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Evaluating prior predictions of production and seismic data
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Abstract
It is common in ensemble-based methods of history matching to evaluate the adequacy of the initial ensemble of models
through visual comparison between actual observations and data predictions prior to data assimilation. If the model is
appropriate, then the observed data should look plausible when compared to the distribution of realizations of simulated
data. The principle of data coverage alone is, however, not an effective method for model criticism, as coverage can
often be obtained by increasing the variability in a single model parameter. In this paper, we propose a methodology for
determining the suitability of a model before data assimilation, particularly aimed for real cases with large numbers of model
parameters, large amounts of data, and correlated observation errors. This model diagnostic is based on an approximation
of the Mahalanobis distance between the observations and the ensemble of predictions in high-dimensional spaces. We
applied our methodology to two different examples: a Gaussian example which shows that our shrinkage estimate of the
covariance matrix is a better discriminator of outliers than the pseudo-inverse and a diagonal approximation of this matrix;
and an example using data from the Norne field. In this second test, we used actual production, repeat formation tester, and
inverted seismic data to evaluate the suitability of the initial reservoir simulation model and seismic model. Despite the good
data coverage, our model diagnostic suggested that model improvement was necessary. After modifying the model, it was
validated against the observations and is now ready for history matching to production and seismic data. This shows that the
proposed methodology for the evaluation of the adequacy of the model is suitable for large realistic problems.

Keywords Prior predictive distribution · Model criticism · Model improvement · Mahalanobis distance · Production data ·
RFT data · Acoustic impedance · Seismic inversion · Correlated observation error · History matching · Norne field

1 Introduction

The process for learning about the subsurface from
observations and for making model-based forecasts of
future behavior is sometimes separated into two parts. The
first can be termed model criticism, while the second can
be termed parameter estimation. In practice, we subdivide
model criticism into a criticism of the model before
parameter estimation and a model criticism that occurs
after parameter estimation. Although there are similarities
in the methods of criticism that might be applied in
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both periods, the criticism that is based on the prior
predictive distribution is highly sensitive to errors in
the prior distribution for model parameters and to errors
in the forward model. Criticism based on the posterior
predictive distribution is highly sensitive to errors in the
characterization of measurement error [7, 33]. The purpose
of model criticism is not to determine if the model is
“wrong,” but rather to determine if it might adequately
represent reality by comparison of simulated data from
the model with observed data [6]. Some methodologies
for subsurface model criticism or falsification compute
the probability of a model by a type of Bayesian model
averaging which implicitly assumes that at least one of the
model realizations or scenarios in the study is adequate [21,
35, 40]. The process of falsification is illustrated on an
example in which none of the scenarios are adequate but,
in the example, the method for falsification is qualitative
[21]. We propose a general quantitative methodology that
assesses the adequacy of the model by direct comparison of
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the perturbed simulated data to the observed data without
requiring an assumption on the validity of the model. If
the perturbed simulated observations are not consistent
with the actual observations, then one should consider
modifying the assumptions about the prior distribution of
model parameters, add new model parameters, or modify
the distribution of observation errors.

It is standard in any ensemble-based data assimilation
method to perform a superficial check of the adequacy
of the initial ensemble by visual comparison of simulated
data with actual observed data. The comparison is typically
performed on the basis of “coverage” of the individual
observations, i.e., checking to see if each observation is
contained within the spread of the ensemble when examined
one-by-one. In many cases, this has been sufficient to show
that the initial ensemble is inadequate [12, 14]. We note,
however, that the converse is not necessarily true, that is
even when the coverage is good, it is sometimes difficult to
obtain a suitable match to all data [13].

More powerful statistical tests of adequacy can be
obtained from subsets of the observations, instead of a one-
by-one examination. Using the notation of Box [7], the prior
predictive distribution can be written as follows:

p(y|A) =
∫

p(y|θ) p(θ |A) dθ (1)

where simulated data are denoted by y, model parameters
are denoted as θ , and A denotes the totality of assumptions
that have been made about the model. Although we
cannot evaluate (1) for practical history matching problems
with large numbers of data and large numbers of model
parameters, it is relatively easy to generate samples from
the distribution p(y|A). To do that, we simply generate
samples from p(θ |A) (the initial ensemble) then, for
the ith sample from the initial or prior distribution, we
generate simulated data and perturb it according to our
model of observation error, i.e., yi = g(θ i ) + εi , where
typically εi ∼ N[0,CD]. Superficially at least, the
task then is to compare the actual observed data yobs

with the samples from the prior predictive distribution
with the goal of deciding if the collection of actual
data appears to be an outlier when compared to the
ensemble of perturbed predictions. Chandola et al. [10]
review many methods for determining if the observation
appears to be an outlier when compared with an ensemble
of predictions. For linear model-data relationships and
Gaussian prior probability densities for parameters, the
Mahalanobis distance provides a useful measure of the
difference between the vector of observations and the mean
of the ensemble of predictive observations. For nonlinear
problems, it might be reasonable to apply kernel principal
component analysis to the problem of outlier detection [22]

and in some cases, outliers can be detected visually on
suitable plots [16].

The aim of this paper is to present a methodology to
be used prior to history matching for evaluation of the
initial ensemble of large models with large amounts of data,
such as those encountered when assimilating production
and seismic data. In high-dimensional spaces, it is not
straightforward to make a comparison between an actual
observation and a small ensemble of samples that are used
to represent p(y|A). It may be useful to instead compare
F(yobs) to p[F(y|A)], where F(·) is some appropriate
functional of the data [7]. In this paper, we will focus on
functionals F that mimic the Mahalanobis distance and
show how these can be used in practical field cases where
the number of samples used to characterize p(y|A) is on
the order of 100, while the dimension of y is often on the
order of 103–105. The Mahalanobis distance has been used
previously in the petroleum literature to ascertain if dobs
is likely to be a sample from the same distribution that
generated the ensemble of predictions [20]. In that study,
however, they did not address the situation in which the
number of data is larger than the size of the ensemble.
When this situation occurs, as it certainly will with 4D
seismic data, a straightforward computation of Mahalanobis
distance is not possible.

It is easy to create an example illustrating the difficulties
with a naive approach to evaluation of the prior ensemble
that looks only at the coverage of the data. The left two
subplots in Fig. 1a show 10 “observations” (black dots) with
insignificant measurement error plotted with an ensemble of
model predictions. The model that generated the realizations
is multivariate Gaussian. A visual comparison of actual
observations to the ensemble of predictions as in Fig. 1a
seems to suggest that there is no inconsistency between
the “observed data” and the ensemble of “simulated data.”
If, however, we were to compute the projections of the
observed data and the ensemble members on the first
two principal components, we see that the prior predictive
ensemble does not actually cover the observations (Fig. 1b).
We would need to improve the model before attempting to
calibrate it (see also [20]).

In the remainder of this paper, we develop a methodology
for evaluation of the initial ensemble based on comparison
of the prior distribution of simulated data with observed
data using the Mahalanobis distance between the actual
data and the mean of the ensemble. In Section 2, we
describe a method for computing an approximation of
the Mahalanobis distance in high dimensions from small
numbers of samples. We also discuss how to evaluate
the meaning of the Mahalanobis distance for the cases
in which the number of data is larger than the ensemble
size.
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Fig. 1 In a, red curves are initial ensembles of predictions at two loca-
tions. Black dots show the actual observations, which are “covered” by
the ensemble. In b, simulated data (blue dots) and the actual observed

data (black dot) are projected onto the plane spanned by the first two
singular vectors. Contours are distance normalized by variance in the
principal directions

2 Approximating theMahalanobis distance
from small samples

The Mahalanobis distance of a vector x ∈ Rm from the
mean μ ∈ Rm of a set of samples with m × m covariance
matrix Σ is defined to be as follows:

DM(x) =
√

(x − μ)TΣ−1(x − μ). (2)

In general, the mean, μ, and the covariance, Σ , must
be estimated from the set of ne samples, X. If the
samples are possibly contaminated with outliers, then it
might be necessary to use robust estimates of the mean
and covariance [23]. In our applications to reservoir data
assimilation, the samples are from the prior ensemble. We
will not require robust estimates, but because our sample
size (ne) is much smaller than the number of data (nd ),
the sample covariance is not full rank so its inverse cannot
be computed. If we use the pseudo-inverse, the magnitude
of the Mahalanobis distance will be much different from
the magnitude obtained using the full-rank covariance.
Extensive literature exists on improving the estimate of the
Mahalanobis distance for outlier detection (e.g., [45]).

We compute an approximation of the Mahalanobis
distance [2] using a regularized estimate of the covariance
[26, 39] and in particular, we will use Target B of [39] to
shrink the sample covariance towards a diagonal matrix with
a constant value equal to the average variance, ν. (Note that
if the variance is thought to be spatially varying, then it
would be appropriate to use a different target.)

Let the estimate of the covariance matrix be as follows:

Σ̂ = δT + (1 − δ)S (3)

where T is the target covariance matrix, S is the sample
covariance matrix, and δ is the shrinkage parameter, for

which we use in line 10 of Algorithm 1 an estimate of the
optimal value [28] as follows:

δ = 2

ne + 2
.

For S, we use the maximum likelihood estimate of the
sample covariance, i.e.,

S = 1

ne − 1
XXT (4)

where columns of X are mean removed. For simplicity of
notation, we define the following:

X̂ =
√

1 − δ

ne − 1
X

and

T̂ = δT

in which case the regularized estimate of the covariance can
be written as follows:

Σ̂ = T̂ + X̂X̂T.

Computation of the Mahalanobis distance requires the
inverse of the regularized covariance, which can be obtained
using the Sherman-Morrison-Woodbury formula as follows:

Σ̂
−1 =

(
T̂ + X̂X̂T

)−1

= T̂−1 − T̂−1X̂
(
I + X̂TT̂−1X̂

)−1
X̂TT̂−1.

(5)

Since our choice of the target matrix is a scaled identity
matrix, i.e., T = νI, the formula for the inverse can be
simplified as follows:

Σ̂
−1 = 1

δν
I − 1

δ2ν2

(
1−δ
ne−1

)
X

(
I + 1

δν

(
1−δ
ne−1

)
XTX

)−1
XT

= 1
δν
I − 1

δν
X

(
δν

(
ne−1
1−δ

)
I + XTX

)−1
XT.

(6)

1333(2019) 23:1331–1347Computational Geosciences



To compute the Mahalanobis distance,

D2
M(x) = (x − μ̂)TΣ̂

−1
(x − μ̂).

= 1
δν

(x − μ̂)T(x − μ̂)

− 1
δν

(x − μ̂)TX
(
δν

(
ne−1
1−δ

)
I + XTX

)−1

XT(x − μ̂)

= 1
δν

(x − μ̂)T(x − μ̂)

− 1
δν

(x − μ̂)TXL−TL−1XT(x − μ̂)

(7)

where we have utilized a Cholesky factorization (also called

Cholesky decomposition) of
(
δν

(
ne−1
1−δ

)
I + XTX

)
=

LLT. Note that the matrix that required inversion is
generally quite small (ne × ne), so the cost of factorization
is negligible. The product should be performed as follows:

y = L−1
(
XT(x − μ̂)

)
(8)

or by solving Ly = XT(x − μ̂) in line 14 of Algorithm 1.
Criticism of the initial ensemble is based on the prior pre-

dictive distribution, which compares the observation vector
z to the distribution of predictions, represented empirically
by the ensemble of predictions X. (In application, we might
check to see if the set of actual repeat formation tester (RFT)
or production observations is an outlier when compared to
an ensemble of perturbed predictions from the initial ensem-
ble.) If the ensemble is large enough, the comparison could
be made using the Mahalanobis distance from z to the mean
of the ensemble μ̂ = ∑

X/ne line 2 of Algorithm 1,

D2
M(z, μ̂) = (z − μ̂)TΣ̂

−1
(z − μ̂) (9)

where Σ̂ is an estimate of the population covariance of X.
In most practical history matching cases, the maximum

likelihood estimate of the covariance (4) will not be full
rank, so that some type of regularization must be applied
before inversion. In that case, however, the magnitudes
of the Mahalanobis distance will not be distributed as
chi-squared with nd degrees of freedom [18]. One way
to decide if the initial ensemble is adequate is to
compare the prior distribution of an approximation to the
Mahalanobis distance to an equivalent approximation for
the observations.

To generate a predictive distribution of values of
D2

M(x, μ̂), we require samples x from the initial distribu-
tion. Our only source for these is the ensemble of prior
samples. We take ensemble members one-at-a-time, and
compute the distance between the selected sample xi and
the mean obtained by leaving the ith sample out.

D2
M(xi , μ̂i ) = (xi − μ̂i )

TΣ̂
−1
i (xi − μ̂i ), (10)

where Σ̂ i is the covariance estimate obtained by leaving the
ith sample out. After looping through all ensemble members
in X, we have ne samples of D2

M(x, μ̂). These define our
prior predictive distribution of Mahalanobis distance.

An evaluation of D2
M(z, μ̂) is required for comparison

with the prior predictive distribution of D2
M(x, μ̂). A

straightforward approach would be to use Σ̂ from the entire
ensemble, but the magnitude can be quite sensitive to the
dimension of the ensemble. Thus, we instead compute an
ensemble of estimates as follows:

D2
M(z, μ̂i ) = (z − μ̂i )

TΣ̂
−1
i (z − μ̂i ). (11)

where each covariance estimate is computed by leaving one
out. The spread in these estimates is typically quite small
when the ensemble size is of order 100. From the reference
ensemble of D2

M(xi , μ̂i ), we create an empirical cumulative
distribution function (CDF), and then compare the median
of the distribution of D2

M(z, μ̂) to the CDF.
One limitation with the use of the empirical CDF is

that it is unable to discriminate the difference between two
values that are outside of the range of values in the reference
ensemble. To make that discrimination, we can simply use a
measure of distance of the “observed”Mahalanobis distance
from the mean or median of the predictive distribution.
Here, we choose to use the modified z-score [24], which is
a normalized measure of distance from the median.

Thus, in addition to providing an estimate of the
probability from the empirical CDF obtained from the prior
predictive distribution, we also report the modified z-score
in line 23 of Algorithm 1 as follows:

z-score = 0.6745
median

(
D2

M(z, μ̂)
)−median

(
D2

M(x, μ̂)
)

MAD
(12)

where the median absolute deviation (MAD) is computed
from the ensemble of D2

M(xi , μ̂i ). Algorithm 1 shows the
steps of this methodology.

3 Applications of methodology

We illustrate the methodology with two examples. In the
first example, the reference ensemble is Gaussian and
the test observation vectors come from three distributions.
In the second example, we use actual production, repeat
formation tester (RFT) and seismic data from a segment
of the Norne field to assess the adequacy of the
reservoir simulation model and seismic model prior to data
assimilation.

3.1 1D toy test cases

This toy problem tests the ability to discriminate outliers
in a high-dimensional space when ensemble size is modest.
The “observations” are linear and the prior is Gaussian
so the problem is quite simple. The ensemble size is,
however, realistic (ne = 100) and the dimension of the
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Algorithm 1 Computation of Mahalanobis distance between median of ensemble of simulated data X and observed data z.

1: function COMPUTEMAHALANOBIS(X,z,L)
2: DM ← 1

δν

(
zTz − (L−1XTz)T(L−1XTz)

)
3: return DM � approximation to Mahalanobis distance squared
4: end function

5: functionMODELDIAGNOSTICCV(X, z)
input: X is the ensemble of simulated data , z is a vector observed data

6: nx ← shape(X)[0]
7: ne ← shape(X)[1]
8: ns ← ne − 1 � Ensemble size after ‘leave-one-out’
9: ν ← var(X)

10: δ ← 2
ns+2 � This is the amount of shrinkage

11: for i ← 0, ne − 1 do
12: Xs ← X�i � Delete the ith column of X
13: As ← δν

(ns−1)
(1−δ)

I + XT
s Xs

14: LsLTs ← As � Cholesky factorization of As

15: μ̂ ← 1
ns

∑ns−1
j=0 xs,j

16: x = Xi

17: Dx
i ← COMPUTEMAHALANOBIS(Xs , x − μ̂,Ls)

18: Dz
i ← COMPUTEMAHALANOBIS(Xs , z − μ̂,Ls)

19: end for
20: σx = 1.4826 ∗ MAD(Dx) � Robust measure of scale
21: μx ← med(Dx)

22: μz ← med(Dz)

23: z-score ← μz−μx

σx
� Empirical estimate of p(μDY |X)

24: ecdf ← ECDF(Dx)

25: pz ← ecdf(μz)

26: return 1 − pz, z-score
27: end function

data vector (nd = 1000) is large enough to evaluate the
methodology with different approximations to the inverse of
the covariance matrix.

We first define a “reference ensemble,” which would cor-
respond to the perturbed predictive ensemble in applications
where the objective is to determine if the data vector is con-
sistent with the initial ensemble. In the reference ensemble,
the realizations are Gaussian with stationary mean equal
to zero, and stationary covariance that is Gaussian with
practical correlation range of 25, i.e.,

ρref(x) = exp

(
−3

( x

25

)2)
(13)

where ρref(x) is the covariance of Gaussian random
variables whose locations are separated by distance x.

We then create test vectors from three different
distributions:

Case 1: Test vector is from the reference distribution
(Fig. 2a)

Case 2: Test vector has mean 0, but Gaussian covariance
with range 50 (Fig. 2b)

Case 3: Test vector has a non-stationary mean and a
smaller variance (Fig. 2c)

We compare three different methods for approximating
the Mahalanobis distance in the small ensemble situation.
The simplest approach would be to use the diagonal
matrix whose entries are the variance of the predictive
distribution to approximate the covariance matrix used in
the distance measure. A second approach is to approximate
the inverse of the sample covariance matrix using the
pseudo-inverse based on the singular value decomposition
of the sample vectors. A third approach is to use the inverse
of the shrinkage estimate of the covariance as described in
Section 2. We compare results from these three approaches
when applied to cases 1–3. Because the conclusions might
be significantly different for different realizations of the test
vector, we apply the tests for 100 different test vectors.

Our criterion for comparison will be based on the ability
to judge correctly that the test vector is not from the
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Fig. 2 Summary of discrimination results using distribution of Maha-
lanobis distance for three distributions of test vectors (blue-white
curves in top row) and three different methods of approximating the
precision matrix. Black curves in (d–l) show the empirical CDFs of

Mahalanobis distance for samples from the reference distribution. Dot-
ted curves show the empirical CDF of Mahalanobis distance of test
vectors from the three different distributions. Red shaded areas are
rejected samples at 2% level

reference distribution. Our decision will be to accept the test
vector if its Mahalanobis distance is in the 96% credible
intervals based on the empirical CDF (the unshaded regions
in Fig. 2d–l). We then examine the frequency that this test
correctly identifies violations of the assumptions, i.e., for
cases 2 and 3 we identify what fraction of the test vectors
would be accepted (falling in the unshaded regions).

Figure 2 a, b, and c shows the ensemble of perturbed
predictions from the reference distribution with a single
realization of the test vector. In case 1, test data are drawn
from the reference distribution. In case 2, test data are drawn
from a distribution with longer covariance range. In case
3, test data are drawn from a distribution with a trend in
the mean. In each of the three cases, the test vector is
“covered” by the reference ensemble when the data are
examined one-by-one as in the plots. Although the coverage
appears to be good in each case, visual inspection of the
entire sequence shows that the test vectors in Fig. 2b and c

are unlikely to be samples from the same distribution from
which the reference ensemble was drawn. Because the
Mahalanobis distance uses the covariance of the reference
distribution and looks at the entire data set simultaneously,
it offers a more powerful discriminator than simple one-
by-one data coverage. In this example, however, it fails to
clearly identify the discrepancy for case 2.

When the test vector is a sample from the same dis-
tribution as the reference distribution, the predictive dis-
tributions for any of the three approximations to the
Mahalanobis distance would give similar results—rejecting
a small number of correct test samples (Fig. 2d, g, j).
Results from cases 2 and 3 are more interesting. In case
2, where the covariance range for the test vector differs
from the covariance range of realizations in the refer-
ence ensemble, a test based on the Mahalanobis distance
using the diagonal covariance matrix would accept 81%
of the realizations of the test vector, while the use of

1336 (2019) 23:1331–1347Computational Geosciences



the pseudo-inverse would accept 39% and the shrinkage-
based covariance would accept 31%. In case 3, where the
trend for the test vector differs from the trend in the ref-
erence ensemble, both the diagonal and shrinkage-based
methods correctly reject all test vectors, while the method
based on the pseudo-inverse fails to reject any. In these
tests, only the shrinkage-based approximation of the covari-
ance provided consistently useful discrimination. Table 1
summarizes numerically the results shown graphically
in Fig. 2.

3.2 Application to Norne G-segment

In this application, we use production data, RFT data, and
seismic data from the G-segment of the Norne field to
evaluate the suitability of the reservoir flow model and the
seismic model before assimilation of data. We then improve
the model by adding uncertainty to parameters that had been
fixed in the initial model, and repeat the model criticism
step. One reason for use of the Norne G-segment is that the
pressure behavior and transport of water in this part of the
field appear to be relatively complex.

3.2.1 Initial model creation

The Norne field is an oil field located in the Norwegian
Sea, approximately 200 km from the coast of Norway.
Production from the field began in 1997 and continues to the
present. Data from the period 1997 to 2006, including repeat
seismic surveys, production rates, a reservoir simulation
model, and geologic reports, were released by Equinor and
partners in 2010 in conjunction with an SPE Advanced
Technology Workshop. The data have been used repeatedly
to test various history matching methods (e.g., [13, 15,
29, 32, 38, 41, 47]). In this paper, we focus on the
evaluation of the initial ensemble before history matching
[33]. Because the purpose of this manuscript is to present
methods for evaluation of the initial ensemble, we use

Table 1 Summary of discrimination results using distribution of
Mahalanobis distance for three different methods of approximating the
precision matrix

Approximation to inverse covariance

Diagonal Pseudo-inverse Shrinkage

Case 1 94 100 98

Case 2 81 39 31

Case 3 0 100 0

The numbers in each cell are the percentage of test vectors that are
accepted. For cases 2 and 3 low numbers are better. The two “boxed”
values indicate methods that have failed at discrimination

the initial ensemble of reservoir properties from Chen
and Oliver [13], which was based on properties in the
reference model provided by Equinor. Variability was
added where it was believed that the values of the
model parameters were necessarily uncertain and that
the uncertainty would be needed for history matching or
for forecast assessment. In all cases, the assessment of
uncertainty was subjective, but often based on observed
spatial variability. For some properties, such as porosity, the
variability can be estimated from logs. For other properties
such as relative permeability, no actual data were available,
so uncertainty was represented simply by variability in
the endpoint relative permeability. Fault transmissibility
multipliers were assumed to be uncertain to the extent that
90% of the probability fell in the range bounded below by
0.1 of the base estimate for fault transmissibility multipliers,
and bounded above by 10 times the base estimate.

The flux between the various reservoir segments in the
Norne reference model was also governed by a transmis-
sibility multiplier MULTREGT. In general, the location of
the application of these transmissibility multipliers corre-
sponded to the location of seismic faults or to vertical flow
barriers. Values for these multipliers had been set in the base
model to approximately match observed pressure behav-
ior. When the exploration well 6608/10-4 was drilled in the
G-segment in 1993, RFT data showed an apparently contin-
uous pressure profile above and below the Not shale, and
the pressures seemed to be in equilibrium with the rest of
the field. On the other hand, when RFT data in the E-4H
well were recorded in March 2000, the pressure above the
Not shale had increased approximately 5 bars, while the
pressure below the Not shale had decreased approximately
25 bars. This was stated as evidence that the G-segment was
in communication with the main field (although it has a dif-
ferent oil-water contact).1 Although the RFT data showed
that the G-segment must be in pressure communication with
the main part of the field, it appeared that the pressure sup-
port was relatively weak because production at E-4 AHT2
(hereafter referred to as E-4 AH for conciseness) declined
rapidly and had to be shut in for lack of pressure support.
To allow for a small amount of communication between
the G-segment and the main C-segment, the base reservoir
simulation model created by Equinor assignedMULTREGT
values of 0.005 in the Garn formation, 0.01 in the Ile
formation, and 0.01 in the Tofte formation at the bound-
ary between segments. These values remained fixed in the
initial ensemble.

1Geological and Petrophysical Report, Norne Field, PL 128, Wells
6608/10-E-4 H, 6608/10-E-4 T2 H, 6608/10-E-4 AH, 6608/10-E-
4 A T2 H, Norne PETEK, March 2001
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3.2.2 Petro-elastic model (PEM)

A rock-physics or petro-elastic model (PEM) is a set of
relationships that aim to convert certain reservoir properties
(e.g., porosity and NTG ratio) and reservoir state variables
(e.g., saturations and pressures) into elastic properties, such
as velocities, densities, and impedances. The Chen and
Oliver [13] history match of Norne did not include a PEM
because it did not assimilate seismic data. We therefore need
to choose a PEM to generate acoustic impedance predictions
from the reservoir simulation model and simulation outputs
for comparison with actual seismic impedance (Ip) data.
Details of our PEM model and the methodology used for
simulation of the acoustic impedances can be found in
Appendices A and B, respectively.

3.2.3 Data for model criticism

Because we focus on the G-segment, the data is limited to
production data from the E-4AH well (Fig. 5c), injection
rates from the F-4H well, RFT data from both wells
(Fig. 5a), and inverted acoustic impedance data at four
survey times. The production and RFT data have been
described in previous publications, but the seismic data
requires description as it was inverted for this study. The
Norne seismic dataset consists of four pre-stack time-
migrated volumes acquired in 2001, 2003, 2004, and 2006.
In order to improve the repeatability between the seismic
surveys, various 4D seismic calibration steps were applied
[3]. We subsequently performed a sequential 4D post-stack
seismic inversion workflow on the calibrated volumes in
order to generate inverted acoustic impedance data for each
of the four seismic surveys. This process involved well
log QC, horizon QC, wavelet estimation, low-frequency
model construction, inversion parameterization, and a linear
and deterministic seismic inversion step. The four seismic
impedance volumes were then converted from the two-way
time (TWT) domain to the depth domain using a calibrated
version of the interval velocity model provided in the Norne
dataset. Figure 3 (top row) shows the Ip2006-Ip2001 4D
difference estimated from the inverted seismic data in the
G-segment.

In criticism of the initial ensemble, characterization
of the magnitude and correlation of errors in data are
of secondary importance, but for RFT data, we assumed
uncorrelated measurement errors with standard deviation
of 0.01 bar, which appears to be close to the actual
measurement error. For production rates, we assumed
that errors are unbiased and uncorrelated with standard
deviations of 50 m3/days, which is lower than the value used
in [13]. Errors in the inverted seismic acoustic impedance
data were estimated using factorial co-Kriging [2]. From
this process, we obtained variogram models corresponding

to the 3D seismic noise in each seismic survey (Ip2001,
Ip2003, Ip2004, and Ip2006) and the 4D seismic noise
in each of the 4D impedance volumes: Ip2003-Ip2001,
Ip2004-Ip2001, and Ip2006-Ip2001. Since the variogram
structures for all the 3D noise models are very similar, we
chose to use as 3D seismic noise the model obtained from
the independent Ip2001 residuals. Similarly, as all the 4D
noise models are very similar to one another, we selected the
4D seismic noise obtained from the Ip2006-Ip2001 seismic
differences. In each case, the errors appear to be spatially
correlated. For the 3D noise in acoustic impedance, the
covariance estimate has a nugget effect with amplitude 983
(units of impedance squared) and a cubic covariance with
amplitude 8347 and ranges of 10, 8, and 4 grid cells in the
i, j , k directions, respectively. The covariance estimate of
the 4D seismic noise, on the other hand, has a nugget effect
with amplitude 1,236 (units of impedance squared) and a
cubic covariance with amplitude 27,260 and ranges of 10,
9, and 5 grid cells in the i, j , k directions, respectively.
These covariance structures were used to generate 100
realizations of 3D seismic noise and 100 realizations of
4D seismic noise. A single realization of 3D seismic
noise and a realization of 4D seismic noise based on our
characterization are shown in Fig. 4. The realizations of
seismic noise were then added to the impedance predictions
to generate perturbed impedance predictions for comparison
with actual seismic data (Fig. 3, middle and bottom rows).

3.2.4 Initial model criticism

We used several subsets of data from the G-segment of the
Norne field to challenge the model. Our subsets included
RFT data from the E-4AH and F-4H wells, both separately
and jointly. The purpose of examining the data sets jointly
is to ensure that the pressure behavior at both wells can
be jointly explained by the same set of parameters. We
also compared predictions of well water production rate
(WWPR) and well gas production rate (WGPR) at well
E-4AH to actual observations. Finally, we compared the
initial ensemble of perturbed simulated acoustic impedance
to the observations of acoustic impedance and to changes in
impedance (4D differences).

Figure 5 summarizes visually the most important aspects
of the comparison of the perturbed prior predictions to the
observations. First, we observe from the joint RFT data
that the ensemble has (nearly) enough variability to cover
the observations, but the discontinuity in observed pressure
for the F-4H well at depth approximately 2640 m is not
seen in the perturbed predictions (Fig. 5a). This failure is
identified by the Mahalanobis distance which falls slightly
outside of the credible interval (Fig. 5b). The observed water
production rate at well E-4AH (Fig. 5c) shows early water
breakthrough in a substantial number of model realizations,
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Fig. 3 Observed Ip2006-Ip2001
and realization 1 of perturbed
simulated Ip2006-Ip2001 from
the original and the improved
ensembles. Units of
impedances: (m/s).(g/cc)

but is not identified as inconsistent (Fig. 5d) because a few
of the models agree with the data by not predicting early
water production.

The ensemble of perturbed predictions of gas production
at well E-4AH (Fig. 5e) covers the observed gas production
and appears, from the Mahalanobis distance, to be
consistent with the observations (Fig. 5f). Although the
mean simulated pressure from the prior ensemble is much
too high, and consequently the mean simulated change in Ip

is much too negative in the Garn formation of the G-segment
(Fig. 5g), there is sufficient variability in the pressure
behavior and in the Ip behavior that the Mahalanobis
distance for acoustic impedance change does not invalidate
the model (Fig. 5h).

Modified z-scores (12) and cumulative probabilities for
evaluation of the credibility are shown in the first column of
results in Table 2. In addition to results described above, we
note the clear inconsistency of the RFT observations from
well F-4H in the Garn formation with the predictions. The

failure is much larger when data from the Garn formation is
evaluated separately.

3.2.5 Initial model improvement

The G-segment in the Norne field is fairly complex, with
several identified faults and barriers to vertical flow. The
degree of connectivity with the main part of the field is
uncertain. The operators of the field concluded that there
must be some connectivity between the G- and C-segments
because there was pressure drawdown observed in well E-
4H when it was drilled. Yet, the producer E-4AH died fairly
quickly due to lack of pressure support. Also, we note that
almost all simulation models of the G-segment predict early
water breakthrough at well E-4AH, but this behavior was
not observed in the field (Fig. 5c). The RFT in well F-
4H, which was drilled about 1 year after E-4AH began
producing, showed a discontinuity in pressure in the Garn
formation. The simulated gas production at well E-4AH,

Fig. 4 One realization of 3D
seismic noise (top) and one
realization of 4D seismic noise
(bottom) for the Norne model.
The G-segment is inside the
rectangular area. Units of
impedances: (m/s).(g/cc)
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Fig. 5 Prior predictive
distribution based on the initial
model of uncertainty. Top row
shows 20 realizations of
perturbed simulated RFT data
(blue) in wells E-4H (March
2000) and F-4H (July 2001)
compared with observations
(red). Same for water production
rate in well E-4AH, with the
times of the 4D seismic surveys
shown by the green diamonds
(middle row), and for change in
simulated acoustic impedance in
the Garn formation of the
G-segment (bottom row). Right
column compares the simulated
distribution of scores (solid
curves) with the distribution of
estimated scores for the
observations (dashed curves)

Table 2 Model diagnostics for various subsets of data from the initial ensemble, and from the ensemble after model improvement

Initial model Improved model Move completion

Data Well Score 95% CI Score 95% CI Score 95% CI

E-4H and F-4H 3.3 0.98 2.2 0.98 − 0.02 0.50
E-4H 9.0 1.0 5.4 1.0 4.4 0.97

RFT F-4H 3.7 0.94 4.2 0.96 0.15 0.58
F-4H (Garn) 755 1.0 192 1.0 6.8 0.92

WWPR − 0.5 0.17 − 1.0 0.03 0.7 0.83
WGPR E-4AH − 0.8 0.04 − 0.6 0.12 − 0.7 0.12
Ip 2001 1.4 0.91 0.8 0.76 0.7 0.75
ΔIp (4D) Garn only 0.9 0.80 0.5 0.69 − 0.3 0.40

Second column for each case shows the fraction of realizations that fall in the 95% credible interval (CI)
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on the other hand, seems consistent with the observed gas
production. Finally, the average pressure change simulated
by the models was much larger than the observed pressure
changes, so the average simulated impedance change was
much different from the observation (Figs. 3 and 5g).
The different obtained results highlight the importance of
criticizing the initial model using subsets of data separately.

The prior predictive distributions for RFT data, pro-
duction data, and impedance data (Table 2) confirm that
some aspects of the uncertainty model for the G-segment
are inconsistent with the observed behavior. The model of
uncertainty should either be improved, or the model for
observation error should be modified to reflect the presence
of model error. Unfortunately, it is not straightforward to
automate the process of model improvement, so we apply
an empirical method in which we first identify the data
that was inconsistent with the prior model, and then try to
identify possible reasons for the inconsistency. To address
the problem of inconsistency in simulated pressure, we
added uncertainty in the connection between the G- and C-
segments of the Norne field (MULTREGT parameters). We
also decreased the mean vertical transmissivity (MULTZ
parameter) between layers 1 and 2 to allow simulation
of pressure discontinuities, and decreased the mean multi-
plier for the endpoint relative permeability of water (KRW
parameter) in the Garn formation, thinking that it might
delay the advance of water. Table 4 in Appendix C summa-
rizes these changes to the simulation model. We also added
uncertainty to the PEM (Table 3), not because the model
diagnostic indicated inconsistency, but simply because the
parameters are uncertain.

The center column of Table 2 shows the scores and
probabilities after the initial attempt at model improve-
ment. Visual comparisons of observations and perturbed
predictions for three types of data are shown in Fig. 6.
Improvements can be noted in the modeling of gas produc-
tion data and impedance data, but simulated RFT data are
still inconsistent with actual observations (Table 2). It is also
noted that most model realizations still simulate early break-
through in water production (Fig. 6c), and that the score
for this type of data increases in the new model (Table 2).
The ensemble of simulated water production cannot, how-
ever, be deemed inconsistent with the WWPR observations
(Fig. 6d). Although the ensembles of perturbed simulated
impedance data and change in impedance data were both
consistent with the observed impedance data in the origi-
nal model, the model is further improved when uncertainty
is added to the parameters of the PEM (Fig. 3, bottom row,
Table 2 and cross-plot in Fig. 6g). After the changes to the
initial ensemble, however, some actual observations are still
inconsistent with the distribution of predictions.

In order to make the prior predictive distribution con-
sistent with RFT observations, several additional changes

had to be made to the model. Because of vertical offsets
along several faults, layers 1 and 2 are in communica-
tion in the G-segment. It does not appear to be possible
to simulate a pressure discontinuity between layers 1 and
2 at well F-4H by reducing vertical transmissibility at the
base of layer 1 without also reducing the fault transmis-
sibilities. The resulting simulated pressures will then have
a pressure discontinuity in the Garn, but it would not be
similar to the observed discontinuity. The observed pres-
sure had fallen farther in layer 1 than in layer 2 (Fig. 5a),
but the producing well was supposedly in layer 2, which
should have resulted in lower pressure in layer 2 (reversal
of the observed). In order to simulate the observed behav-
ior, we believe that it is necessary to allow for the possibility
that well E-4AH was actually completed in layer 1 (above
the cementation barrier), not below it. Figure 7 shows the
visual comparisons of observations and perturbed predic-
tions in the new model with changed completion interval
for well E-4AH. These changes, coupled with a reduction
in flow across faults, allowed the pressure discontinuity at
well F-4H to be simulated (see Fig. 7a). Results from the
prior predictive distribution for RFT after these changes are
greatly improved (right column of Table 2 and Fig. 7b).
Although an error in completion location for well E-4AH
is almost certainly not the only way to explain the data,
it does not appear to be inconsistent with uncertainty in
layer depths or location of the well path. Comparison of
simulated water production, gas production rates, and seis-
mic impedances were either unchanged or improved by the
change (see WWPR, WGPR, and Ip results in Table 2).
It is noted that after the change, most models no longer
predict early water breakthrough (Fig. 7c), and that the
perturbed predictions of WWPR are consistent with the
observations (Fig. 7d). Despite the slight increase in the
WGPR score in the new model (Table 2), the ensemble
of perturbed predictions of gas production remains consis-
tent with the observations (Fig. 7e, f). Results from the
prior predictive distribution for impedances and changes in
impedances are also improved (Table 2 and Fig. 7h), with
a number of model realizations predicting pore pressures
which yield impedance values (less negative impedance
changes) that are closer to the observed impedance changes
(Fig. 7g).

3.2.6 Discussion of data dimension

We evaluate the adequacy of our prior model by asking
the question “Do the data appear to be sampled from the
initial ensemble of perturbed prediction observations?” If
the answer is “yes,” then we can consider using the model
and the ensemble for data assimilation. If the answer is “no”
then we must reevaluate our predictive model and attempt to
improve it, since the data have shown that it is inadequate.
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Fig. 6 Prior predictive
distribution based on the
improved model. Top row shows
20 realizations of perturbed
simulated RFT data (blue) in
wells E-4H (March 2000) and
F-4H (July 2001) compared
with observations (red). Same
for water production rate in well
E-4AH, with the times of the 4D
seismic surveys shown by the
green diamonds (middle row),
and for change in simulated
acoustic impedance in the Garn
formation of the G-segment
(bottom row). Right column
compares the predicted
distribution of scores (solid
curve) with the distribution of
estimated scores for the
observations (dashed curve)

In fact, the most common tests of adequacy of the initial
ensemble are prone to accept poor initial ensembles and
poor models. One reason is that it is standard practice
to compare individual observations with the ensemble of
predictions using the concept of “coverage.” Unfortunately,
coverage alone is not a powerful method of model checking
as coverage of an observation by an ensemble of perturbed
observations can often be obtained by simply increasing
uncertainty or variability in a single model parameter. The
toy problem shown in Fig. 1 illustrated this failure to
discriminate. In that case, the model appeared perfectly
adequate based on coverage, but was inadequate when
data from both series were evaluated simultaneously. On

the other hand, if all observations in a large data set
are simultaneously compared to model predictions using
a measure of proximity, then we suffer from a curse of
dimensionality and the concept of proximity or distance
may not even be meaningful, depending on the exact metric
used [1, 25].

Consequently, it is generally useful to evaluate subsets
of the data for which the model errors are expected to be
correlated. Hence, when we evaluate the Norne model, we
evaluate RFT data separately from seismic and production
data. The largest scores are observed when we focus on RFT
data in the Garn formation only, but even when all RFT from
both wells are evaluated simultaneously, the initial ensemble
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Fig. 7 Prior predictive
distribution based on the model
after moving completion of well
E-4AH. Top row shows 20
realizations of perturbed
simulated RFT data (blue) in the
Garn formation of well F-4H
(July 2001) compared with
observations (red). Water and
gas production rates in well
E-4AH are shown in middle two
rows, with the times of the 4D
seismic surveys shown by the
green diamonds. Bottom row
shows change in simulated
acoustic impedance in the Garn
formation of the G-segment.
Right column compares the
simulated distribution of scores
(solid curve) with the
distribution of estimated scores
for the observations (dashed
curve)

is seen to be inadequate until improvements are made in the
connectivity.

4 Conclusions

In this paper, the ability to criticize large models by
comparison of large amounts of data to predictions was
demonstrated. We showed that simple “coverage” of data
by the ensemble of perturbed predictions does not always
provide a useful evaluation of the prior ensemble. Poor
coverage can be useful for demonstrating inadequacy of the
model, but good coverage does not necessarily demonstrate
that the initial ensemble is valid.

When coverage is insufficient as a criterion, we pro-
pose use of a model diagnostic based on the Mahalanobis
distance, which measures the distance of the observations
from the ensemble of predictions. Computation of Maha-
lanobis distance is not straightforward for models with
large numbers of data and small numbers of samples as
the estimate of the covariance matrix in that case can-
not be inverted. We proposed using a shrinkage estimate
of the covariance matrix that has full rank, even in high
dimensions. We showed that this estimate of the covari-
ance was better at identifying outliers for a toy exam-
ple with 1000 observations than estimates based on the
pseudo-inverse or on a diagonal approximation of the
covariance.
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We also applied the Mahalanobis distance to the problem
of criticism of a model of the G-segment of the Norne
field by comparison with production data, RFT data, and
inverted seismic data, independently. We showed that the
model used by Chen and Oliver [13] was inadequate when
compared to RFT data, production data and 4D seismic data,
so that model improvement was necessary. After two rounds
of model improvement, the observations were consistent
with the ensemble of perturbed simulated data. At this
point, the model and data are ready for data assimilation
and additional model criticism based on the distribution of
residuals [2, 33].

We showed that the methodology for model criticism
and improvement we proposed in this paper is feasible for
realistic problems with large numbers of model parameters,
large amounts of data, and correlated observation errors,
which is the case in history matching to production and
seismic data.
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Appendix A: Petro-elastic model

We use the Gassmann model [17, 46] to model the bulk
modulus, Ksat, and the shear modulus, μsat, of the saturated
rock [31], as follows:

Ksat=Kdry+
(
1− Kdry

Kmin

)2 (
φ

K fluid
+ 1 − φ

Kmin
+ Kdry

Kmin
2

)−1

(14)

and

μsat = μdry, (15)

where Kdry is the bulk modulus of the dry rock, Kmin is the
bulk modulus of the mixture of minerals in the rock matrix,
K fluid is the bulk modulus of the mixture of fluids (water,

oil and gas) in the porous medium, φ is the porosity of the
rock, and μdry is the shear modulus of the dry rock.

The P-wave velocity of the saturated rock is obtained
from the following relationship:

V sat
p = ((Ksat + (4/3)μsat)/ρsat)

1/2 (16)

The acoustic or P-wave impedance of the saturated rock
is then computed from the P-wave velocity and the bulk
density of the rock as follows:

I sat
p = ρsatV sat

p. (17)

We model the elastic moduli of the minerals in the rock
matrix using the Hashin-Shtrikman bounds [19] for a sand-
shale mixture, assuming that the rock matrix is composed
of sand and shale, and hence, quartz and clay minerals. Our
estimates of Kmin (which is required for computation of
Ksat (14)) and μmin are obtained by arithmetic averaging
of upper and lower Hashin-Shtrikman bounds [31]. The
mineral density is the volume-weighted average of the
densities of quartz and clay minerals. The relative volumes
of each mineral are assumed to be related directly to the
net-to-gross ratio of the reservoir model.

Elastic moduli of the dry rock are computed using
a slightly modified version [4] of the dependence of
the dry-rock moduli on porosity [27, 36], coupled with
the dependence on changes in effective stress [30]. This
combination is used in the context of 4D seismic data, where
two or more seismic times, and hence reservoir conditions,
are involved. The dynamic part of the elastic dry moduli
(Kdry and μdry), which describes the dependence on stress,
are computed as follows:

Kdry = Kdry,stat

(
1 + EKe−P eff,init/PK

)
(
1 + EKe−P eff/PK

)−1
(18)

μdry = μdry,stat

(
1 + Eμe−P eff,init/Pμ

)
(
1 + Eμe−P eff/Pμ

)−1
(19)

In Eqs. 18 and 19, P eff,init is the effective pressures at
initial reservoir conditions, P eff is the effective pressure at
a particular reservoir condition (for example, at the time of
a certain 4D seismic survey), and Ek , Pk , Eμ, and Pμ are
stress sensitivity parameters [30].

The static parts the dry elastic moduli, which describe the
dependence of dry-rock elastic properties on porosity are
given by the following:

Kdry,stat = Kmin(1 − φ)/(1 + βφ) (20)

μdry,stat = μmin(1 − φ)/(1 + βφ) (21)

where β is the consolidation factor, which is assumed to be
linearly related to the bulk composition [4] as follows:

β = aV sand + bV shale + cφ (22)
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where V sand and V shale are the volumes of sand and shale in
the whole rock, respectively, φ is the porosity, and a, b, and
c are consolidation parameters determining the sensitivity
of β to V sand, V shale, and φ. The elastic moduli of the dry
rock (Kdry and μdry) in Eqs. 18 and 19 are required inputs
to Gassmann’s relations (14 and 15).

The proportions of sand and shale in the bulk rock are
assumed to be determined by porosity and net-to-gross ratio
as follows:

V shale = (1 − NT G)(1 − φ) (23)

V sand = NT G(1 − φ) (24)

Effective pressure (P eff) at each grid cell of the model is
computed from P eff = P lith − P where P is fluid pressure
and P lith is lithostatic pressure computed from the following
formula:2

P lith[z] = −49.6 + 0.2027z + 6.127 × 10−6 × z2 [bars]
(25)

where z is vertical subsea depth in meters.
Elastic moduli of the mixture of fluids at reservoir

conditions are modeled using relationships from Batzle and
Wang [5]. For the Norne field, the reservoir temperature
was assumed to be 98.3 ◦C, water salinity 15000 ppm, oil
gravity 32.7 API, and gas gravity 0.645. The bulk modulus
of the mixture of fluids (K fluid) is computed using the Reuss
average (Mavko et al., 2009) as follows:

K fluid = (Sw/Kw + So/Ko + Sg/Kg)
−1. (26)

where Sw, So, and Sg , are the saturation of water, oil, and
gas, respectively, and Kw, Ko, and Kg are the bulk moduli
of water, oil, and gas.

The PEM that we selected (Eqs. 14 to 26) requires that
some parameters be estimated and calibrated for the Norne
field case. We separated the PEM into two vertical regions
comprising the Garn formation (layers 1 to 3 of the Norne
simulation model) and the formations underlying the Not
shale (Ile to Tofte in layers 5 to 22), as the geological
information available on the Norne field suggests that the
Garn formation and the formations below the Not shale are
reasonably different [44].

Values for the consolidation parameters a, b, and c in
the original model were obtained from a weighted average
at four different wells in the Norne field [8, 9]. Values
for elastic moduli of the mineral parameters in the rock
matrix were obtained from well log calibration in the Norne
field, and the density of sand and shale in the rock matrix
were set to 2.689 g/cc and 2.635 g/cc, respectively [8].
Finally, values of parameters for the pressure sensitivity of

2Data for P lith provided by Fridtjof Riis of the Norwegian Petroleum
Directorate. Compaction is based on [42].

Table 3 Input parameters of the Norne PEM. In the original model,
the parameters were set to fixed values

Original Improved

Parameter model model

Garn formation

a 5.73 5.73 ± 0.4

b 5.57 5.57 ± 0.5

c − 2.63 − 2.63 ± 1.5

Ile, Tofte and Tilje formations

a 7.93 7.93 ± 1.0

b 9.40 9.40 ± 1.0

c − 2.88 − 2.88 ± 0.4

All formations

Ksand,matrix [GPa] 23 23.0 ± 6.0

μsand,matrix [GPa] 16 16.0 ± 4.5

Kshale,matrix [GPa] 22 22.0 ± 3.0

μshale,matrix [GPa] 12 12.0 ± 2.0

Pk [MPa] 5.62 5.62 ± 1.0

Pμ [MPa] 7.97 7.97 ± 1.0

Ek 1.128 1.128

Eμ 1.083 1.083

Ip [(m/s)(g/cc)] 6500 6500 ± 600

In the improved model, uncertainty was added to some of these
parameters

dry elastic moduli (Eqs. 18 and 19) are obtained from core
measurements from the Schiehallion field [30]. All values
used in the PEM are shown in Table 3.

Appendix B: Seismic modeling

We generate realizations of acoustic impedance predic-
tions from the Norne simulation model, using the PEM
(Appendix A) and applying a vertical seismic filter to
account for differences in resolution between the simulation
model and the inverted seismic data.

Due to the gridding in the simulation model, the
seismic predictions obtained from application of the
PEM to the saturations, pressures, and porosities at the
reservoir simulation grid scale may contain high-frequency
features that are outside of the observed seismic-frequency
spectrum. Although other solutions for dealing with lack of
smoothness in synthetic seismic data have been proposed
[11, 43], we have applied a vertical seismic filter to the
acoustic impedance predictions in the simulation model in
order to make them more comparable to actual seismic data
[2, 37]. In other words, perturbed impedance predictions and
inverted impedance data are compared at the scale of the
Norne seismic data.
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Fig. 8 One realization of
acoustic impedance predictions
in the G-segment from the PEM
(top row) and after filtering
(bottom row). Units of
impedances: (m/s).(g/cc)

This filter was created based on the frequency spectrum
of the actual inverted acoustic impedance data of the
four Norne seismic surveys (Ip2001, Ip2003, Ip2004, and
Ip2006), all of which have very similar frequency content.
We modeled the observed spectra by a low-pass Ormsby
filter [34], which is a trapezoidal filter applied in the
frequency domain that removes all the frequencies above
some user-defined cut frequencies. To approximately match
the frequency spectrum of real impedance data, we set
the cut frequencies of the Ormsby filter at 0-0-100-
120 Hz. Prior to filtering, we populated the inactive cells
of the Norne simulation model with a Not shale acoustic
impedance value of 6500 (m/s).(g/cc). Figure 8 shows one
realization of the impedance predictions at the time of the
2001 seismic survey (baseline) before and after filtering.

Appendix C: Simulationmodel

Table 4 summarizes the parameters of the simulation
model that were modified in the improved and move-
completion models (Section 3.2.5). In this table, MUL-
TREGT defines the transmissibility multiplier between
flux regions, MULTZ describes the vertical transmissivity
multiplier between two layers, and KRW corresponds to the
endpoint relative permeability of water.
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