎞

⎠ .

4 Experimental settings

4.1 Results with an advection diffusionmodel

This section illustrates the proposed EnKF-KA over simple
a advection-diffusion process. The advection-diffusion
governs the changes of a conservative property such as
the concentration in a fluid environmental [36, 41]. The
advection-diffusion equation has been used as a simple

model to study the behavior and transport of pollutants in
the atmosphere. In two dimensions, the horizontal changes
in the concentration of a determinate pollutant C in the
atmosphere can be approximated as:

∂C

∂t
= Dx

∂2C

∂x2
− vx

∂C

∂x
+ Dy

∂2C

∂y2
− vy

∂C

∂y
+ E(t), (23)

where vx and uy are the north-south and west-east wind
velocities respectively, Dx and Dy are the north-south and
west-east diffusion coefficients respectively, and E(t) are
the emissions. The experimental settings are:

– The continuous advection-diffusion equation is dis-
cretized in a 20 × 20 domain, obtaining a total of n =
400 states representing concentration in each cell.

– The boundary condition used for solving the experiment
was the Dirichlet homogeneous zero or null value fixed
in the contour.

– Ten emissions points are considered. Additionally, to
represent a real scenario where the emissions are the
most important uncertainty sources in the atmosphere
chemistry modelling [4], uncertainty in every time in
the emissions are considered.

– There is no considered uncertainty in initial conditions,
boundary conditions, or parameter values.

– With the idea of simulating an imperfect representation
of the model environment, an artificial valley is per-
formed in the real scenario, where the true state x∗ and
observations y are taken. The artificial valley is cre-
ated, increasing the diffusion coefficients and reducing
the velocity winds components in a determinate number
of cells. This implies that the interchange of pollutants
between two locations, one inside and the other outside
the valley, is considerably lower than two locations out-
side or inside the valley. The valley is not included in
the model used for assimilation purposes. A graphical
representation is shown in Fig. 3.

– A background ensemble is built perturbing the 10
emission points by drawing a sample from the Normal
distribution,

xb[e] ∼ N (xb, ρ2
b · I), for 1 ≤ e ≤ N, (24)

where ρb = 0.05
– We propose three ensemble sizes for the experiments

N ∈ {10, 50, 100}.
– The assimilation window consists of M = 1000 time

steps. Two observation periods are proposed for the test,
each time step and each ten time steps. We denote by
δt ∈ {1, 10} the elapsed time between two observations.

– The error statistics are associated with the Gaussian
distribution,

y� ∼ N (H�(x∗
�), ρ

2
o · I), for 1 ≤ � ≤ M, (25)

where ρo = 0.001.
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Fig. 3 Comparison of the real
scenario vs the model scenario.
The green line represents the
artificial valley. The red squares
represent the emission points. a
Real scenario. b Model for DA
purpose

a b

– We consider two fractions of observed components s ∈
{0.12, 0.5}. The components are randomly chosen at
each assimilation step.

– The L2 norm of errors are utilized as a measure of
accuracy at the assimilation step �,

L� =
√[

xa
� − x∗

�

]T · [
xa
� − x∗

�

]
, (26)

where x∗
� and xa

� are the reference and the analysis
solution respectively.

– The Root-Mean-Square-Error (RMSE) is used as a
measure of performance, in average, on a given assimi-
lation window,

RMSE = 1

M
·

M∑

�=1

λ2
� , (27a)

where

λ� = ∥
∥xa

� − x∗
�

∥
∥

2 . (27b)

– The percentage of non converge experiments (PNCE) is
calculated for all the scenarios.

The idea is to incorporate the physical restrictions that
the model does not capture, for this case, the artificial
valley, via the EnKF-KA. If we use a standard distance-
based localization for a state into the valley to cut the
coming information from distant observations, the process
will include both observations inside and outside the valley.
With the EnKF-KA, we try to cut observations that are
outside the valley, even if there are at the same distance, as
is represented in Fig. 4.

This is achieved by incorporating the physical restrictions
(the topography of the interest domain) into the covariance
estimation throw the target matrix TKA. The target matrix
is built starting from a Gaspari-Cohn function [11] and
reducing to zero the covariance between the states inside
and outside the valley. After this process, it is very important
to test whether the final TKA is still a positive semidefinite

matrix. Note that the final covariance between the state
inside and outside the valley will not be necessary zero
because the final covariance matrix is a convex combination
of TKA and Pb. In Fig. 5 is shown an example of a TKA

matrix obtained using the proposed process for an influence
radius r = 4.

The performance of the EnKF-KA is compared with
the shrinkage-based EnKF-RBLW and the standard EnKF
using covariance localization EnKF-CL with r = 1 (other
influence radii were tested, but r = 1 presents the best
performance) under the experimental setup presented below.
A total of 20 experiments are performed for each scenario.
The target matrix TKA is built from a Gaspari-Cohn with
r = 1 and following the mentioned process including
physical restrictions of the valley. The magnitude of TKA

is computed according to the average of the trace of Pb.
In Fig. 6 is shown the dynamical evolution of the L2

norm for different scenarios. Figure 7 presents the values
of the average RMSE for all the experiment scenarios and
the PNCE for the EnKF-CL for the different ensemble
members value. For the EnKF-RBLW and the EnKF-KA the
PNCE = 0% for all the cases.

As is shown in Figs. 6 and 7, the EnKF-KA presents
a lower error rates than the EnKF-RBLW and the EnKF-
CL in almost all the scenarios. This shows how the
integration of the physical restrictions can help the data
assimilation process. It is interesting to evaluate the
scenarios with a smaller number of ensemble members,
where the differences among the three algorithms are
more considerable. The RMSE value of the EnKF-KA
in these scenarios is much lower than the EnKF-CL,
showing that shrinkage-based estimators are more robust
than the sample covariance matrix when n >> N . Since
the ensemble statistics approximate the mean and the
covariance of the state, the ensemble spread should describe
the system uncertainty [15, 40]. If the filter estimates
the state uncertainty correctly, the ensemble spread should
matches with the RMSE when there are no model errors
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Fig. 4 Comparison of the
distance-based localization
approach vs the EnKF-KA. In
the EnKF-KA the influence
region is based on the distance
and on the information about the
system. The blue square
represents the analyzed state, the
blue shadow the influence
region, and the yellow circles
represent the observations. a
Distance-based localization. b
EnKF-KA

[27]. Figure 8 shows the ensemble spread of each algorithm
among assimilation steps for a specific experiment. It can
be seen how all the algorithms reduce the ensemble spread
after few assimilation steps, reducing the system uncertainty
levels. The Free-Run keep similar uncertainty values among
time because no new information is incorporated. Finally,
the EnKF-KA presents the lowest spread values matching
with the lowest RMSE values, which means that the ENKF-
KA can correctly reproduce the system uncertainty and
improve estimation accuracy.

In Fig. 9 is presented the time evolution of states in four
different spacial location for one experiment scenario. It
is evident that the EnKF-KA reproduces more accurately
locations in the border of the artificial valley than the other
methods, showing the effect of the incorporated information
throw TKA.

An aspect that is important to remarks is the value of αKA

for different ensemble member values. The mean αKA value
for ensemble number of N = 10, N = 50 and N = 100 are
¯α10 = 0.698, ¯α50 = 0.591 and ¯α100 = 0.508. With a small

number of ensemble members the assumption of a poor
estimation of the covariance throw the sample covariance
matrix produces a higher value of αKA, giving more weight
to the target matrix than when the number of ensemble, and
the quality of the estimation throw the sample covariance
matrix, is higher.

4.2 Results with an atmospheric general circulation
model

SPEEDY (Simplified Parameterizations, privitivE-Equation
DYnamics) is an Atmospheric General Circulation model
[5, 25], which help us to study the performance of the
EnKF-KA method in a highly non-linear model scenario.
The model consists of seven numerical layers, and at each
one, a T-30 model resolution is employed (96 × 48 grid
components) [19, 26]. The total number of physical vari-
ables at each numerical grid point are five. These are the
temperature T (K), the zonal u and the meridional v wind
components (m/s), the specific humidity Q (g/kg), and the

Fig. 5 Graphical representation
of the TKA matrix. The arrows
remark the state 110, which is
located just in the inside border
of the valley (represented as a
blue square in Figure 4), and
show how the covariance
between a state inside and the
states outside the valley is fixed
in 0. a Gaspari-Cohn function. b
Target matrix TKA

a b
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d e f

g h i

Fig. 6 Comparison of the performance among the EnKF-KA, EnKF-
RBLW and EnKF-CL for some scenarios. aN = 10, δt = 1, s = 0.12.
b N = 10, δt = 1, s = 0.5. c N = 10, δt = 10, s = 0.5.

d N = 50, δt = 1, s = 0.12. e N = 50, δt = 1, s = 0.5. f
N = 50, δt = 10, s = 0.5. g N = 100, δt = 1, s = 0.12. h
N = 100, δt = 1, s = 0.5. i N = 100, δt = 10, s = 0.5

pressure ρ (hPa). We employ all physical variables into our
data assimilation process. Note that, the model dimension
in our settings reads n = 133, 632. During our experiments,
we consider ensemble sizes of N = 10 and N = 20, this
applies for all numerical scenarios. Note that, model resolu-
tions are 13,632 and 6,685 times larger than ensemble sizes
(n 	 N), which takes to current DA operational settings.
We follow the experimental settings presented in [18, 28]:

– Long term numerical integrations are applied to build
the reference solution as well as the initial background
ensemble (two years of a numerical simulation). We start
with a system in equilibrium, and after adding a small
perturbation, the numerical integration is performed.

– The experiments do not account for model errors.
– Standard deviations of observational errors are detailed

in Table 1.
– We employ a highly sparse observational network. The

observation coverage is 9% of the spatial resolution.
This linear observation operator is shown in Fig. 10.
Note that this is an irregularly distributed, realistic
observational network.

– The inflation factor is βinf = 1.3 for all experiments.
– We set up a total simulation time of two months

with observations frequencies about 6 and 12 hours.
We expect the non-linear dynamics of the SPEEDY
model to impact the quality of analysis states as the
observation frequency decreases.
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Fig. 7 Comparison performance
for the different algorithms. a
N=10. PNCE EnKF-CL=40%. b
N=50. PNCE
EnKF-CL=13:75% c N=100.
PNCE EnKF-CL=0%
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– The Root-Mean-Square-Error (RMSE) is employed as
a metric of accuracy for a given analysis xa

� and a
reference solution x∗

� (see Eq. 27).

4.3 Analysis errors across pressure levels

Figures 11 and 12 show us the behavior of the proposed
method against to EnKF-RBLW. The analysis was made
using the RMSE metric for observation frequencies of
6 and 12 hours for u, v, and T model variables in
different Pressure Levels. The numerical results show
that EnKF-KA can be more accurate than EnKF-RBLW,
this obeys the fact that the error correlations are driven
by the physics and the numerical model’s non-linear
dynamics. Therefore, the underlying error distribution of

wind components can be non-Gaussian as the frequency of
observations decreases (long-term forecasts). This can apply
to temperature fields as well. On the other hand, Gaussian
assumptions can be valid for model variables such as the
specific humidity. For this model variable, slight differences
between analysis RMSE can be evidenced for the compared
filter implementations. This can be expected since the
RBLW covariance matrix estimator can perform well as
the underlying error distribution of ensemble members
is nearly Gaussian. Nevertheless, these small differences
favor the proposed EnKF-KA formulation under the current
experimental settings. In general, errors can grow faster
across all pressure levels in model variables such as u, v, and
T than those in variables that tend to preserve Gaussianity
among assimilation steps (i.e., q).
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Fig. 8 Ensemble spread for different algorithms. The graph corresponds
with one experiment wit N =50, δt =10 , and s =0.5

4.4 Evolution of analysis errors among assimilation
steps

As we can see in Figs. 13 and 14, the initial errors decrease
as observations are assimilated in each analysis step using
the proposed method, for observation frequencies of 6 and
12 hours. It should be noted that the observation frequency
affects the estimation quality but not the convergence of
the EnKF-KA with the configuration of this experiment. On

Fig. 9 Time evolution of
concentration for different
locations. The graph
corresponds with one
experiment wit N = 50,
δt = 10, and s = 0.5. a Outside
the valley. b External border of
the valley. c Internal border of
the valley. d Inside the valley
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Table 1 Observational error standard deviation

Model variable Observational error

standard deviation

Zonal Wind Component (u) 1 m/s

Meridional Wind Component (v) 1 m/s

Temperature (T ) 1 (K)

Specific humidity (q) 0.0001 (kg/kg)

Surface pressure (ρ) 100 (Pa)

the other hand, the proposed method can outperform the
EnKF-RBLW formulation as shown in Figs. 13 and 14. The
fact that accurate analysis states can be estimated despite a
highly sparse observational network shows that the dynamic
system’s background error correlations have been captured
into the covariance matrix estimators.

4.5 Analysis RMSE for the assimilation window

Tables 2 and 3 shows the analysis RMSE of the EnKF-KA
and the EnKF-RBLW using 6 and 12 hours for observation
frequencies and ensemble sizes of N = 10 and N =
20. The RMSE values are computed for 60 days with
an initial spin-up period of ten days. As can be seen,
the analysis states of the EnKF-KA can improve on the
results proposed by the EnKF-RBLW. This can be possible
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Fig. 10 An irregularly distributed realistic observational network. 415 stations (9% of all grid points) are located mostly over continents in the
northern hemisphere

due to EnKF-KA uses a target matrix different from the
identity matrix (used in EnKF-RBLW), and the EnKF-
RBLW is performed under Gaussian assumptions over
prior ensemble members. However, Gaussian assumptions
on background errors can be broken by the numerical
model’s non-linear dynamics. The observational network in
the experiment is sparse, about 9% of observations, which
means that posterior estimates’ quality relies on background
error correlations. The proposed method then improves the
quality of the analysis results over the compared filter for

sparse observational network and very small ensemble sizes
in the experiment.

4.6 Uncertainty analysis

For sequential data assimilation based on Ensemble Kalman
Filter is known that if the ensemble spread becomes very
small or becomes very large, the filter falls into divergence,
but also, the ensemble spread can be used to explore the
uncertainty associated with the initial condition and the

a b c d

Fig. 11 Analysis RMSE at the all pressure levels temporally averaged for one month and a half after the initial spin-up period of two weeks. The
number of ensemble members, reads N = 10. The errors per layer are shown for observation frequencies of 6 h. a u. b v. c T . d q
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a b c d

Fig. 12 Analysis RMSE at the all pressure levels temporally averaged for one month and a half after the initial spin-up period of two weeks. The
number of ensemble members reads N = 10. The errors per layer are shown for observation frequencies of 12 h. a u. b v. c T . d q

uncertainty associated to the formulation of the prediction
model. Figure 15 shows the mean of ensemble variance
among assimilation steps for u, v, T and Q variables in
pressure level of 500 Pa. As expected, the ensemble variance
decreases as EnK-KA is used for the analysis step. This
means that the uncertainty decreases as the observations are
assimilated. It should be noted that a covariance inflation
factor of 1.3 was used in the experiment. In the same way,
Fig. 16 shows samples of the components taken for each of
the model’s physical variables. It is possible to see how the

differences between ensemble members decrease through
the assimilation steps.

4.7 CPU-time of analysis steps

Statistics of CPU-Times are computed across all analysis
steps for both filters. The reported times are shown in
Table 4, where the average and the variance of elapsed
time for the analysis step computations are in seconds.
The forecast step was realized using parallelism in a CPU

Fig. 13 Evolution of analysis
errors among assimilation steps
for N = 10 and an observation
frequency of 6 h. The l2-norm of
errors is displayed in the
log-scale for ease of reading. a
u. b v. c T . d q

Comput Geosci (2021) 25:985–1003998



Fig. 14 Evolution of analysis
errors among assimilation steps
for N = 10 and an observation
frequency of 12 h. The l2-norm
of errors is displayed in the
log-scale for ease of reading. a
u. b v. c T . d q

Table 2 RMSE values in time
for observation frequencies of
6 h and 12 h

Variable Method 6 hours 12 hours

u (m/s) EnKF-KA 3.68249519 4.35949404

EnKF-RBLW 10.73446620 11.00722997

v (m/s) EnKF-KA 3.61925501 4.28412956

EnKF-RBLW 10.12226756 10.58916871

T (K) EnKF-KA 1.65550668 2.00101474

EnKF-RBLW 4.77765718 4.69134891

Q (kg/kg) EnKF-KA 0.00037801 0.00043576

EnKF-RBLW 0.00085067 0.00085742

ρ (hPa) EnKF-KA 3.18603080 3.87572849

EnKF-RBLW 10.33055067 11.11026910

As the frequency of observations is decreased, the EnKF-KA formulation can improve on the results of the
EnKF-RBLW method. The number of ensemble members reads N = 10

Table 3 RMSE values in time
for observation frequencies of
6 h and 12 h

Variable Method 6 hours 12 hours

u (m/s) EnKF-KA 3.33453262 4.32448462

EnKF-RBLW 10.23218824 10.59578129

v (m/s) EnKF-KA 3.26725648 4.20452900

EnKF-RBLW 10.27842723 10.08512826

T (K) EnKF-KA 1.52252647 1.97627077

EnKF-RBLW 4.39158134 4.43188562

Q (kg/kg) EnKF-KA 0.00034380 0.00042017

EnKF-RBLW 0.00082716 0.00083432

ρ (hPa) EnKF-KA 2.86353932 3.84863434

EnKF-RBLW 9.86403469 10.10293843

As the frequency of observations is decreased, the EnKF-KA formulation can improve on the results of the
EnKF-RBWL method. The number of ensemble members reads N = 20
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Fig. 15 Mean of variance
among assimilation steps for
N = 10, an observation
frequency of 12 h, and a pressure
level of 500 Pa. a u. b v. c T . d q

a b

c d

Fig. 16 Ensembles of a component sample among assimilation steps for N = 10, an observation frequency of 12 h, and a pressure level of 500
Pa. a u. b v. c T . d q
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Table 4 Statistics of CPU-Time in seconds for the analysis steps of the
compared filters and the forecast step

Method Average CPU-Time Stand. Dev. CPU-Time

Analysis EnKF-KA 6.4688 0.1723

Analysis EnKF-RBLW 5.562 0.157

Forecast Step 4.3272 0.209

The number of ensemble members reads 10

with four cores; this means that up to four ensembles were
forecast simultaneously.

5 Conclusions

An efficient and practical implementation of the EnKF
based on shrinkage covariance matrix estimation (EnKF-
KA) was proposed in the present document. The proposed
filter implementation exploits the information brought
by an ensemble of model realization (numerical model
dynamics) and our prior knowledge about the actual
dynamical system (i.e., the prior structure of background
error correlations). The EnKF-KA uses a target matrix
with a general structure, representing a novel approach
compared with the current shrinkage-based estimators that
use an identity matrix as a target matrix. An efficient
implementation for large systems is presented, taking
advantage of the local domain decomposition. Experimental
tests are performed by using an advection-diffusion model
and an Atmospheric General Circulation Model. In both
cases, the proposed method can outperform EnKF based
on shrinkage covariance estimation where there is no prior
information about error correlations, and the standard EnKF
using covariance localization. The results support the idea
that it is possible to use the information and prior knowledge
of the system to improve the current ensemble-based DA
method.
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