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Abstract
The Groningen gas field in the Netherlands is experiencing induced seismicity as a result of ongoing depletion. The physical
mechanisms that control seismicity have been studied through rock mechanical experiments and combined physical-statistical
models to support development of a framework to forecast induced-seismicity risks. To investigate whether machine learning
techniques such as Random Forests and Support Vector Machines bring new insights into forecasts of induced seismicity rates in
space and time, a pipeline is designed that extends time-series analysis methods to a spatiotemporal framework with a factorial
setup, which allows probing a large parameter space of plausible modelling assumptions, followed by a statistical meta-analysis
to account for the intrinsic uncertainties in subsurface data and to ensure statistical significance and robustness of results. The
pipeline includes model validation using e.g. likelihood ratio tests against average depletion thickness and strain thickness
baselines to establish whether the models have statistically significant forecasting power. The methodology is applied to forecast
seismicity for two distinctly different gas production scenarios. Results show that seismicity forecasts generated using Support
Vector Machines significantly outperform beforementioned baselines. Forecasts from the method hint at decreasing seismicity
rates within the next 5 years, in a conservative production scenario, and no such decrease in a higher depletion scenario, although
due to the small effective sample size no statistically solid statement of this kind can be made. The presented approach can be
used to make forecasts beyond the investigated 5-years period, although this requires addition of limited physics-based con-
straints to avoid unphysical forecasts.

Keywords Seismicity forecasting . Groningen gas field . Machine learning . Model benchmarking . Depletion-induced
seismicity . Geomechanics . Earthquakes

1 Introduction

1.1 Context and background: Gas production induced
seismicity

The Groningen field is the largest gas field in Europe and one
of the largest gas fields in the world, with approximately 2900
billion m3 gas originally in place [1, 2]. Production from this
field contributed significantly to the Dutch economy in the
past 60 years [3]. Production of hydrocarbons can potentially
lead to induced seismicity [4, 5]. In the depleting Groningen
field, the high-porosity faulted sandstone reservoir has expe-
rienced several decimetres of compaction [6, 7]. Following
depletion, induced seismic events have started occurring
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within the field boundary (Fig. 1) [1]. From 2005 onwards, the
frequency of induced seismicity per volume of gas produced
increased with further depletion, with the largest event (M3.6)
occurring in 2012 [1].

With as prime aim to assess the hazard and risk resulting
from induced seismicity, an international research program
developed an integrated Probabilistic Seismic Hazard and
Risk Assessment (PSHRA) [1]. The PSHRA are annually
submitted by the field operator NAM to the Dutch govern-
ment as input into the decision by the Minister of Economic
Affairs and Climate Policy for this decision on gas production
levels. A key element of the PSHRA is a seismological model,
which should forecast the temporal and spatial probability
densities of earthquakes within the Groningen natural gas res-
ervoir, conditional on future production plans [2].

Forecasting of induced seismicity requires a detailed un-
derstanding of both the physical mechanisms governing
depletion-induced seismicity, as well as reservoir properties
in time and space. On physical mechanisms, research from lab
to field experiments and from experimental to complex nu-
merical models has provided insights into the mechanisms
behind induced seismicity in general [8–12], in particular
depletion-induced seismicity [13–19] and injection-induced
seismicity [20, 21]. On reservoir properties, data acquisition
efforts [22–24] can improve data quantity and quality, but as
properties can only be measured directly in wells (which gives
very limited spatial coverage) or using seismic reflection data
(which needs to be interpreted, and has limits in applicability
in regions with induced seismicity), these datasets carry large
intrinsic uncertainties.

Consequently, current state-of-the-art models for forecast-
ing induced seismicity try to address these uncertainties by
combining physical and statistical model elements. An

example for depletion-induced seismicity is the PSHRA
statistical-physics seismological model for the Groningen
gas field. This model is based on three components: (1) The
mechanics of poroelastic deformations to describe pore pres-
sure depletion; (2) The statistics of extreme thresholds com-
bined with Coulomb failure stresses to describe fault
reactivations; and (3) the statistics of a heterogeneous
Poisson Point Process to describe the probability of induced
earthquakes as they vary in space and time [1, 2, 16]. Similar
physical-statistical approaches have been used in studies of
injection-induced seismicity [21].

1.2 Induced seismicity forecasting using machine
learning

The physical mechanisms described by the Groningen
PSHRA statistical-physics seismological model show su-
perior forecast performance compared to a broad set of
potential alternative physical mechanisms [16]. This pro-
vides strong support that the physical mechanisms as de-
scribed by the PSHRA model are relevant mechanisms for
seismicity forecasting in the hazard and risk assessment
but does not rule out that additional, yet unknown phys-
ical mechanisms could play a role as well. Given the
importance of the seismological model for the PSHRA,
it was decided to explore additional seismological models
built using alternative methods. Alternative statistics-
physics based approaches were thought to have similar
strengths and weaknesses as the current seismological
model, but physics-based modelling requires making nar-
row choices in an uncertain area of physics. Machine
Learning (ML) offered an approach utilizing another par-
adigm to look for alternative mathematical formulations

Fig. 1 Overview of seismicity between 1986 and 2017 in map view (left)
and time view (right) with the different colours representing the different
magnitude bins. The black outline shows the approximate field boundary.

The background map shows the depth of the top reservoir surface in
meters. The histogram only includes events observed within the black
outline of the field
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that utilize the available field data, that may outperform
the physics-based models and provides the potential to be
used in an operational setting. In particular, ML models
have the ability to perform well in situations where un-
derlying processes are not (fully) understood [25] and/or
are complex [26], since ML models can infer non-linear
relationships directly from data instead of requiring them
to be prescribed in the modelling process. This approach
is inspired by recent applications of ML to the field of
geophysics [27, 28].

Combining ML with available physical knowledge has
proven to accurately forecast the behaviour of a large spa-
tiotemporal chaotic physical system where the mechanical
description of the dynamics is limited [29], showing the
potential for ML to complement physical and statistical
seismicity modelling efforts [30]. In the context of seismic-
ity analysis, ML has been applied to (i) earthquake identi-
fication [31, 32], (ii) catalogue-based seismicity forecast-
ing [33] and (iii) model parameter inference (e.g. the
Gutenberg-Richter b-value) [34–36]. Although these ex-
amples demonstrate the complementary value of ML
methods, the use of complex ML models potentially intro-
duces the risk of overfitting or providing a ‘black box’
solution to a physical mechanism that can be explained
instead with physics-based models, as observed by [37,
38]. However, physical processes such as depletion-
induced seismicity for which physical models exist [16]
provide an opportunity to quantify the complementary val-
ue of ML methods [39].

We aim to build a pipeline to apply a set of ML
methods (referred to as ML pipeline) on a broad set of
physical parameters including but extending beyond the
parameters used in the PSHRA model. Parameters include
absolute pore pressure, compaction, average production
rate, fault density and surface gradient, see Appendix
Table 7 for a full overview. We did not commit to a spe-
cific ML algorithm or algorithm family a priori but instead
selected a set of algorithms particularly suited for small
and/or sparse datasets, taking into account a combination
of ranking studies [40, 41]: a regularized GLM
(Generalized Linear Model), a regularized GLM with the
five most important features (“GLM top”), K-Nearest
Neighbours (KNN), Random Forests (RF) and Support
Vector Machines (SVM). These ML methods will be used
to forecast the temporal and spatial induced seismicity
rates within the Groningen gas field, conditional on two
future production plans which result in varying degrees of
field depletion, above a minimum magnitude of 1.5. For
hazard and risk assessment magnitude information is re-
quired as well. In principle, the approach presented here
could be extended to forecast seismicity rates over the
dimensions of time, space and magnitude – however that
is out of scope of the current work.

1.3 The machine learning pipeline developed in this
study

To achieve our aim stated above, an ML pipeline is designed
that extends time-series analysis methods to a spatiotemporal
framework with a factorial setup [42, 43]. This pipeline allows
probing a large parameter space of plausible modelling as-
sumptions and meta-parameter choices, followed by a statis-
tical meta-analysis to account for the intrinsic uncertainties in
subsurface data and to ensure statistical significance and ro-
bustness of results. Here, meta-parameters are parameters de-
fining the experimental setup, e.g. the spatial and temporal bin
sizes, time delays, different interval start and end dates. A
semi-automated implementation enables testing of hypotheses
whether a specific parameter increases predictive performance
in a statistically significant way.

We present the ML pipeline developed in the following
order (Fig. 2):

& Data input, including the data sources used, aggregation
approach, target and predictor feature generation, is
discussed in Section 2.

& A prediction strategy, including choices for ML models,
baselines and the tuning approach, is detailed in Section 3.

& The model evaluation and comparison approach, includ-
ing confidence interval quantification, hypotheses testing,
and the simulation model approach used are explained in
Section 4.

& Meta-analysis based on a Random Forest model is de-
scribed in Section 3.7.

The pipeline is implemented in the statistical programming
language R, relying partly on off-shelf methodology available
in the MLR package [44–48]. Functionality has been aug-
mented by custom implementations of baselines (Section 3),
error metrics and support for spatiotemporal model validation
(Section 4).

2 Data preparation: Pre-processing
and variable selection

The first part of the integrated ML pipeline consists of colla-
tion and pre-processing of various data sources to a 3D array
of observations, indexed by longitude/latitude bins (referred to
as lon/lat) and temporal bins (i.e. two spatial dimensions and
one temporal dimension). The raw data comprises physical
and geological properties and subsurface simulation model
outputs at different spatial and temporal granularities, and a
catalogue of seismic events. As off-the-shelf functionality of
machine learning toolboxes such as the MLR toolbox used in
this study usually assume tabular format, the raw data is con-
verted to a single table in long tabular format, indexed by the

531Comput Geosci (2021) 25:529–551



lon/lat/time bins, by a combination of binning and interpola-
tion techniques.

Section 2.1 describes the various raw data sources;
Sections 2.2–2.3 detail pre-processing of the predictor features
and the target feature and the final pre-processed data set in
long format. With this data set complete, Section 2.4 explains
the mathematical notation used in this study, which allows us
to describe the subsequent variable selection process in
Section 2.5. Physical considerations suggest that on the long
term, decades after production has ceased, the system should
come to rest. Section 2.6 describes the addition of ‘ultimate
states’ to the input data, which are meant to encode these
considerations.

The entire data processing pipeline is subject to certain
parameter choices which we consider to be meta-parameters,
these will be chosen subject to sensitivity analysis of the entire
pipeline as further discussed in Section 3.

2.1 Input data and subsurface models

The data selection follows practical limitations of data avail-
ability, as well as statements in existing literature (e.g. [5, 16,
18]; Fig. 3) regarding relevance to seismicity and seismicity
rates.

Our raw data includes both direct observations as well as
outputs from subsurface models. Direct observations are ob-
tained from wells, which provide local petrophysical charac-
terization of rock properties, reservoir pore pressure measure-
ments, gas production rates, and reflection seismic data. These
data have also been used to build models of the reservoir struc-
ture and rock properties (time-invariant) and fluid flow distri-
bution (time-dependent), making use of physics-based numer-
ical solvers to interpolate between observations in space and
time [49]. These may be leveraged for reservoir production
history, or forecasts of reservoir properties for given future
gas production scenarios. Compared to most subsurface

reservoirs, production forecasts of the Groningen gas field have
narrow uncertainty bands due to the full field coverage of 3-D
seismic reflection data and the long history of reservoir surveil-
lance data (production, pressure, subsidence, seismicity).

We would like to stress one key limitation of reservoir
models as a data source: These models are frequently up-
dated with data from the wells, by a process which is ex-
ternal to our modelling pipeline. While we carry out walk
forward cross-validation we are unable to automatically
history match the reservoir models such that they are pre-
cisely constrained to the data that would be available when
we start forecasting in each temporal cross-validation fold.
A complete walk-forward instantiation of the data pre-
processing – in-principled required for fair evaluation – is
thus not possible, and information leakage, or subsequent
over-optimism in model performance evaluation, cannot be
fully ruled out.

Nonetheless, geoscientific experts’ confidence in the physi-
cal models tends to be high, therefore for all practical purposes
the chosen setup of this study is considered to be a good proxy
to the real-world situation of prospective model application.

Table 1 provides a summary of the different models and
data sources leveraged in generation of the pre-processed data,
including raw data resolution, and steps for interpolation or
binning to obtain the tabular data set. The complete list of
predictor features extracted from these sources is listed in
Appendix Table 7, with a brief motivation as to why each
predictor feature is potentially relevant for seismicity
modelling.

The machine learning models will be used to generate
induced-seismicity forecasts, based on reservoir model fore-
casts, which in turn depend on gas production scenarios. We
consider two gas production scenarios with forecasts derived
from the reservoir flow models to illustrate the influence of
changing gas production on our seismicity forecasts [49, 51]
(Fig. 4):

Fig. 2 Illustrative overview of the machine learning pipeline described in this article. Components are explained in subsequent Sections 2–4
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Fig. 3 Distribution of the target feature (a, seismic events) and examples
of predictor features constructed for the Groningen gas field (b-f). The
open circles show the distribution of seismic events between January 1st,

1995 – December 31st, 2016 with circle size scaled by magnitude. The
depletion thickness and compaction are cumulative over the period of
interest. Note that our models only consider data within the field outline
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1) The field is depleted to a relatively low pore pressure state
by producing at a near-constant rate that is comparable to
the historical rate of the recent past [24].

2) Production is rapidly decreased compared to the re-
cent historical state and the field is shut in by 2030,
at a depletion pressure that is higher than in the other
scenario [52].

2.2 Binning and interpolation for data tabularization

The different data sources described in Section 2.1 have vary-
ing spatiotemporal resolutions. For application of machine
learning toolboxes, the data are brought into tabular format
by binning and interpolation. For all data sets, we follow the
same high-level process to create data indexed by a rectangu-
lar grid with given spatial and temporal resolutions. The fol-
lowing steps are carried out for each individual predictor
feature:

1) If the feature possesses a depth index, cell volume-
weighted averaging over this depth index is carried out
to remove the depth index entirely.

2) Second, the feature is binned according to the rectangular
grid, and bin-averaged by longitude and latitude, for fixed
time index.

3) Third, if the feature possesses a time index, temporal ag-
gregation or averaging is applied.

4) Finally, for discrete features such as the fault network
geometry, feature values are replaced by an isotropic
Gaussian kernel interpolate for each fixed time index.
The kernel bandwidth is considered a meta-parameter
of the full modelling pipeline which is later optimized
and investigated in the meta-parameter sensitivity
analysis.

Furthermore, time lagged variants of time-indexed features
(1, 2, 3, 6, 12 months) are included in the pre-processed
dataset by adding each time-legged feature for each lag period
as a separate feature to the feature matrix.

2.3 Target feature definition and prediction task

The pre-processed dataset also contains the target feature that
the ML pipeline has to predict, namely the number of induced
seismic events within a given cell within a time bin, at Richter
magnitude 1.5 or above.

The choice for this Richter magnitude lower bound is to
prevent modelling artefacts arising from changes in the sensi-
tivity of the Groningen monitoring system associated with
upgrades of the monitoring system over time. This follows
argumentation and mirrors decisions taken in [53, 54]. In the
final pre-processed data, 265 events are observed in the period
between 1st of January 1995 and 31st of December 2016.

For reference in Section 4, we note that the probability
distribution of these events in space and time is assumed to
follow a Poisson Point Process, where we do not take into
account aftershocks.

The resulting pre-processed dataset used for subsequent anal-
ysis is a single data table in long format, i.e. all spatiotemporal
information is stored for each location for each temporal bin.

Most features are not direct observations but obtained from
subsurface models. In Appendix Table 7 we list which fea-
tures were obtained from the different subsurface models. The
number of seismic events above the magnitude threshold is a
direct observation. For simulated data at historical time points
(December 2016 and earlier), the table is populated with
history-matched data. Whenever the same predictor features
are used in forecasting induced seismicity for January 2017 or

Fig. 4 Average reservoir pressure in the entire Groningen field as a
function of time for two production forecasts derived from the reservoir
simulation model, scenario 1 (orange) and 2 (blue). Left: Entire period of

interest from 1994 up to 2025; Right: Zoomed-in version showing the
difference in forecasted depletion between the two scenarios
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later, predictor features from the respective simulation model
forecasts are used.

2.4 Mathematical notation for pre-processed data

For reference in later sections, we introduce a mathematical
notation for the data set as described in Section 2.3. We will
refer to the combined lat/lon cell locations on the grid by the
symbols si, i = 1, …, B, in no particular order, and not sepa-
rating latitude and longitude notationally (this will not be of
importance in occurring formulae). Historical cell times are
noted using the symbols tj, j = 1, …, T, where indexing is in
chronological order, from January 1995 (j=1) to December
2016 (j = T). The vector of predictor features in a given cell,
is defined at a location s and time t by the symbol x(s, t), with
event counts (as in Section 2.3) noted by the symbol y(s, t).
The row vector x(s, t) takes values in Rd, i.e., there are d var-
iables, and y(s, t) takes values in the integers N. There are in
total B · T cells indexed by si, tj, i = 1…B, j = 1…T. For each
such cell there is one predictor feature row vector x(si, tj) and
one target feature observation y(si, tj). We will also consider

the total number of events per time bin, z tð Þ≔∑B
i¼1y si; tð Þ, of

which there are T instances z(t1), …, z(tT).

2.5 Predictor feature pre-selection algorithm

The last data preparation step in the pipeline is one of variable
selection to down-sample the initial 63 unique features de-
rived from models and data, multiplied by several factors de-
pending on the model time lag parameters as described in
Sections 2.2–2.4. Predictor features are selected in two ways
described in further detail below:

(i) Based on stated expert relevance, and common use in
physics-based models found in literature [5, 16, 18].

(ii) Based on an unsupervised approach to limit correlation
between different predictor features. Predictor features
are removed stochastically based on a 90% absolute
(Pearson) correlation threshold that aims to remove fea-
tures that are essentially copies of each other.

The variable selection based on expert relevance is guided
by choices in the Coulomb stress model for heterogeneous
thin sheet reservoirs [55]. This model relates the likelihood
of seismic fault slip to the fault geometry, friction properties,
initial stress state and poroelastic stress changes due to reser-
voir pressure depletion [16]. Examples of direct representa-
tions of Coulomb model features are pore pressure changes
and fault geometry features from the reservoir models.
Examples of potential proxies are reservoir rock shale volume
as a proxy of fault friction behaviour, or seismic variance

attributes as a proxy of fault density. The complete list of
considered variables is included in Appendix Table 7.

Algorithmic variable selection based on correlation
thresholding (ii) is based on the following unsupervised di-
mension reduction algorithm:

1. Between all prediction features, we compute sample cor-
relations. More precisely, correlations Ckℓ are obtained as
independent sample correlations between the paired sam-
ples x(si, tj)k, i = 1…B, j = 1…T and x(si, tj)ℓ, i = 1…B, j =
1…T, where pairing is by the joint indices i, j.

2. Prediction features that have at least an absolute correla-
tion above 0.9 with another prediction feature are
“marked”. That is, we compute the indicator set S ≔
k : |Ckℓ| > 0.9 for some ℓ.

3. If S is empty, terminate; otherwise, select an element of S
uniformly at random, and delete the corresponding col-
umn in the data x(., .). Then, go to 1.

A few remarks are to be made about the above algorithm:
First, it is heuristic and stochastic. The criterion for variable
selection is not based on performance of the entire pipeline;
Second, the correlation is computed as the independent sam-
ple correlation, but the samples x(si, tj), i = 1…B, j = 1…T are
not independent samples, but correlated spatially and tempo-
rally, thus the correlations are not necessarily a measure for
statistical dependence of the features.

Despite these limitations, we argue that this heuristic, au-
tomated procedure is sensible with regard to its primary aim:
removal of predictor features that are essentially duplicates
and copies – rather than, say, as a general modelling principle.

2.6 Augmentation by artificial data points (‘ultimate
states’)

To ensure that physically plausible predictions are made at
feature prediction combinations mimicking shut-in states of
the reservoir, several artificial data points obtained from the
reservoir simulation forecasts mimicking this state are added
to the time series:

1) The reservoir flow simulation model that is used to gen-
erate forecasts of the dynamic reservoir properties (e.g.
pressure) as described in Section 2.1 is run for an extend-
ed simulation time, that covers the period during which
gas is produced from the reservoir as well as an additional
50 years period after production is ceased. This 50-years
period is sufficiently long to allow the reservoir model to
reach a pressure equilibrium after production has ceased.
The reservoir properties (e.g. pressure, saturation) at the
end of this simulation are defined as representative for the
‘ultimate state’ of the reservoir, after the field is shut in
and depletion-induced seismicity is expected to have
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ceased.We use multiple production scenarios that explore
the complete range of reservoir depletion between near-
immediate shut-in and maximum depletion to avoid in-
troducing any bias (Fig. 5) [43].

2) The ‘ultimate state’ values of the dynamic reservoir sim-
ulation model properties are appended to the time series
for each lat/lon cell. The seismicity rate for these addition-
al points is set to zero.

From an ML perspective, this turns an extrapolation problem
into an interpolation problem. Comparison between models
which are given access to ‘ultimate state’ values with the same
models that do not have such access, show that on historical
forecast periods access to ‘ultimate state’ values does not sta-
tistically significantly affect forecast performance [43].

3 Prediction strategies, baselines,
and hyper-parameter tuning

This section describes the experimental setup, the learning
strategies employed and parameter tuning.

3.1 Modelling task

The task for the algorithms is to produce earthquake count
predictions for each cell, 3 months ahead, based on con-
temporaneous (simulator) prediction features – that is, the
k-th model is used to predict earthquake counts byk s; tð Þ, for
time intervals ta, …, tT , where a = 9, thus ta corresponds to
the period Apr-Jun 1997. The duration of each time period
for which cumulative counts are predicted is 3 months. To
produce byk s; t j

� �
for a particular month tj (model training),

every contender algorithm has access to features x(si, tj′),
for any i and j ′ ≤ j, i.e., to predictor features that are pos-
sibly contemporaneous. Additionally the algorithms have
access to past observations of earthquake counts, that is
y(si, tj′), for any i and j ′ ≤ j − 1. For prediction, the algo-
rithms have access to the same data. In addition, predicted
overall counts bzk tð Þ by time bin are calculated asbzk t j
� �

≔∑B
i¼1byk si; t j

� �
. Predictions are forced to be non-

negative real numbers trough clipping to zero if needed.
However, no rounding to the closest integer is carried out.

3.2 Experimental set-up: Model training, tuning,
validation, and application

Our experiment is run in two steps: (a) model training com-
bined with iterative walk-forward model performance evalua-
tion and (b) prospective application.

In model training and performance evaluation, every
contender algorithm produces three-months-forecasts for

the period April 1st, 1997 to December 31st, 2016. Every
model has access to all data up to the prediction period.
Individual algorithms may choose to further sub-divide the
data internally for hyper-parameter tuning. The model per-
formance benchmarking for the algorithms is carried out
using a walk-forward approach as detailed in Section 4. A
manageable subset of “winning” algorithms and associated
parameter settings are selected based on the calculated per-
formance metrics. These models are then invoked (b) to
produce earthquake count forecasts several years ahead
beyond January 2017, using reservoir simulation based
features x(s, t), for t > January 2017, by applying the algo-
rithms iteratively as if the future time point were one time-
step in the future.

3.3 Types of learning strategies

Two classes of learning strategies are tested as contender strat-
egies for the time series forecasting problem at hand:

(i). Supervised regressors, trained on all feature-label
pairs (si, tj), y(si, tj) within the respective training
period as part of the walk-forward training testing
setup. For prediction, targets are queried for all
feature vectors within the test period, that is, x(si,
tj) post-April-1997 for model benchmarking, and
simulator forecast features for prospective use. We
list these in Table 2 with the associated hyper-
parameters that were tuned as part of this study.
Note that the simulator outputs, i.e. the reservoir
pressure and saturation changes, prior to January
2017 have been history matched according to com-
mon state-of-art practice. Even though no earth-
quake data is used in the history matching process,
potential temporal information leakage from future
to past within our benchmarking set-up may have
occurred since the study team was not involved in
the history matching process.

(ii). Time series forecasters based on geomechanical drivers
which serve as state-of-art baselines. These are de-
scribed in Section 3.5 and come with only one hyper
parameter q, being the number of previous time steps
which are taken into account.

We note that within this manuscript we differentiate two
sets of parameters: hyper-parameters are tuning parame-
ters specific to a particular ML model (Table 2), whilst
meta-parameters are related to the general experimental
setup (Table 3). The hyper-parameters are auto-tuned via
the IRace algorithm exposed via the MLR package,
whereas the meta-parameter are chosen as discussed in
Sections 3.6–3.7.
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3.4 Supervised strategies for contemporaneous
seismicity forecasting

The supervised learning strategies used, with hyper-parame-
ters, are listed in Table 2. Note that by including lagged fea-
tures in the input of the algorithms, the time series nature of
the data and prediction problems remains honoured. Thus, a
larger set of machine learning techniques is accessible com-
pared to only considering classical techniques specific to time
series forecasting. Additionally, the MLR pipelines can be
used without major modifications which would easily allow
to re-run the benchmarking and prediction pipeline with some
of the additional regression models that are wrapped into
MLR.

3.5 Baseline strategies

The baseline strategies are variations of a temporal moving
average strategy.

The exogeneous moving average with proportionality to a
variable difference assumes that moving averages of earth-
quake rate, and relative change in another variable’s first dif-
ferences, are proportional to each other. This baseline strategy
is physically motivated by the common physical model as-
sumption that earthquake rate is driven by another variable’s
gradient. Choices for the exogeneous variable, in our experi-
ments, are average depletion thickness (Fig. 3e) and strain
thickness (Fig. 3f), within the lon/lat/time cell, which have
been found to better capture the spatial distribution of

Table 2 Summary of supervised learning strategies. 1st column is
vernacular name; 2nd column is MLR (v2) learner ID; 3rd column are
hyper-parameter settings; this only lists hyper-parameters that chosen
differently from their MLR default; 4th column are tuning grids for

hyper-parameters; 5th column is the used tuning strategy. Tuning is
subject to random (non-temporal) sub-sampling, which is not a major
issue as the evaluation set-up is temporal

Name of strategy, reference MLR learner ID
(if applicable)

Fixed hyper-parameters Tuned hyper-parameters,
tuning grid

Tuning strategy

Regularized GLM [56] regr.glmnet nlambda = 200 family ∈{gaussian, possion}
α ∈ {0,0.1,…, 1}

IRace package with max.
1000 iterations [57]

Regularized GLM [56] with
top 5 features (“GLM top”)

regr.glmnet nlambda = 200 and applied to
the top 5 features identified by
permutation based variable
importance

family ∈{gaussian, possion}
α ∈ {0,0.1,…, 1}

K-Nearest Neighbours [58] regr.kknn (unchanged) k ∈ {1, 2,…, 10}

Random forest [59] regr.ranger (unchanged) mtry ∈{1, 2,…, 10}

Kernel SVM [60, 61] regr.ksvm (unchanged) type ∈{eps − svr,
nu − svr, eps − bsvr}

epsilon, sigma, nu, C ∈
{10−5, 10−4,…, 104, 105}

Fig. 5 Illustration of the range of
physically possible depletion
states that are used to generate the
ultimate states for weighted mean
pressure provided as training data
to the ML pipeline
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seismicity compared to other reservoir properties [16].
Mathematically, predictions are obtained as

byk s; tτð Þ≔ v s; tτð Þ−v s; tτ−1ð Þ
v s; tτ−1ð Þ−v s; tτ−q−1

� � ∑τ−1
i¼τ−qy s; tið Þ ð1Þ

where v(s, t) is the exogeneous predictor feature available for
the same cell at time up to t, i.e., the forecast assumes contem-
poraneous availability of v.

In the experiments, v(s, t) is derived from the prediction
features in Section 2.5. The two instances of these baselines
are obtained from the pre-processed data by calculating deple-
tion thickness as pressure×reservoir thickness, respectively
strain thickness as vertical strain×reservoir thickness, at loca-
tion s and time t, for v(s, t). For tuning the lookback period q is
considered a hyper-parameter.

3.6 Analysis and tuning of model meta- and hyper-
parameters

The main model meta-parameters are related to data integra-
tion choices, and feature selection thresholds. When consider-
ing the values probed for each of the pipeline meta-parame-
ters, we face the trade-off between range and resolution which
is addressed via an iterative refinement of the parameter grid,
i.e. starting with regularly sampling a broad parameter range
with coarse resolution and iteratively re-sampling well
performing and robust meta-parameter ranges with a higher
resolution until the observed improvements in performance

become insignificant. To enable insights into how the param-
eters impact model performance, the following data is record-
ed for each experiment, including:

& Meta-parameter choices;
& Model performance for each error metric with the associ-

ated standard errors;
& Random Forest (RF) based variable importance (estimated

increase in MSE together with SE) for each feature [60];
& Listing of significant and potentially significant features as

determined by the Boruta variable importance test [62].

The meta-parameters which we vary as part of this study
are highlighted in Table 3. We use a factorial setup to study
the impact of these parameters. As a major benefit, this setup
permits sensitivity analysis of prediction results with respect
to these modelling choices, allowing optimizing model per-
formance in a robust way by exposing parameter combina-
tions that yield similar and competitive performance under
small perturbations of the meta-parameters. This is achieved
by applying the so-called “meta-analysis pipeline”. In brief, it
is leveraging techniques from interpretable AI and is de-
scribed in Section 3.7. By running a factorial experimental
design, probing a range of plausible combinations of parame-
ters, interaction effects between parameters with sufficient ef-
fect size can be detected.

In contrast to meta-parameter tuning, hyper-parameter
tuning is fully automatic and embedded in the pipeline via
the generic MLR model tuning interface. See Table 3 for a

Table 3 Overview of model
meta-parameters which are
considered in the ML pipeline

Meta-parameter Description

ML model (excl. baselines)
including model parameters

Type of machine learning model and respective hyper parameters
of the model.

Gridsize Resolution of the grid cells for spatial gridding to generate x, y,
feature values.

Time delay production Delay (number of time steps) in production data versus target quantity.

Minimal magnitude Lower bound for earthquake magnitudes to be used.

Time delay pressure Delay (number of time steps) in pressure data.

Number of spatial blocks Number of blocks that the grid cells in the field are divided in using
k-means clustering

Time delay compaction Delay (number of time steps) in compaction data.

Kernel smoothing bandwidth Bandwidth in meters of the kernel smoothing applied to spatial predictor
features.

Max. nr. Lags Maximum number of lags to be added to the time-series data.

Feature correlation threshold Threshold above which predictor features are defined as highly
correlated. These features are then grouped, and one representative
feature is used.

Interval length Length of the period over which features are temporally aggregated.

Feature significance threshold Minimum threshold for predictor features to be considered significant.

Interval start Start of time interval for model training

Interval end End of time interval for model training
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list of parameters that have been optimized. Whenever model
hyper parameter tuning is enabled within the pipeline, the
same re-sampling strategy is used which is also employed
for the outer validation loop, however with a coarser step size
of 2a, see Section 3.1. This means that we are using walk-
forward cross validation to tune the hyper-parameters as part
of the model training procedure. Again, the coarser step size
represents a trade-off between computational complexity and
our ability to find better hyper parameters. We recognize that
his may potentially lead to sub optimal model performance.

3.7 Meta-analysis pipeline

Model based meta-analysis allows mostly automated assess-
ment of modelling results using techniques from interpretable
AI. We use it to obtain a combination of well-performing and,
with respect to small perturbations, stable parameter settings.

The first step is establishing a functional relationship be-
tween the meta-parameter choices and model performance.
We have chosen to use the Random Forest (RF) algorithm
[59]. The resulting model is called the meta model. RFmodels
are not particularly sensitive to data pre-processing choices
like normalization and accept both categorial and numerical
data. However, other regressionmodels could also haven been
considered.

First, we assess the quality of the meta model using the
reported out-of-sample estimate of the explained variance
R2. Only if the model manages to explain a set fraction of
the variance in the data, we proceed with further analysis.
This includes testing for significant variables and meta model
variable importance analysis using permutation based variable
importance analysis.

This type of importance analysis is insensitive to monoton-
ic transformations of the input data and still works well in the
presence of several noise variables which are un-related to the
prediction target. Variables for which confidence bands over-
lap are indistinguishably important within the meta model.

One subtlety regarding the interpretation of running iterative
experiments with different subsets of predictor features is that
if removal of a feature makes the model worse, it was impor-
tant. The other direction however is not true, i.e., if removal
does not lead to a degradation of model performance, it still
could have been important, but the encoded information could
be captured through other associated features. To mitigate this
problem, the Boruta algorithm [62] is used to establish which
features have significant impact on model performance.

The algorithm implements a sophisticated heuristic to de-
termine which predictor features are relevant for the predictive
performance of the model in the context of the full set of
features that are used to create the model. In brief the algo-
rithm iteratively tests the importance of specific features via
two-sided t-tests in which the performance of the model with
the original features is compared to the performance in which

the feature has been randomly permuted. Several iterations are
necessary to account for potential interaction effects between
features. Full details about the underlying algorithm can be
found in [62]. It should be noted that no statement about the
importance of a variable in isolation can be made since the RF
models do capture interaction effects between the given
variables.

Eventually, stable parameter ranges for the most important
features are established using standard ICE-plots which are
explained in Appendix 2. This is done by visual inspection
of the ICE-plots for the individual variables, by identifying
troughs in the graph and choosing the deepest trough for
which we observe relative stability of the model performance
in proximity to the minimal value in the trough.

4 Model performance evaluation
and comparison

We describe the model evaluation and comparison methodology
to assess performance of the forecast methods. Performance is
assessed with respect to the following two tasks:

(i). To accurately forecast the overall number of events z(t)
in the time bin t in the entire Groningen field, 3 months
ahead, given all prior months of data [42];

(ii). To accurately forecast the number of events y(s, t) in the
time bin t, for all lon/lat bins s within the Groningen
field, 3 months ahead, given all prior months of data
[43].

As outlined in Section 3.1, each algorithm is queried to
produce forecasts. The k-th algorithm produces forecasts bzk
tð Þ and byk s; tð Þ at time bins t = ta, …, tT, of these quantities.

4.1 Confidence intervals for performance quantifiers
of event predictions

The performance quantifiers we use are described in Table 4.
We obtain confidence intervals on these quantifiers by com-
mon procedures applied to the mean of an uncorrelated sam-
ple. We observe that all quantifiers (up to squaring, for

RSMLE) can be written as εk≔ 1
T−aþ1∑

T
j¼aLk t j

� �
for a suitable

choice of series Lk(t) of performances per test time points. We
can then obtain a standard error of the sample mean as

SE εkð Þ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T−aþ1∑

T
j¼a Lk t j

� �
−εk

� �2q
. A 95% confidence level

can then be obtained from the standard error by normal ap-
proximation. This process makes the assumption that the
values of Lk(t) are uncorrelated due to the use of a 3-month
aggregation period removing any autocorrelation. This could
be rigorously confirmed using, for example, a Durbin Watson
test.
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4.2 Formal comparison of performances by
hypothesis tests

For formal comparison of performances quantifiers as present-
ed in Section 4.1, i.e., to certify whether methods have

significantly different performance, we employ paired hypoth-
esis tests in the frequentist paradigm [63].

Effect sizes for performance differences between methods
k, k’ are obtained as differences between mean performance
estimates, εk − εk′, with εk as defined in Section 4.1.
Significances are obtained by applying a paired sample test
on location to samples of test performances Lk(ti), considered
to be paired/blocked via the method index k. In particular, the
Wilcoxon signed rank test was used, since it is non-parametric
and hence makes no explicit distributional assumptions.

Since the final number of models which remain after ap-
plying the meta and hyper parameter tuning described in
Section 4 is very small the uncorrected significances of the
Wilcoxon signed rank test of each method is calculated
against the best-performing baseline. Note, that in theory this
could lead to overoptimistic performance estimates. The tests
are applied to predictions which have been obtained within the
walk-forward validation procedure.

4.3 Assessing and comparing performance of bin-wise
prediction – R-test variant

For testing the predictive performance of predictions across
temporal and spatial dimensions, we propose a method which
takes inspiration from the R-test as outlined in [64]. The basis
of this test is the log-likelihood ratio

Table 4 Performance quantifiers for total number of events used in this study. Each row describes a performance quantifier for the quality of
predictions

Err. Metric Formula Properties

MAE (Mean Absolute Error) 1
T−aþ1∑

T
j¼a bzk t j

� �
−z t j
� ��� �� • very common choice in regression

• measures how well the conditional median is predicted

RMSLE (Root Mean Square
Logarithmic Error)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T−aþ1∑
T
j¼a log bzk t j

� �þ 1
� �

−log z t j
� �þ 1

� �� �2q
• common choice for count prediction
• measures how well the conditional harmonic/logarithmic

mean is predicted

MPL(Mean Poisson Loss) 1
T−aþ1 ∑

T

j¼a
bzk t j
� �

−z t j
� �

log bzk t j
� �� �þ log z t j

� �
!

� �� �
• common choice for count prediction
• up to scaling, same as negative predictive log-likelihood

under bin-wise Poisson assumption

Fig. 6 Spatial plots of earthquake counts aggregated through time.
Moving clockwise from the top left, the plots show the recorded
earthquake counts for M ≥ 1.5, the mean count of 1000 simulations
from, the 97.5% quantile of the simulated counts and the 2.5% quantile
of the simulated counts. The gradient from white to red depicts the range
of 0–10

Table 5 Summary of relevant experiment meta-parameters (see Table 4
for complete list of available meta-parameters) used for the experiments
discussed in the results

Parameter Value

Seismicity data used for period 01-01-1995 – 31-12-2016

Aggregation period length 3 months

Minimum magnitude 1.5

Grid size 1500 m

Bandwidth of spatial smoothing 3500 m

Time shifts None
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r Mk ;M0jyð Þ≔ℓ Mk jyð Þ−ℓ M0jyð Þ; ð2Þ
with ℓ Mk jyð Þ being the predictive log-likelihood of the k-th
model which is denoted as Mk . Under assumption of a bin-
wise Poisson model, the explicit form of the log-likelihood is

ℓ Mk jyð Þ≔ ∑
B

i¼1
∑
T

j¼a
y si; t j
� �

log byk si; t j
� �� �

−byk si; t j
� �

−log y si; t j
� �

!
� �

; ð3Þ

with the null case k = 0 chosen to correspond to a base-
line model of spatiotemporally smoothed null predic-
tions by0 sið ; t jÞ, which are detailed in Section 4.4. A
positive log-likelihood ratio indicates that the k-th mod-
el is better than this baseline.

For the R-test significance for whether the log-likelihood
ratio is positive is usually obtained from a mean-variance
estimate, based on empirical sample simulations [64].
Though, this method has been criticized [65–67], amongst
others for dependency on the simulation process rather than
on the null model choice alone. We aim to address these

issues by using a separate simulation model, rather than
simulating from the proposed model and baseline. We then
repeatedly evaluate the log-likelihood ratio on the data sim-
ulated from this model, denoted as ey, to give an estimated
distribution for r Mk ; M0jyð Þ. The significance of the ratio
being greater than zero can then be calculated directly as the
proportion of simulations which are above 0.

For our particular choice of likelihood and simulation mod-
el, described below, we can side-step the simulation as the bin-
wise Poisson assumption directly allows us to calculate ex-
pectation and variance of the log-likelihood ratio analytically.
By some elementary calculation these are given by,

E r Ml;M0jey� �h i
¼ E ℓ Mljey� �

−ℓ M0jey� �h i
;

¼ E ∑
B

i¼1
∑
T

j¼a
ey si; t j
� �

log byl si; t j
� �

−by0 si; t j
� �� �

−byk�si; t j�þ by0�si; t j�
" #

¼ ∑
i; j

θ si; t j
� �

log byl si; t j
� �

−by0�si; t j�� �n o
−byl�si; t j�þ by0�si; t j�h i

:

ð4Þ

Fig. 7 The RMSLE (left) and MAE (right) error metrics on a cell by cell basis per model. The errors are derived by comparing predictions for each cell
with the actual earthquake rates in 3 months. The black bars denote standard error calculated with the Jackknife resampling technique

Table 6 Model test results on a cell by cell basis for the selected models
from Fig. 7 and the baselines for the period 1995–2016, including Mean
Average Error (MAE), Root Mean Squared Logarithmic Error (RMSLE)
andMean Poisson loss error metrics together with the respective standard
deviations for the period 1995–2016. The standard errors are calculated
based on the Jackknife resampling method. “R VAL” shows the log

likelihood ratio value calculated using the observed counts where a
negative value indicates that the model does not perform better than the
baseline, and the columns “E[R]”, “VAR[R]” and “P VALUE” are the
expected value, variance and p value calculated using the formulas in
Section 4.3

MAE RMSLE Mean Poisson loss R VAL E[R] VAR[R] P VALUE

RF 5.1E-05 (±4.0E-07) 1.1E-04 (±4.0E-07) 2.48E-02 (±1.4E-03) 110.8 97.5 282.0 3.2E-09

SVM 5.1E-05 (±4.1E-07) 1.1E-04 (±4.1E-07) 2.63E-02 (±1.5E-03) 32.1 38.4 254.0 8.1E-03

Depletion Thickness 6.4E-05 (±4.1E-07) 1.2E-04 (±4.1E-07) 2.76E-02 (±1.5E-03) −44.1 −41.8 13.5 1

Strain Thickness 6.1E-05 (±4.1E-07) 1.1E-04 (±4.1E-07) 2.68E-02 (±1.4E-03) −145.4 −133.4 350.8 1

542 Comput Geosci (2021) 25:529–551



var r Ml;M0jey� �h i

¼ var ∑
B

i¼1
∑
T

j¼a
ey si; t j
� �

log byl si; t j� �
−by0 si; t j

� �� �
−byk�si; t j�þ by0�si; t j�

" #
;

¼ ∑
i; j

θ si; t j
� �

log byl si; t j� �
−by0�si; t j�� �n o2

� 	
;

ð5Þ

where θ(s,t) is the rate parameter used for the simulation
model such thatey sið ; t jÞ ~Pois(θ(si, tj)) andbyl s; tð Þ andby0 s; tð Þ
are the rates predicted by models Ml and M0. For large
effective sample size, r Mlð ;M0jeyÞ is approximately normal
distributed due to the central limit theorem, and we can obtain

a p value as the approximate proportion of simulated log ratios
which are below zero as,

p ¼ 1−Φ
E r Ml;M0jey� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var r Ml;M0jey� �h ir

0BB@
1CCA; ð6Þ

where Φ(.) is the standard normal cumulative distribution
function.

Summarizing, we obtain a test for quality of the k-th
method’s predictions, i.e., for

Fig. 8 Illustrative examples of the aggregated spatiotemporal forecasts
(red) from the SVM model, shown together with the historical data
(dotted blue) for a) Scenario with a steep decline in production after
2018 and b) Business-as-usual scenario. The vertical dotted-dashed line
is on December 31st, 2016, marking the end of the dataset used for
training and testing the models. Forecasts left the vertical line are

rolling-forward with re-training, forecasts right of the line are without
re-training. Seismicity data from January 1995 onwards is used,
whereas the first quarter for which a forecast is available is Q2 1995; c)
Illustrative comparison of differences in forecasted feature values of the
two different reservoir flow simulator scenarios, using a subset of 9 time-
dependent features
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& H0: The model performance is identical, E r Mkð½ ;M0jyÞ�
¼ 0, vs

& H1: Model Mi is performing better than the baseline, E
r Mkð½ ;M0jyÞ� > 0,

with p value computed as above, and effect size
r Mk ; M0jyð Þ.

4.4 Simulation model used in the R-test variant in
section 4.3

The simulationmodel used as a null baseline in the Section 4.3
hypothesis test is assumed bin-wise Poisson with a discrete
Poisson intensity θ(s,t) in the bin with index (s,t). This rate is
estimated by fitting a GAM of the form,

log θ s; tð Þð Þ ¼ f 1 tð Þ þ f 2 sð Þ; ð7Þ
where f1(t) and f2(s) are smoothly varying spline functions.
This model is different from any of the proposed machine
learning models, and so should not unfairly favour any model
class. The spline function is also flexible enough to closely
match the spatial and temporal variations in the observed rate.
Full details of this fitting scheme and smoothness estimation
can be found in [68]. Figure 6 shows how the spatial fit of the
simulation model compares to the observed counts aggregated
over time.

5 Illustrative pipeline results

This section shows some illustrative pipeline results from the
ML pipeline as sketched in Fig. 2 and explained in Sections 2–
4. The general model performance is discussed in Section 5.1
and the forecasts are illustrated in Section 5.2.

5.1 Forecast model performance

Using predictor and seismicity rate target data from January 1,
1995 to December 31, 2016, theML pipeline is deployed with
the aim of forecasting seismicity for the period from January
1, 2017 to December 31, 2024. The experimental setup is
summarized in Table 5. For the forecasting period, reservoir
model data is used from the two production scenarios (Fig. 4).
The performance of the trainedMLmodels is quantified using
the error metrics discussed in Section 4, i.e. the MAE,
RMSLE, Mean Poisson Loss and likelihood ratio (Fig. 7;
Table 6), using the models as discussed in Section 3.4
(Table 3) and the baselines as discussed in Section 3.5. The
respective meta- and hyper-parameters have been obtained
using the procedure that has been explained in Section 3.6.
The performance metrics show that the SVM and RF models

perform better than other models (Fig. 7), and that these
models outperform the baselines (Table 6).

5.2 Qualitative inspection of long-term temporal
forecasts

We proceed with qualitatively inspecting long-term forecasts
– note that the performances reported in Section 5.1 are indic-
ative only of short-term, rolling forecasts, into a future where
there are no major regime shifts (e.g., under stationarity).
Therefore, long-term forecasts are at best only indicative,
without statistical guarantees attached. We also note that RF
is a non-extrapolating model, i.e. this model cannot forecast

Fig. 9 Model forecasts of the number of events per day, averaged per
year, for SVM (2nd column) and two baselines (3rd and 4th columns)
compared to observed event rates (1st column) for scenario with steeply
declining production rates after 2018
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outside the range of calibration for the forecast target. Long-
term forecasts from the RF model are qualitatively unphysical
upon inspection, therefore we show only SVM long-term
forecasts.

The SVM model results are analysed using a field-wide
seismicity rate per 3-months aggregation period and shown
together with historical data or baselines in Fig. 8. We empha-
size that the forecasts are only indicative as the validation
setting encompasses only short-term forecasts; even in the
case of short-term forecasts, empirical confidence bands on
rate predictions are typically in the range of ±70%. This situ-
ation may seem paradoxical – but it should be noted that it
may well be possible that average performance differences (as
presented in Section 5.1) are significant, while individual pre-
dictions remain highly uncertain. In summary, the confidence
bands are very large, and not plotted in the indicative fore-
casts; trends, behaviours, or shapes are not subject to any
statistical confidence and should hence not be relied on. As
we can see in Fig. 8, up to December 2016, both SVM and
observed seismicity show a continued increase in seismicity
rate around 2008, and a decrease following 2012. The SVM
does not capture extremes in the historical data, which is as
expected, due to the typical variation in the underlying point
process mechanism – as the forecasts are rates, and observa-
tions are samples.

Looking to the long-term forecasting period from 2017
onwards, the SVM model forecasts for two production sce-
narios appear visually different: seismicity rate appears to de-
cline in the scenario with strongly decreasing production rates,

whereas a stable or increasing rate may be seen in the ‘busi-
ness-as-usual’ scenario. As discussed above, the two long-
term forecasts come without any correctness guarantees, and
are also not statistically different from each other.

5.3 Forecast model performance

We also inspect SVM model forecasts in their original,
spatiotemporal form (Fig. 9). This is subject to the same
caveats as before. Qualitatively, and visually, one may see
a local difference in seismicity event rates, with the central
northwest region of the field at higher rate than other re-
gions, in line with historical observations (Fig. 9). The
forecasts show a decrease in seismicity, with the highest
relative density remaining in the central-northwest region.
A comparison in spatial trends in seismicity between the
two investigated production scenarios shows a decrease in
seismicity rate over time for the scenario with steeply de-
clining production, whereas this decrease is absent for the
other scenario (Fig. 10).

6 Discussion

The ML forecasts for seismicity rates in the period between
April 1st, 1995 and December 31st, 2016 for the two investi-
gated production scenarios (Fig. 9) demonstrate that the de-
veloped ML pipeline generates results that are significantly
better than the investigated baseline models. Spatial

Fig. 10 Comparison of spatial seismic density, expressed as the daily seismicity rate averaged over 3-months intervals, at 3-months time steps between
2017 and 2025 for the two analysed production scenarios: left: Steep decline in production after 2018; right: Results for ‘business as usual’
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information is also captured, as the models forecast the highest
seismicity in the Central-Northwest area and the lowest seis-
micity in the south and towards the edges of the field, specif-
ically in the southeast corner of the field.

Qualitatively, the future forecasts capture the expected spa-
tial high-density localization of seismicity, as well as the ex-
pected stronger decline in seismicity for the scenario where
production is significantly limited compared to a ‘business as
usual’ scenario (Fig. 10), although the decline was only ob-
served after the introduction of ‘ultimate state’ points,
representing the reservoir pressure long after production is
ceased. The values of these points, as well as the forecasted
dynamic reservoir model properties, are the outcome of sim-
ulation models, and hence carry uncertainties and modelling
assumptions. For the ultimate state points, a limited range of
scenarios has been run to assess these uncertainties, but for the
forecasts up to 2025 these uncertainties are not accounted for.
In the specific case of the Groningen field, the model uncer-
tainties are relatively small as the model is history-matched to
decades of production data and the physical behaviour of this
gas field is relatively well known. However, for more complex
subsurface reservoirs simulation model uncertainties would
need to be incorporated into the ML pipeline. Another limita-
tion of using simulation models for the forecasted dynamic
reservoir properties is that these forecasts are based on histor-
ical data, which is in-sample rather than out-of-sample data.

Additionally, it should be noted that the tuning of model
meta and hyper parameters was focused on short term predic-
tion intervals of 3 months. Short- and long-term predictive
performance are not necessarily equivalent. Even though it
was experimentally shown that the relative ranking of models
stays intact independently of a short- or long-term forecasting
horizon, potentially better model parameters could be obtain-
ed if the optimization would be carried out on a longer fore-
casting horizon than 3 months [42, 43].

Although there is a relative match with observed trends, the
MLmodels do not capture most of the extreme values that are
observed in the measured seismicity dataset in both time and
space. Alternatively, physics-based rules could be derived to
constrain ML model behaviour, but the current ML approach
provides no option for implementing such rules. To address
these limitations, a model for production-induced seismicity
could be envisioned that combines the physical mechanisms
driving seismicity with ML to address the aspects of seismic-
ity forecasting that cannot be modelled with either determin-
istic physics or ML alone, in line with what others have sug-
gested for geoscience-related applications [27, 28, 69].

7 Conclusions

We have developed a Machine Learning (ML) pipeline for
automated tuning of forecasting methods, model selection

and benchmarking, experiment meta-analysis, for rolling
short-term forecasts of seismicity rates in space in the
Groningen gas field (Netherlands), based on production
and reservoir simulator outputs. The framework enables
quantifying which methodology is most performant,
model-agnostic interpretation of forecasts, and testing of
whether a specific data source or variable increases predic-
tive performance or not.

Our results show that seismicity forecasts generated
using auto-tuned, sliding-window Support Vector
Machine (SVM) and Random Forest (RF) models out-
perform the physics-informed baselines in this report.
Other investigated models were not significantly better
than the baselines.

One of the highest performing forecasters from the au-
tomated pipeline (sliding window tuned SVM) was then
used to produce spatiotemporal long-term forecasts of
seismicity in the Groningen gas field, using long-term
reservoir simulator forecasts for two distinctly different
production scenarios. These forecasts are only indicative
as they come without any substantive statistical guaran-
tees (see discussion in Section 5); the SVM model fore-
casts that seismicity rates decrease in the conservative
production scenario and seismicity rates remain constant
or slightly increase in the original ‘business as usual’ pro-
duction. These forecasts are to be handled with caution as
the forecasts between scenarios are not different from
each other, subject to any meaningful statistical
confidence.
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Appendix

Table 7 Predictor feature overview

Predictor feature name Description Data source Model label

Fault density P21 (cumulative fault length per grid cell area) fault
intensity per reservoir grid cell

Fault model from the reservoir
geological model

F_ALL.Density

Fault dip angle Fault dip angle between 0 and 90° F_ALL.Dip.mean
Fault strike angle Fault strike angle between 0 and 360° F_ALL.Dip.Azimuth.mean
Fault offset Vertical reservoir offset along faults (in meters) F_ALL.Reservoir.Offset.mean
Fault reservoir thickness Average reservoir thickness at the location of the

faults
F_ALL.Av.Reservoir.Thickness.Mean

NNW-SSE fault density The density of the orientation subset of faults with a
strike within the rangeN160 ± 45° or N340 ± 45°

F_NS.Density

NNW-SSE fault dip angle Fault dip angle between 0 and 90° for the
orientation subset of N160 ± 45° (or N340 ± 45°)
striking faults

F_NS.Dip.mean

NNW-SSE fault strike
angle

Fault strike angle between 0 and 360° for the
N160 ± 45°/ N340 ± 45° subset of fault strikes.

F_NS.Dip.Azimuth.mean

NNW-SSE fault offset Vertical reservoir offset along faults (in meters), for
the N160 ± 45°/N340 ± 45° striking group of
faults

F_NS.Reservoir.Offset.mean

Reservoir thickness at the
location of NNW-SSE
faults

Average reservoir thickness at the location of the
N160 ± 45°/N340 ± 45° striking faults

F_NS.Av.Reservoir.Thickness.Mean

ENE-WSW fault density The density of the orientation subset of
N070 ± 45°/N250 ± 45° striking faults

F_EW.Density

ENE-WSW fault dip angle Fault dip angle between 0 and 90° for the
orientation subset of N070 ± 45°/N250 ± 45°
striking faults

F_EW.Dip.mean

ENE-WSW fault strike
angle

Fault strike angle between 0 and 360°
(N070 ± 45°/N250 ± 45° striking faults)

F_EW.Dip.Azimuth.mean

ENE-WSW fault offset Vertical reservoir offset along faults (in meters), for
the N070 ± 45°/N250 ± 45° striking group of
faults

F_EW.Reservoir.Offset.mean

Reservoir thickness at the
location of ENE-WSW
faults

Average reservoir thickness at the location of the
N070 ± 45°/N250 ± 45° striking faults

F_EW.Av.Reservoir.Thickness.Mean

Surface gradient Surface gradient (seismic dip map) of the top
reservoir surface as a proxy for fault locations

Seismic attribute SeisDip.val.mean

Mean amplitude Mean seismic amplitude of the reservoir interval as
a proxy for faults and other structural
deformation features

SeisMeanAmp.val.mean

Variance volume attribute Seismic volume attribute is capturing the variance
around the depth of the top reservoir formation,
as a proxy for structural deformation in the
reservoir.

SeisVar.val.mean

Interval velocity Zechstein
formation

Interval velocity (in m/s) for the seismic interval of
the Zechstein formation, as a proxy for lateral
density variations in the Zechstein, caused by the
anhydrite floaters.

SeisVint.val.mean

Zechstein formation
thickness

Thickness (in meters) of the Zechstein formation, as
a proxy for lateral overburden density variations
resulting from the relatively low-density salt.

SeisZechThick.val.mean

Vshale The amount of shale versus sandstone in the
reservoir rock. The shale ratio may affect the
friction behaviour of faults, as shale in the fault
core increases the probability of aseismic versus
seismic slip, and the ratio between shale and sand
is a potential proxy for spatial variations in the
elastic rock properties (Poisson’s ratio).

Reservoir geological model (well
data interpolated using acoustic
impedance)

avg_vsh.val.mean

Gas column height versus
water column height

The ratio between the gas column height and water
column height at each individual location in the
reservoir (prior to production), as a potential
proxy for lateral variations in the fault friction
behaviour.

Reservoir geological model
(interpolated well data)

gc_vs_wc.val.mean
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Appendix 2: Individual Conditional
Expectations (ICE) plots

Variable importance plots provide information on which pre-
dictor features drive model behaviour and the relative impact
of a feature, but they provide no information on how changes
in the predictor features impact the target feature. These ques-
tions can be partially addressed using Individual Conditional
Expectation (ICE) plots that illustrate the average impact of a
variable on model response [70]. ICE plots show the marginal

response of the model with respect to changes in one predictor
feature usually indicated by a thick black line. Additionally,
actual data points (black dots) and the model response condi-
tioned to all other predictor features except the one shown on
the x-axis of the plot assuming the values of the actual data
point are shown in form of thin black lines. How far the model
response deviates from a linear response can be estimated by
howmuch a response curve deviates from a straight line. If the
individual curves are not approximately parallel and show
significantly different behaviour this hints at interaction

Table 7 (continued)

Predictor feature name Description Data source Model label

Gas saturation in the aquifer Gas saturation in the Carboniferous (aquifer), as a
potential proxy for lateral variations in the fault
friction behaviour.

Reservoir geological model
(limited well data, interpolated
using kriging without constraint
to other features).

sg_carb.val.mean

Porosity Mean reservoir porosity (weighted vertical average) Reservoir geological model (well
data interpolated using acoustic
impedance cross-correlation)

statRes.porosity2D.mean

Compressibility Reservoir rock compressibility [MPa−1] for
calculating compaction and strain thickness from
pressure changes.

Inversion from subsidence data. statRes.cm

Reservoir thickness Reservoir thickness in meters, used for calculating
compaction and strain thickness.

Reservoir geological model
interpreted seismic

statRes.thickness2D.mean

Top reservoir depth The depth of the top reservoir surface in meters. statRes.Ztop.mean
Top reservoir surface

gradient
The average gradient at each location calculated

from the gradient in the adjacent cells. Only
considers average absolute gradient without
orientation.

Calculated from top reservoir
surface data.

statRes.topoGrad.mean

Mean overburden stress Overburden stress at the top reservoir level in Pascal
(before production).

3-D Finite Element model
(COMSOL)

Sv.Sv.mean

Absolute reservoir pore
pressure

Average reservoir pressure, based on the vertical
weighted average

Reservoir flow model weighted.mean.P

Change in pore pressure
over time

The first temporal difference of pressure weighted.mean.dPdT

Rate of pore pressure
change over time

The second temporal difference in pressure weighted.mean.d2PdT2

Field-averaged pressure Field-wide average reservoir pressure weighted.mean.P.agg
Field-average pressure

change
Field-wide averaged change in pressure weighted.mean.dP.aggdT

Field-average rate of
pressure change

Field-averaged second derivative of pore pressure weighted.mean.d2P.aggdT2

Produced gas volume Field-wide total volume of produced gas in a period
of time (in m3)

sum.Q.Gas.M3

Average production rate Field-wide average production rate over a time
period (in m3)

sum.dQdT.Gas.M3

Variance in production rate Field-wide variance production rate (m3) variance.dQdT.Gas.M3
Change in production rate The second derivative of field-averaged production sum.d2QdT2.Gas.M3
Variance in production rate

change
The variance of the second derivative of

field-averaged production
variance.d2QdT2.Gas.M3

Compaction Amount of compaction within a time step (i.e.,
incremental compaction) in meters, using
reservoir flow model pressure, reservoir
thickness and compressibility.

Calculated from reservoir flow
model pore pressures using
compressibility and reservoir
thickness features.

mean.C

Change in compaction rate The second temporal difference in compaction mean.d2CdT2
Cumulative compaction Cumulative compaction since the start of

production
mean.cumC

X coordinate Coordinate in meters, using the Rijksdriehoek
coordinate system. Regularly spaced grid.

Calculated from resampled spatial
input grids.

RD_X

Y coordinate Coordinate in meters, using the Rijksdriehoek
coordinate system. Regularly spaced grid.

RD_Y
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effects, which can subsequently be analysed for instance by
creating 2D partial dependence plots. An illustrative example
of an ICE plot can be seen in Fig. 11. An overview of the
meta-parameters which are considered as part of the pipeline
are given in Table 4.

By partitioning the experiments into specific subsets and
applying the meta-analysis pipeline steps mentioned above we
can address a range of questions including:

& How consistent are the effects of the predictor features and
meta-parameters across the different models?

& Can optimal and stable parameter ranges for the signifi-
cant meta-parameters be established?

& What ranges of model meta-parameters lead to better
model performance?

& How sensitive is model performance to the choice of mod-
el meta-parameters?
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