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Abstract
Immiscible fingering is challenging to model since it requires a very fine mesh for the numerical method to capture the
interaction of the shock front with the capillary pressure. This can result in computationally intensive simulations if a fixed
mesh is used. We apply a higher order conservative dynamic adaptive mesh optimisation (DAMO) technique, to model
immiscible viscous fingering in porous media. We show that the approach accurately captures the development and growth
of the interfacial instability. Convergence is demonstrated under grid refinement with capillary pressure for both a fixed
unstructured mesh and with DAMO. Using DAMO leads to significantly reduced computational cost compared to the
equivalent fixed mesh simulations. We also present the late-time response of viscous fingers through numerical examples in
a 2D rectangular domain and in a 3D cylindrical geometry. Both problems are computationally challenging in the absence of
DAMO. The dynamic adaptive problem requires up to 36 times fewer elements than the prohibitively expensive fixed mesh
solution, with the computational cost reduced accordingly.

Keywords Immiscible viscous fingering · Dynamic adaptive mesh optimisation ·
Double control volume finite element method

1 Introduction

The term viscous fingering refers to the unstable displace-
ment of one fluid by another in a porous medium. This
instability was first described by Saffman and Taylor [1] and
has since attracted considerable attention in a variety of dif-
ferent applications. It can occur in both miscible [2–4] and
immiscible [5–9] displacements, although the behaviour
and modelling of miscible viscous fingering has received
considerably more attention in the literature. This is because
miscible viscous fingering depends on relatively few param-
eters (viscosity ratio and diffusion/dispersion) and thus
can be more easily analysed mathematically and modelled
numerically. Immiscible viscous fingering depends upon the
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relative permeabilities of the fluids as well as the viscos-
ity ratio and instead of diffusion/dispersion depends upon
capillary pressure, which in turn depends upon saturation.

Although immiscible viscous fingering is less well stud-
ied, it is important in a variety of subsurface applications
including enhanced oil recovery (water displacing viscous
oil, immiscible gas injection) [10] and carbon dioxide
sequestration [11, 12]. In enhanced oil recovery, it can result
in reduced sweep efficiency meaning that oil is bypassed
by the injected fluid whilst in CO2 sequestration it may
result in the CO2 plume travelling further than expected
through the formation, potentially reducing the security of
the storage [13]. Conversely, viscous fingering in conjunc-
tion with gravity may enhance the dissolution of the CO2 in
the aquifer, increasing the security of the storage [14]. Due
to the strongly non-linear behaviour of viscous fingers, the
only way to investigate the potential impact of fingering on
oil recovery or security ofCO2 storage is via numerical sim-
ulation, although it is possible to derive analytical solutions
to describe the very early-time behaviour (e.g. [5] and [15]).

The numerical modelling of immiscible viscous fingering
is challenging because the dynamics depend on the balance
between the finger growth (which is driven by the viscosity
ratio of the fluids and the relative permeability functions)
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and capillary pressure. To capture the correct fingering
pattern, the numerical simulation must be dominated by
capillary pressure rather than numerical diffusion and
dispersion. Consequently, very fine meshes are required
which make the simulations computationally intensive,
especially when exploring the late-time behaviour in
realistic 3D displacements.

Over the last two decades, the continuum equations
that govern viscous fingering have been solved in the
literature using many different numerical methods including
finite volume [4, 16], spectral [17, 18], and continuous
and discontinuous Galerkin finite element (FEM) [19–
22] as well as mixed control volume finite element
(CVFEM) [23, 24]. Early work focussed on the use
of higher order numerical schemes in association with
finite volume methods to ensure that physical diffusion
dominated over numerical diffusion [4, 16]. However,
these schemes required a fine mesh resolution across the
whole physical domain making the simulation of fingering
patterns computationally expensive, particularly in 3D. In
addition, they increase grid orientation error [25] which
does not reduce with mesh refinement. Grid orientation
errors tend to be smaller when a CVFEM approach is used
in conjunction with an unstructured mesh and appropriate
initial conditions; however, the fine meshes required to
obtain converged solutions can still make these approaches
prohibitively expensive to apply.

Adaptive mesh refinement (AMR) has the potential
to reduce computational effort when simulating viscous
fingering by increasing mesh resolution around the fingers
to ensure that capillary pressures dominate over numerical
diffusion and dispersion whilst coarsening the mesh in other
parts of the domain. Initial applications to viscous fingering
involved the use of an underlying, fixed, structured mesh
which was locally refined or coarsened depending on
specified error metrics. These enabled the modelling of
viscous fingering in both miscible [26, 27] and immiscible
[28] 2D systems. More recently, Lee and Wheeler [29]
used adaptive enriched Galerkin methods on structured
Cartesian grids to model miscible fingering in linear and
radial displacements. They presented results from large 3D
simulations and argued that AMR reduced computational
cost by allowing resolution to be focussed exclusively along
finger tips but did not present any data to support this
assertion.

Dynamic adaptive mesh optimisation (DAMO) is an
improvement over AMR in that it allows free movement
and repositioning of nodes in an arbitrary unstructured
mesh as well as bisection/joining of existing elements. It
is thus potentially less prone to the grid orientation errors
associated with structured meshes and discussed above.
It has been used for many years in computational fluid
dynamics (CFD) [30] but has only recently been applied

to porous media flows [24, 31, 32]. Both [24] and [32]
applied DAMO to the modelling of immiscible viscous
fingering in 2D rectangular systems but neither included
capillary pressure and so were unable to demonstrate
convergence under mesh refinement. Adam et al. [24]
showed that DAMO could reproduce the pattern seen in
a very fine, fixed mesh simulation of one immiscible
viscous fingering case whilst [32] demonstrated that DAMO
using an unstructured mesh gave similar results to finite
volume simulations using a fixed Cartesian mesh but the
simulations were less affected by grid orientation errors.
More recently, Abdul Hamid et al. [33] showed that the
DAMO model used by [32] predicted the same early-time
growth rates of viscous fingers as predicted by two different,
finite volume numerical models. All these agreed well
with the values predicted by perturbation analysis for very
small wavenumbers, thus providing some validation of the
approach.

In this paper, we significantly extend what has been
done previously in the literature by applying DAMO to
the realistic problem of immiscible viscous fingering with
capillary pressure in 2- and 3D domains. We build upon
some preliminary results presented by Adam et al. [34],
using similar data sets but using the double control volume
finite element method (DCVFEM) [35], which allows us to
use a higher order representation for velocity and pressure
in conjunction with the adaptive mesh. These enable the
model to achieve converged solutions with fewer elements
compared to the results presented in [34]. Higher order
interpolation is used to minimise the growth of errors during
each mesh adapt [24]. To illustrate the practical utility of
unstructured adaptivity, we focus on fingering simulations
that are very challenging to carry out using fixed mesh
approaches due to the prohibitively high computational cost.
We demonstrate convergence of viscous fingers in a 2D
simulation where the non-wetting phase is displaced by the
wetting phase using both fixed and adaptive meshes. We
quantify the speed-up due to mesh adaptivity. DAMO allows
us to consider two otherwise highly intensive simulations, a
late-time simulation of a 2D displacement in a high aspect
ratio domain as well as a 3D displacement in a cylindrical
domain that is, to the best of our knowledge, the first of its
kind.

2 Governing equations

The governing equation for multiphase flow in porous
media is the generalised form of Darcy’s law, written for a
phase α as

qα = KrαK
μα

(−∇pα + ραg) , (1)
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where the subscript α = w, nw indexes the wetting and
non-wetting phases respectively, qα is the volumetric fluid
flux, Krα is the relative permeability, K is the permeability
tensor, ρα is the density and μα the viscosity of phase α.
In the formulation with capillary pressure, we write Darcy’s
law in a slightly modified form as

vw = σ
w
uw = −∇p + ∇pc, (2)

vnw = σ
nw

unw = −∇p, (3)

where v is the force density, u is the phase saturation-
weighted Darcy velocity, p and pc are the pressure and the
capillary pressure, respectively, and σ

α
is defined for phase

α as

σ
α

= μαSα(KrαK)−1, (4)

with Sα being the saturation (phase volume fraction) of
phase α. Gravitational effects are assumed to be negligible
in the cases studied in this paper, and hence the gravitational
terms have been omitted from Eqs. 2 and 3. The saturation
equation for incompressible flow is written as

φ
∂Sα

∂t
+ ∇ · (uαSα) = 0, (5)

where φ is the porosity of the medium. Finally, in order
to ensure a closed system of equations, the saturation
constraint is imposed as
∑

α

Sα = 1. (6)

To discretise the governing equations, the DCVFEM
[35] is used in this paper, which is a variation of the
commonly used CVFEM approach. The main improvement
in DCVFEM is that although the velocity is discretised
using finite elements as in CVFEM, the pressure and
saturation are discretised using the control volume mesh.
Both saturation and pressure are expanded using the
same shape function ensuring a consistent representation.
Therefore, fields calculated from the saturation but resolved
in the pressure space, such as the capillary pressure, are
consistently represented.

The DCVFEM improves the quality of the pressure
matrix for the highly distorted meshes often required in high
aspect ratio domains found in subsurface reservoir problems
[36]. Moreover, using the DCVFEM enables us to use
large-angle elements at the displacement fronts when using
DAMO. Consequently, fewer elements are used leading to
the reduction of the computational demands and ultimately
allowing solutions to be obtained for systems where the
classical approach fails. Further details of the discretisation
method can be found in [31, 35, 37].

In this paper, the element pair Pn−1DGPnCV is
used for the numerical simulations. Pn−1 refers to the
polynomial order of velocity discretisation, DG denotes the

use of discontinuous Galerkin, Pn refers to the order of
discretisation of the pressure and CV stands for the use of
the control volume shape functions. The θ -method is used
for time discretisation, where θ smoothly varies between
0.5 (Crank-Nicolson) and 1 (implicit Euler) based on a
total variation diminishing criterion [38]. The numerical
method presented here is implemented in the open-source
code IC-FERST (Imperial College Finite Element Reservoir
Simulator).

3 Dynamic adaptive mesh optimisation

Dynamic adaptive mesh optimisation is a method of
automatically refining the computational mesh where
properties are changing rapidly in space and coarsening
elsewhere. An overview of the method and its applications
in computational fluid dynamics over the last decade can be
found in [30].

The DAMO approach applied in this paper utilises the
anisotropic mesh optimisation techniques presented in [39],
in which elements edges may collapse, split or swap and
element vertices may be moved. It can be shown that the
interpolation error between a smooth field ψ(xi) and its
linear interpolation over a given fixed mesh ψ = ∑

i qiNi ,
where Ni are the finite element basis functions and qi the
nodal values of the field, is bounded by a function of the
Hessian matrix [39]

Hij = ∂2ψ

∂xi∂xj

. (7)

Mesh adaptivity proceeds by constructing a functional I

dependent on this interpolation error bound that measures
mesh quality for a given domain [39]:

I =
∑

i∈edges

(
vT
i Mvi − 1

)2
, (8)

where

Mij = (detH)
− 1

2γ δ
|Hij |

ε
, (9)

and vi are vectors describing the element edge lengths on
the finite element mesh, ε is a normalisation constant, γ

is the polynomial degree of the finite element interpolation
and δ is the number of dimensions in the problem. The
mesh adaptivity process therefore amounts to minimising
the functional I and hence generating a mesh with a
minimum interpolation error estimate. Mesh adaptivity also
accounts for other possible constraints such as the geometric
configuration of the problem at hand, the maximum
required number of elements, and the mesh anisotropy or
gradation. Mesh anisotropy refers to the maximum aspect
ratio of the element’s edge-lengths, whilst gradation refers
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(a) (b)

(c) (d)

Fig. 1 Allowed mesh adaptivity operations [39]

to the variation of the size on consecutive elements, i.e. it
controls how fast the mesh size may change. The new mesh
is obtained by applying the following techniques (Fig. 1) to
the original mesh, provided that the defined error criterion
is improved:

1. Edge splitting: refinement via splitting existing ele-
ments and adding an additional node along an existing
edge and regenerating the elements which share it

2. Edge collapsing: coarsening via removing an existing
node by collapsing an existing edge to zero length and
thus replacing two nodes by a single one lying at the
edge midpoint

3. Edge and face-edge swapping: reordering the connectivity
of existing elements and introducing an edge between
the two nodes of two elements that are not shared

4. Node movement: repositioning nodes within the convex
hull spanned by the elements which share it, to improve
mesh quality

For the CV fields (pressure and saturation) a CV-
Galerkin interpolation is used to map the data from one
mesh to another. CV-Galerkin is a three-step Galerkin
technique [40], fully conservative and bounded, and has
second-order re-mapping [24]. The steps of the CV-Galerkin
interpolation method are summarised as

– Mapping of the CV field on the old mesh onto a FE
representation via Galerkin projection

– Mapping of the resulting FE mesh to a supermesh (i.e.
the intersection of the old and target meshes) via FEM
Galerkin projection

– Project the new FE mesh back into a CV representation
on the new mesh

For the FE field (velocity) interpolation, the Galerkin
technique is employed. In this paper, DAMO is used to
capture variations in saturation and pressure fields, leading
to increased mesh resolution where required and coarsening
elsewhere. Material properties such as permeability and
porosity are constant and uniform so there is no need for
interpolation.

Figure 2 shows the flow diagram of the methodology
described in Sections 2 and 3. Three major loops are
considered. The dotted line denotes the fixed-point iteration
(FPI) method [41], used to solve the non-linear system of
equations. Next, the accumulated time is calculated. If the
final time has not been reached, the time is increased and the
algorithm may enter the loop in which the mesh is adapted.
The DAMO loop is denoted with dashed line. Ultimately,
the process is repeated in the time loop, denoted with solid
line, until the final time-level is reached.

4 Numerical simulations

We now discuss the set-up of the immiscible displacement
simulations that we consider in this paper. We start with
a 2D problem that is computationally tractable on a fixed
mesh. The wetting phase (such as water) is injected
into a square geometry initially saturated with the non-
wetting phase (such as oil) at the irreducible wetting phase
saturation.

Displacement instabilities can be triggered numerically
by introducing a perturbation to the saturation, pressure or
permeability fields. Here, viscous fingering is triggered by
a wetting phase saturation perturbation of Fig. 3 along the
inlet boundary at the first time step. The perturbation can
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Fig. 2 Flow chart showing the
steps of the algorithm. There are
three main loops in total. The
solid lines denote the time loop.
The dotted lines denote the FPI
method, which is used to solve
the nonlinear system of
equations.The dashed lines
denote the DAMO in which the
mesh is adapted and the fields
are interpolated

be regarded as a superposition of Fourier modes which in a
simple 2D Cartesian example takes the form

δS =
∑

n

s(ξ)ne
2nπiy/L+iωt (10)

where L is the domain length transverse to flow, ξ =
z − vshockt defines a coordinate system moving with the
advancing linear shock front, p(ξ) and s(ξ) are pressure and
saturation eigenfunctions respectively that have no explicit
time dependence in the moving frame, σ = 2nπ/L is the
wavenumber of the perturbation and ω is the growth rate
of the perturbation. In order to be consistent, in the 3D
cylindrical case, the same explicit saturation perturbation is
used as a linear superposition along the diameter transverse
to the flow.

We begin by performing a mesh convergence analysis to
determine the fixed mesh resolution needed for a physically

converged solution in 2D. As the metric to measure
convergence, we use the time taken for the wetting phase to
reach the outlet boundary (breakthrough time).

Having found a converged fixed mesh fingering solution,
we then repeat the process for simulations using DAMO. In
the adaptive simulations, the initial mesh resolution is the
same as in the respective fixed ones. The mesh is initially
kept fixed so as to allow the fingers time to grow. Once the
dimensionless time of pore volume injected (PVI)∼0.03,
the mesh adapts to the water saturation field in every time-
step. This delay ensures maximum resolution of the finger
growth and that the early-time growth of the fingers is
not influenced by mesh adaptivity. Adapting the mesh too
early (before the finger pattern is established) or too late
(after the fingers have progressed into the coarser region of
the mesh) will result in finger growth being controlled by
numerical diffusion rather than capillary pressure. In these
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Fig. 3 Saturation perturbation along the inlet boundary used to trigger
viscous fingering

tests, adaptive mesh resolution is controlled by changing the
minimum element edge length in the mesh whilst holding
the maximum edge-length fixed.

The converged fixed mesh solution is then compared to
the converged DAMO solution to determine how accurately
the adaptive solution was able to reproduce the fixed mesh
results. In order to fully utilise the capabilities of DAMO,
we further investigate two alternative adaptive meshes
with higher mesh anisotropy. In these tests, resolution is
controlled by changing the maximum element edge length
and the aspect ratio of the element size, whilst keeping the
converged minimum element edge length. In this way, we
manage to reduce mesh resolution where it is not required
whilst maintaining the same level of accuracy.

We further assess the computational efficiency of
the adaptive simulations compared to the respective
fixed ones. We show that even when adapting and
interpolating at every time step, the computational overhead
is easily outweighed by the reduced computational cost
resulting from the significantly smaller number of elements
employed when implementing DAMO. More information
about the computational cost of the DAMO can be found in
[31, 42–44].

We move on to two examples that are much more
challenging to simulate using fixed meshes and which
rapidly become intractable at high resolution. First, we
considered the above 2D displacement problem but in a
much higher aspect ratio domain (10:1) which is closer to
those encountered in real reservoirs. Finally, we considered

a 3D simulation in which the wetting phase is injected into
a cylindrical geometry saturated with the non-wetting phase
and 3D fingers are allowed to form. This set-up is typically
used in core flood experiments such as those of Riaz et al.
[45]. These geometries are much harder to model in fixed
mesh simulations using cuboid grid blocks.

The set of rock and fluids properties used for all
simulations are shown in Table 1, based on the experimental
data of Riaz et al. [45] and simulations of these experiments
by Jaurè et al. [46]. The model dimensions for the three
cases are shown in Table 2. A Corey correlation [47] is used
for the relative permeability curves, which are the same as
those used by Jaurè et al. [46]

kr,w = 0.06 S2, kr,o = 0.74 (1 − S), (11)

S = Sw − Swr

1 − Swr − Sor

(12)

where Swr = 0.3 and Sor = 0.4 are the immobile fractions
of the displacing/displaced fluids (the fractions of the two
fluids that cannot be displaced). At the specified viscosity
ratio M = 303, the above displacements have a shock front
mobility ratio M∗ = 1.8 (the theoretical stability limit is
1) and are expected to be unstable to fingering. For the
capillary pressure, the functional form in [46] is adopted:

Pc = 0.01

√
φ

K
(1 − S)2 . (13)

In all 2D simulations, a P1DGP2CV (linear discon-
tinuous velocity, quadratic pressure) element pair is used,
whilst the 3D simulations use P0DGP1CV . In all cases, a
small CFL ∼ 0.05 is used to minimise numerical diffusion.
Table 3 summarises the different cases simulated and their
associated mesh parameters.

5 Numerical results

5.1 Fixedmesh 2Dmodel

We now discuss the results of the viscous fingering
simulations outlined in Section 4. We start with a mesh
refinement analysis to demonstrate numerical convergence
and to determine the fixed mesh resolution required for
a converged solution. The immiscible viscous fingering
results are presented in Fig. 4 for different mesh resolutions,
in the presence (Fig. 4a–d) or in the absence (Fig. 4e–h) of
capillary pressure.

Table 1 Rock and fluid
parameters used in the
fingering simulations

Viscosity ratio Porosity Permeability (m2) Inject. Vel (m/s) Outlet pressure (Pa)

M = μnw=0.303
μw=0.001 = 303 φ = 0.205 K = 3.7 × 10−13 2.5 × 10−5 100,000
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Table 2 Model dimensions for
multiphase flow simulation 2D dimensions 2D dimensions (10:1) 3D cylinder radius 3D cylinder length

0.05 × 0.05 0.5 × 0.05 0.0255 0.52

All distances are in metres (m)

Table 3 Different mesh resolutions used for the fingering convergence analysis together with the corresponding time steps used for each resolution

2D fixed mesh 2D adaptive mesh (max edgelength 0.005)
# Mesh �t(s) Edgelength # Elements �t(s) Edgelength(min) # Elements
1 0.05 0.002 1698 0.05 0.002 735
2 0.025 0.001 6656 0.025 0.001 1571
3 0.02 0.0008 10,388 0.02 0.0008 2113
4 0.0175 0.0007 13,646 0.0175 0.0007 2472
5 0.015 0.0006 18,686 0.015 0.0006 3128
6 0.0125 0.0005 26,538 0.0125 0.0005 3749
7 0.01 0.0004 41,618 0.01 0.0004 4794
8 0.009 0.00036 50,978 0.0075 0.0003 6158
9 0.00825 0.00033 61,182 0.006875 0.000275 6710
10 0.0075 0.0003 73,862 0.00625 0.00025 7313

2D adaptive mesh
�t(s) Edgelength (min) Edgelength (max) Ratio # Elements at breakthrough

11 0.01 0.0004 0.01 20 3787
12 0.01 0.0004 0.02 60 2620

2D (10:1) Adaptive Mesh
13 0.01 0.0004 0.02 60 23,426

3D Adaptive Mesh
14 0.015 0.0007 0.02 20 1,098,403
15 0.015 0.0007 0.2 50 1,094,112

In the adaptive case, the number of elements is reported at the wetting phase breakthrough. Note that a fixed CFL∼ 0.05 is maintained for all
simulations

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 2D immiscible viscous fingering simulation results with (a, b, c, d) and without capillary pressure (e, f, g, h). Snapshots of saturation are
shown at PVI∼0.07 for the fixed mesh resolutions: #3 (a, e), #5 (b, f), #7 (c, g) and #9 (d, h)
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We observe that convergence under grid refinement
is achieved only in the case of solutions with capillary
pressure. In the absence of capillary pressure, it is not
possible to achieve convergence, because refining the mesh
without capillary pressure reduces numerical diffusion so
fingers with higher wavenumber can grow with higher
rates (Fig. 4e–h). Inclusion of physical diffusion (capillary
pressure) regulates the problem, suppressing the growth of
high frequency modes and leads to a converged solution
(see, e.g., the linear stability analyses [15, 48]). This is also
verified quantitatively in Fig. 5, where the saturation profile
along a vertical slice through the fingers at x = 0.0325

and a horizontal slice along the fingers at y = 0.025
are presented at time PV I ∼ 0.07, for different mesh
resolutions. From Fig. 5 a and c, we can infer that in
the case of solutions with capillary pressure the error is
reduced as the number of elements is increased, and thus
the viscous fingering pattern and the discontinuity in the
saturation are accurately captured given the appropriate grid
resolution.

In the no capillary pressure simulations, we observe
a different flow pattern that is controlled by numerical
diffusion. As the mesh resolution increases, the number
of fingers increases from 6 for mesh #3 to 20 for mesh

(a) (b)

(c) (d)

Fig. 5 Saturation profile along a vertical slice (x = 0.0325) (a, b)
and a horizontal slice (y = 0.025) (c, d) at time PV I ∼ 0.07 that
intersects the fingering pattern, with (a, c) and without (b, d) capillary

pressure. Non-monotonic curves of (d) are due to horizontal sampling
across curved fingers where the tip is becoming disconnected from the
fluid behind
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Fig. 6 Plot of breakthrough time
versus mesh resolution for
viscous fingering with capillary
pressure. The breakthrough time
becomes earlier as resolution is
increased, eventually converging
to an approximately constant
value (to within 0.1%). In
adaptive case (red line)
minimum element edge length
varies whist keeping maximum
edge-length at 0.005, whilst in
(green line) minimum element
edge length is kept constant at
0.0004 varying the maximum
one

#9. Even for small changes in the grid refinement, the
finger pattern changes significantly, as shown in Fig. 5b.
This is also evident in Fig. 5d, where we observe sudden
jumps in the saturation profile along the fingers due to

the tips becoming disconnected. Finally, Fig. 6 (blue line,
cycles) shows a plot of breakthrough time versus mesh
resolution for solutions with capillary pressure. We see that
the value of the breakthrough time predicted from the fixed

0.33

0.35

0.38

0.3

0.4

(a) (b) (c) (d)

0.33

0.35

0.38

0.3

0.4

(e) (f) (g) (h)

Fig. 7 2D immiscible viscous fingering simulation results with cap-
illary pressure (a, b, c, d) and without capillary pressure (e, f, g, h).
Snapshots are shown at PVI ∼ 0.02, 0.05, 0.07 and 0.1. Both simula-
tions used a fixed mesh with element edge length e = 0.0004. In the

capillary case, this resolution is sufficient for a converged solution. The
inclusion of capillary pressure cuts off high frequency perturbations
leading to larger, thicker fingering structures
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0.35

0.38

0.3

0.4

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 2D immiscible viscous fingering results on an adaptive mesh
with minimum element edge length e = 0.0004 corresponding
to the converged fixed mesh solution. Snapshots of the flow at
PVI∼0.02, 0.05, 0.07 and 0.1. are shown (a, b, c, d), together with the

corresponding dynamic mesh at these times (e, f, g, h). Notice that the
mesh is initially held fixed and that it is the same as that used in the
fixed mesh simulations

mesh simulations stabilises at∼ 40,000 elements, indicating
convergence at this resolution (Table 3, mesh #7).

Having demonstrated convergence, we now look at the
converged fingering solutions themselves. The converged
fixed mesh simulations were performed on mesh #7 with
∼ 40, 000 elements. Figure 7 shows the time evolution of
the viscous fingers in the presence (a–d) or in the absence

(e–h) of capillary pressure. This is the first time DCVFEM
has been used to simulate immiscible viscous fingering. The
solutions with no capillary pressure (Fig. 6e–h) resemble
those found in [24, 49] using a control volume Galerkin
formulation, indicating the correctness of the method. We
note in particular that the flow pattern is dominated by many
small fingers. This is in contrast to the case with capillary

(a) (b) (c)

Fig. 9 Close-up of the adaptive mesh for element aspect ratio R = 10
(a), R = 20 (b) and R = 60 (c) at PV I ∼ 0.07. Notice how mesh res-
olution is focussed along the region of interest (the fingering profile)

and has coarsened elsewhere. (There is fine resolution along the inlet
boundary since there is a greater change in saturation gradients there)
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(a) (b)

Fig. 10 a Saturation profile along a vertical slice (x = 0.0325)
that intersects the fingering pattern on both fixed and adaptive
meshes. b Wetting phase flux across the outlet boundary as a function

of (normalised) simulation time computed on both fixed and adaptive
meshes. In all cases, we see very close agreement between simulations

pressure (Fig. 6a–d) where we see fewer, thicker fingers.
This behaviour is expected as capillary pressure diffuses
nearby fingers, effectively joining them together.

5.2 DAMO 2Dmodel

We now repeat the simulations with capillary pressure using
DAMO to demonstrate that the same solution is obtained
with significantly lower computational cost. Similar to the
fixed mesh case, it is important to demonstrate convergence.
Figure 6 (red line, diamonds) also shows a plot of
breakthrough time versus mesh resolution for the DAMO
simulations. The adaptive mesh simulations converge to
the same value of the breakthrough time as predicted from
the fixed mesh simulations. Here, it is possible to obtain
converged solutions using DAMO with fewer than 5000
elements (more than 8 times reduction in the number of
elements compared to the respective fix mesh simulation).
This is because DAMO concentrates mesh resolution at the
finger front, coarsening elsewhere, making the initial fixed
mesh resolution irrelevant as far as computational cost is
concerned.

We now consider the converged adaptive solution with
capillary pressure. This adaptive solution has the same
minimum element edge length as that found for the
converged fixed mesh (e = 0.0004). In Fig. 8a–d, the time
evolution of viscous fingering using DAMO is presented
together with the corresponding dynamic meshes (Fig. 8e–
h). The initial mesh (Fig. 8e) is the same as that used for the
fixed mesh simulations and is held in place until PVI∼0.03

before being allowed to evolve. At that time, fingers have
reached one-third of the way across the domain. After that
time, the mesh adapts in every time step. Notice how mesh
resolution automatically tracks the evolving finger front,
putting resolution where it is most needed. The mesh is also
refined near the inlet. This latter refinement is due to the
rapid change in the water saturation at the trailing edge of
the rarefaction behind the fingering (Fig. 6).

Fig. 11 Normalised CPU time versus minimum element edge length
in the mesh
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The DAMO parameters of meshes #11 and #12 in Table 3
are now considered. In Fig. 6 (green line, cross), a plot
of breakthrough time versus mesh resolution for adaptive
simulations of various element aspect ratios is presented.
We see that for all adaptive cases the solution stabilises
at the converged value of the breakthrough time with less
than 0.1% variability. Remarkably, a converged solution is
obtained without loss of accuracy, with fewer than ∼2600
elements. This leads to a 16 times reduction in the number
of elements compared to the fixed mesh simulation. Figure 9
shows a close-up of the adaptive mesh for various element
aspect ratios.

There is no visual difference between the adaptive
results and the fixed mesh results (Fig. 7) suggesting
that the adaptive mesh is sufficient to capture the key
flow behaviour. This is verified quantitatively in Fig. 10a,
where we plot the saturation profile across a vertical slice
through the fingers at x = 0.0325 at time PV I ∼
0.07, from both adaptive and fixed mesh simulations. In
Fig. 10b, we compare the wetting phase flux across the
outlet boundary for the respective simulations. In all cases,
there is very close agreement between the fixed and adaptive
results indicating that adaptive mesh simulations are capable

of accurately capturing the immiscible viscous fingering
behaviour whilst significantly reducing the computational
cost.

5.3 Computational speed-up using DAMO

The significant reduction in the number of elements needed
for convergence leads to a major computational speed-up
on the adaptive mesh compared to its fixed counterpart.
Figure 11 shows the normalised CPU time against the
minimum element edge length for the fixed meshes and the
adaptive ones with fixed maximum edge-length (meshes #1-
7). The CPU time is normalised by the time taken to run
the converged fixed mesh simulation (mesh #7). We see
that the converged adaptive mesh simulation runs 3.5 times
faster than the fixed one. The normalised CPU time for the
meshes #11 and #12 are also plotted in the same figure.
The higher mesh anisotropy leads to further reduction
in the number of elements required. Consistently, lower
computational effort is demanded and speed-up factors
of 6.8 and 10.9 are achieved, respectively. We see that
the additional computational cost for adapting the mesh
is insignificant compared to the reduced cost due to the

Fig. 12 a Initial viscous fingers
and b computational mesh at the
end of the early-time regime of
Fig. 8. c, e Viscous fingers and
d, f mesh at mid-time and just
before breakthrough,
respectively, in an extended
domain of length L = 0.5m.
The finger growth is now
dominated by non-linear effects.
Mesh adaptivity continues to
automatically refine in the
regions where the viscous
fingers are growing. The
minimum element edge length
e = 0.0004 as in Fig. 8a and the
maximum aspect ratio R = 60
as in Fig. 9c are sufficient for a
converged solution

(a)

(b)

(c)

(d)

(e)

(f)
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Fig. 13 Adaptive mesh resolution versus normalised simulation time
for the high aspect ratio 2D domain. Blue line represents curve fitting
of the raw data presented with a faint gray line, together with the
respective error bars in black lines

smaller number of elements when using DAMO. Both the
cost and the speed-up are significantly improved even if the
mesh adapts in every time step and the initial mesh is kept
fixed for the one-third of the domain. The simulation times
were obtained running in serial with a 2.6 GHz dual Intel
Xeon processor.

(a) (b) (c)

Fig. 14 Cylindrical viscous fingering pattern and the respective
dynamic adaptive mesh at a early-time regime, b mid-time regime and
c shortly before wetting phase breakthrough in an cylindrical domain
of length L = 0.52m. Immiscible 3D viscous finger growth is also

dominated by non-linear effects. The global minimum element (tetra-
hedron) edge-length is e = 0.0007 and the maximum is e = 0.2.
In all cases a close-up is presented to illustrate how mesh adaptivity
automatically refine at the finger front

5.4 High aspect ratio 2Dmodel

Whilst DAMO is very useful in the above simulations, it
is still feasible to use fixed mesh simulations due to the
relatively small domain size. We now consider an example
that is much more challenging on a fixed grid.

Since DAMO focusses resolution mainly at the front, it is
ideal in cases where one needs to simulate viscous fingering
in high aspect ratio domains. This is needed to probe
the late-time behaviour of fingering where the transverse
dimension is much smaller than the direction along the flow
(typical of laboratory core floods, oil reservoirs and aquifers
used for geological CO2 sequestration).

As a proof of principle, we show in Fig. 12a–f viscous
fingers in a 2D domain with L = 0.5m, giving an aspect
ratio of 10. We see that the number of fingers in the system
has reduced from 8 at early time (PV I ∼ 0.01) to 4 just
before breakthrough (PV I ∼ 0.1). This is due to fading
of the smaller fingers. This fading and merging of fingers
will continue and it is likely that the fingers will eventually
join to form a single finger (see [50]). In this case, it seems
likely that the overall behaviour of the displacement will be
independent of the initial conditions.

These results represent a step towards a systematic study of
non-linear late-time immiscible viscous fingering. Fixed
mesh simulations in these geometries are extremely costly
but this is much less so in the adaptive case. The equiv-
alent fixed mesh resolution would require approximately
415,000 elements whilst the adaptive one uses on average
around 22,000 elements leading to a 19 times reduction in
the required number of elements. In Fig. 11, the normalised
CPU time against the minimum element edge length is

Comput Geosci (2020) 24:1221–1237 1233



Fig. 15 Cylindrical viscous fingering pattern shortly before wetting
phase breakthrough with the adaptive mesh overlaid

presented. We show that a speed-up factors of approxi-
mately 18 is achieved.

In Fig. 13, the adaptive mesh resolution is plotted over the
normalised simulation time. We observe a constant number
of elements for the initial time steps where (similar to above)
the mesh is held in place to ensure proper finger growth. We
notice a sudden drop of the required number of elements
since DAMO reduces them by half, only using smaller
elements where they are needed to track the evolving finger

Fig. 16 Adaptive mesh
resolution versus normalised
simulation time for the
cylindrical 3D domain. Blue line
corresponds to simulation with
global minimum (tetrahedron)
element edge length of
e = 0, 0007 and the maximum
of e = 0, 2 and red line
corresponds to simulation with
the maximum of e = 0, 02.
Solid lines represents curve
fitting of the raw data presented
with a faint gray lines, together
with the respective error bars in
black lines. In both cases
adaptive mesh converge to ∼ 1.1
million elements

front and the rapid change in saturation at the inlet. At
breakthrough, the mesh resolution is further reduced since
viscous fingers cross the outlet boundary and there is less
variation in water saturation in the system itself.

5.5 Cylindrical 3Dmodel

As a final demonstration of the advantages of DAMO for
immiscible viscous fingering simulation, Fig. 14 shows the
results of simulating viscous fingers in a 3D cylinder. This
demonstrates the practical utility of our approach.

In Fig. 15, the cylindrical viscous fingering pattern
is presented, shortly before wetting phase breakthrough
overlaid with the associated dynamic adaptive mesh. The
adaptive mesh has an average number of ∼ 1.1 million
tetrahedra and was run in parallel on 20 cores using a
Linux workstation with 2.6 GHz Intel Xeon processors.
The equivalent fixed mesh resolution would have required
approximately 40 million elements rendering this problem
prohibitively computationally expensive. Utilising DAMO
reduces the required number of elements by a factor of
36, making this problem feasible to solve. A computational
efficiency of the same factor is estimated. In Fig. 16, the
adaptive mesh resolution is plotted over the normalised
simulation time for two different adaptivity settings. Similar
to the 2D case, we observe a sudden drop in the mesh
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(a)

(b)

Fig. 17 a Viscous fingers and b the computational mesh before breakthrough as a longitudinal slice at the centre of the cylinder, through the
fingering pattern. The finger growth is dominated by non-linear effects and mesh adaptivity continues to automatically refine in the regions where
the viscous fingers are growing

resolution once the initial mesh is allowed to adapt and a
quick convergence of the maximum required resolution.

The cylindrical fingering pattern resembles that of the
2D case. Figure 17 shows the saturation pattern and the
respective mesh seen in a longitudinal slice through the
viscous fingers (plane normal to the x axis and passing
through the centre of the cylinder). We observe that, as
in the 2D case, the number of fingers in the system
has reduced to 4 and that mesh adaptivity continues to
automatically refine in the regions where the viscous fingers

are growing. This similarity is due to the fact that we used
the same saturation perturbation at the inlet boundary to
control finger growth. Figure 18 shows the saturation profile
across cross-sectional slices for various times at different
distances along the cylinder. From this figure, the non-
linear late-time behaviour of the fingers is also verified
in the cylindrical set-up, where small fingers tend to fade
and/or merge together forming thicker ones that continue to
grow. A similar response is observed experimentally in [45].
Further investigation is required to determine the physical

Fig. 18 Cross sectional slices
showing saturation profile for
various time instances (PVI) at
the positions of z = 0.28 (upper
row), z = 0.42 (mid row) and
z = 0.52 (lower row)
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correctness of this pattern; the simulation here should be
viewed as a demonstration of what mesh adaptivity is
capable of doing for viscous fingering simulation.

6 Conclusions

In this paper, we have demonstrated the benefits of using
DAMO for the modelling of immiscible viscous fingering.
The mesh adaptivity was implemented in a DCVFEM
model using an unstructured 2D and 3D tetrahedral mesh.
Whilst adaptivity techniques are now ubiquitous in other
applications of CFD, their use in porous media flow remains
limited. Conventional simulation of viscous fingering
requires a combination of very fine mesh resolution and
higher order discretisation to ensure physical diffusion
dominates numerical diffusion.

This paper shows that DAMO is ideally suited to
viscous fingering applications, that would be prohibitively
expensive on fixed grids. Using DAMO fine resolution is
only needed along the fluid interface where the fingers
are growing and not throughout the domain. We showed
that using DAMO in a small 2D case, leads to a speed-
up of factor of ten, with no loss in accuracy. The
compositional cost was decreased accordingly, resulting
from the significantly smaller number of required elements.
Two challenging examples were also discussed. A 2D
simulation of the late-time non-linear regime of fingering in
a high aspect ratio domain and a 3D simulation of viscous
fingering in a cylindrical geometry. These examples showed
that the DAMO can be used to begin a systematic study
of non-linear fingering which has not been attempted thus
far in the literature and could yield important insights into
the scaling behaviour of viscous fingers at late times. The
3D example is of particular interest as it is a step towards
simulating viscous fingering in more realistic, non-trivial
geometries that more closely match experiments.
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