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Abstract
Modeling of hydraulic fracturing processes is of great importance in computational geosciences. In this paper, a phase-field
model is developed and applied for investigating the hydraulic fracturing propagation in saturated poroelastic rocks with pre-
existing fractures. The phase-field model replaces discrete, discontinuous fractures by continuous diffused damage field, and thus
is capable of simulating complex cracking phenomena such as crack branching and coalescence. Specifically, hydraulic fractur-
ing propagation in a rock sample of a single pre-existing natural fracture or natural fracture networks is simulated using the
proposed model. It is shown that distance between fractures plays a significant role in the determination of propagation direction
of hydraulic fracture. While the rock permeability has a limited influence on the final crack topology induced by hydraulic
fracturing, it considerably impacts the distribution of the fluid pressure in rocks. The propagation of hydraulic fractures driven by
the injected fluid increases the connectivity of the natural fracture networks, which consequently enhances the effective perme-
ability of the rocks.
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1 Introduction

Hydraulic fracturing is a process of fracture of rock formation
induced by pressurized liquids. From the last decade, hydrau-
lic fracturing has been attracting more and more attention
because of its applications in the extraction of oil and gas from
unconventional reservoirs [1] and the enhancement of geo-
thermal energy systems [2].

In a process of hydraulic fracturing, high-pressurized fluids
are injected into rock layers in order to widen the existing
fractures and create new artificial fractures. The resulting frac-
ture networks consequently provide high-permeability path-
ways for the recovery of oil, gas, and geothermal energy. Due

to their complexity, analytical solutions to hydraulic fracturing
problems are very rare, particularly for these practical prob-
lems in engineering which involve complicated geometries
and boundary conditions. Thereby, predictions of hydraulic
fracturing processes rely heavily on the available numerical
techniques.

In recent years, numerous computational methods have
been developed to model hydraulic fracturing processes in
rocks that can be roughly divided into discrete and continuous
categories. The discrete approaches attempt to capture the ex-
act topology of fracture either in an explicit way via remeshing
techniques such that mesh edges are potential crack surfaces
[3–5] or directly using Lagrangian particle methods or com-
bined Eulerian and Lagrangian methods such as discrete ele-
ment methods [6], smooth particle hydrodynamics [7] and
material point method [8, 9], or in an implicit manner such
as the enrichment of shape functions that used in the extended
finite element method [10–12]. The fluid flow process in the
fracture is taken into account according to Reynolds’ equation
of lubrication theory [13, 14]. It is noticeable that these dis-
crete approaches either require special treatments for complex
fracture topologies or sophisticated numerical schemes for
discontinuities that considerably limits their applications in
engineering practice. Alternatively, sharp fractures in smeared
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approaches are diffused via smooth transitions between intact
and fully damaged material states such that discontinuities at
fractures are removed. Typical continuous approaches include
the peridynamic method [15–17], the gradient damage meth-
od [18], and the phase-field method [19–21], to name a few. In
addition, another type of methods combined the continuous
and discontinuous methods, such as the combined finite-
discrete element method [22], and the numerical manifold
method [23–26]. These discrete and continuous methods or
the combined approaches all have been applied for modeling
of hydraulic fracturing. Recently, the phase-field method for
modeling of fracture is gaining an increasing popularity be-
cause it combines the advantages of the smeared and the dis-
crete approaches and gives a precise meaning to the idea of
using damage models to approximate the discontinuous frac-
tures. The phase-field method introduces an auxiliary contin-
uous scalar variable, referred to as phase field, to smear and
regularize the sharp fracture discontinuities. Due to this fea-
ture, complex fracture phenomena for example crack
branching and coalescence can be tackled without computa-
tional difficulties. Moreover, the phase-field approach was
developed on the basis of variational principle for brittle frac-
ture [27]. Regarded as a general Griffith’s theory, this principle
is capable of predicting both the crack initiation and the crack
propagation path which further enhances the attraction of the
phase-field approach. Owing to the advantages of the phase-
field approach, numerous efforts have been devoted to explor-
ing its possibility for modeling hydraulic fracturing
propagation.

The first attempt to simulate hydraulic fracture using the
phase-field approach was made by Bourdin et al. [20] that a
term related to the fluid in cracks was included in the varia-
tional principle to consider fluid-pressure-induced fractures in
impermeable materials. Phase-field models for hydraulic frac-
turing in saturated permeable porous media were then devel-
oped by Miehe et al. [19], Lee et al. [28], and Mikelic et al.
[29, 30] based on Biot’s equation of poroelasticity. Xia et al.
[31] and Shu et al. [32] further considered the material hetero-
geneity and the dynamic effects in the phase-field model for
hydraulic fracture in porous media. Santillan et al. [33, 34]
proposed another framework for hydraulic fracture in both
impermeable and permeable solids using phase-field approach
with fluid flow in fracture being a lower-dimension manifold.
In cases of permeable solids [34], the fluid flux between the
fracture and the porous solid is employed as a coupling vari-
able. These studies have shown that the phase-field method is
a promising approach for modeling hydraulic fracturing prop-
agations. Despite their contributions, these studies focused
majorly on the theoretical and numerical development of the
phase-field model for hydraulic fracturing. Many issues such
as the effects of material properties on the hydraulic fracturing,
interactions between the hydraulic fracture and a pre-existing
fracture, and hydraulic fracturing propagation in natural rocks

with complex fracture networks remain open questions and
require further studies.

In this paper, a phase-field model is developed for hydrau-
lic fracturing. Implemented using the finite element method, it
is applied to study the hydraulic fracturing propagation in
rocks with pre-existing natural fractures. Specifically, the hy-
draulic fracturing propagation in a poroelastic rock sample
with two pre-existing fractures is investigated from the view-
point of phase-field modeling. Emphases are placed on the
influence of the initial distance between the fractures and the
permeability of rocks. Additionally, the hydraulic fracturing
propagation in a rock sample with more complex natural frac-
ture networks is studied, in which interactions between mul-
tiple natural fractures and hydraulic fracture are concerned.

2 Phase-field model of hydraulic fracturing
in permeable rocks

The governing equations for the phase-field modeling of hy-
draulic fracturing in poroelastic media are introduced.

2.1 Governing equations for poroelastic media

Assuming that the solid skeleton is elastic and the fluid within
the porous is incompressible, the deformation of a saturated
porous rock under quasi-static loading is described by Biot’s
theory of poroelasticity [35, 36].

The equilibrium equation for the saturated media is

∇•σþb ¼ 0 ð1Þ
where b is the body force and σ is the total stress decomposed
as

σ ¼ σeff −αp1 ð2Þ

with σeff, p and α being the Biot’s effective stress, the pore
fluid pressure, and Biot’s effective stress coefficient, respec-
tively, and 1 = [1 1 0]T in two-dimensional cases. The effec-
tive stress and the linear strain ε is linked via the elastic con-
stitutive equation

σeff ¼ Dε ð3Þ

where D is the elastic constitutive matrix which, in plane-
strain cases, is written as

D ¼ Eυ
1þ υð Þ 1−2υð Þ

1−υ υ 0
υ 1−υ 0
0 0 1−2υð Þ=2

24 35 ð4Þ

in which E is Young’s modules and υ is Poisson’s ratio.
According to Biot’s theory [35, 36], the continuity equation

for fluid flow is
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θ̇ ¼ −qi;i þ Q ð5Þ

where q is the fluid flux,Q is the source/sink term, and θ is the
fluid content defined as

θ ¼ p
M

þ α∇•u ð6Þ

In the above equation, u is the displacement field of the
solid skeleton and M is the Biot’s modulus. The migration of
fluids in porous media is described by Darcy’s law that

q ¼ −k∇p ð7Þ
where k is the vector consisting of permeability coefficients of
the material. Substitution of Eqs. (6) and (7) into the fluid
continuity Eq. (5) results in

ṗ
M

þ α∇•u̇ ¼ k∇2pþ Q ð8Þ

Complemented with the boundary conditions, the
governing equations for poroelastic media are summarized as

∇•σþb ¼ 0 in Ω
ṗ
M

þ α∇•u̇ ¼ k∇2pþ Q

σ ¼ σeff −αp1
σeff ¼ Dε
u ¼ u on ∂Ωu σijn j ¼ ti on ∂Ωt

p ¼ p on ∂Ωp qijn j ¼ qi on ∂Ωq

8>>>>>>><>>>>>>>:
ð9Þ

2.2 Phase-field evolution equations for poroelsatic
media

The theory of the phase-field model is constructed on the basis
of the variational principle proposed by Francfort and Marigo
[37] which interprets fracture as a competition between the
surface energy for crack formation and the bulk energy stored
in materials. In this section, the phase-field evolution equa-
tions for rocks are derived following [19] by first defining the
total energy Ψtotal as a sum of the bulk energy Ψbulk stored in
the rock and the energy dissipated in the fracturing process
Ψfracture that

Ψ total ¼ Ψbulk þ Ψ fracture ð10Þ

For a saturated poroelastic rock with a domain Ω bounded
by its surface ∂Ω, the bulk energy is in the form of

Ψbulk ε; θð Þ ¼ ∫ΩφbulkdΩ ð11Þ
where the density of bulk energy is

φbulk ¼ φe εð Þ þ φfluid ε; θð Þ ð12Þ

In this work, we only consider the quasi-static loading condi-
tion and ignore the dynamic responses in the hydraulic fracturing
process. Acording to Miehe et al. [19], the elastic energy density
and the contribution from the fluid are calculated as

φe ¼ 1

2
εTDε ð13Þ

and

φfluid ε; θð Þ ¼ M
2

αtr εð Þð Þ2−2θ αtr εð Þð Þ þ θ2
� �

ð14Þ

The total stress and the fluid pressure are accordingly the
derivatives of φbulk with respect to the strain and the fluid
content that are

σ ¼ ∂εφbulk ð15Þ
and

p ¼ ∂θφbulk ð16Þ

Substituting Eqs. (12) and (14) into Eqs. (15) and (16) leads
to

σ ¼ ∂εφbulk ¼ ∂εφe þ ∂εφfluid ¼ σeff−αp1 ð17Þ
and

p ¼ ∂θφbulk ¼ M −αtr εð Þ þ θð Þ ð18Þ
which are apparently in consistence with the corresponding
definitions in the classical Biot’s theory, for instance Eqs. (2)
and (6).

According to Francfort and Marigo [37], the fracture ener-
gy Ψfracture is defined as

Ψ fracture ¼ ∫ΓGcdΓ ð19Þ

where Gc is the Griffith critical energy release rate and Γ is the
crack set. To overcome the numerical difficulties induced by the
discontinuity, the crack is regularized by introducing an auxiliary
scalar variable, referred to as the phase field s(x, t)∈ [0, 1]. The
scalar variable, s, indicates the damage degree of the material with
s= 1 and 0 indicating the fully damaged and the intact states,
respectively. The sharp crack thereby is smeared out as a diffusive
fracture. Specifically, the discontinuous fracture surface Γ(s) [19,
21] is replaced by

Γ sð Þ ¼ ∫þ∞
−∞

1

2l0
s2 þ l20s

02
� �

dΩ ð20Þ

with l0 being the length scale, and consequently, the energy re-
quired to generate a new crack is rewritten as

Ψ fracture ¼ ∫ΓGcdΓ ¼ ∫þ∞
−∞ Gc

1

2l0
s2 þ l20s

02
� �

dΩ ð21Þ
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In order to describe the stiffness degradation due to the
damage process, a degradation function g(s) = (1 − s)2 was
introduced byMiehe et al. [38], which gives g(0) = 1, g(1) = 0
for representing the constraints of intact when s = 0 and fully
broken when s = 1, respectively. In addition, the derivation of
the degradation function equals to 0, i.e., g ′ (s) = 0, which en-
sures the derivation of the energy density with respect to the
phase field, ∂sψ, converges to a final value if the damage con-
verges to the fully broken state s = 1.

Here, (1 − s)2 is introduced in Eq. (13) so that

Ψ eff εð Þ ¼ ∫Ω 1−sð Þ2φedΩ ð22Þ

The stress-strain relationship considering damages is
expressed as

σ ¼ 1−sð Þ2 ∂ φ
e εð Þ
∂ε

¼ 1−sð Þ2Dε ð23Þ

which recovers the classic linear elastic constitutive relation-
ship when material are intact (e.g., s = 0).

Using Eqs. (14), (21), and (22), the total energy functional
in Eq. (10) is written as

Ψ total ¼ ∫ Ω 1−sð Þ2φedΩ þ ∫ Ω M
2

αtr εð Þð Þ2−2θ αtr εð Þð Þ þ θ2
� �

dΩ

þ ∫
þ∞

−∞Gc
1

2l0
s2 þ l20s

02
� �

dΩ

ð24Þ

Sequentially, the total energy density function is in the form

φtotal ¼ 1−sð Þ2φe þ M
2

αtr εð Þð Þ2−2θ αtr εð Þð Þ þ θ2
� �

þ Gc
1

2l0
s2 þ l20s

02
� �

ð25Þ

The phase-field evolution equations are thus derived via
the derivative of the total energy density function with respect

to the phase field, for example ∂φtotal
∂s ¼ 0, leading to

−2 1−sð Þφe þ Gc
s
l0
−Gcl0s;ii ¼ 0 ð26Þ

As shown, the phase-field evolution is driven by the
elastic strain energy function of the material, φe, which
however results in three unrealistic fracture phenomena:
(1) the energy density φe is not a monotonously increas-
ing function meaning that the fracture is recovered if φe

decreases; (2) the energy density induced by pure com-
pression may also lead to fracture; and (3) a material
may be more-or-less damaged as long as φe is greater
than zero.

To overcome the first two issues, Miehe et al. [19]
decomposed the elastic strain energy function into ten-
sion and compression parts as φe ¼ φe

þ þ φe
−, where the

part φe
þ ¼ 1

2λtr εð Þ2þ þ μtr ε2þ
� �

is contributed by tension

and the φe
− ¼ 1

2λtr εð Þ2− þ μtr ε2−
� �

by compression, based
on the two ramp functions 〈x〉+ = (x + |x|)/2 and 〈x〉− = (x
− |x|)/2 and the decomposition of the strain tensor

ε ¼ εþ þ ε− ð27Þ
with

ε� ¼ ∑3
a¼1 εah i�na⨂na ð28Þ

λ and μ are lame parameters of the solid skeleton. A history
dependent variable Hþ ¼ max φe

þ
� �

was then suggested [19]
to drive the evolution of the phase field that

−2 1−sð ÞHþ þ Gc
s
l0
−Gcl0s;ii ¼ 0 ð29Þ

Since H+is monotonously increasing and contributed
by only the tension part, it prevents from the fracture
reversibility and the compression-induced fracture.

In the damage evaluation Eq. (29), the maximum ener-
gy density H+ is a monotonously increasing function of
the strain ε. In order to further prevent from the unneces-
sary material stiffness reduction at very low stress states,
Miehe et al. [19] introduced a damage evolution criterion
with a threshold by using the fracture energy density

ψc ¼
1

2E
σ2
c ð30Þ

with σc being the critical effective stress of matrix.
The energy criterion with threshold can be rewritten as

Ψ fracture ¼ ∫þ∞
−∞ 2ψc s2 þ l20s

02
� �

dΩ ð31Þ

The total energy density decribed by Eq (25) can be rewrit-
ten as

φtotal ¼ 1−sð Þ2φe þ M
2

αtr εð Þð Þ2−2θ αtr εð Þð Þ þ θ2
� �

þ 2ψcl0 s2 þ l20
2
s
02

� �
ð32Þ

The evolution equation is then expressed as [19, 39].

−2 1−sð ÞHmax þ 2ψcs−2ψcl0
2s;ii ¼ 0 ð33Þ

where the driving energy is defined as Hmax =max(φ+ −ψc)+
which poses a threshold and thus resolves the third issue. The
evolution equations for the phase field with the corresponding
boundary conditions are summarized as follows
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−2 1−sð ÞHmax þ 2ψcs−2ψcl0
2s;ii ¼ 0 in Ω

s ¼ s on ∂Ωs

s;ini ¼ 0 on ∂Ωs0

Hmax ¼ max φþ−ψcð Þþ
φe
þ ¼ 1

2
λtr εð Þ2þ þ μtr ε2þ

� �
ψc ¼

1

2E
σ2
c

8>>>>>>>>><>>>>>>>>>:
ð34Þ

2.3 Deformation-dependent permeability
for the fracture

The migration of fluids in the porous media is assumed to be a
type of Poiseuille fluid flow and the phase field is used to
determine the deformation-dependent permeability at the frac-
ture. The permeability tensor k in Eq. (8) is decomposed into
two parts [19], expressed as

k ¼ km þ sð Þϵk f ð35Þ

where ϵ is an parameter used to localized the permeability in
the fracture, km = k/η1 is the permeability tensor of matrix (k
is the intrinsic permeability, η is the fluid dynamic viscosity),
and kf is the anisotropic permeability depending on the frac-
ture aperture defined as

k f ¼ wn
2

12η
−k=η

� �
1−ns⨂nsð Þ ð36Þ

where 1 is the identity 2-order matrix, ns¼ ∇ s
∇ sk k is the normal

vector defined by the phase field, and w = h ∇ u • ns is the
fracture width representing the displacement jump with h be-
ing a length parameter (approximated by the mesh size in
practice [19, 40]). The normal displacement jump along the
fracture interfaces can be expressed aswn = w • ns according to
[31].

3 Finite element discretization and staggered
solution algorithm

In this section, the governing equations of the coupled prob-
lem are discretized using the standard Galerkin finite element
method. The quadrilateral bilinear elements are applied to ap-
proximate the displacement field u, the fluid pressure field p
and the phase field s, namely

u≅Nubu; p≅Npbp; s≅Nsbs ð37Þ

where bu, bp and bs are the vectors for the displacement, pres-
sure, and phase field at element nodes and Nu, Np and Ns are
the shape functions.

Applying the above approximations to Eq. (9), we have

0 0
KT

up Kpp1

� 	 ḃuḃp
� 	

þ Kuu −Kup

0 Kpp2

� 	 bubp
" #

¼ Ru

Rp

� 	
ð38Þ

where the coefficients in the matrix are

Kuu ¼ ∫Ω BT
uD

0
BudV ð39Þ

Fig. 1 Overall algorithm of the phase-field model

Fig. 2 Model setup and boundary conditions
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Kup ¼ ∫ΩαBT
u1NpdV ð40Þ

Ru ¼ ∫∂ΩNT
u tdA ð41Þ

Kpp1 ¼ ∫Ω
1

M
NT

p NpdV ð42Þ

Kpp2 ¼ ∫ΩkBT
p BpdV ð43Þ

Rp ¼ ∫∂ΩNT
p qdAþ ∫ΩNT

pQdV ð44Þ

In Eq. (39), D′ is the modified elastic constitutive matrix,
written as

D
0 ¼ 1−sð Þ2D ð45Þ

The matrices Bu and Bp are the derivatives of shape func-
tions expressed as

Bu ¼

∂Nu1

∂x
0

0
∂Nu1

∂y
∂Nu1

∂y
∂Nu1

∂x

⋯
∂Nun

∂x
0

⋯ 0
∂Nun

∂y

⋯
∂Nun

∂y
∂Nun

∂x

2666664

3777775 ð46Þ

and

Bp ¼
∂Np1

∂x
⋯

∂Npn

∂x
∂Np1

∂y
⋯

∂Npn

∂y

264
375 ð47Þ

The backward Euler finite difference scheme is adopted for
time discretization that

ḃu¼ dbu
dt

≈
bunþ1

−bun
Δt

ð48Þ

ḃp ¼ dbp
dt

≈
bpnþ1

−bpn
Δt

ð49Þ

where Δt is the time increment, un + 1 and pn + 1denote the
displacement and pressure at time tn + 1, and un and pn denote
the displacement and pressure at time tn. Substituting Eqs.(48)
and (49) into Eq.(38) arrives in

ΔtKuu −ΔtKup

KT
up Kpp1 þ ΔtKpp2

� 	 bunþ1

bpnþ1

" #

¼ 0 0
KT

up Kpp1

� 	 bunbpn
" #

þ ΔtRu

ΔtRp

� 	
ð50Þ

Similarly, the phase field equation can be discretized as:

Ksbs ¼ Rs ð51Þ
where

Ks¼∫ΩNT
s Hmax þ ψcð ÞNsdV þ ∫ΩBT

s ψcl0
2BsdV ð52Þ

and

Rs¼∫ΩNT
s HmaxdV ð53Þ

The matrix Bs is the derivative of shape functions for the
phase field that is

Bs ¼
∂Ns1

∂x
⋯

∂Nsn

∂x
∂Ns1

∂y
⋯

∂Nsn

∂y

264
375 ð54Þ

In summary, the discretized governing equations in-
clude Eqs. (38) and (51) that can be solved using a stag-
gered scheme. In detail, in a typical time increment the
displacement and pressure of poroelasticity problem is
solved with a fixed phase field based on Eq. (50). Then,
the phase field is resolved using Eq. (51) with the updated
displacement field and pressure field. A detailed solution
algorithm is summarized in Fig. 1. The staggered solving
scheme is a kind of explicit approach; the smaller time
steps imply the more stable the solution process; however,

Fig. 3 a Simulated vertical
displacement field for mesh size
0.25 m and b comparison of
fracture aperture between the
numerical results for different
mesh sizes and the analytical
solution
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smaller time steps often require longer computation time.
A time step that is able to ensure the stability of fracture
propagation process represented by the phase-field evolu-
tion is chosen by trial and error in this work, to achieve
higher efficiency and maintain computational stability for
the solution.

4 Experimental tests and discussions

The applications of the developed phase-field model for
modeling hydraulic fracturing in saturated poroelastic rock
will be carried out in this section. Three examples with in-
creasing complexity are concerned which are the propagation
of a single hydraulic fracture, the hydraulic fracturing propa-
gation interacted with a natural fracture, and the hydraulic
fracturing in natural fracture networks.

4.1 Validation

Firstly, we validate the phase-field model and verify the de-
veloped computational codes by comparing numerical simu-
lation result with the classical analytical solution by Sneddon
[41]. In this validation example, we consider a single fracture
with length 10 m in a square domain of dimensions 100 m ×
100 m as shown in Fig. 2.

The domain is assumed to be linear elastic, homogeneous,
and isotropic. The analytical solution exists for the fracture

aperture under constant internal pressure, given by [34].

w ¼ 4 1−v2ð Þpc
E

ffiffiffiffiffiffiffiffiffiffiffi
1−

x2

c2

r
ð53Þ

In this validation example, the displacement is fixed in
all directions on the external boundaries, i.e., u = 0, v = 0.
The mechan ica l p roper t i e s a re se t as Young ’s
modulus E = 16.06GPa and Poisson’s ratio ν = 0.1812.
The pressure applied in the fracture is p =1 × 105Pa. To
keep the same condition as the assumption of the analyt-
ical solution, we set the intrinsic permeability of the ma-
trix as k = 0. Biot’s coefficient is assumed as α = 0 in the
matrix and α = 1 in the fracture, which assumes that the
fracture propagation is only contributed by the pressure
applied in the fracture. The domain is discretized using
four-node quadrilateral finite elements with a mesh size
being 0.25 m. Following [19], the length scale of the
phase-field model is set to be l0 = 3h, where h is the mesh
size.

The simulated vertical displacement field for the case of
mesh size 0.25 m and comparison of fracture aperture between
the analytical solution and numerical result are presented in
Fig. 3, showing that the vertical displacement field is symmetric
along the fracture. The numerical simulated fracture aperture
for the case of mesh size 0.25 m matches very well with the
analytical result (the red curve). The convergence of the simu-
lation results with respect to mesh sizes is also evaluated by
analyzing the problem using meshes of different sizes (e.g., h =
0. 25 m, 0.4 m, and 0.5 m). With the decrease of mesh sizes
from 0.5 to 0.25 m, the simulated fracture aperture gradually
converges to the analytical result. This validation result shows
that the phase-field model developed in this study is accurate
and the numerical results simulated by using the relatively small
mesh size, i.e., h = 0.25 m presented in this work are reliable.

4.2 Propagation of a single fracture

After validation, we further test the feasibility of phase-field
model for hydraulic fracturing of a single fracture in porous
media. The domain geometry and the fracture location is the

Fig. 4 Phase-field evolution with fluid injection at 0.5 s, 1.5 s, 3 s, and 8 s

Table 1 Material properties of poroelastic media

Parameters Value Unit

Young’s modulus (E) 16.06 GPa

Passion’s ratio (υ) 0.1812 –

Biot’s coefficient (α) 0.74 –

Biot’s modulus (M) 25.8 GPa

Intrinsic permeability (k) 2e-14 m2

Fluid dynamic viscosity (η) 1e-3 kg/(m∙s)
Critical effective stress (σc) 0.5 MPa

Permeability transition exponent 50 –

1773Comput Geosci (2020) 24:1767–1782



same as the validation example for this single fracture exam-
ple, shown in Fig. 2. To drive the fracture, fluids are injected
into the pre-existing fracture (10 m in length) with a specific
constant flowrate 0.005 m2/s. The properties of the rock
adopted in the numerical simulation are from [42] and listed
in Table 1. The length scale of the phase-field model is set to
be 0.75 m according to [19]. The domain is discretized using
four-node quadrilateral finite elements with a mesh size being
0.25 m. The time step in the simulation is Δt = 0.1 s. The
displacements of all external boundaries are fully fixed (e.g.,
u = 0, v = 0), and the initial porous fluid pressure is set to be
zero representing drainage boundaries.

Figure 4 illustrates the snapshots of the phase field at four
different times, i.e., t = 0.5 s, 1.5 s, 3 s, and 8 s and the distri-
butions of the corresponding porous fluid pressure are shown
in Fig. 4. As indicated, the hydraulic fracture propagates sym-
metrically in both directions due to the continuous injection of
fluids (Fig. 4). The fluid pressure in the fracture increases at
the beginning (Fig. 5a, b) because of the supply of fluids
which then drops considerably when the crack starts to

propagates (Fig. 5b–d. It is notable that the entire domain is
saturated in the simulation which means the fluid lag is not
considered in this model. However, the fluid pressure at tips of
fracture is very low and even negative as shown in Fig. 5
indicating that a mathematical fluid lag exists. This phenom-
enon was also observed in the modeling of hydraulic fracture
in saturated porous media using the phase-field model [29],
the cohesive fracture model [43], and extended finite element
method [44]. This variation can be observed precisely by
showing the curve of the fluid pressure at the center of the
sample against time (Fig. 6). A linear increase of the fluid
pressure is observed at the initial stage, for example when t
< 0.9 s. After reaching the maximum value (around 6 ×
105 Pa) at 1.2 s, the fluid pressure decreases gradually to the
asymptotic value at around 4.5 × 105 Pa. The simulation re-
sults presented are in line with these in [31] which verifies the
developed phase-field approach for modeling hydraulic
fracturing.

The evolutions of the fluid pressure at the center of the
fracture from the simulation result are shown in Fig. 5. The
pressure increases dramatically at the initial stage when t < 1 s
and then gradually decreases until it approaches to 4 × 105 Pa.
The decrease of pressure is caused by fracture propagation.

4.3 Interaction of hydraulic fracture
with a pre-existing natural fracture

In the second example, we focus on the hydraulic frac-
ture propagation in a poroelastic rock interacted with a
pre-existing natural fracture. To this end, the same sam-
ple considered in section 4.1 is re-analyzed except that a
pre-existing natural fracture is further considered in the
sample (Fig. 7). Material parameters are the same as
these listed in Table 1 if not otherwise specified. The
influences of the initial distance between the hydraulic
fracture and the natural fracture (e.g., the distance L in
Fig. 7), the permeability of the rock material, and the
injection rate on the fracture propagation process are
investigated.

Fig. 5 Fluid pressure field at 0.5 s, 1.5 s, 3 s, and 8 s

Fig. 6 Fluid pressure in the center of the fracture
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In order to investigate the impact of the distance L on the
interaction of the hydraulic fracture and the natural fracture,
simulations are carried out with the initial distance L being
0m and 10m, respectively. Fluids are injected into the fracture
located at the center of the domain with constant flowrates at
0.0005m2/s and 0.002 m2/s to illustrate the impact of injection
flowrate on the propagation process. The influence of rock
permeability on the hydraulic fracture process is considered
by comparing the simulated crack propagation process with k
being 2 × 10−14 m2 and 2 × 10−13 m2, respectively.

Figure 8 shows the evolution process of the phase field at
different time points (i.e., t = 0.5 s, 1.5 s, 3 s, and 8 s from the
left to the right columns) for different cases (i.e., L = 0 m and
10 m from the top to the bottom rows). In all cases, the injec-
tion of the fluid first leads to the coalescence of the two frac-
tures followed by the further hydraulic fracturing propagation
from the two tips of the pre-existing natural fracture. For L =
0 m, since the natural fracture is already connected with the

fracture at the center, the fracture propagates from the tips of
natural fracture when fluids are injected. It is noticeable that,
for all cases, the crack propagation from the tips of the natural
fracture is not directed horizontally but with an inclined angle
of θ with respect to the horizontal direction (see also Fig. 7b).

Figures 9 and 10 present distribution of phase field and
fluid pressure after injection of total specific volume for dif-
ferent distances between the hydraulic fracture and the natural
fracture, different values of rock permeability, and different
cases of injection rates, respectively. Comparing the phase-
field distributions for different distances between the hydrau-
lic fracture and the natural fracture, the fracture propagation
lengths are generally shorter than the cases when the distance
is larger. The inclined angle θ slightly decreases with the in-
crease of distance, which is caused by the different pressure
values when the natural fracture start to propagate. For the
smaller rock permeability value, i.e., k = 2 × 10−14 m2, the
fracture propagation lengths are generally larger than that of

Fig. 8 From left to right column is phase-field distribution at t = 0.5 s, 1.5 s, 3 s, and 8 s, and from top to bottom row is phase-field evolution with
different distances between hydraulic fracture and natural fracture

Fig. 7 a Geometry and boundary
conditions of pre-existing
hydraulic fracture and natural
fracture. b Interaction between
hydraulic fracture and natural
fracture by fluid injection
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the higher rock permeability, i.e., k = 2 × 10−13 m2. It indicates
that the rock permeability does influence the speed of hydrau-
lic fracturing propagation—the less the permeability is the
faster the crack propagates. This can be explained by showing
the distribution of the pore fluid pressure. A higher permeabil-
ity leads to a more diffused zone with fluid migrations where-
as the zone of high fluid pressure is concentrated at the frac-
ture when the permeability is low. The maximum pressure in
the fractures for cases of high permeability is thus smaller than
that for cases of low permeability, given that the same injec-
tion rate is applied. The fluid pressure in the fractures is gen-
erally much higher for the cases with higher injection rates
(Fig. 10). When L = 0 m, the injection rate has limited impact

on the inclined angle θ for the natural fracture propagation.
However, when L = 10 m, the cases with higher injection rate,
i.e., q = 0.002 m2/s, lead to fracture branches in tips of the
natural fracture (Fig. 9), due to relatively high elastic energy
during the injection.

The variations of the fluid pressure at the center of the
sample for all cases are shown in Fig. 11 which echoes the
explanation for the fracture propagation shown in Fig. 9.
Noteworthy, in case of L = 0, the fluid pressure in both cases
of injection rate decreases gradually after the peak value in
Fig. 11 whereas an apparent increase of the fluid pressure is
observed after it drops from the peak for the case of L = 10 m.
Such a fluctuation for L = 10 m stems from the crack

Injec�on Rate: q=0.5e-3 Injec�on Rate: q=2e-3

k=2e-14
Distance 
L=0

k=2e-14
Distance 
L=10

k=2e-13
Distance 
L=0

k=2e-13
Distance 
L=10

Fig. 9 The phase field at the same
specific total volume, with
constant flowrates at 0.0005 m2/s
at 12 s and 0.002 m2/s at 3 s in
different cases of rock intrinsic
permeability, i.e., k = 2 × 10−14

m2 (the top two rows) and k = 2 ×
10−13 m2 (the bottom two rows)
for different distances, i.e., L =
0 m and 10 m
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coalescence that results in a sudden change of fluid pressure
distribution in the hydraulic fracture and the pre-existing frac-
ture. For L = 0, the two cracks are already connected at the
beginning, and thus, no fluctuation emerges. Additionally, the
initial space to store the fluid for L = 0 is larger; thereby, the
increase rate of the fluid pressure in the fracture is much small-
er at the initial stage (e.g., t < 1.8 s when q = 0.0005m2/s and t
< 0.6 s when q = 0.002 m2/s).

4.4 Interaction of hydraulic fractures with natural
fracture networks

In natural rocks, fractures are commonly presented in the form
of networks ofmore complex topology. To be in linewith actual

situations, a rock sample with 13 randomly distributed natural
fractures shown in Fig. 12 is analyzed as the third example.
Material parameters are the same as those in Table 1 if not
otherwise specified. Fluids are injected into a borehole (e.g.,
F0 in Fig. 12 located at the center of the sample with a constant
flowrate at 0.001m2/s. Similar to previous numerical examples,
the displacements are fixed for all external boundaries, and the
hydraulic pressure there is set to be zero.

Figure 13 presents the distribution of the phase field at
different times, i.e., t = 0.9 s, 2.3 s, 4.9 s, 7.1 s, 9.1 s, and
14.1 s, respectively. The result shows that the perforation frac-
tures F0 continuously propagate, when fluids are injected, and
gradually connect to the nearest natural fractures F3, F9, and
F1 (Fig. 13a, b). Afterward, the connected natural fractures

Injec�on Rate: q=0.5e-3 Injec�on Rate: q=2e-3

k=2e-14
Distance 
L=0

k=2e-14
Distance 
L=10

k=2e-13
Distance 
L=0

k=2e-13
Distance 
L=10

Fig. 10 The phase field at the
same specific total volume, with
constant flowrates at 0.0005 m2/s
at 12 s and 0.002 m2/s at 3 s in
different cases of rock intrinsic
permeability, i.e., k = 2 × 10−14

m2 (the top two rows) and k = 2 ×
10−13 m2 (the bottom two rows)
for different distances, i.e., L =
0 m and 10 m
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F3, F9, and F1 start to propagate to further link to other nearby
fractures. For instance, fracture F3 propagates and connects to
fracture F2 (Fig. 13c, d), and fracture F9 firstly connect to
fracture F3 with its other side being connected to fracture F8
later (Fig. 13d, f). At the time of 14.1 s, all fractures except
fracture F6 are connected. It demonstrates that hydraulic frac-
turing by injecting fluid through the borehole fracture F0 plays
an important role in the formation of the fracture networks.
The effective connectivity of fracture networks is critically
enhanced due to the continuous hydraulic fracturing propaga-
tion which consequently enhance the effective permeability of
the rock sample.

Figure 14 illustrates the fluid pressure distributions at dif-
ferent injection times. The distribution of fluid pressure
changes dramatically throughout the process which is owing

to the pressure redistributions along the propagating fractures.
In particular, the fluid pressure at fractures increases much
faster than the surrounding undamaged rock matrix. The rela-
tively higher pressure zones are concentrated in the fractures
that are connected to the injection borehole, i.e., the perfora-
tion fractures F0. The evolution of pressure distribution im-
plies that, in the hydraulic fracturing process in fractured
rocks, the pressure distribution may contain significant uncer-
tainties, which primarily depends on the damage degree of the
rock and the connectivity of fracture networks.

The evolution of fluid pressure at the center of fractures
near the injection borehole, i.e., the fracture F0, F1, F2, F3,
F6, and F9, is presented in Fig. 15, showing complex evolu-
tion patterns. The pressure in the perforation fractures F0 (at
the injection borehole) increases at the initial stage of injection
(e.g., when t < 1 s), and then drops down considerably when
the perforation fractures connect to the adjacent natural frac-
tures. For the pre-existing fractures, generally the pressure
values increase dramatically once they are connected to the
propagating hydraulic fractures, e.g., the fractures F1, F3, and
F9. Due to the deformation, the zone at front of the propagat-
ing crack tips (see also Fig. 14) may pose negative fluid pres-
sure which has also been observed in former contribution [29,
31]. The negative fluid pressure is also encountered at some
natural fractures, for example, the fluid pressures at F1 and F9
drop down to negative values at the initial stage as shown in
Fig. 15, which however increases gradually due to the migra-
tion of flow in the fractures and rock matrix. The simulation
results indicate that the evolution of pressure is significantly
affected by the propagation of hydraulic fractures. The

Fig. 11 The evolution of fluid pressure at the center of the hydraulic
fracture for different cases of the rock permeability, i.e., k = 2 × 10−14

m2 and k = 2 × 10−13 m2, and different distances near the natural fracture,
i.e., L = 0 m and 10 m

Fig. 12 The geometry model for the fracture networks system with
meshes (length unit: meter)
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Fig. 14 Fluid pressure of fracture network by a borehole fluid injection with different injection times, i.e., (a) t = 0.9 s; (b) 2.3 s; (c) 4.9 s; (d) 7.1 s; (e)
9.1 s; and (f) 14.1 s

Fig. 13 Phase-field distributions at different injection times, i.e., (a) t = 0.9 s; (b) 2.3 s; (c) 4.9 s; (d) 7.1 s; (e) 9.1 s; and (f)14.1 s
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fluctuations of the pressure measured in the injection borehole
reflect the interaction processes of the natural fractures.

To investigate the influence of rock permeability on the
hydraulic fracturing propagation in fracture networks, the
problem is re-analyzed with permeability k = 2 × 10−14

m2, 1 × 10−13 m2, and 5 × 10−13 m2, respectively. The dis-
tributions of the corresponding phase field and fluid pres-
sure at t = 14.1 s are illustrated in Fig. 16 and Fig. 17. As
seen in Fig. 16, minor discrepancies are observed for the
phase-field distribution; however, the distribution of fluid
pressure differs a lot from each other as shown in Fig. 17.
A higher permeability leads to a more diffuse fluid pres-
sure distribution, which is similar to the observations pre-
sented in section 4.2. Figure 18 demonstrates the variation
of fluid pressure at the center of fracture network sample
with different intrinsic permeability. The fluid pressure
has similar trends for all cases; however, a smaller perme-
ability of rocks results in a relevantly larger fluid pressure
at the borehole.

5 Conclusions

In this paper, a phase-field model is developed and imple-
mented for investigating the hydraulic fracturing process in
saturated poroelastic rocks. Particularly, the hydraulic fracture
interacted with a pre-existing natural fracture in a rock is stud-
ied with emphasis on the influence of the fracture distance and
the permeability of rocks on the crack propagation process.
Moreover, interactions between fractures in fracture networks,
which are of more complex topology and highly in line with
the actual situations, are concerned. The main conclusions
drawn from this study are as follows:

& The phase-field approach alleviates the difficulties in
modeling hydraulic fracturing caused by discontinuities
across fractures and thus is capable of tackling problems
of complex fracture networks.

& The distance between the hydraulic fracture and the near
natural fracture has a significant impact on the propagation
direction of the natural fracture once it is connected to the
fracture where fluids are injected.

& The rock permeability has a limited impact on the propa-
gation directions. However, it affects the propagation
speed considerably. The smaller the rock permeability,
the faster the hydraulic fracture propagates.

& The injection rate has significant impact on the fracture
propagation process, which may cause fracture branches
in the propagation of natural fracture once it is connected
to the hydraulic fracture.

& The hydraulic fracturing process will significantly
increase the connectivity of the natural fracture net-
works due to the propagation of hydraulic fractures,
which consequently increases the effective perme-
ability of the rocks.

& The evolution of pressure in the fracture networks is af-
fected by the propagation of hydraulic fractures. The evo-
lution of the pressure in the injection fracture could be

Fig. 16 The phase field at the injection time t = 14.1 s in different cases of rock intrinsic permeability, i.e., k = 2 × 10−14 m2 (a), k = 1 × 10−13 m2 (b), and
k = 5 × 10−13 m2 (c)

Fig. 15 Fluid pressure for at different fractures with time injection
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used to predict the interaction between hydraulic fractures
and natural fractures in practice.

& For hydraulic fracture network propagation, the effect of
permeability on the topology of fracture networks finally
obtained is very limited; however, it has a considerable
influence on both the fluid pressure distribution in the rock
and the fluid pressure value at the borehole.

Although two-dimensional cases are concerned in this
study, the extension of the proposed phase-field model to
three-dimensional cases is straightforward. Additionally, the
hydraulic fracture propagation, fluid pressure evolution, and
interaction with natural fracture networks are studied in the
presented numerical examples. Many factors, such as the in
situ stress boundary conditions, the more realistic rock and
fluid properties, the operational parameters, the dynamic re-
sponses and mixed fracture mode under the combined action
of shear, and compression stresses [45] in the hydraulic

fracturing process, have not been considered in this study
yet and require efforts for detailed investigation in the future.
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