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Abstract
Iterative ensemble smoothers have been widely used for calibrating simulators of various physical systems due to the rel-
atively low computational cost and the parallel nature of the algorithm. However, iterative ensemble smoothers have been
designed for perfect models under the main assumption that the specified physical models and subsequent discretized math-
ematical models have the capability to model the reality accurately. While significant efforts are usually made to ensure the
accuracy of the mathematical model, it is widely known that the physical models are only an approximation of reality. These
approximations commonly introduce some type of model error which is generally unknown and when the models are cali-
brated, the effects of the model errors could be smeared by adjusting the model parameters to match historical observations.
This results in a bias estimated parameters and as a consequence might result in predictions with questionable quality. In this
paper, we formulate a flexible iterative ensemble smoother, which can be used to calibrate imperfect models where model
errors cannot be neglected. We base our method on the ensemble smoother with multiple data assimilation (ES-MDA) as
it is one of the most widely used iterative ensemble smoothing techniques. In the proposed algorithm, the residual (data
mismatch) is split into two parts. One part is used to derive the parameter update and the second part is used to represent the
model error. The proposed method is quite general and relaxes many of the assumptions commonly introduced in the litera-
ture. We observe that the proposed algorithm has the capability to reduce the effect of model bias by capturing the unknown
model errors, thus improving the quality of the estimated parameters and prediction capacity of imperfect physical models.

Keywords Ensemble smoother · Calibration of imperfect model · Model error

1 Introduction

Bayesian inversion is a generic inference framework that
is widely adopted for calibration of mathematical models
while accounting for different types/sources of uncertain-
ties. In the Bayesian framework, the prior model param-
eters belief or probability is updated by integrating the
observed data to obtain the posterior probability. Several
algorithms could be used to generate samples from the pos-
terior distribution of the model parameters. Among those,
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Markov chain Monte Carlo (MCMC) is an exact method
for sampling. However, MCMC can be computationally
expensive due to the large number of iterations (number
of sampling steps) needed to reach convergence and the
sequential nature of the method. Ensemble-based meth-
ods have been gaining popularity in the last two decades
for data assimilation and calibration of simulation mod-
els of various physical systems [5]. The main advan-
tage of ensemble-based methods is the low computational
cost for higher dimensional data assimilation and inverse
problems with some trade-off between the convergence
speed/dimensionality and Gaussian approximation of the
posterior distribution. Ensemble smoother (ES) is one of the
ensemble-based techniques similar to the ensemble Kalman
filter [6]. ES updates the model parameters by simultane-
ous assimilation of all available data. However, ES fails
to solve highly non-linear inverse problems. A number of
iterative ensemble-based methods have been proposed for
parameter estimation of non-linear mathematical models.
The ensemble smoother with multiple data assimilation
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(ES-MDA) [5], Levenberg-Marquardt ensemble random-
ized maximum likelihood method (LM-EnRML) [3] and
iterative ensemble smoother (IES) [18, 27] are some of these
techniques. In ensemble-based methods, the prior ensemble
members of the model parameters are computed from the
initial statistical distribution of the unknown model param-
eters and the objective is to find an approximate posterior
distribution (i.e., posterior ensemble) of the model param-
eters conditioned to observation data. After calibration, the
posterior ensemble of the model parameters is used for mak-
ing predictions. Ensemble-based methods are designed with
the assumption that utilized mathematical model provides
a complete representation of real physical systems and that
the model errors are small enough that it could be neglected
during the calibration process. This assumption might intro-
duce bias in the estimated parameter distribution [1, 26] and
as a consequence results in bad quality predictions using the
calibrated models.

A large number of studies have been conducted to
explore the possible ways to account for the model error
during the calibration process. In a Bayesian inversion
context, three broad lines of research have emerged in
the published literature. In the first line of research, the
prior model error statistics were computed using pairs of
high-fidelity and low-fidelity models. These error statistics
were utilized during the calibration by using different types
of algorithmic frameworks [10, 16, 17, 20, 22]. These
frameworks vary according to the behavior of different
physical systems and could perform poorly in high-
dimensional problems with variable boundary conditions
and when the distributions of the model error statistics are
complex or multi-modal. The problem of complex statistics
of model error was addressed by Köpke et al. [13] and
Köpke et al. [14], where the authors accounted for the
model error component using orthonormal basis generated
from the difference between pairs of high-fidelity and low-
fidelity models. These bases were evaluated locally at each
update iteration as well as the model pairs (high and low
fidelity) were re-run during the calibration process. More
recently, an input/output independent formulation of model
error was introduced to handle high-dimensional parameter
estimation problems as well as handling problems with
time-varying boundary conditions [23, 24]. However, this
line of research relies on the availability of high-fidelity
models such that we could learn the statistical properties
of the model errors by evaluating both the high- and low-
fidelity models at the same set of model parameters. This
assumption might not be valid for a wide range of applied
problems where we only have access to one model.

The second line of research for addressing model
error/bias during calibration is related to joint calibration
of physical models with a second model that is assumed
to represent the model error. Different parameterization

for the model bias/error have been proposed, for example
Gaussian process regression [12] or autoregressive error
models [8, 9]. However, without any prior knowledge of
the error model (unknown model error), the joint calibration
may be prone to break the physical constraints of the
systems and as a consequence might fail to improve the
predictive capacity of the calibrated physical model [25].
Evin et al. [7] compared the joint calibration approach to
a post-processing approach of accounting for the model
error and concluded that the joint calibration approach
was found to be less robust. This leads us to the third
line of research, where model error is generally estimated
from the residual (data mismatch obtained from difference
between reality and simulation models). For example,
Evin et al. [7] estimated the model error by using
normalized residuals and autoregressive model with linear
heteroscedasticity. However, this formulation has limitation
in the scenarios where model error exhibits strong structural
features and non-linear heteroscedasticity. Along the same
line, Sargsyan et al. [25] utilized approximate Bayesian
computation (ABC) to capture the model error uncertainty
using residuals. However, the use of ABC in ensemble-
based methods is not clearly understood. Recently, Oliver
and Alfonzo [21] estimated the correlated structure of
an approximate model error by computing a covariance
matrix of the total residual obtained after one-round of
calibration. This covariance matrix was utilized to estimate
the model error statistics and then a re-calibration step is
introduced in order to compensate the model error effects
until a termination criterion is satisfied. This approach while
novel requires multiple re-calibration iterations and has the
limitation to handle non-Gaussian behavior of residuals.
Furthermore, if the imperfect model is flexible enough, the
total residual might vanish after one calibration step and
then the model error/bias will be underestimated.

In this paper, a flexible iterative ensemble smoother
is introduced to calibrate both perfect and imperfect
models. The algorithm is simple to implement and has
negligible computational overhead over the standard ES-
MDA algorithm. ES-MDA is reformulated by splitting
of data-residual (mismatch between model output and
observation) into two parts by estimating a split parameter
(scalar value) during the calibration process. The first part
of the residual is used to update the model parameters
and the second part is assumed to represent the model
error. The objective of the proposed algorithm is to reduce
the model bias by capturing the unknown model error
uncertainty during the calibration of imperfect models in
order to improve the prediction capability of the calibrated
physical model. Furthermore, the proposed algorithm could
be used as a diagnostic tool to check the reliability of the
physical models and the need for a model refinement step.
In this work, three test cases have been used to observe
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the performance of the proposed algorithm. These test
cases are related to the calibration of polynomial functions,
simple machine and an imperfect reservoir model. In the
first test case, cubic function is considered as the perfect
model and imperfect models are represented by quadratic
and linear functions. The second test case is related to
estimation of efficiency of the simple machine model which
lacks physics in terms of friction component. The third
test case is related to calibration of imperfect reservoir
model, which has blurred channelized geological patterns.
The imperfect reservoir model has two sources of modeling
errors, i.e., simplified geological representation and up-
scaling errors.

The outline of this paper is as follows. In Section 2
the formulation of flexible iterative ensemble smoother
is described. Following that, three test cases related to
calibration of polynomial functions, simple machine model
and imperfect reservoir model are described with results
in Section 3. Section 4 is related to the conclusions of the
paper.

2 Formulation of flexible iterative ensemble
smoother

Standard data assimilation and parameter estimation proce-
dure often rely on an implicit assumption that the model
errors are generally small and could be neglected (i.e., the
mathematical model is perfect). Mathematically, if a perfect
model is utilized, the observed data is formulated as,

dobs = g(mtrue) + εd , (1)

where g(.) is a function representing the perfect model,
mtrue is the true model parameters, εd is the measurement
errors which is usually assumed to follow a normal
distribution N (0,CD) and CD is the covariance matrix of
the measurement errors.

Generally, physical models are treated as if they are
perfect during the calibration process and subsequently
parameter mismatch/errors are assumed as the main source
of the observation/data mismatch. However, it is widely
known that physical models are imperfect and are only
an approximation of reality in terms of description,
scale, assumption or complexity. These approximations
commonly introduce model errors that are often neglected
during calibration. The mismatch between historical data
(i.e., the true system response) g(mtrue) and simulated data
from an imperfect model g̃(m) is a result of both parameter
error and model error. Mathematically, if an imperfect
model is utilized, the observed data could be formulated as,

dobs = g̃(mtrue) + εd + εm, (2)

where εm is the model error and g̃(.) is a function
representing the imperfect mathematical model. Failing
to account for the model error effects during the model
calibration process can result in significant bias in the
calibrated model parameters and consequently might result
in inaccurate predictions. Generally, the magnitude of
the model error is unknown before calibration and data
assimilation (i.e., we do not know the extent of the
imperfection of the mathematical model). In this section,
an iterative ensemble smoother is formulated with an
approximate method to quantify the model errors during
the calibration process in order to reduce and in some
cases eliminate any bias in the estimated model parameters.
Furthermore, we aim to develop an iterative ensemble
smoother that is flexible enough to match the observed data
to the level of measurement noise in the case of utilizing
a perfect mathematical model for inversion. In order to
achieve this objective, we first present the standard ES-
MDA, followed by the proposed flexible formulation that
could handle the cases where the model errors cannot be
neglected. In standard settings, ES-MDA update equation
can be written as [5],

�M = CMD (CDD + α CD)−1(Duc − D), (3)

where M = [m1,m2,m3, . . . ,mNe ] ∈ R
Nm×Ne is an

ensemble of model parameters of sizeNe,mr is a realization
r of the model parameters of size Nm, D ∈ R

Nd×Ne is
an ensemble of model outputs of size Nd generated by a
perfect model denoted by an operator g (i.e., D = g(M)),
Duc ∈ R

Nd×Ne is the ensemble of perturbed observations
(dobs ∈ R

Nd×1), α is the noise inflation parameter and CD

is the covariance matrix of the measurement error/noise.
The covariances CMD and CDD , representing approximate
sensitiveness of the model response to changes in the model
parameters, are defined using the following equations:

CMD = 1

Ne − 1
(M − Mmean

−→
1Ne)(D − Dmean

−→
1Ne)

ᵀ
, (4)

CDD = 1

Ne − 1
(D − Dmean

−→
1Ne)(D − Dmean

−→
1Ne)

ᵀ
. (5)

where Mmean ∈ R
Nm×1 is the ensemble mean of

model parameters, Dmean is the ensemble mean of model

outputs and
−→
1Ne ∈ R

1×Ne is a row vector of ones. In
ES-MDA, non-linear inverse problem is solved iteratively
with an inflated noise covariance matrix and the inflation
factor α is normally set to the total number of data
assimilations/iterations Na .

For the proposed Flexible ES-MDA, the output of the
imperfect model is related to the perfect model output using
the following equation:

D = ˜D + E, (6)
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where ˜D is an ensemble of model output generated from the
imperfect model denoted by the operator g̃ using˜D = g̃(M)

and E is an ensemble of the model error. Similarly, the mean
of the previous equation over the ensemble outputs resulted
the following equation:

Dmean = ˜Dmean + Emean. (7)

For the approximate sensitivities, substituting Eqs. 6
and 7 into Eqs. 4 and 5 resulted in the following modified
covariances:

CMD = CM ˜D + CME, (8)

CDD = C
˜D˜D + C

˜DE + CE ˜D + CEE . (9)

where,

CM ˜D = 1

Ne − 1
(M − Mmean

−→
1Ne)(

˜D − ˜Dmean
−→
1Ne)

ᵀ
(10)

CME = 1

Ne − 1
(M − Mmean

−→
1Ne)(E − Emean

−→
1Ne)

ᵀ
(11)

C
˜D˜D = 1

Ne − 1
(˜D − ˜Dmean

−→
1Ne)(

˜D − ˜Dmean
−→
1Ne)

ᵀ
(12)

C
˜DE = 1

Ne − 1
(˜D − ˜Dmean

−→
1Ne)(E − Emean

−→
1Ne)

ᵀ
(13)

CE ˜D = 1

Ne − 1
(E − Emean

−→
1Ne)(

˜D − ˜Dmean
−→
1Ne)

ᵀ
(14)

CEE = 1

Ne − 1
(E − Emean

−→
1Ne)(E − Emean

−→
1Ne)

ᵀ
(15)

Using these sensitivities and substitution of Eqs. 6, 8
and 9 into Eq. 3, the Flexible ES-MDA update equation
while accounting for the model error can be written as:

�M = (CM ˜D+CME) (C
˜D˜D+C

˜DE+CE ˜D+CEE+α CD)−1(Duc−˜D−E).

(16)

In general, the ensemble of modeling errors E is
unknown. However, the residual of data mismatch includes
the model error effects and we postulate that this data-
residual could be split between a parameter update
component and a modeling error component. In this study,
we approximate the ensemble of model errors ˜E using
a fraction (percentage) of the data-residual ensemble as
shown in the following equation:

˜E = spR, (17)

where R = dobs
−→
1Ne − ˜D ∈ R

Nd×Ne is the ensemble
of residuals obtained from the differences between the
observation and the ensemble of imperfect model outputs
and sp is a scaler split parameter. The prior (initial) split
parameter is computed based on the ratio of the Euclidean
norm of mean residual (mean deviation from observed
data) and Euclidean norm of maximum residual (maximum

absolute deviation from observed data).

sp
(1) = ‖σm‖

‖σmax‖ , (18)

where σm = mean(R) ∈ R
Nd×1 is the mean residual (mean

deviation from observed data) and σmax = max(abs(R)) ∈
R

Nd×1 is the maximum residual (maximum absolute
deviation from observed data). During calibration (data
assimilation) this split parameter is updated based on the
ratio of the Euclidean norm of mean residuals obtained in
current iteration i and previous iteration i − 1.

sp
(i) = ‖σm

(i)‖
‖σm

(i−1)‖ . (19)

The statistical interpretation of the split parameter
(Eqs. 18, 19) can be attributed to the correspondence of the
mean residual to the model error/bias. Equation 18 is used
to normalize the initial mean residual in the range of [0, 1]
and Eq. 19 is used to represent the change in the mean
residual during the calibration/data assimilation process. We
note that if model response/output consists of multiple time
series, the split parameter should be calculated individually
for each time series.

Following the introduction of the ensemble of approx-
imate model errors as defined in Eq. 17, we can rewrite
Eq. 16 as the following:

�M = (CM ˜D+CM ˜E) (C
˜D˜D+C

˜D˜E+C
˜E ˜D+C

˜E˜E+α CD)−1(Duc−˜D−˜E).

(20)

We note that the proposed algorithm introduces an
assumption about the model error form as defined in Eq. 17.
This form is based on several numerical observations and
is validated by extensive numerical testing. However, there
is no guarantee that this form is optimal for all imperfect
models. For those case where Eq. 17 fails to approximate
the true model errors, utilizing the full update equation
(Eq. 20) might result in invalid updates (and subsequently
divergence) because of the corrupted sensitivity (cross-
covariance) terms (i.e., CM ˜E , CD˜E and C

˜ED). Therefore,
we adopted a relatively robust approach by retaining only
the model error components with regularization effects
(C

˜E˜E). This results in a flexible ES-MDA formulation
that is able to fit high-quality models with negligible
model errors (a.k.a. perfect models) as well as suitable for
calibration of imperfect models where model errors cannot
be neglected.

Therefore, Eq. 20 can be simplified to the following
form:

�M = CM ˜D (C
˜D˜D +C

˜E˜E +α CD)−1(Duc −˜D−˜E). (21)

Equation 21 represents the final update form for flexible
iterative ensemble smoother. We also note that after
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Algorithm 1 Flexible ensemble-based algorithm for perfect and imperfect models.

1: Choose Na � number of data assimilation/iterations
2: i ← 1
3: α = Na

4: while i <= Na do
5: Duc = dobs

−→
1Ne + √

α C1/2
D Zd , � Observation perturbations, Zd = [zd1 zd2 zd3 ...... zdNe ] ∈ R

Nd×Ne ,
zd ∼ N (0, INd

) ∈ R
Nd×1,

6: ˜D = g̃(M) � Generate ensemble of model outputs ˜D ∈ R
Nd×Ne from ensemble M

7: R = dobs
−→
1Ne − ˜D

8: ˜E = sp
(i)R � Compute ensemble of approximate model error, ˜E ∈ R

Nd×Ne

9: M ← M + CM ˜D (C
˜D˜D + C

˜E˜E + α CD)−1(Duc − ˜D − ˜E) � Update ensembleM
10: i ← i + 1
11: end while
12: Mpost = M � Mpost ∈ R

Nm×Ne is the posterior ensemble of model parameters
13: ˜Dpost = g̃(Mpost ) � Generate posterior ensemble of model predictions, ˜Dpost

data assimilation, the magnitude of ˜E and C
˜E˜E could

be used an indicator for the model accuracy. Higher
magnitude refers to high model-inadequacy in terms of
limited physics, reservoir geology, grid coarsening/up-
scaling, parameterization or prior realizations descriptions.
Ideally, after data assimilation for the perfect model cases,
˜E and C

˜E˜E would approach zero (i.e., D = ˜D). The details
of the Flexible ES-MDA are shown in Algorithm 1. We note
that, if the model response/output consists of multiple time
series with different range of values, the rescaling and SVD
thresholding of the inverse matrix (C

˜D˜D +C
˜E˜E +α CD)−1

should be done in the same way as shown in the paper [4].

3 Test cases

In this work, three test cases have been used to observe
the performance of the proposed algorithm. These test
cases are related to the calibration of polynomial func-
tions, simple machine and imperfect reservoir model. For
comparison purpose, calibration is performed using both
the standard ES-MDA [5] and the proposed Flexible ES-
MDA algorithm. An ensemble of 100 members is used
with 8 number of iterations for the calibration of all test
cases. In the first test case, cubic polynomial function
is considered as perfect model and imperfect models are
represented by quadratic and linear functions. The objec-
tive is to test the performance of the proposed algorithm
for calibration of perfect and imperfect models. The sec-
ond test case is related to the estimation of efficiency of
the simple machine model which lacks physics in terms
of friction component and used [1] as a test case for a
joint calibration framework with the model error param-
eterized by Gaussian process regression. In this work,
the objective is to test the calibration and prediction

improvement of simple machine model using the pro-
posed algorithm without joint calibration. The third test
case is related to calibration of imperfect reservoir model,
which has blurred channelized geological patterns. The
imperfect reservoir model has two sources of modeling
errors, simplified geological representation and up-scaling
errors.

3.1 Test case 1: the polynomial functions

In this test case, the data is generated from a cubic
polynomial functions and perturbed with an additive
measurement noise εd ∼ N (0,CD) using Eq. 22. The
complexity of the calibrated models vary from a first
order polynomial to a third order polynomials as shown in
Eqs. 23, 24 and 25. The objective is to test the performance
of the proposed algorithm on both scenarios where the
calibrated model complexity matches the data generating
process (i.e., perfect model) and when the calibrated model
is less parameterized than the data generating process
(i.e., imperfect models). The domain of x lies within the
interval [−1, 1]. We calibrate three models (cubic, quadratic
and linear models) to obtain the posterior distributions of
each model parameters vector λ and the corresponding
models outputs. The objective is to evaluate the flexibility
of the proposed algorithm in quantifying the model error
uncertainty for imperfect models as well as the ability to
match the data for the perfect model case. Prior parameters
are sampled from a standard normal distribution with zero
mean (μ = 0) and standard deviation σ = 10.

dobs = 2 + 2x + 3x2 − 5x3 + εd, (22)

f1(x) = λ0 + λ1x, (23)
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f2(x) = λ0 + λ1x + λ2x
2, (24)

f3(x) = λ0 + λ1x + λ2x
2 + λ3x

3. (25)

The calibration of polynomial functions are performed
using two levels of measurement noise. In the first level,
negligible measurement error (i.e., order of magnitude

10−12) is considered. Figure 1 shows the posterior
distribution of cubic, quadratic and linear models outputs
obtained by ES-MDA and Flexible ES-MDA algorithms.
We observe that both algorithms manage to match the
observations for cubic model (perfect model case), without
any bias as shown in Fig. 1a and b. This shows that the
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(f) Linear model

Fig. 1 Posterior distribution of models (cubic, quadratic and linear) outputs for test case 1 (negligible measurement error). Blue lines show p50
percentiles, gray shaded areas show 99% confidence intervals and solid black dots show observation data
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proposed algorithm did not introduce any bias and has the
flexibility to match the data for the perfect model case with
negligible measurement errors. The posterior distributions
of cubic model output (Fig. 1a and b) are appeared as the
point estimate (i.e., exact data match) due to the effect
of negligible measurement error (i.e., order of magnitude
10−12).

Figure 1c and d show the posterior distribution of the
quadratic model output. It is clear that the standard ES-
MDA fails to match the data, while the calibrated model
using the Flexible ES-MDA results in model outputs that
account for model error uncertainty and provides a good
coverage for the observations as shown in Fig. 1d. Similar
results are observed for the linear model case in Fig. 1e
and f, where a better coverage is obtained by the proposed
Flexible ES-MDA. However, we note that the coverage is
not as good for the quadratic model case. This shows that the
capacity as well as the limitation of the proposed algorithm
in accounting for the modeling errors during the calibration.

For further validation of the proposed algorithm, we
compare the best split factor (computed using the true
model error ensemble Eactual) with the approximated split
factor sp estimated using the formulation proposed in this
manuscript. The best split is computed by minimizing the
Frobenius norm of the difference between true model error
ensemble and the residual ensemble, i.e., min ‖Eactual −
spR‖. This simple minimization problem is solved using
differential evolution algorithm [28].

Figure 2 shows both the best split factor sp when the true
model error is known and the approximated split versus the
number of ES-MDA iterations. At iteration 0 (i.e., prior),
both the best and proposed split factors show very low
values, because the prior residual is relatively larger than the

model error. For subsequent iterations, the split parameter
is increasing with respect to the iteration number, which
is attributed to the convergence of the proposed flexible
algorithm to the level of model error uncertainty. At iteration
2, the proposed split is very close to best split value for
both linear and quadratic imperfect models, which show the
robustness of the proposed equation in approximating the
split factor. After iteration 2, the proposed split parameter
approached 1, which show that all the data mismatch
(residual ensemble) is treated as a model error ensemble
and further reduction of uncertainty is not possible due
to the limited capacity of both the linear and quadratic
models in matching the data. These results demonstrate the
ability of the proposed algorithm in capturing the unknown
model error uncertainties during the calibration of imperfect
models.

Using the same problem setup, we add a measurement
error of 5% of true function value (Eq. 22). The objective
of this experiment is to evaluate the proposed algorithm
when measurement errors are present while calibrating
perfect and imperfect models. Figure 3 shows the posterior
outputs of the calibrated cubic, quadratic and linear models.
For the cubic models case, both the standard ES-MDA
and the Flexible ES-MDA algorithms managed to match
the structural feature of the data as shown in Fig. 3a
and b. However, the proposed Flexible ES-MDA algorithm
performs significantly better in terms of capturing the noisy
features of the data (Fig. 3b). This effect shows that the
split formulation of proposed algorithm act as a adaptive
regularizer for the perfect model scenario. Similar results
(w.r.t negligible measurement noise case) are observed for
both the quadratic and the linear models in the presence
of both measurement and model errors (Fig. 3c, d, e
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(a) Calibration of linear model
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(b) Calibration of quadratic model

Fig. 2 Comparison between splits obtained from actual model error and proposed algorithm during calibration
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Fig. 3 Posterior distribution of models (cubic, quadratic and linear) outputs for test case 1 (with measurement error of 5%). The descriptions of
lines and colors are same as in Fig. 1

and f), where the results from the Flexible ES-MDA are
clearly better than the standard ES-MDA in quantifying the
unknown model error uncertainty along in the presence of
measurement errors.

Figure 4 shows the posterior distribution of parameters
for the case of 5% measurements errors. In this figure, blue
and magenta colors show the posterior distribution obtained
from ES-MDA and Flexible ES-MDA, respectively.
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Fig. 4 Posterior distribution of models (cubic, quadratic and linear)
parameters for test case 1 (with measurement error of 5%). Red dashed
lines with small circles on ends show the reference model parameters,
which are used to generate observations. In figure legends, subscripts

“e” and “f” show the calibration using ES-MDA and Flexible ES-MDA
respectively. Blue and magenta show the y-axes correspond to PDF
values of posterior distribution obtained using ES-MDA and Flexible
ES-MDA respectively

ES-MDA results in a biased posterior distribution of the
model parameters as shown in Fig. 4a, b and c except for the
perfect model case and constant coefficient of the quadratic
model. Flexible ES-MDA reduces model bias in parame-
ter estimation of linear and quadratic models by capturing
the model error effects and covers the reference solution as
shown in Fig. 4a, b and c except for coefficient of x, (i.e., λ1)
of the quadratic model.

We use the prediction interval coverage probability
(PICP) of posterior distributions as one of the calibration
metric. PICP is estimated by counting the number of
observations in the confidence intervals (10% to 99%) of
the posterior distribution normalized by the total number
of observations [29]. PICP is a very useful metric for
quantifying both under-estimation and/or over-estimation of
uncertainties in the obtained posterior distributions [29].
The mathematical description of PICP is shown in
Appendix 1. PICP values close to 45◦ line (dashed red line
in Fig. 5) indicates a perfect posterior distribution. Figure 5
shows the PICP of the prior and posterior distribution of
the linear, quadratic and cubic models outputs. We observe

that the posterior distribution of cubic (perfect) model
output obtained by the standard ES-MDA underestimates
the uncertainty. However, the proposed Flexible ES-MDA
shows more robust uncertainty quantification as shown in
Fig. 5a. This effect is due to the efficient coverage of
the noisy features of the observation data by the proposed
algorithm (Fig. 3b). PICP of posterior distribution obtained
from ES-MDA for the imperfect linear and quadratic models
show severe under-estimation of uncertainties (Fig. 5b
and c) as the model error uncertainties are missing in the
formulation. Further, we observe a more robust PICP values
obtained from the proposed algorithm for calibrating the
imperfect linear and quadratic models as shown in Fig. 5b
and c.

Mean continuous ranked probability score (CRPS) is
one of the most useful calibration and prediction metrics
to evaluate the precision and accuracy of the posterior
ensemble. Less accurate or poor quality results are indicated
by the higher values of CRPS. The complete detail of
CRPS for ensemble prediction system can be found in [11].
The mathematical descriptions of mean CRPS along with
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Fig. 5 Prior and posterior PICP of linear, quadratic and cubic models (with measurement error of 5%)
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Mean square error (MSE) are presented in Appendix 1.
Figure 6 shows the comparison of mean CRPS and MSE of
the posterior ensemble of models outputs obtained by the
ES-MDA and the proposed algorithm. Calibration results
from the proposed algorithm show lower CRPS values for
linear, quadratic and cubic models (Fig. 6a), which indicates
more reliable results in terms of precision and accuracy. In
Fig. 6b, MSE shows more wide distribution of posterior
ensemble due to the coverage of unknown model error
uncertainty using Flexible ES-MDA; however, lower values
of MSE is also observed using the proposed algorithm due
to significant reduction in model bias.

3.2 Test case 2: the simple machine

In this test case, the simple machine model is calibrated with
the observation data obtained from the unknown complex
machine. The main objective is to test the flexibility of
proposed algorithm for the cases, where the model lacks
some physics. The imperfect model for simple machine is
shown in Eq. 26.

y = θx, (26)

where y is the work obtained from machine, x is the
effort on machine and θ is the efficiency of machine. True
complex machine T (x) includes the friction effect, which
is unknown. The observed data dobs is generated using the
function of true complex machine using:

T (x) = θx

1 + x/a
, (27)

dobs = T (x) + εd, (28)

where a = 20 and εd is the measurement error, which
is taken as 5% of true function. In this test case, the task
is to estimate the efficiency of the machine θ and the
corresponding output of the calibrated model. The prior
distribution for the model parameters is assumed to follow a
standard normal distribution, i.e., mean μ = 0 and standard
deviation σ = 1. The domain of effort variable x lies
within the interval [0, 6]. Total number of points are 61,
i.e., x contains values from 0 to 6 with the difference of 0.1
between two consecutive points, where 40% are used for
calibration/parameter estimation purpose and 60% are used
for predictions.

In this test case, an ensemble of 100 members is used
with 8 number of iterations for the calibration of simple
machine model. Figure 7 shows the posterior distribution
of efficiency (parameter) of the machine and model output
obtained by ES-MDA and Flexible ES-MDA algorithms.
Both algorithms match the historical/training data; however,
predictions obtained from the calibrated model using ES-
MDA are overconfident, inaccurate and generally unreliable
(Fig. 7a). This is due to the biased posterior distribution
of efficiency (parameter) of machine as shown in Fig. 7d.
This bias in the estimated efficiency parameter of the
machine is reduced significantly and posterior distribution
covers the true efficiency of the machine using proposed
Flexible ES-MDA (Fig. 7d). Due to this effect more reliable
predictions are obtained from the calibrated simple machine
model using the proposed Flexible ES-MDA algorithm
(Fig. 7b).

Figure 8 shows the PICP of training data and predictions.
The proposed algorithm shows more robust uncertainty
quantification of training data as shown in Fig. 8a. The
prediction PICP is also improved by the Flexible ES-MDA
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Fig. 6 Mean CRPS and MSE of posterior ensemble for test case 1 (with measurement error of 5%). In part (b), “L,” “Q” and “C” show MSE from
linear, quadratic and cubic models respectively. Subscripts “e” and “f” show the calibration using ES-MDA and Flexible ES-MDA respectively
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Fig. 8 Posterior PICP of training/historical data and prediction from simple machine
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(Fig. 8b), which shows the increase in predictions reliability
from calibrated imperfect models (which lacks some
physics). Similar results are observed in terms of mean
CRPS and MSE metrics for both historical/training and
prediction data as shown in Fig. 9.

3.3 Test case 3: the imperfect reservoir model

This test case is related to the calibration of imperfect model
of subsurface oil reservoir with channelized geological
patterns of log-permeability field. The subsurface reservoir
has dimensions of 7500 ft × 7500 ft × 20 ft in the x, y
and z directions, respectively. The reservoir contains oil and
water phases with in-compressible flow in porous media.
The reservoir has uniform porosity of 20% and the initial
reservoir pressure is 5000 psi. Figure 10 shows the true
model, which consists of 75 × 75 grid blocks, along with
different wells open/shut schedule (Fig. 10b) and controls
(Fig. 10c). The true model is used to generate the observed
data and the observations are perturbed by an additive
measurement noise, which is taken as 5% of true model
response. The reservoir contains one injector well (I1) and
three production wells (P1, P2, P3). The production wells
are operated under constant bottom hole pressure constraint
of 4500 psi and the injector well is operated with time-
varying constraint of constant injection rate as shown in
Fig. 10c. The relative permeability is represented by Corey’s
power law model, which is described along with parameter
values and fluid properties in Appendix 2. The capillary
pressure and gravitational effects are neglected.

The reservoir is simulated using a 2-D grid with the
MATLAB Reservoir Simulation Toolbox (MRST) [15].
Well P3 is used in the prediction period in order to assess

the prediction capabilities of the calibrated reservoir model
for future/new wells. The reference and prior fine scale
channelized log-permeability fields are generated using a
two facies training image as an input to a direct sampling
version of MPS algorithm [19]. The calibrated reservoir
model is an up-scaled version of true model with a size
of 15 × 15 grid block with no parameterization of the
geological features (parameters corresponds to grid block
values). The up-scaled model (a.k.a. imperfect reservoir
model) contains two sources of modeling errors, simplified
geological representation and up-scaling errors. Figure 10a
shows the log-permeability field of true model with the
channelized features and Fig. 11a shows the corresponding
up-scaled log-permeability field where the channelized
features are blurred due to harmonic up-scaling of the
grid properties. Except for permeability, all other inputs
to the reservoir simulator take the same value for both
the reference fine model and the up-scaled models used
in history matching, for example relative permeability and
porosity.

In this test case, an ensemble of 100 members (i.e., one
hundred realizations of log-permeability field) is used with
8 number of iterations for the calibration of imperfect
reservoir model. Figure 11 shows the mean of the posterior
distribution of the log-permeability field obtained by
standard ES-MDA and the proposed Flexible ES-MDA
algorithms. For the standard ES-MDA, we observe over-
shooting (red and blue values) in the mean log-permeability
field at a large number of grid blocks. In this case, ES-MDA
aggressively tried to adjust the model parameters to match
the observation while neglecting the model errors. For
the Flexible ES-MDA, we obtained relatively smooth log-
permeability fields as shown in Fig. 11c, as the algorithm
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Fig. 10 The true reservoir model (use to generate observations). Part
a shows the fine scale (75× 75) reference log-permeability with chan-
nelized features. Part b shows wells open/shut schedule. In part b solid

back lines indicate the time periods when a well is open to flow. Part
c shows water injection rate of injector well I1. Vertical dashed black
lines show the end of the historical period in part (b) and (c)

only updates the model parameters using a percentage of
the data mismatch defined by the split parameter sp to
account for unknown model error effects. Figure 12 shows
the standard deviation of log-permeability field obtained
using both the standard ES-MDA and the proposed Flexible
ES-MDA algorithms. We observe relatively high values
of standard deviation from Flexible ES-MDA (Fig. 12b)
as compared to ES-MDA (Fig. 12a), due to the effect of
additional uncertainty of unknown model error.

Figure 13 shows the prior and posterior distribution of oil
rates from the production wells. ES-MDA performs well in
terms of matching the observations as shown in Fig. 13a;
however, poor-quality predictions are observed for wells P2
and P3. For well P1, the predictions start to deviate after 4.2
years. These overconfident and inaccurate predictions are
due to the over-shooting of log-permeability values around

production wells (Fig. 11b). This is a common problem in
the petroleum industry, where the historical data is usually
matched and often the calibrated models suffers from severe
predictability problem [2]. One of the primary reasons of
this problem is failing to account for model error effects
during the history matching/calibration process as evident
in these results. In contrast, the proposed Flexible ES-MDA
algorithm performs relatively better in terms of predictions
quality for production wells P1, P2 and P3 as shown in
Fig. 13b. This could be easily attributed to the smooth mean
log-permeability fields of posterior ensemble as shown in
Fig. 11c.

Similar results are observed in Fig. 14 for the water
rates of production wells and injector well I1. However,
we observe that the historical data for well I1 is not
fully covered by the posterior distribution obtained by
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Fig. 11 Reference log-permeability field of the imperfect reservoir
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ES-MDA calibration. Part c shows the posterior mean obtained from
the proposed Flexible ES-MDA
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the Flexible ES-MDA as shown in the bottom row of
Fig. 14b. This is due to the bad prior distribution (shown
by brown lines) of the injection pressure for well I1.
We note that this low quality prior is a consequence
of modeling errors effect (up-scaling) and this can be
avoided by using model/grid refinement around wells that
are difficult to match. Figure 15 shows the PICP of
parameter estimation, historical data and predictions. The
Flexible ES-MDA shows very robust uncertainty estimates
for the model parameters (log-permeability field) as the
PICP values lie close to the reference line as shown
in Fig. 15a. Additionally, the proposed algorithm shows
improved uncertainty estimate of historical production data
as shown in Fig. 15b, despite failing to match the historical
data for well I1. The prediction PICP is also improved by
the Flexible ES-MDA (Fig. 15c), which shows an increase
in predictions reliability from calibrated imperfect reservoir
models.

Figure 16 shows the mean CRPS and MSE metrics
for both historical and prediction data. We observe that
mean CRPS and MSE of the historical data show lower
values for ES-MDA due to relatively better matching and
higher values for Flexible ES-MDA due to the uncovered
historical data of well I1. However, the Flexible ES-MDA
shows significant improvement for mean CRPS and MSE
of prediction data. The good matching using ES-MDA
can mislead us to overconfident and inaccurate predictions
in case of imperfect models and this over-confidence in
inaccurate predictions could be avoided using the proposed
Flexible ES-MDA.

In cases where model refinement/correction is not
feasible, we propose a variant of the Flexible algorithm
where the maximum split factor sp is bounded by the
coverage probability of the 99.99% confidence interval.

This results in an adaptive algorithm where the split
parameter is adaptively adjusted for each time series using
the following simple equation,

If: sp > CP : then sp = CP, (29)

where CP is the coverage probability of the 99.99%
confidence interval. The only additional modification is
the computation of the CP parameter for each time series
at every iteration of Flexible ES-MDA algorithm. The
mathematical description ofCP is presented in Appendix 1.
The idea behind the comparison of split parameter with
coverage probability that both have same range from [0, 1],
and in the case of a time series showing bad prior (failed
to cover the data, i.e., CP = 0) then the Flexible ES-MDA
performs like standard ES-MDA for this output time series
during the initial few iterations of the ES-MDA. During later
iterations it is expected that the CP becomes non-zero and
the split parameter would be adjusted according to the value
of CP .

Figure 17 shows the posterior results of log-permeability
field using the proposed Flexible ES-MDA with adaptive
adjustment of the split parameter with respect to coverage
probability. We note that the quality of the mean log-
permeability field is slightly decreased (Fig. 17a) as
compared to earlier results shown in Fig. 11c without
any adaptive adjustment of the split parameter. Figure 18
shows the calibration and prediction results of well outputs
obtained from Flexible ES-MDA with adaptive adjustment
of the split parameter. In this figure, we only present the
results that are affected by the adaptive adjustment of the
split parameter. We observe a better data match of the
historical data for well I1 (Fig. 18) due to the adaptive
adjustment of the split parameter in Flexible ES-MDA as
compared to without any adjustment of split parameter
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Fig. 13 Prior and posterior of oil production data for production wells
P1, P2 and P3. Red lines show observed data and bars on red lines show
measurement error. Vertical dashed black lines show the end of the his-
torical period. Solid and dashed brown lines show 50th percentile p50

and 99% confidence interval of prior distribution respectively. Solid
blue lines and gray shaded area show p50 and 99% confidence interval
of posterior distribution

(Fig. 14b). In addition, we note that the confidence intervals
of production wells P2 and P3 are reduced (Fig. 18) due
to the relatively lower values of the standard deviation of
the posterior ensemble (Fig. 17b) obtained from Flexible
ES-MDA with adaptive split parameter as compared to
Fig. 12b.

Figure 19 shows the PICP of model parameters, historical
data and predictions. We observe that PICP of model

parameters is slightly decreased as compared to the results
in Fig. 15a. This is due to the adjustment of split parameter
in order to match bad prior time series of well I1.
However, the PICP of historical data and predictions are
improved as compared to Fig. 15b and c using Flexible
ES-MDA. This effect shows some trade-off between
quality of estimated parameters and corresponding outputs
(specially bad prior) of imperfect reservoir model using
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Fig. 14 Prior and posterior of water production and injection pressure data. The descriptions of lines and colors are same as in Fig. 1
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Fig. 15 Posterior PICP of model parameters, historical and prediction data of test case 3
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Fig. 16 Mean CRPS and MSE of posterior ensemble for historical and prediction data of test case 3. In part (b) subscripts “e” and “f” show the
MSE obtained from ES-MDA and Flexible ES-MDA respectively
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Fig. 17 Mean and standard deviation of log-permeability field of posterior ensemble obtained from Flexible ES-MDA with adaptive adjustment
of split parameter

389Comput Geosci (2021) 25:373–394



P1

0 1 2 3 4 5 6

Time (years)

0

2000

4000

6000

8000

10000

O
il 

pr
od

 ra
te

 (S
TB

/d
ay

)

P2

0 1 2 3 4 5 6

Time (years)

0

2000

4000

6000

8000

W
at

er
 p

ro
d 

ra
te

 (S
TB

/d
ay

)

P3

0 1 2 3 4 5 6

Time (years)

0

1000

2000

3000

4000

5000

O
il 

pr
od

 ra
te

 (S
TB

/d
ay

)

I1

0 1 2 3 4 5 6

Time (years)

0

1

2

3

4

5

6

7

In
je

ct
or

 B
H

P 
(p

si
)

104

Fig. 18 Calibration and prediction results of production and injection data using Flexible ES-MDA with adaptive adjustment of split parameter.
The descriptions of lines and colors are same as in Fig. 13

adaptive adjustment of the split parameter in the proposed
algorithm.

Figure 20 shows the mean CRPS and MSE metrics for
both historical and prediction data with adaptive adjustment
of split parameter. We observe that mean CRPS and MSE
of the historical and prediction data are improved using
Flexible ES-MDA as compared to Fig. 16 due to matching

of historical data of well I1 and reduction in confidence
intervals of water production of well P2 and oil production
of well P3 by adaptive adjustment of split parameter. These
results show that the adaptive adjustment of split parameter
in Flexible ES-MDA can be used as an alternative option
if model refinement is not feasible and output time series
cannot be matched due to bad prior.
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Fig. 19 Posterior PICP of model parameters, historical and prediction data of test case 3 with adaptive adjustment of split parameter in Flexible
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Fig. 20 Mean CRPS and MSE of posterior ensemble for historical and prediction data of test case 3 with adaptive adjustment of split parameter
in Flexible ES-MDA. In part (b) subscripts “e” and “f” show the MSE obtained from ES-MDA and Flexible ES-MDA respectively

4 Conclusions

In this paper, a flexible algorithm is proposed for calibration
of perfect and imperfect models. This flexible algorithm
builds on the ensemble smoother with multiple data
assimilation, which has the assumption that models are
perfect, i.e., accurate representation of the real systems.
However, it is widely known that mathematical models
are approximations of the real systems and some inherent
errors always exist in computational models. Neglecting
the model error during calibration causes bias in the
estimated physical parameter and often results in unreliable
predictions. In the proposed algorithm, the residual (data
mismatch) is split into two parts. One part is used for
parameter estimation/update and the second part is used
to represent the model error. The initial split parameter
is computed based on the ratio of norm of mean residual
(mean deviation from observed data) and norm of maximum
residual (maximum absolute deviation from observed data).
During calibration (data assimilation) this split parameter
is updated based on the ratio of norm of mean residuals
obtained in current and previous iterations. In the proposed
algorithm, we assumed that the data misfit/residual can be
split into a parameter error and a model error according to
the ratio of mean deviations between iterations. This split
formulation shows very close correspondence to the best
split value computed from true model error (see Test case
1).

In this work, three test cases have been used to
observe the performance of the proposed algorithm. These
test cases are related to the calibration of polynomial
functions, simple machine and imperfect reservoir model.

In the first test case, cubic function is considered as
perfect model and imperfect models are represented by
quadratic and linear functions. We observe that if the
model is perfect, the proposed algorithm exactly match
the data and for imperfect models the algorithm has the
flexibility to capture the unknown model error, which
is very useful to avoid over-confidence and generally
inaccurate predictions. The second test case is related to
estimation the efficiency parameter of a simple machine
model which lacks physics in terms of friction component.
The calibration result from proposed algorithm shows more
reliable estimation of the efficiency of the machine which
provides significant improvement in prediction. The third
test case is related to calibration of imperfect reservoir
model, which has blurred channelized geological patterns.
The imperfect reservoir model has two sources of modeling
errors, simplified geological representation and up-scaling
errors. We note that the proposed algorithm reduces the
model bias in parameter estimation and as a consequence
predictions are improved significantly from the calibrated
imperfect models. We observe improvements in PICP, mean
CRPS and MSE metrics after evaluating the parameter
estimation, calibration and prediction performance of the
proposed algorithm for three test cases of different physical
systems. However, the well output which shows bad prior
due to the model error effect can be difficult to match
using the proposed algorithm. This can be avoided by
adaptive adjustment of the split parameter in the proposed
algorithm with some trade-off between quality of estimated
parameters and corresponding model outputs.

We strongly recommend model improvement in terms
of physics, assumptions, details and description, if a
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large magnitude of model error is indicated by the
proposed algorithm. However, we argue that the proposed
algorithm provides good indicators about the reliability
of the calibrated models especially for the cases with
unknown model error. Sometimes for effective decision-
making we need to reduce the uncertainty to threshold
value (i.e., minimum value which effects decision-making
process). If the model error uncertainty is greater than
the threshold value, we strongly recommend to improve
the model in order to reduce model error uncertainty.
In cases where model error uncertainty is less than
acceptable threshold value and there is a time-constraint, the
proposed algorithm provides a robust method for calibrating
imperfect models that can be used for decision support. In
future, we would try to address different types of uncertain
parameters and simulation models with different forms
of model errors in terms of complex physics, structural
geology, fluid dynamics and phase behavior.
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Appendix 1: Calibration and prediction
metrics

A.1 Prediction interval coverage probability (PICP)

The mathematical description of coverage probability (CP)
is shown below,

CP = NCI

Nt

. (A1.1)

NCI = Number of observations or parameters in
confidence interval

Nt = Total number of observations or parameters
Prediction interval coverage probability is obtained by

computing coverage probability for confidence interval
10%, 20%, ..., 90%, 99%.

A.2 Mean square error (MSE)

The mathematical description of mean square error (MSE)
is shown below,

MSE = 1

Nd

Nd
∑

n=1

(dn − dobs,n)
2, (A1.2)

where n is index of observation or model prediction at
corresponding time.

A.3 Continuous ranked probability score (CRPS)

Mathematically, CRPS can be described as follows,

CRPS =
∫ ∞

−∞
[p(x) − H(x − xobs)]2dx, (A1.3)

where p(x) = ∫ x

−∞ ρ(y)dy Cumulative distribution of
quantity of interest, H(x −xobs) = Heaviside function (Step
function), i.e.,

H(x) =
{

0 if x < 0

1 if x ≥ 0

For an ensemble system with Ne realizations, the CRPS
can be written as follows,

CRPS =
Ne
∑

r=0

cr . (A1.4)

cr = αrp
2
r + βr(1 − pr)

2. (A1.5)

where pr = P(x) = r/Ne, for xr < x < xr+1 (cumulative
distribution is a piece wise constant function).

αr =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if xobs < xr

xobs − xr if xr < xobs < xr+1

xr+1 − xr if xobs > xr+1

xobs − xNe if xobs > xNe

0 if xobs < x1

βr =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xr+1 − xr if xobs < xr

xr+1 − xobs if xr < xobs < xr+1

0 if xobs > xr+1

0 if xobs > xNe

x1 − xobs if xobs < x1

Appendix 2: Reservoir properties

Corey model in form of power law is used to generate
relative permeability data for the reservoir model. The
mathematically description of Corey model in form of
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Table 1 Reservoir fluid data and Corey relative permeability model
parameters

Fluid properties Corey relative permeability

model parameters

Water viscosity 0.5 cp Sor 0.2 k0o 1

Oil viscosity 1 cp Swc 0.2 k0w 1

Water density 1000 kg/m3 nw 2

Oil density 700 kg/m3 no 2

power law is shown below.

krw = (Ŝw)nwk0w. (A2.1)

kro = (1 − Ŝw)nok0o . (A2.2)

Ŝw = Sw − Swc

1 − Sor − Swc

. (A2.3)

The notations of above equations are described in MRST
manual [15]. The fluid data and Corey relative permeability
model parameters used in the reservoir model are shown in
Table 1.

References

1. Brynjarsdottir, J., O’ Hagan, A.: Learning about physical
parameters: The importance of model discrepancy. Inverse Probl.
30(11), 114007 (2014)

2. Carter, J.N., Ballester, P.J., Tavassoli, Z., King, P.R.: Our
calibrated model has poor predictive value: An example from the
petroleum industry. Reliab. Eng. Syst. Safety 91(10), 1373–1381
(2006)

3. Chen, Y., Oliver, D.S.: Levenberg–Marquardt forms of the
iterative ensemble smoother for efficient history matching and
uncertainty quantification. Comput. Geosci. 17(4), 689–703
(2013)

4. Emerick, A.A., Reynolds, A.C.: History matching time-lapse
seismic data using the ensemble Kalman filter with multiple data
assimilations. Comput. Geosci. 16(3), 639–659 (2012)

5. Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple
data assimilation. Comput Geosci 55, 3–15 (2013)

6. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter.
Springer Science & Business Media, New York (2009)

7. Evin, G., Thyer, M., Kavetski, D., McInerney, D., Kuczera, G.:
Comparison of joint versus postprocessor approaches for hydro-
logical uncertainty estimation accounting for error autocorrela-
tion and heteroscedasticity. Water Resour. Res. 50(3), 2350–2375
(2014)

8. Giudice, D.D., Honti, M., Scheidegger, A., Albert, C.,
Reichert, P., Rieckermann, J.: Improving uncertainty estima-
tion in urban hydrological modeling by statistically describing
bias. Hydrol. Earth Syst. Sci. 17(10), 4209–4225 (2013).
https://doi.org/10.5194/hess-17-4209-2013. https://www.
hydrol-earth-syst-sci.net/17/4209/2013/
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