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Abstract
A sequential inversion methodology for combining geophysical data types of different resolutions is developed and applied
to monitoring of large-scale CO2 injection. The methodology is a two-step approach within the Bayesian framework
where lower resolution data are inverted first, and subsequently used in the generation of the prior model for inversion
of the higher resolution data. For the application of CO2 monitoring, the first step is done with either controlled source
electromagnetic (CSEM) or gravimetric data, while the second step is done with seismic amplitude-versus-offset (AVO)
data. The Bayesian inverse problems are solved by sampling the posterior probability distributions using either the ensemble
Kalman filter or ensemble smoother with multiple data assimilation. A model-based parameterization is used to represent
the unknown geophysical parameters: electric conductivity, density, and seismic velocity. The parameterization is well suited
for identification of CO2 plume location and variation of geophysical parameters within the regions corresponding to inside
and outside of the plume. The inversion methodology is applied to a synthetic monitoring test case where geophysical data
are made from fluid-flow simulation of large-scale CO2 sequestration in the Skade formation. The numerical experiments
show that seismic AVO inversion results are improved with the sequential inversion methodology using prior information
from either CSEM or gravimetric inversion.

Keywords CO2 monitoring · Cooperative geophysical inversion · Ensemble-based methods · Model-based parameterization

1 Introduction

Storing CO2 in large, saline aquifers is considered one of
the remedies for greenhouse-gas emission. Cost-efficient
CO2 sequestration in large aquifers with an aim to store a
large amount of CO2 over a restricted period of time will
likely involve high injection rate spread over few injection
wells. The combination of high injection rate and few
injection wells can lead to hazardous pressure build-ups.
If pressure develops over certain thresholds, situations like,
e.g., near-well fracturing and fault reactivation can occur,
with possibly severe consequences. To be able to detect
areas with potential hazardous over-pressure, especially far
from the wells, periodical geophysical monitoring surveys
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have to be conducted. Geophysical monitoring is also
important for verifying CO2 plume placement and fluid-
flow simulations, and detecting leakage to the surface.

The most widely used geophysical monitoring method
is the seismic method. A common technique for seismic
inversion is amplitude versus offset (AVO) [15], where
elastic parameters are estimated from seismic reflection
coefficients. Seismic time-lapse signals are sensitive to
changes in subsurface elastic properties, where changes
due to contrasts in both saturation and pressure are
important for CO2 monitoring. Discrimination between
saturation and pressure effects is discussed, e.g., in [16,
33, 47, 58, 68, 73, 74]. Obtaining reliable saturation and
pressure estimates from AVO data can be difficult, due
to data and modelling errors, poor conditioning of the
linearized AVO system, and significant uncertainties in the
petroelastic model. To increase the reliability of inversion
results, combining seismic data with information from
complementary geophysical data types is an option. The
complementary data types considered in this paper are
controlled source electromagnetic (CSEM) and gravimetric
data.
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The CSEM method has been used extensively in
exploration, to detect hydrocarbon reserves, see, e.g., [20,
24, 44, 62, 69]. Electromagnetic (EM) signals are sensitive
to the subsurface electric conductivity, which depends
largely on the fluid content in the pores. The conductivity
contrast between CO2-saturated and brine-saturated rock
can be significant, and hence, there is potential for
monitoring saturation effects with CSEM, see [8, 54, 63,
64]. To penetrate sufficiently deep into the subsurface, low-
frequency (0.1–10 Hz) signals are, however, applied with
CSEM. For this reason, it is anticipated that the CSEM data
will have coarser spatial resolution than seismic AVO data.

Gravimetric methods have been used in many monitoring
case studies, e.g., reservoir production monitoring, see,
e.g., [37, 79, 81]. The measured gravitational field in
monitoring studies is sensitive to changes in density. The
CO2 density is (in most cases) less than the brine density,
and the density change resulting from displacing brine by
CO2 is significant enough to produce detectable gravity
signals. In addition to density changes due to different fluid
content in the pores, the fluid densities are dependent on
pressure (and temperature). Hence, it is possible to monitor
pressure and saturation effects with gravity data, although
pressure effects on density are often weak. The spatial
resolution of gravity data is lower than that of seismic
data. The cost of gravity measurements is, however, lower
than those of seismic and CSEM measurements. Several
studies have concluded that gravity data provide valuable
information for CO2 monitoring, both as stand-alone
measurements and as a supplement to other geophysical
methods [5, 30, 41, 48].

Combining complementary geophysical data types is
not a straightforward process. Many of the joint-inversion
techniques that have been suggested in the literature
are based on the assumption that the data types are
linked through petrophysical or structural relationships.
Examples of joint-inversion techniques using petrophysical
relationships can be found, e.g., in [2, 13, 39, 61]. In
most cases, the petrophysical relationships are empirical and
require calibration to experimental data. Alternatively, joint-
inversion techniques based on structural relationships can
be used, where the main assumption is that the data types
are functions of the same underlying structure. Examples of
structural joint-inversion techniques can be found in [17, 29,
35, 52]. The cross-gradient approach, introduced in [28], is
perhaps the most used approach.

While the joint-inversion techniques described above aim
to utilize complementary data types in a single inversion
process, so-called cooperative inversion techniques [55] aim
to invert the data types in separate steps, with the resulting
model from inversion of one data type acting as starting
model or constraint for the subsequent inversion of another

data type. Examples of cooperative inversion techniques can
be found in [75, 76], where interpreted seismic inversion
results are used as structural prior information for CSEM
inversion, and in [17, 40, 70], where inversion of each
data type is done in sequence and, in some cases, iterated.
Exchanging information between geophysical models in the
disparate inversion sequences can be challenging, especially
if the spatial resolutions of the data types are different.
In [78], seismic velocity and electric resistivity models were
coupled through exchange of structural information, but
that required an extra inversion step between the (iterated)
inversion sequences.

Our inversion strategy belongs within the Bayesian
framework, which combines prior knowledge and informa-
tion from observed data to yield the solution as a poste-
rior probability density function (PDF). With the posterior
PDF, a best-estimate geophysical model with associated
uncertainty will be provided. In general, a complete char-
acterization of the posterior PDF is only possible by using
sampling techniques. Markov chain Monte Carlo (MCMC)
methods (for application of MCMC methods to geophysi-
cal problems, see, e.g., [9, 11, 34, 66]) can sample correctly
from the posterior PDF.

To use different geophysical data types jointly, we
follow ideas from cooperative inversion, and further develop
an inversion strategy introduced in [77]. We suggest a
sequential approach where data with lower spatial resolution
are inverted first, and subsequently, the results are applied in
the construction of the prior model for the inversion of data
with higher resolution. As discussed above, both CSEM and
gravimetric data have lower spatial resolution than seismic
AVO data. Thus, either CSEM or gravimetric inversion will
be performed in the first step, before the seismic AVO
inversion in the second step. The construction of the prior
model for the seismic inversion is facilitated through the use
of the same type of parameterization for the CSEM, gravity,
and seismic inversions.

We will apply a model-based parametrization to repre-
sent the unknown functions in the inversions. The particular
model-based parameterization applied here (see, e.g., [7,
76]) is based on the level-set framework, facilitating repre-
sentation of region boundaries without a priori restrictions
on their shapes. It is therefore well suited to represent the
boundaries of the images of a large-scale CO2 plume in
the respective geophysical domains, that is, in the electric
conductivity, density, and seismic velocity. It is expected
that these properties will be slowly varying both within the
region corresponding to the plume and outside that region,
while the variation can be abrupt when crossing the region
boundary. The applied parameterization is able to handle
this type of variation using a relatively small number of
parameters.
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MCMC methods require a huge number of forward-
model runs for a sufficient description of the posterior
PDF, leading to extremely high computational costs for
realistic problems. To reduce computational costs, two
ensemble-based Bayesian methods, the ensemble Kalman
filter (EnKF) [22] and the ensemble smoother with multiple
data assimilation (ES-MDA) [21], which require only a
moderate number of forward model runs, will be applied.
These methods have an underlying Gaussian assumption on
the involved PDFs, and can therefore be shown to sample
correctly from the posterior PDF only in the case where the
prior model is Gaussian and the forward model is linear, in
the limit of an infinite ensemble size. They have, however,
shown to sample approximately correct in many scientific
fields where the forward models are nonlinear, see, e.g., [23]
and [1], and references therein. Ensemble-based Baysian
methods have been used for inversion of CSEM data [75]
and inversion of seismic data [31, 32, 57, 72].

The inversion methodology will be applied to a synthetic
CO2 monitoring test case where the geophysical reference
(‘true’) models are made based on fluid-flow simulations
of large-scale CO2 injection in the Skade formation [19].
The Skade formation is considered a potential candidate
for storing large amount of CO2 in the North Sea [36].
Thus, the test case serves as a feasibility study to asses the
effectiveness of long-term monitoring of CO2 sequestration
in the formation. The numerical setup and results from
this study will be presented in Section 4. The rest of the
paper is organized as follows: in Section 2, the forward
models for CSEM, gravimetry, and seismic methods are
presented. Section 3 describes the inverse problem and
consists of three main parts: the reduced, model-based
parameterization is described in Section 3.1 followed by
the ensemble-based, Bayesian methods in Section 3.2, and
lastly sequential utilization of CSEM, gravimetric, and
seismic data is discussed in Section 3.3. We end the paper
with some concluding remarks in Section 5.

2 ForwardModels

The rock physics model, converting reservoir saturation
and pressure to geophysical variables, is described in
Section 4.1. The three geophysical methods used in this
paper—CSEM, seismic, and gravimetry—are simulated
using three separate forward solvers. Common for all three
forward models is that the computational domain is 2D,
denoted � ∈ R

2. In the following, let x = (x, z)T denote an
arbitrary position vector, and let Ng be the number of grid
cells when � is discretized.

2.1 CSEM

The governing equation for CSEM signals is the frequency-
domain wave equation given by

∇ ×
(
μ−1∇ × e

)
− iωσe = iωj, (1)

where e denotes the electric field and j denotes the electric
source current distribution. Furthermore, ω denotes the
angular frequency, μ denotes the magnetic permeability,
and i = √−1. It is assumed that no free electric charges
are present, and displacement currents are neglected due
to the application of low-frequency signals. The electric
conductivity, σ , is assumed to be vertically transverse
isotropic, where the vertical conductivity is fixed to twice
the magnitude of the horizontal conductivity. Since the
factor between vertical and horizontal conductivity is fixed,
we only focus on horizontal conductivity and denote it by
σ . The wave equation, (1), is solved using the 2.5D finite
element simulator MARE2DEM (see [45, 46] for extensive
description of the simulator), where � is discretized into Ng

triangular elements using Triangle [67].

2.2 Gravimetry

For gravimetry, the gravity field, g, must satisfy the
following equations

∇ · g = −4πGρ, ∇ × g = 0, (2)

where G denotes the universal gravitational constant and ρ

denotes the density. In gravimetric inversion, the responses
are calculated as the difference in the vertical gravitational
field, �gz, between two vintages. The general solution of
(2) for �gz is given as

�gz(x) = 2G

∫

�

�ρ(x′) z′ − z

‖x′ − x‖2
dx′dz′. (3)

To solve (3), the analytical approach given in [71] is used,
where � is discretized into Ng triangular elements with
Triangle. It is assumed that �ρ is constant for each element.

2.3 Seismic AVO

The general forward model for sesimic AVO is given by
the Zoeppritz equations, which describe the reflection and
transmission coefficients of primary (P) and secondary
(S) waves at a rock boundary. The Zoeppritz equations
are tedious to evaluate numerically, and often a linear
approximation is used instead. In this paper, we use the
linear approximation in [4], where the reflection coefficient
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between incident and reflected P waves (Rpp) is given by

Rpp = 1

2 cos2 θ

�Vp

V̄p

− 4
V̄s

2

V̄p
2

sin2 θ
�Vs

V̄s

+1

2

(
1 − 4

V̄s
2

V̄p
2

sin2 θ

)
�ρ

ρ̄
. (4)

Vp and Vs denote the P- and S-wave velocities, θ denotes
the incident (or reflection) angle, and the overbar denotes
average velocity over the reflecting surface. Note that the
linear approximation (4) describes the reflection coefficient
from one reflecting surface and one θ , and is only valid for
weak velocity contrasts and θ significantly below the critical
angle. To expand (4) for use with multiple θ and reflecting
surfaces, we followed the description in [12, Appendix B].
Note that, it is assumed that effects such as geometrical
spreading, multiples, and absorption have been removed
or corrected for in a (pre-)processing step, and it is also
assumed that deconvolution and time-depth conversion
have been performed. Furthermore, it is assumed that data
recorded as a function of source-receiver offsets have
been transformed to be function of incident angles, θ .
(The transformation can be done with, e.g., ray-tracing or
approximate offset-angle formulas.)

3 Inverse problem

We consider the sequential inversion strategy where
electromagnetic or gravimetric data is inverted first, and
utilize results from this inversion to construct a prior
model for the inversion of seismic data. Several inverse
sub problems, involving different physical quantities,
will therefore be considered in this paper: inversion of
seismic data to seismic velocity; electromagnetic data to
electric conductivity; and gravimetric data to density. Major
components of the inversion methodologies applied to solve
the different sub problems will, however, be identical.
To keep the description of these common features of the
methodology concise, we introduce a common notation.
Let d ∈ R

Nd denote measured data, f (x) ∈ F the
unknown function to be estimated, and g (f ) ∈ R

Nd the
forward model output. With frequency-domain CSEM, data
will be complex. In that case, d and g will be augmented
vectors containing real and imaginary parts of the complex
data and forward model output, respectively. To solve the
associated inverse problem, that is, to estimate f (x) from d
and additional available information, we use an ensemble-
based Bayesian method in conjunction with a model-based
parameterization, q (x;m) ∈ Q, of f (x), where m ∈ R

Nm

denotes the unknown parameter vector and Q ⊂ F . A
description of how results from the different inverse sub

problems are combined, and a reasoning behind the way the
data types are utilized together in the sequential strategy,
is given in Section 3.3. Results obtained with this strategy
will be compared with those obtained by direct inversion of
seismic data in Section 4. Note also that Vs and ρ are fixed
at their true values in all seismic inversions.

3.1 Reduced, model-based parameterization

The parameterization applied in this paper is not standard.
We will therefore relate it to more standard parametriza-
tions. The vast majority of papers concerned with solving
inverse problems parameterize the unknown function by a
constant value in each forward model grid cell (pixel param-
eterization). We start by writing the pixel parameterization
in a mathematical notation suitable for this paper.

Let the inversion region, 	, be the union of the members
in a set of predetermined non-overlapping subdomains,{
	j

}Nm

j=1, and let χj (x) denote the indicator function for 	j

(i.e. χj = 1 in 	j and zero elsewhere). One may then write
q (x;m) as a linear basis expansion

q (x;m) =
Nm∑
j=1

mjχj (x) , (5)

that is, a standard zonation with zones
{
	j

}Nm

j=1. Letting
Nm = Ng and letting 	j correspond to grid cell number j

results in (5) being a pixel parameterization of f .
With standard zonation, the zones are fixed when solving

the inverse problem while the values in each zone, the mj s,
are estimated. In order to change zone boundaries, one may
introduce dependencies on a set of control parameters in{
χj

}Nm

j=1. To this end, let the parameter vector consist of two

sub vectors; mT = (cT , aT ), where c ∈ R
Nc , a ∈ R

Na ,
and Nc + Na = Nm, and write q (x;m) as a non-standard
zonation with Nc zones,

q (x;m) =
Nc∑
j=1

cjχj (x; a) . (6)

The dependencies of the χj s on a may be utilized to change
the boundaries of the corresponding zones, while c now
plays the role that m has in a standard zonation.

We will do shape estimation, and therefore parameterize
f by what can be seen as an approximation to a particular
type of non-standard zonation—the reduced, smoothed
level-set representation. Details on the representation can
be found in [75, 76], and references therein. For the
convenience of the reader, we have summarized the
representation in Appendix 1. Note that the representation
can easily be extended to 3D, following [7].
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3.2 Ensemble-based Bayesian inversion

The relation between the random variables d and m is

d = g (m) + εd, (7)

where εd ∈ R
Nd denotes the a realization of the

measurement error vector, and g (q (x;m)) has been written
g (m) for convenience. Before any data have been applied,
m follows the prior probability density function (PDF)
p(m), and for a given m, d follows the conditional PDF
p(d|m) = p(εd = d − g(m)), which we assume is a
zero-mean Gaussian distribution with covariance matrix Cd .
Bayes rule for PDFs then implies that the conditional PDF
of m given d obeys

p(m|d) ∝ p(d|m)p(m). (8)

The posterior PDF, p(m|d), describes the complete solution
to the inverse problem.

An analytical expression for p(m|d) is only feasible
when p(m) is Gaussian and g (m) is linear. Otherwise,
p(m|d) must be characterized through sampling. Markov
chain Monte Carlo methods sample correctly from p(m|d),
but are prohibitively computationally expensive for realis-
tic geophysical problems. In Sections 3.2.3 and 3.2.4, we
describe the computationally feasible, approximate sam-
pling methods for parameter estimation that are applied
in this paper; the ensemble smoother with multiple data
assimilation (ES-MDA) [21] and the ensemble Kalman fil-
ter (EnKF) [22]. For convenience of the reader, we will,
however, first briefly describe the Kalman filter [43] and the
ensemble smoother [50] in a parameter-estimation setting.

3.2.1 Kalman filter

Let m0 and m1 denote the prior and posterior model,
respectively. If p(m0) is Gaussian and g (m) is linear, that
is, g (m) = Am, p(m1|d) will be Gaussian. Its mean is
expressed by the Kalman filter equations [42],

w = Am̄0, (9)

K = Cm0w (Cw + Cd)−1 , (10)

m̄1 = m̄0 + K (d − w) , (11)

where K denotes the Kalman gain, and ȳ and Cy denote the
mean and auto covariance of y, for any y. Furthermore, Cyz

denotes the cross covariance between y and z, for any y and
z.

3.2.2 Ensemble smoother

If p(m0) is not Gaussian and/or g (m) is nonlinear, p(m1|d)

must be characterized by sampling. With the ensemble
smoother, (9)–(11) are applied to each member in the
sample (ensemble member) and Cm0w and Cw in (10)

are replaced by the empirical covariances, C̃m0w and C̃w,
calculated from the corresponding ensembles.

To be able to write the ensemble-smoother equations in
a concise manner, let M and D denote the matrices holding
the model ensemble members and data ensemble mem-
bers as columns, respectively; M = (

m1,m2, . . . ,mNe

)
,

D = (
d1,d2, . . . ,dNe

)
. Hence, M0 contains a sample

from p(m0) and M1 contains a sample from p(m1|d).
To generate M0, we use the Cholesky decomposition
method described in Appendix 2. The matrix D con-
tains a sample from N (d,Cd), where N denotes the
Gaussian distribution. Defining the matrices G(M) =(
g(m1), g(m2), . . . , g(mNe)

)
and W = (

w1,w2, . . . ,wNe

)
,

the ensemble-smoother equations may be written as

W = G
(
M0

)
, (12)

K̃ = C̃m0w

(
C̃w + Cd

)−1
, (13)

M1 = M0 + K̃ (D − W) . (14)

From M1, one may calculate approximations to the two
first moments of p(m1|d), m̄1 and Cm1 , empirically. The
ensemble smoother thus provides a best estimate and a
quantification of its uncertainty. The sample mean, m̃1, can
be obtained by inserting m1 for y in Appendix 3, while the
sample covariance, C̃m1 , can be obtained by inserting m1

for y and z.

3.2.3 Ensemble smoother with multiple data assimilation

When g (m) is nonlinear, iterations are generally required
to obtain an accurate estimate for m, while the ensemble
smoother assimilates d in a single step. In an attempt to
alleviate this problem with the ensemble smoother, the ES-
MDA allows for d to be assimilated in Nu smaller steps
in a statistically correct manner. To this end, a sequence of
real positive scalars, η1:Nu , is introduced, and it is required
that

∑Nu

u=1 η−1
u = Nu [21]. The data covariance in cycle

number u is inflated by ηu, that is, Du contains a sample
from N (d, ηuCd), such that the estimate after completion
of u cycles will depend on η1:u.

To describe the ES-MDA in the ensemble-matrix
notation introduced in Section 3.2.2, let Mu denote M after
assimilation cycle number u has been completed, that is,
Mu contains a sample from p(mu|d, η1:u). The ES-MDA
equations for cycle number u may then be written as

Wu = G
(
Mu−1

)
, (15)

K̃u = C̃mu−1wu

(
C̃wu + ηuCd

)−1
, (16)

Mu = Mu−1 + K̃u
(
Du − Wu

)
. (17)

After cycle number Nu, one obtains the final updated
model ensemble MNu , from which one may calculate
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empirical approximations to the two first moments of the
posterior PDF, p(mNu |d, η1:Nu), in a similar mannner as
described in the final paragraph of Section 3.2.2. Typical
values for Nu are 4 – 8. Theoretical and practical procedures
for choosing ηu can be found in [65].

3.2.4 Ensemble Kalman filter

While the ensemble smoother assimilates all data simultane-
ously in a single step and the ES-MDA assimilates all data
simultaneously in a sequence of smaller steps, the EnKF
is a sequential estimation methodology that assimilates part
of the data in each assimilation cycle until all available
data have been assimilated. It has been shown [25, 26] that
sequential estimation can be expected to outperform simul-
taneous estimation in a single step for weakly nonlinear
problems.

To describe the EnKF in the ensemble-matrix notation,
we split D and G into submatrices,

D =

⎛
⎜⎜⎜⎝

D1

D2

...
DNv

⎞
⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎝

G1

G2

...
GNv

⎞
⎟⎟⎟⎠ , (18)

where Nv denotes the number of data groups, Dv denotes the
ensemble matrix for data group number v, and Gv denotes
the ensemble matrix for the corresponding forward model.
Furthermore, let Mv denote M after assimilation of v data
groups have been completed, that is, Mv contains a sample
from p(mv|d1:v). The EnKF equations for cycle number v

may then be written as

Wv = Gv
(
Mv−1

)
, (19)

K̃v = C̃mv−1wv

(
C̃wv + Cdv

)−1
, (20)

Mv = Mv−1 + K̃v
(
Dv − Wv

)
. (21)

After cycle number Nv , one obtains the final updated
model ensemble MNv , from which one may calculate
empirical approximations to the two first moments of
the posterior PDF, p(mNv |d1:Nv ), in a similar manner as
described in the final paragraph of Section 3.2.2.

Note that the computational expense is approximately
equal to Ne times the computational expense of one forward
model run for EnKF, and (Nu · Ne) times the computational
expense of one forward model run for ES-MDA. Hence,
ensemble-based methods are suitable for problems with
large Nm and Nd .

3.3 Sequential utilization of different data types

Seismic P-wave velocity depends on saturation and
pressure. We will not invert for saturation or pressure

directly, but rather invert for the geophysical parameters,
σ , ρ, and Vp. In particular, we will use inversion results
for σ and ρ to improve inversion results for Vp. If desired,
saturation and pressure effects can be inferred from these
inversion results.

In the very early phase of a CO2 injection, a pressure
front is advancing, followed by a saturation front which
is advancing much more slowly. Hence, in a later phase,
no pressure front is found in the vicinity of the advancing
saturation front. So, except in the very early stages, the
pressure variation during CO2 injection in a reservoir has
a different character than the saturation variation, which
defines the CO2 plume.

These characteristics are reflected in the true Vp,
depending on the rock physics. It may, however, be difficult
to identify them in the Vp obtained by inverting seismic
data, due to data and modelling errors and instability of the
inversion. In particular, using a pixel parameterization to
represent Vp may result in pixel-scale errors that blur the
underlying large-scale CO2 plume. The parameterization
we apply here, however, directly represents large-scale
structures, like a CO2 plume. This means that while the
inversion may not ensure a correct placement and shape of
the plume, it will by construction of the parameterization
avoid blurring of the plume by pixel-scale errors.

Electric conductivity depends on saturation, but not
on pressure. Density depends on saturation and pressure.
The variation in ρ across the CO2-plume boundary is,
however, significantly stronger than the variation due to
pressure differences at neighbouring locations. Abrupt
changes in σ or ρ with x therefore indicate the location
of the CO2-plume boundary (at least when using the
parameterization described in Section 3.1, since pixel-scale
errors then are avoided). The resolution with which σ

and ρ can be determined from CSEM and gravimetric
data, respectively, is, however, coarser than that with which
Vp can be determined from seismic data. It is therefore
not straightforward to utilize information about the CO2

plume obtained from CSEM or gravimetric inversion in the
seismic inversion. It would, for example, not be advisable
to fix the CO2-plume boundaries to those obtained from
CSEM or gravimetric inversion when inverting the seismic
data.

In [48], a sequential approach for CO2 estimation in
the Sleipner field was proposed, where seismically derived
saturation changes were used as input to gravity modelling.
Part of the background for their approach was that time-
lapse pore pressure changes were moderate at Sleipner, so
that saturation effects dominate. A main aim for the Skade
modelling study, motivating our work, was to investigate
large-scale CO2 injection with a small/realistic number
of injection wells, such that large pressure effects must
be anticipated. Our ‘end product’ is the seismic-velocity
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estimate, and we are just as interested in the pressure
effect reflected in the seismic velocity as in the saturation
effect. We therefore suggest an alternative sequential, two-
step inversion strategy for joint utilization of CSEM or
gravimetric data with seismic data. The main idea with
the sequential procedure is to first gain knowledge about
the location and shape of the CO2 plume using CSEM
or gravity data, which are both mainly influenced by
saturation changes, and have lower resolution than seismic
data. Subsequently, this knowledge is utilized to obtain an
improved prior model for the seismic inversion, where we
aim to obtain good estimates of both saturation-induced
and pressure-induced changes in Vp. Implementation of this
knowledge into the prior model for Vp is facilitated by using
the same parameterization to represent σ , ρ, and Vp.

We summarize the two-step, sequential inversion strategy
as follows:

Step 1: Invert CSEM or gravimetric data to get an
approximate location and shape of the CO2 plume.

Step 2: Invert seismic data with prior information on the
location and shape of the plume from step 1.

Note that we do not gain knowledge about variation
of Vp with pressure from CSEM or gravity inversion.
Hence, when making the prior model for seismic inversion,
information on pressure effects on Vp must be apprehended
from other sources, e.g., converting reservoir simulation
results to seismic velocity via rock physics relations.

The sequential inversion strategy shares common
themes with many current seismic full-waveform inversion
schemes. There, low-frequency inversion results are used to
get information on the general structures, which in turn are
used to build initial models for subsequent high-frequency
inversions. Hence, our two-step, sequential inversion strat-
egy could be adapted in the case of seismic full-waveform
inversion with step 1 using low-frequency seismic inversion,
possibly together with CSEM or gravimetric inversion, and
high-frequency seismic inversion in step 2.

4 Numerical experiments

The inversion methodology described in Section 3 was
applied to synthetic data generated from simulated CO2

injection in the Skade formation. The sequential inversion
strategy described in Section 3.3 was employed in two
separate test cases: one where step 1 was performed with
CSEM inversion, and the other where step 1 was performed
with gravity inversion. We compared the inversion results
from of the two acquisition methods in step 1. Subsequently,
we wanted to assess how the different prior models

from step 1 influenced on the final results of step 2.
Finally, the performance of the sequential inversion strategy
was compared with seismic inversion without any prior
information from CSEM or gravity inversion results.

The EnKF was used to perform CSEM and seismic
inversions, while the ES-MDA was used in the gravity
inversion. The reason for choosing the ES-MDA for
gravity inversion is that no reasonable way of grouping
the data was found; see the brief discussion on data
grouping in Section 4.2. The ES-MDA is computationally
more expensive than the EnKF: the computational cost of
one assimilation cycle in the ES-MDA equals the total
computational cost of the EnKF. However, the gravity
forward model has a low computational cost, which made
the use of the ES-MDA feasible.

When we performed CSEM and seismic inversion, the
inversion parameters were σ and Vp, respectively. For
gravity inversion, however, the inversion parameter was �ρ

(difference between density at the time data was collected
and density prior to CO2 injection) rather than ρ. The reason
for using �ρ as inversion parameter is that gz is difficult to
measure and the truly meaningful data content is the change
between two vintages, �gz [38].

Since a total of three seismic inversions will be
conducted, a shorthand label for each one is given as
follows: AVOc is short for step 2 with prior information
from CSEM inversion results; AVOg is short for step 2 with
prior information from gravity inversion results; and AVOw

denotes seismic inversion without prior information from
either CSEM or gravity inversion results.

4.1 Skade formation and synthetic data generation

Together with the Ve Member, the Utsira Formation, and
Upper Pliocene sands of the Nordland Group, the Skade
Formation forms the outer part of a large deltaic system
with its source area on the East Shetland Platform. The
Skade Formation, Lower Miocene, consists of marine
sandstones deposited over a large area of the Viking Graben.
The maximum thickness is more than 500 m and the
thickness decreases rapidly towards the east, where the
sands terminate towards large Oligocene shale diapirs.
Based on available pore volume, the estimated storage
capacity of CO2 in the Skade formation is approximately
15 Gton [10].

To simulate large-scale CO2 injection in the Skade
formation, the commercial reservoir simulator Eclipse™
was used. The 3D reservoir model was set up following [19].
The formation has not been well characterized geologically;
thus, the porosity and permeability are assumed to be
homogeneous with values taken within the range of Utsira
sand data. Specifically, porosity was set to 0.16 while
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Fig. 1 Thickness map of the Skade formation with the 3 injection
wells—W1, W2, and W3—marked

horizontal and vertical permeability were set to 1476 mD
and 147.6 mD, respectively. Three injection wells were
set up in the south part of Skade (see Fig. 1), and CO2

was injected over a 50-year period (year 2020–2070) with
injection rate set as high as possible without exceeding
the fracture pressure anywhere in the formation. (The
fracture pressure was estimated based on rock-mechanical
relations expected to be valid for the formation.) In total,
approximately 3 Gton CO2 was injected over the 50-year
period.

The geophysical background model (i.e. before CO2

injection) from the seabed to top Mjur formation was
built using depth-converted seismic horizons and upscaled
properties from a well log (15/9-3, located at the south
end of the formation). In the CO2 injection period,
standard petrophysical relations described below were used
to convert saturation and pressure to Vp, σ , and ρ. In
the following, let subscripts 1 and 2 denote properties
before and after CO2 injection, respectively, and let the
change in a generic property, τ , be denoted by �τ =
τ2 − τ1. Furthermore, let SCO2 denote saturation of CO2

and P denote pressure. To generate the conductivity
model, Archie’s second law, assuming constant porosity,
was used,

σ2 = σ1
(1 − SCO2,1)

2

(1 − SCO2,2)
2

. (22)

To generate P-wave velocity and density models, the
following relationships from [47] were used,

Vp2 = Vp1(1 − k�SCO2 − l�P − m�P 2) (23)

ρ2 = ρ1(1 − b�SCO2). (24)

In (23) and (24), b, k, l, and m are empirical parameters,
which in this paper are given as

b = 0.05, k = 0.1, l = 0.0035, m = −0.00003,

(25)

calculated from Utsira data. We note that the model in [47]
assumes that the coefficients in (25), which typically are
calibrated against a few rock samples, are valid everywhere
and independent of porosity. In [49], the author proposed
an improved model, where they account for heterogeneous
porosity, initial saturation, and pressure.

To set up the monitoring test case, the true geophysical
models were generated using SCO2 and P from year 2070
(i.e. at the end of the CO2 injection); confer Fig. 2. We
focused the test case area around injection well W2. To
generate synthetic CSEM and gravity data, the commercial
software COMSOL™ was used, while the reflection
coefficient approximation described in Section 2.3 was used
to generate the synthetic AVO data. Note that Vs in (4) was

generated from Vp using a Vp

Vs
ratio of

√
14
2 ≈ 1.8708, which

lies within the range for sandstone formations [60].

Fig. 2 a SCO2 and b P at year 2070. The vertical solid black lines
indicate the wells, denoted W1, W2, and W3
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4.2 Set up of experiments

In the numerical experiments, it was assumed that the
geology was sufficiently well known such that 	 only
includes the Skade formation, while geophysical parameters
in �\	 (i.e. the computational domain outside the inversion
domain) are fixed to the background model. For the CSEM
inversion, σ in �\	 was given as seen in Fig. 3a. For gravity
inversion, �ρ in �\	 was zero; see Fig. 3b. Gaussian
random noise will be added to the data. For CSEM and
gravity data, the noise standard deviation will be set relative
to the magnitude of the data, see, e.g., [51, 66]. For seismic
(reflection coefficient) data, however, we set the noise
standard deviation to a fixed value. Alternative noise models
are viable for all data types, and one may anticipate that
the choice of noise models can influence on the estimation
results. Since fixing the inversion region is a simplification
of the inversion problem, we have tried to compensate by
applying data error models that can be seen as conservative,
see, e.g., [3]. A thorough investigation of the influence of
data error models on inversion results is, however, beyond
the scope of this paper.

For the seismic inversions, the data are Rpp within 	,
hence no background model is needed. Note that in the
following, CSEM and gravity data are contaminated with
random noise relative to the magnitude of the data, similar to
what is common in geophysical literature, see, e.g., [51, 66].
For seismic data, however, it is well known that amplitudes
can be difficult to measure because of noise and problems
with amplitude- and frequency-preserving processing. This,
together with the fact that Rpp can often be zero, or very
close to zero, leads us to choose a random noise with fixed
variance for the seismic data.

The data used for the CSEM inversion, ex , were extracted
at 26 sea-floor receivers, evenly distributed with 500 m
intervals for x ∈ (18000, 30500) m and z = 150 m.
The source frequency was 0.25 Hz, and eight source

positions, evenly distributed with 2000 m interval for x ∈
(17300, 31300) m and z = 120 m, were applied; see Fig. 3a.
Five percent Gaussian noise with noise floor 10−15 V/Am2

was added to the data. Furthermore, data from receivers less
than 2000 m away from the source position were removed
to avoid influence from the direct wave.

The data used for the gravity inversion, �gz, were
extracted at 45 sea-floor receivers, evenly distributed with
500 m interval for x ∈ (12500, 34500) m and z = 150 m;
see Fig. 3b. Ten percent Gaussian noise was added to the
data.

The data used for the seismic inversions, Rpp, were
extracted at θ = (5, 10, 15, 20, 25, 30)◦. Recall from
Section 2.3 that we have assumed that the θs have been
converted from source-receiver offsets in a processing step.
Gaussian noise with standard deviation 0.007 was added
to the data, which typically lie within the range Rpp ∈
(0, 0.04).

For the CSEM inversion, the data were divided into a
subset of eight groups (Nv = 8), where each group consis-
ted of data obtained with one particular source position.
The first group corresponded to source position (x, z) =
(17300, 120) m, and the subsequent data groups followed
the adjacent source positions as defined above. For the
seismic inversions, the data were divided into six groups
(Nv = 6), where each group consisted of data from one
element in θ . The first group corresponded to θ1 = 5◦, and
subsequent data groups followed the increasing angles up to
30◦, as described above. Note that the ordering of data may
influence the inversion results [27], but obtaining the ‘best’
practice for grouping the data is beyond the scope of this
paper.

In the gravity inversion with the ES-MDA, all data are
used simultaneously. (Gravity data can only be grouped
by receiver position, thus only part of 	 would have been
covered by each sequential step, had the EnKF been used.)
The number of assimilation cycles were chosen as Nu = 8

Fig. 3 a σ and b �ρ in � at
year 2070. Source positions (for
CSEM) are indicated by • and
receivers (for both CSEM and
gravimetry) are indicated by �.
Note that 	 is outlined with a
solid black line
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and the inflation factor was chosen as ηu = 1/Nu for
u ∈ [1, Nu]. Optimal tuning of Nu and η1:Nu is beyond the
scope of this paper.

The representation given in Section 3.1 was applied to
model two regions: inside and outside the CO2 plume. The
shape of the modelled CO2-plume boundary is given by
ζ (x, a), and Na = 45 parameter grid nodes, evenly distri-
buted over the Skade formation (nine parameter grid nodes
in the x-direction from x = 12000 m to x = 35000 m, and
five parameter grid nodes in z-direction from z = 890 m
to z = 1130 m), were applied in (30) to represent φ (x, a).

Since it it assumed (see, Section 4.1) that σ is
independent of pressure, and since the simulated CO2

saturation does not vary much inside the plume, (28) was
used to represent σ in the CSEM inversion. Since the
variation of �ρ with pressure is weak, (28) was also used to
represent �ρ in the gravity inversion.

Since the variation of Vp with pressure is more
pronounced, Vp was represented with (29) in the seismic
inversion. We let k1 (x; c1) and k2 (x; c2) be given by (30)
with Nc1 = Nc2 = 15, and let the parameter grid nodes for
k1 (x; c1) and k2 (x; c2) be evenly distributed over the same
area as for the representation of φ (x, a), but now with five
nodes in x-direction and three in z-direction.

Initial ensembles for the CSEM, gravity, and AVOw

inversions were generated according to the description
in Appendix 2, with Ne = 100 for the CSEM and gravity
inversions, and Ne = 1000 for the AVOw inversion. (Ini-
tial ensembles for AVOc and AVOg are described in
Sections 4.3.4 and 4.3.5, respectively.) The values for Ne

used in the experiments were chosen such that Ne > Nd ,
to avoid problems with strong unwarranted reduction of the
variability among ensemble members. (See, for example
Chap. 14 in [23] for a discussion of this issue, also known
as ensemble collapse).

The mean prior model, m̄0, was selected to reflect the
situation just after the CO2 injection started. Figure 4a
shows the resulting ζ (i.e. zero level set; see Appendix 1)
while the resulting initial values for σ , �ρ, and Vp are

Table 1 Input parameters for generation of Ca0 . Note that the
same Ca0 was used in the CSEM, gravity, and AVOw inversions.
Confer Appendix 2 for description of input parameters

α β γ δ

8 20 45◦ 0.25

illustrated in Fig. 4b–d. To generate Cm0 for the CSEM,
gravity, and AVOw inversions, it was assumed that the
Cc0

1
= Cc0

2
= Cc0 and the input parameters in Tables 1 and

2 were used. Recall that for CSEM and gravity inversions,
Cc0 reduces to a variance, β, since (28) was used.

4.3 Inversion results

In this section, inversion results using the sequential, two-
step inversion methodology and AVOw are presented. To
make it easier to compare inversion results where different
forward model simulators (with different discretizations)
have been used, all inversion results are mapped onto a
separate plotting grid. The plotting grid was made using
equidistant grid cells in x- and z-direction, covering 	.
Furthermore, the figures have been vertically exaggerated.

4.3.1 Step 1: CSEM inversion

The true σ for the CSEM inversion is shown in Fig. 5a.
Figure 5b and c show mean of the initial and final updated σ .
From Fig. 5c, it is seen that shape of the CO2 plume, given
by the low-conductivity structure, has good correspondence
with the true shape of the plume, with some deviations at
the top of the formation. The conductivity of the CO2 is well
estimated, while the brine conductivity is underestimated.

In Fig. 6a and b, it is seen that the variance of σ has
been reduced significantly. Some high variance, relative to
other areas, can be seen on the left side of the formation,

Fig. 4 a ζ generated using ā0. b σ , c �ρ, and d Vp models made with m̄0 for the CSEM, gravity, as AVOw inversions, respectively
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Table 2 Input parameters for generation of Cc0 . Note that the unit for
β is S/m for CSEM, kg/m3 for gravity, and m/s for seismic inversion.
Confer Appendix 2 for description of input parameters

Inversion α β γ δ

CSEM – 0.01 – –

Gravity – 10 – –

AVOw 3 200 0◦ 0.25

indicating higher model uncertainty in this area. The spread
of the initial ensemble members, shown in Fig. 6c, has
been much reduced in the final ensemble, see Fig. 6d, again
indicating a reduction in model uncertainty.

4.3.2 Step 1: Gravity inversion

In Fig. 7b and c, the mean of the initial and final updated
�ρ is shown. Comparing Fig. 7c with the true �ρ in Fig. 7a,
it is seen that the shape of the CO2 plume is not well
approximated on the right side, while on the left side it
is closer to the true shape. It is also seen that the �ρ

values outside the CO2 plume are well approximated in
most areas, except a small area in the bottom left corner of
the formation.

From Fig. 8a and b, it is seen that there are areas where
the variance has not been reduced much from initial to final
ensemble, especially around the CO2 plume front. Figure 8c
and d show that the spread of the ensemble members from
initial to final has been reduced to some extent. In total,
Fig. 8a and d show that the model uncertainty has only been
partially reduced in the ensemble-based inversion, and that
the areas where the estimation deviates most from the true
�ρ have the highest uncertainty.

4.3.3 AVOw

Before assessing the inversion results from step 2 with
AVOc and AVOg, the results from AVOw is presented.

The means of the initial and final updated Vps are shown
in Fig. 9 b and c. Comparing the mean of the final updated
Vp with the true Vp in Fig. 9a, it is seen that the left side of
the formation is well approximated, while the CO2 plume
(given by the low-velocity shape) is not well approximated
on the right side of the formation.

From Fig. 10a and b, it is seen that the variance has
been reduced much except in a few areas at the top of the
formation. Looking at Fig. 10c and d, it is seen that the
spread of the ensemble members has been reduced much,
especially for the left CO2 front, while significant model
uncertainty can be seen on the right side and top left of the
formation. The areas with highest uncertainty are where the
deviation of the final updated Vp is largest compared with
the true Vp.

4.3.4 Step 2: AVOc

Following the sequential, two-step inversion strategy,
knowledge about the location of the CO2 plume from the
CSEM inversion was used to make the prior model for
AVOc. Specifically, the mean of the final updated a from the
CSEM inversion was used as ā0 in AVOc. Figure 11a shows
ζ generated with ā0. Since Vp depends on both saturation
and pressure, and we do not gain information on pressure
from CSEM inversion, we let c̄0 be the same as for AVOw,
see Fig. 11b. (If we have information on pressure from, e.g.,
well measurements, a better c̄0 can be made.) The initial
ensemble was generated with 1000 realizations, where Ca0

and Cc0 were the same as given for AVOw in Tables 1 and 2
except β = 10 for Ca0 (to reflect that the step 1 inversion
has reduced the prior uncertainty in step 2 for the shape of
the CO2 plume).

In Fig. 12b and c, the means of the initial and final
ensembles are shown. Comparing Fig. 12c with the true Vp

in Fig. 12a, it is seen that mean of the final updated Vp

approximates the true Vp well, both in terms of the shape
of the CO2 plume and Vp distribution inside and outside the
CO2 plume.

Fig. 5 Step 1 CSEM inversion. a True σ . Mean of the b initial and c final updated σ
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Fig. 6 Step 1 CSEM inversion. Variance of the a initial and b final updated σ ; ζ generated using ensemble mean (solid black) and members (grey)
from the c initial and d final ensemble

Fig. 7 Step 1 gravity inversion. a True �ρ. Mean of the b initial and c final updated �ρ

Fig. 8 Step 1 gravity inversion: variance of the a initial and b final updated �ρ; ζ generated using ensemble mean (solid black) and members
(grey) from the c initial and d final ensemble

Fig. 9 AVOw inversion. a True Vp . Mean of the b initial and c final updated Vp
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Fig. 10 AVOw inversion. Variance of the a initial and b final updated Vp; ζ generated using ensemble mean (solid black) and members (grey)
from the c initial and d final ensemble

Fig. 11 ζ generated using ā0 for a AVOc and c AVOg; and Vp for b AVOc and d AVOg made with m̄0

Fig. 12 AVOc inversion. a True Vp . Mean of the b initial and c final updated Vp

Fig. 13 AVOc inversion. Variance of the a initial and b final updated Vp; ζ generated using ensemble mean (solid black) and members (grey)
from the c initial and d final ensemble
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Fig. 14 AVOg inversion. a True Vp . Mean of the b initial and c final updated Vp

From Fig. 13a and b, it is seen that the variance has
been reduced much from initial to final ensemble. A similar
conclusion can be made by looking at the spread of the
initial and final ensemble members in Fig. 13c and d, where
it is seen that the uncertainty on the shape of the CO2 plume
is small.

4.3.5 Step 2: AVOg

To generate the initial ensemble for AVOg, the same
procedure as for AVOc, discussed in Section 4.3.4, was
used: ā0 was given as the mean of a from the final ensemble
in step 1, while c̄0 was the same as for AVOw (following
the same arguments as in AVOc); see Fig. 11c and d.
Furthermore, Cc0 and Ca0 were the same as in AVOc, and
1000 realizations were generated for the initial ensemble.

The means of the initial and final ensembles are shown
in Fig. 14b and c, and it is seen in Fig.14c that the shape of
the CO2 plume and the Vp distribution approximate the true
Vp in Fig. 14a well.

Looking at Fig. 15a and b, it is seen that the variance
has been reduced much from initial to final ensemble,
with some higher variance around the right CO2 plume
front. From Fig. 15c and d, it is seen that the spread of
the ensemble members has been reduced much, especially
around the left front of the CO2 plume.

4.3.6 Data misfit

To make a quantitative comparison of AVOw, AVOc, and
AVOg, we calculate the data misfit using ensembles from
all three inversions. The data misfit for a single ensemble
member, mj , is calculated as,

Oj = (d − g(mj ))
T C−1

d (d − g(mj )), (26)

where d denote the seismic AVO data for all θ , g(mj ) denote
the corresponding forward model predictions, Cd denotes
a Nd × Nd diagonal matrix with diagonal entries equal to
5 · 10−5, and j = 1, 2, . . . , Ne. Let minit and mfinal denote
initial and final updated parameter ensembles, respectively,
and let O init

j and Ofinal
j denote the corresponding values of

Oj . In Fig. 16, {Ofinal
j }Ne

j=1 for AVOw, AVOc, and AVOg are

compared with each other and with {O init
j }Ne

j=1 for AVOw.

({O init
j }Ne

j=1 for AVOc and AVOg were similar to that for
AVOw, and are therefore not shown.) We see that the data
misfit from all three inversions has been reduced much
from initial to final updated ensembles, and end up close to
Nd (often used as solution criteria in inversion algorithms
within the classical inversion framework). Comparing
{Ofinal

j }Ne

j=1 from AVOw to AVOc and AVOg, we see that
they are statistically similar.

Fig. 15 AVOg inversion. Variance of the a initial and b final updated Vp; ζ generated using ensemble mean (solid black) and members (grey)
from the c initial and d final ensemble
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Fig. 16 Data misfit using initial ensemble from (a) AVOw; and final
updated ensembles from (b) AVOw, (c) AVOc, and (d) AVOg. The box
extend from the 25th (Q1) to the 75th (Q3) percentile with the central
line denoting median. The whiskers extend from Q1 to 1.5·Q1 and
from Q3 to 1.5·Q3, and points (+) beyond the whiskers are considered
outliers. The horizontal line denotes Nd = 2748

4.4 Discussion

In the seismic inversions done in this paper, the data
variance was set to an absolute value of 5 · 10−5. We
have performed seismic inversions with different absolute
values for the data variance and similar results as shown
in Section 4.3 were obtained.

The numerical results shown in this section are based
on a large-scale CO2 injection study where the goal was to
inject as much CO2 as possible without creating hazardous
over-pressure that can lead to, e.g., fault reactivation and
fracturing. We have also applied the sequential inversion
strategy in a preliminary CO2 injection study, where a
relatively small amount of CO2 was injected (not shown
in this paper). Here, the benefit of the sequential, two-step
inversion strategy over just performing seismic inversion
was not so clear. Since the spatial resolution of CSEM
and gravimetry is lower than that of seismic, and the
sensitivities of these methods are dependent on the amount
of CO2 injected, there will be a point where the benefit
of performing CSEM or gravity inversion prior to seismic
inversion will be minimal.

5 Conclusions

A Bayesian sequential inversion strategy for joint utilization
of CSEM or gravimetric data with seismic AVO data for
monitoring purposes has been presented and applied to a
test case based on simulation of large-7scale CO2 injection
in the Skade formation. The strategy consists of two steps:
In step 1, we invert CSEM or gravity data to get an
approximate location and shape of the CO2 plume, and

in step 2, the inversion result from step 1 is used in the
construction of the prior model for seismic AVO inversion.

The unknown geophysical model parameters—electric
conductivity, density, and seismic velocity—are represented
using a model-based parameterization. The parameteriza-
tion is based on the level-set framework which allows for
representation of region boundaries defined by the large-
scale CO2 plume and slowly varying geophysical properties
inside and outside the plume. By using parameter grids
detached from the forward model grid, the model-based
parameterization uses far less parameters in the inversion
compared with equivalent methodologies using a pixel-
based parameterization.

To solve the inverse problems considered in this paper,
ensemble-based Bayesian methods are used. For CSEM and
seismic inversions, we applied the EnKF, while ES-MDA
was used for gravity inversion. Both these ensemble-based
methods provide an approximate sample from the true
posterior PDF at moderate computational cost.

Numerical results from step 1 of the inversion strategy
showed that inversion of CSEM data provided a better
approximation of the shape and location of the CO2 plume
than inversion of gravimetric data. Numerical results from
step 2 of the inversion strategy showed, however, that the
seismic velocity model was well identified using prior
information from either CSEM or gravity inversion results.
Numerical results from seismic AVO inversion without any
prior information from CSEM or gravity inversion showed
that the seismic velocity model was only partially recovered.
Hence, utilizing CSEM or gravity data with seismic AVO
data with the sequential inversion strategy improved the
seismic inversion results significantly.
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Appendix 1. Reduced, smoothed level-set
representation

Recalling the notation introduced in Section 3.1, let {φi}Nφ

i=1
denote a set of real-valued, continuous functions on 	—
the level-set (LS) functions. Utilizing this set to construct{
	j

}Nc

j=1 in a particular manner will render (6) a LS repre-
sentation. With Nc > 2, alternative LS representations
(LSR)s exist [18, 56, 59, 80] which are able to represent
between Nφ + 1 and 2Nφ subregions using Nφ LS func-
tions. For detailed expositions of the LSRs proposed by [80]
and [59] in the context of modelling of geophysical explo-
ration problems, we refer to [76] and [75], respectively. We
will, however, only require the case where Nc = 2, in which
case the LSR is unique and only a single LS function, φ, is
applied.

To arrive at the LS representation from (6) with Nc = 2
inserted, we first replace the explicit dependence of χ1 and
χ2 on x and a by an implicit dependence through the LS
function,

q (x;m) = c1χ1 (φ (x; a)) + c2χ2 (φ (x; a)) . (27)

Next, we select 	1 as the part of 	 where φ (x; a) > 0.
Since 	2 = 	\	1, we obtain the LSR in standard notation,

q (x;m) = c1H (φ (x; a)) + c2 (1 − H (φ (x; a))) , (28)

where H denotes the Heaviside function (indicator function
for the positive real axis). There are few restrictions on
φ. Hence, the LSR is a very flexible way to represent
subregions in 	, as illustrated in Fig. 17. The shapes of
	1 and 	2 are governed by the LS function, whose spatial
variation is controlled by the parameters in a.

The LSR has been extended [18] to incorporate arbitrary
spatial variation within each zone by replacing (28) with

q (x;m) = k1 (x; c1) H (φ (x; a))
+ k2 (x; c2) (1 − H (φ (x; a))) , (29)

where c1 ∈ R
Nc1 , c2 ∈ R

Nc2 , and Nc1 + Nc2 = Nc.
Both (28) and (29) will be applied in numerical examples,
where relevant quantities, such as Nc1 and Nc2 , will be
specified. To complete the general description of the LSR,
the dependency of φ on x and a must be specified. When
applying (29), also the dependencies of k1 on x and c1 and
k2 on x and c2 must be specified. We will apply the same

type of representation for the LS function, φ, as for the
coefficient functions, k1 and k2.

A.1 Reduced parameterization of level-set and
coefficient functions

Let ψ represent either of the functions φ, k1, or k2, and
correspondingly, let b represent either a, c1, or c2. We
express the dependency of ψ on x and b by [6]

ψ (x;b) =
Nb∑
k=1

bkξk (x) . (30)

The basis functions {ξk}Nb

k=1 are defined on a rectangular
parameter grid that is not attached to, and much coarser
than, the forward model grid (Fig. 18a). Hence, Nb �
Ng , and our parameterization is therefore significantly
reduced with respect to a pixel parameterization. There
will, however, still be sufficient flexibility to approximately
represent the large-scale structures that we aim to estimate.

While alternative representations are viable, we represent
ψ in a finite-element fashion [6], and let ξu be a
normalized piecewise bilinear function with support on the
four rectangular elements adjacent to node u (arbitrary)
(Fig. 18b). Its value is unity in node u and zero in all other
nodes. Figure 18c shows node u and three of its adjacent
nodes, v, r , and s, and the supports of the basis functions
associated with these four nodes. Figure 18d shows the
element where ξu, ξv , ξr , and ξs have common support.
The projections of ξu, ξv , ξr , and ξs onto this element
are normalized bilinear functions, so whenever ψ is to
be evaluated at a forward model grid point, its value is
calculated using bilinear interpolation.

A.2 Smoothed level-set representation

We replace H in the LSR by a smoothed approximation,

H̃ (φ) = 1

π
tan−1 (φ) + 1

2
, (31)

resulting in q (x;m) no longer being a zonation since H̃

will have global support in 	. Introducing smoothness in
q can be beneficial since the nonlinearity in the mapping

Fig. 17 Two arbitrary instances
of the LSR with Nc = 2
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Fig. 18 a Schematic detail of
parameter grid (thick lines) and
forward model grid (thin lines).
b Support of ξu (/). c Supports
of ξu (/); ξv (|); ξr (−), and ξs

(\). d Element where ξu, ξv , ξr ,
and ξs have common support

a → q will decease with increasing smoothness [53]. This
consideration should, however, be balanced by the desire to
keep a relatively sharp transition between subregions where
q (x;m) ≈ c1 (q (x;m) ≈ k1 (x; c) if (29) is applied)
and subregions where q (x;m) ≈ c2 (q (x;m) ≈ k2 (x; c)
if (29) is applied). The width of the transition region is
decided by the behaviour of φ in the vicinity of its zero-
level set, ζ . Let n be a unit normal vector to ζ . A sharp
transition in q over ζ then corresponds to large values of
|∇φ · n|. Figure 19 illustrates the difference between a
LSR and a smoothed approximation to a LSR when (28) is
applied.

Appendix 2. Initial ensemble generation

The ensemble-based inversion methodologies described
in Section 3.2 require generation of an initial ensemble. The
initial ensemble is generated from the prior PDF, p(m0),
which is chosen to be Gaussian,

p(m0) ∼ N (m̄0,Cm0). (32)

Standard Cholesky decomposition method can thus be used
to generate realizations from p(m0),

mj = m̄0 + Lzj , j = 1, . . . , Ne, (33)

Fig. 19 Sketch of arbitrary
q (x;m) in the vicinity of ζ .
a LSR and b smoothed
approximation to a LSR, with
transition region indicated by
dashed curves
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where z ∼ N (0, 1) and LLT = Cm0 , with L being a lower
triangular matrix. Based on knowledge of the CO2 plume,
e.g. from previous time-lapse vintage data, suitable values
for m̄0 = ((c̄0)T , (ā0)T )T can be generated. To generate
Cm0 , it is assumed that a and c are not correlated, and,
moreover, it is assumed that c1 is not correlated with c2.
Hence,

Cm0 =
⎡
⎢⎣
Cc0

1
0 0

0 Cc0
2

0

0 0 Ca0

⎤
⎥⎦ , (34)

where Cc0
i

and Ca0 denote covariance matrices for ci ,
i = 1, 2, and a, respectively. Note that if (28) is applied,
the covariance matrix Cc0

i
reduces to a scalar variance, βi .

To generate Cc0
i

and Ca0 , a spherical covariance
function [14],

C(h) = β

{
1 − 3h

2α
+ h3

2α3 , for 0 ≤ h ≤ α,

0, for h > α,
(35)

is applied. Here, h denotes spatial distance between two
nodes in the parameter grid (confer Section A.1), and α

denotes the correlation length. The covariance matrix can
thus be generated as

(C∗)st = C(hst ), s, t = 1, . . . , †, (36)

where the subscript ‘ * ’ denotes either a0 or c0
i which leads

to ‘ † ’ being either Na or Nci
, respectively.

The covariance matrices Cc0
1
, Cc0

2
m and Ca0 can be

non-diagonal, to allow for anisotropic correlations. The
anisotropy will be specified trough the angle, γ , from the
z-axis to the principal axis corresponding to the largest
eigenvalue, and the anisotropy ratio, δ. Numerical values for
α, β, γ , and δ will be given in Section 4.2.

For an in-depth description of the EnKF applied to a
geophysical method (CSEM) and generation of the initial
ensemble with the reduced, model-based representation,
with examples, see [75].

Appendix 3. Samplemean and covariance
matrix

Let Y = (
y1, y2, . . . , yNe

)
denote an arbitrary ensemble

matrix, and let u denote an Ne vector where all entries equal
unity. The sample (empirical) mean may then be written as

ỹ = 1

Ne

Yu. (37)

Furthermore, let U = (u,u, . . . ,u) (i.e. with Ne columns),
and define the sample mean matrix as Ỹ = 1

Ne
YU.

The sample cross-covariance matrix between two arbitrary
random vectors, y and z, is then given as

C̃yz = 1

Ne − 1
(Y − Ỹ)(Z − Z̃)T . (38)

The sample auto covariance matrix, C̃y , is given by (38)
with Z = Y.
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