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Abstract
In data assimilation problems, various types of data are naturally linked to different spatial resolutions (e.g., seismic and
electromagnetic data), and these scales are usually not coincident to the subsurface simulation model scale. Alternatives like
upscaling/downscaling of the data and/or the simulation model can be used, but with potential loss of important information.
Such alternatives introduce additional uncertainties which are not in the nature of the problem description, but the result of
the post processing of the data or the geo-model. To address this issue, a novel multiscale (MS) data assimilation method is
introduced. The overall idea of the method is to keep uncertain parameters and observed data at their original representation
scale, avoiding upscaling/downscaling of any quantity. The method relies on a recently developed mathematical framework
to compute adjoint gradients via a MS strategy in an algebraic framework. The fine-scale uncertain parameters are directly
updated and the MS grid is constructed in a resolution that meets the observed data resolution. This formulation therefore
enables a consistent assimilation of data represented at a coarser scale than the simulation model. The misfit objective
function is constructed to keep the MS nature of the problem. The regularization term is represented at the simulation model
(fine) scale, whereas the data misfit term is represented at the observed data (coarse) scale. The computational aspects of the
method are investigated in a simple synthetic model, including an elaborate uncertainty quantification step, and compared
to upscaling/downscaling strategies. The experiment shows that the MS strategy provides several potential advantages
compared to more traditional scale conciliation strategies: (1) expensive operations are only performed at the coarse scale;
(2) the matched uncertain parameter distribution is closer to the “truth”; (3) faster convergence behavior occurs due to
faster gradient computation; and (4) better uncertainty quantification results are obtained. The proof-of-concept example
considered in this paper sheds new lights on how one can reduce uncertainty within fine-scale geo-model parameters with
coarse-scale data, without the necessity of upscaling/downscaling the data nor the geo-model. The developments demonstrate
how to consistently formulate such a gradient-based MS data assimilation strategy in an algebraic framework which allows
for implementation in available computational platforms.

Keywords Data assimilation · Multiscale inversion · Gradient-based optimization · Adjoint method · Spatial observations ·
Uncertainty quantification

1 Introduction

Subsurface simulation models should be conditioned to
field data, whenever possible, in order to reduce uncertainty
in the model parameters and hence increase forecasting reli-
ability. Well production data (time series of fluid rates and
pressures), seismic surveys, and well testing pressure data
are some instances of field data that can be assimilated in
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order to better estimate the uncertain parameters. In addi-
tion, spatially distributed observations (e.g., seismic, elec-
tromagnetics) provide valuable information that can consider-
ably improve the assimilation process [10]. For instance,
over the past decades, an increasing number of seismic mon-
itoring cases has been observed [13, 27, 48, 52, 53, 58]. One
of the main advantages of time-lapse seismic data is its abil-
ity to approximate the pressure/fluid distribution inside the
reservoir. This may considerably help to gain insight about
the subsurface fluid displacement process. Moreover, it may
help to characterize the formation, either via improved static
geological modeling, or via dynamic assimilation (inverse
modeling). One hurdle in the process of assimilating spa-
tially distributed information is the fact that, more often than
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not, the observed data and the forward model are described
at different spatial scales. In fact, it is an open question at
which scale data should best be assimilated: the simulation
model scale or the observed data scale [10].

The relevancy of addressing the multiscale nature of
inverse problems is observed in the recent literature on
the topic. A collection of articles about multiscale forward
modeling strategies and multiscale challenges associated
to inverse problems can be found in [25]. In [36], the
authors propose a multiscale data assimilation scheme based
on the decomposition of the objective function so that
the error covariance can be estimated for distinct spatial
scales. A multiscale parameter field discretization designed
to reduce the dimensionality of the inverse problem via an
adaptive grid refinement is presented in [55]. The impact of
the scale dissimilarity in terms of observation information
content and the parameter space size on the ensemble
collapse in ensemble-based methods [1] has been addressed
by [16, 17, 40] via upscaling/homogenization techniques
[7, 15]. The authors also benefit from coarse-scale
simulations to improve the inverse problem computational
efficiency. In [18], a multiscale method is proposed which
accounts for microscale features by assuming that they
can be represented by a low-dimensional parameterization.
Nonetheless, the aforementioned works are based on the
assumption that the fine-scale uncertain parameters can be
homogenized and represented at a coarser scale.

On the other hand, data assimilation strategies based
on multiscale (MS) simulation [28, 32] have also been
developed. MS methods are efficient simulation strategies
capable of solving the flow problem at a coarser grid,
while being capable of accurately representing fine-scale
heterogeneities. An adjoint-based multiscale finite volume
method for computation of sensitivities has been presented
in [20] and later extended to time-dependent [19] single-
phase flow in porous media. More recently, a general
framework for the computation of multiscale gradients has
been introduced in [42], with an extension to multiphase
flows [41]. The latter two are based on a general framework
for derivative computation, whose algebraic nature does
not rely on any assumption regarding the nature of the
parameters, observations, or objective function type. Also,
in [3], a multiscale inversion technique is presented based
on the Markov-chain Monte Carlo method that also relies
on the generalized multiscale finite element method [8].

Despite this body of work found in the inverse modeling
literature, when one is interested in assimilating spatially
distributed data, there is an implicit assumption that the
observed data is described at the same scale of the
parameters is usually made. Actually, assuming one is not
interested in changing the scale of the model parameter
description, some treatment must be employed in the
change of the observed data or the forward model response

scale. The literature indicates that upscaling/downscaling
of the observed data to the forward model scale, as a pre-
processing step with respect to the data assimilation process,
is the most employed strategy in practice [23, 24, 35]. In the
present work, we are particularly interested in addressing
the spatial scale dissimilarity between observations and
the discretized forward model. In many applications, there
is no observability of the spatially distributed data (due
to limitations in the acquisition process; e.g., in terms of
resolution) at the parameter resolution which is necessary
to accurately describe important physical phenomena.
Therefore, here we consider observed data that is acquired
at a resolution that is coarser than the parameter resolution,
and hence represented in a grid that is coarser than the
one employed in the forward simulation. Note that sub-grid
observations, at a resolution lower than the forward model
discretization, is outside the scope of this work.

Another important aspect to be considered in data assimi-
lation and uncertainty quantification (UQ) studies is the fact
that those rely on computationally demanding algorithms.
Different techniques such as Monte Carlo (MC) meth-
ods [37], Ensemble Kalman Filter (EnKF) and derivations
[1, 11, 14], and randomized maximum likelihood (RML)
[45] are developed to perform those studies. A compari-
son between the different techniques is provided by [12].
Regardless of the technique, a common feature they share
is the necessity of performing many forward model runs
in order to reasonably sample the posterior probability dis-
tribution of the reservoir uncertain parameters. As already
mentioned, upscaling [7, 15] can build faster, reasonably
accurate forward models that can speed up the sampling
process. However, to accurately represent some physical
phenomena, e.g., mixing, diffusion, fluid fronts, or compo-
sitional capillary effects, fine-scale resolution is of utmost
importance. Hence, the ability of keeping the high fidelity
description of geological parameters is fundamental for
an adequate reservoir characterization. Partial-differential-
equation-(PDE)-constrained optimization techniques can be
employed in the solution of the inverse problem. In this
case, it is well known that gradient-based algorithms are the
most efficient ones, mainly if combined with efficient gra-
dient computation. And it is also well known that gradients
obtained with the adjoint method [2, 31, 33, 47] are the most
efficient and accurate ones.

The objective of this work is to develop and demonstrate
an inverse modelling method that, at the same time, (1) is
computationally efficient, (2) addresses the scale dissim-
ilarity issue, with minimum loss of information, and (3)
is capable of updating the highest fidelity model descrip-
tion. To this end, we exploit multiscale (MS) simulation
strategies in order to (1) speed up the forward simulation,
while preserving fine-scale geological features, (2) effi-
ciently compute gradient information, and (3) seamlessly
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conciliate model and observed data scales. For a compre-
hensive review on the recent developments associated with
MS methods applied to reservoir simulation, see [36].

The remainder of this paper is organized as follows.
Firstly, a brief overview about how data assimilation is
approached from a Bayesian perspective is presented.
Next, we state our target forward model, consisting of
incompressible single-phase flow in heterogeneous porous
media. Also, we revisit the MS solution of the flow equation
in a purely algebraic presentation. Thereafter, we discuss the
data assimilation problem setup, focusing on the challenges
of assimilating spatially distributed data. More specifically,
we discuss alternatives on how to conciliate data and model
scales. Then, we introduce our multiscale data assimilation
strategy, consisting of, basically, a MS objective function
and a MS gradient computation strategy. The method here
employed is largely based on the MS gradient computation
strategy discussed by [42]. We compare the different data
conciliation methods and our newly introduced method
based on a synthetic 2D case. We focus our experiments on
both the maximum a-posteriori (MAP) estimate and UQ via
the RML method. A discussion about the results and the
challenges that the method can encounter is presented next.
Finally, a summary of the developments and results, as well
as future research perspectives, is presented.

2 Preliminaries

2.1 Problem statement

Let Nd denote the number of space dimensions. Let Ω ⊂
R

Nd be the problem domain with boundary ∂Ω . Let s ∈
R

Nd be an arbitrary space position. Let n ∈ R
Nd be an unit

normal vector to ∂Ω . Our analysis focuses on phenomena
governed by an elliptic PDE equation, denoted by g, in the
form

(g)

⎧
⎨

⎩

∇ · (θ (s) ∇x (s)) = q (s) , s ∈ Ω

∇x (s) n = Γ, s ∈ ∂Ω�

x (s) = Υ, s ∈ ∂ΩΥ

(1)

where ∂Ω = ∂ΩΥ ∪ ∂Ω� , ∂ΩΥ ∩ ∂Ω� = ∅, x = x (θ)

is the variable of interest, q = q (θ) is the sink/source
term, and θ is the heterogeneous uncertain coefficient
which we aim to estimate via the assimilation of real
system observations. We assume θ has no separation of
scales; hence, homogenization techniques would lead to
unavoidable approximations to the effective property.

Let

y = h (x, θ) (2)

be the observable model responses, then the inverse problem

d = h (x, θ) + ε (3)

can provide an estimate for θ given the description of the
real observation errors ε. We assume that d , the real system
data, can only be observed at a resolution that is coarser or
equal to the resolution at which θ is described.

2.2 Inverse problem as a PDE-constrained
optimization

We base our developments on a Bayesian framework.
Let Ny be number of observable responses, Nθ be the
number of model parameters, andNx the number of primary
(state) variables. According to Bayes’ theorem, the posterior
probability distribution function (PDF) can be computed as

f (θ|d) = f (d|θ) f (θ)

f (d)
, (4)

where θ ∈ R
Nθ is the vector of model parameters and d ∈

R
Ny is the vector observable responses. If the a priori PDF

of the uncertain parameters, f (θ), and the measurement
errors from the observations are assumed Gaussian, it can be
shown that the conditional a posteriori distribution is given
by [50]

f (θ|d) ∝ exp (−O (y (x, θ) , θ)) , (5)

where the objective function O ∈ R is given by

O (y (x, θ) , θ) = 1

2

(
θ − θprior

)T C−1
θ

(
θ − θprior

)

+1

2
(y (x, θ) − d)T C−1

D (y (x, θ)− d) .

(6)

In the above equations, y ∈ R
Ny is the vector of model

responses (outputs), x ∈ R
Nx is the state vector, θprior ∈

R
Nθ is the prior mean, Cθ ∈ R

Nθ×Nθ is the parameter
covariance matrix, and CD ∈ R

Ny×Ny is the covariance
matrix of the measurement errors.

The solution of Eq. 6 can be stated as a PDE-constrained
optimization problem as [46]

minimize
θ

O (y (x, θ) , θ)

subject to g (x, θ)= 0

θ∈ [θmin, θmax], (7)

where g : R
Nx × R

Nθ → R
Nx represents the set of

forward model equations and θmin ∈ R
Nθ , θmax ∈ R

Nθ

are, respectively, the parameter lower and upper bound
vectors. The efficient solution of Eq. 7, resulting from the
discretization of Eq. 1, requires gradient-based methods
[44] combined with efficient gradient computation methods.
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For this purpose, by applying the chain rule to Eq. 6 it
follows that

∇θO (θ, y (x, θ)) =
(

dO

dθ

)T

=
(

∂O

∂θ

)T

+ GT ∇yO, (8)

where G ∈ R
Ny×Nθ is the so-called sensitivity matrix,

representing the sensitivity of the responses w.r.t. the
parameters. Efficient gradient methods are analytical, and
more specifically in inverse problems where the number of
parameters is greater than the number of output functionals,
the adjoint method is the most accurate, efficient method
[46]. The efficient computation of the right multiplication of
G by an arbitrary vector (as in Eq. 8) via the adjoint method
is discussed in [47].

2.3 RandomizedMaximum Likelihood (RML)

RML [45] is an approximated sampling method for UQ,
which obtains the j th sample of the posterior PDF
distribution by solving Eq. 7 for a given sample θuc,j from
a normal distribution N (θprior , Cθ ) and a given sample
duc,j from N (d, CD). Therefore, Eq. 6 can be re-written
for Oj (y (x, θ) , θ) as

Oj (y (x, θ) , θ) = 1

2

(
θ − θuc,j

)T C−1
θ

(
θ − θuc,j

)

+1

2

(
y (x, θ) − duc,j

)T C−1
D

(
y (x, θ) − duc,j

)
.

(9)

Hence, a minimization problem has to be solved for every
j th posterior PDF sample one wants to estimate. This is
only feasible with efficient gradient computation methods,
as described in the previous section.

3 The forwardmodel

The set of discretized equations that describes the forward
simulation at the fine scale can be algebraically expressed
as [42]

gF (x, θ) = 0, (10)

where gF : R
NF × R

Nθ → R
NF represents the set

of algebraic forward model equations resulting from the
numerical discretization of Eq. 1 over a fine grid GF ∈
R

NF , x ∈ R
NF is the state vector and the subscript F refers

to “fine scale.” There are NF fine-scale cells. Equation 10
implicitly assumes a dependency of the state vector x on the
parameters θ, i.e.,

x = x (θ) . (11)

Once the model state is determined, the observable
responses of the forward model are computed. The forward
model responses may not only depend on the model state,
but also on the parameters themselves, and can be expressed
as

yF = hF (x, θ) , (12)

where hF : R
NF × R

Nθ → R
Ny represents the output

equations [30]. It is assumed that gF can be described as

gF (x, θ) = A (θ) x − q (θ) , (13)

where A = A (θ) ∈ R
NF × R

NF represents the elliptic
discrete operator and q = q (θ) ∈ R

NF is a vector of source
terms and boundary conditions.

3.1 Multiscale simulation

A multiscale (MS) solution strategy can be algebraically
devised [56, 59] by firstly computing a coarse-scale solution

ğ
(
x̆, θ

) = (RAP) x̆ − (Rq) = Ăx̆ − q̆ = 0̆, (14)

where after an approximate fine-scale solution is formed as

g′ (x′, x̆, θ
) = x′ − Px̆ = 0. (15)

Let x̆ ∈ R
NC be the coarse-scale solution (NC � NF ),

and x′ ∈ R
NF the approximated fine-scale solution. The

prolongation operator P = P (θ) is an NF × NC matrix
that maps (interpolates) the coarse-scale solution to the fine
scale, where NC is the number of coarse grid blocks. The
restriction operator R = R (θ) is defined as an NC × NF

matrix which maps the fine scale to the coarse scale.
In multiscale methods, the scaling operators are con-

structed based on locally supported basis functions. Differ-
ent strategies to build MS basis functions are available in the
literature [8, 28, 32, 43]. In this work, we employ the mul-
tiscale finite volume (MSFV) method [32]. However, we
emphasize, as will be clear from the formulation, that the
framework allows the employment of different MS meth-
ods, as long as they can be expressed in terms of R and P.
Next, we discuss the MSFV basis function construction.

3.1.1 Construction of scaling operators via the MSFV
method

The MSFV discretization relies on two overlapping coarse
grids, namely the primal and dual coarse grids, which are
superimposed on a given fine grid. The grids are illustrated
in Fig. 1. The primal coarse grid contains NC control
volumes Ω̆i , i ∈ {1, . . . , NC}, and the dual coarse grid
contains ND local domains Ω̃j , j ∈ {1, . . . , ND}.

The MSFV basis functions are constructed based on
local solutions of the elliptic governing Eq. 1 for every
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Fig. 1 Multiscale finite volume grids and illustration of interfacial connections between cells used in the wirebasket ordering

Ω̃j , with no right-hand-side and subject to special boundary
conditions [32, 56]
⎧
⎪⎪⎨

⎪⎪⎩

∇ ·
(
θ (s)∇ϕi

j (s)
)

= 0, s ∈ Ω̃j

∇‖ ·
(
θ (s) ∇ϕi

j (s)
)

‖ = 0, s ∈ ∂Ω̃j

ϕi
j (sk) = δik, ∀sk ∈ {1, ..., NC},

(16)

where ϕi
j is the basis function associated with the vertex i

in Ω̃j , the subscript ‖ represents the projection along ∂Ω̃j ,
and δik is the Kronecker delta, and k ∈ {1, . . . , 2Nd } denotes
the vertices in Ω̃j (Nd is the spatial dimensionality of the
problem – 1, 2, or 3).

Assuming a finite volume discretization of Eq. 1, the
basis functions, and hence the prolongation operator, can be
constructed directly from the given fine-grid linear system
matrix as [60]

P = P

⎡

⎣
A−1

II AIEÃ
−1
EEAEV

−Ã−1
EEAEV

−IV V

⎤

⎦ , (17)

after A in Eq. 13 is re-ordered in a wirebasket ordering [54]
as

g = P

⎡

⎣
gI

gE

gV

⎤

⎦

=
⎛

⎝P

⎡

⎣
AII AIE 0
AEI AEE AEV

0 AV E AV V

⎤

⎦PT

⎞

⎠P

⎡

⎣
xI

xE

xV

⎤

⎦ − P

⎡

⎣
qI

qE

qV

⎤

⎦ ,

(18)

where P ∈ R
NF ×NF is a permutation matrix that re-

orders from wirebasket to natural ordering, AII ∈ R
NI ×NI ,

AIE ∈ R
NI ×NE , AEI ∈ R

NE×NI , AEE ∈ R
NE×NE ,

AEV ∈ R
NE×NV , AV E ∈ R

NV ×NE , AV V ∈ R
NV ×NV

are, respectively, the sub-matrices of A corresponding to
the interior-interior, interior-edge, edge-interior, edge-edge,
edge-vertex, vertex-edge, and vertex-vertex cell connections
and NI , NE , and NV are, respectively, the total number
of interior, edge, and vertex cells in the fine grid. The
interfacial connections are illustrated in Fig. 1. Also, gI ∈
R

NI , gE ∈ R
NE , gV ∈ R

NV , xI ∈ R
NI , xE ∈ R

NE ,
xV ∈ R

NV , and qI ∈ R
NI , qE ∈ R

NE , qV ∈ R
NV are,

respectively, the model equations, and the state and source
term sub-vectors corresponding to the interior, edge, and
vertex cells.

Note that the construction of P requires settingAV E = 0,
AEI = 0, and AV V = IV V and likewise the corresponding
entries AEE , resulting in ÃEE , which is equivalent to
the localization assumptions required to build the basis
functions as stated in Eq. 16 [60].

If the FV method is used in the fine-scale system
discretization, the restriction operator can be defined as the
sum of the equations of all the fine cells contained in the
coarse cell, i.e., [60]

Ri,j =
{
1, if Ωi ⊂ Ω̆c

0, otherwise.
(c=1, . . . , NC; f = 1, . . . , NF ) , (19)

hence, in combination with Eq. 17, establishing the
multiscale finite volume (MSFV) method. Also, a Galerkin
restriction operator could be used by making

R = PT ,

and hence, in combination with Eq. 17, establishing the
MS finite element (MSFE) method. While the MSFV is
conservative by construction, the MSFE provides monotone
solutions.

3.1.2 Computational efficiency

An analytical computational efficiency estimate of the
MSFV method for the solution of one phase flow is
discussed in [32] and briefly revisited here. For CPU studies
based on the MSFV pressure equation solution of 3D
heterogeneous domains, see [56]. Let NR be the coarsening
ratio employed to construct the MS coarse grid, NL be
the number of local problems that must be solved per
coarse grid vertex (4 in 2D and 8 in 3D problems), and
b a constant associated specifically to the linear solver
employed. Assuming that the solver employed to the MS
system is equally efficient to the one employed to solve
the fine-scale system, it can be shown, via an asymptotic
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analysis of the operations, that the cost ratio between MS
and FS elliptic PDE solutions is expressed as [42]

OMS

OFS

= 1

Nb
R

+ NL

Nb−1
R

Nb−1
F

. (20)

In order to illustrate an estimate of the MS simulation
efficiency potential, let us assume b = 1.3, NR = 10,
NL = 4, and NF = 108. That gives OMS

OFS
= 0.082, hence

the MS solution is proportional to only 8% the cost of a
fine-scale solution in this scenario.

4 Data assimilation problem setup

4.1 Adjoint gradient computation

The maximum a posteriori probability (MAP, [46]) of the
uncertain parameters is obtained by solving the optimization
problem stated in Eq. 7, with the objective function (OF)
given by Eq. 6 (and using Eq. 12), the gradient which is
given by

∇θO = C−1
θ

(
θ − θprior

) +
(

dh
dθ

)T

C−1
D (h (x, θ) − d)

= p + GT m, (21)

where

p = C−1
θ

(
θ − θprior

)
, (22)

and

m = C−1
D (h (x, θ) − d) , (23)

m ∈ R
NY . Following an implicit differentiation strategy [33,

47], the sensitivity matrix G can be obtained from the total
derivative of Eq. 12 with respect to θ as follows [42]:

G = dh
dθ

= ∂h
∂x

dx
dθ

+ ∂h
∂θ

= −∂h
∂x

(
∂g
∂x

)−1
∂g
∂θ

+ ∂h
∂θ

, (24)

where
∂g
∂x

∈ R
NF × R

NF ,
∂g
∂θ

∈ R
NF × R

Nθ ,
∂h
∂x

∈
R

Ny × R
NF ,

∂h
∂θ

∈ R
Ny × R

Nθ are, respectively, partial

derivative matrices obtained from the derivation of Eqs. 10
and 12 with respect to x and θ.

The product GT m = (
mT G

)T
can be solved at costs

proportional to one backward simulation, regardless of the
number of model parameters, via the adjoint method, by
pre-multiplying Eq. 24 by the transpose of Eq. 23, as
discussed in [47]. By defining

z =
(

∂g
∂x

)−T (
∂h
∂x

)T

m, (25)

it follows that

mT G = −zT ∂g
∂θ

+ mT ∂h
∂θ

. (26)

4.2 Conciliation of spatially distributed data
and forwardmodel scales

In the data assimilation of spatially distributed observations,
Eq. 6 assumes that the observations d and the model
responses h are described at the same scale. This is often
not the case. Due to resolution issues and acquisition
limitations, observations are often not available at the scale
of the model responses. Therefore, if no MS simulation is
available, either d must be downscaled to the simulation
scale or h must be upscaled to the observation scale.

The downscaling of observed data can be expressed as

d′ = Dd̆, (27)

where D is an NF × NC downscaling operator, d̆ ∈ R
NC

is the coarse-scale observation and d′ ∈ R
NF is the

interpolated observation at the fine scale.
Additionally, one must be able to describe the data

covariance matrix CD , originally at (coarse) observation
scale, at the fine scale. This can be achieved by setting

C′
D = DC̆DDT , (28)

where C′
D is the covariance matrix represented at the fine

scale. It is simple to show that Eq. 28 holds because of
the linearity of the expectation operator given the Gaussian
assumptions. From Eq. 27, the expectation of d′ is given by

E[d′] = DE[d̆]. (29)

The covariance of d′ can then be computed as (Emerick, A.
A., personal communication, March 23, 2018)

Cov[d′] = E[(d′ − E[d′])(d′ − E[d′])T ]
= E[D(d̆ − E[d̆])(d̆ − E[d̆])T DT ]
= DE[(d̆ − E[d̆])(d̆ − E[d̆])T ]DT

= DCov[d̆]DT (30)

Alternatively, one could upscale the model responses as

d̆ = Uh, (31)

where U is an NC × NF upscaling operator, and solve Eq. 6
by setting dobs = d̆obs . One advantage over the dowscaling
strategy is that CD is kept at its original scale.

We highlight that we only consider strategies that change
observed data / response scale and do not consider strategies
that change the original uncertain parameter description
scale. This is because we aim to update the most accurate
description of the model parameters, so that important fine-
scale features (crucial to describe the physical phenomena)
are not lost.
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5Multiscale data assimilation

An MS solution strategy provides a coarse-scale solution
that can, theoretically, be represented at any resolution
coarser than the fine-scale resolution. In data assimilation
studies, where the spatially distributed data resolution is
known and is coarser than the model resolution, the MS grid
can be chosen to be at the same resolution as the assimilation
grid. This allows spatially distributed model responses to
be computed at the same scale as the observed data. Next,
we devise a multiscale data assimilation procedure based
on this feature. This allows us, instead of manipulating the
data and/or the uncertain parameters, to accurately compute
responses at the observed data scale.

Therefore, a multiscale objective function is introduced
by re-writting Eq. 6 as

OMS

(
h̆, θ

)
= 1

2

(
θ − θprior

)T C−1
θ

(
θ − θprior

)

+1

2

(
h̆
(
x̆, θ

) − d̆
)T

C−1
D

(
h̆
(
x̆, θ

) − d̆
)

,

(32)

where h̆ is the response at the (coarse) observation scale
and x̆ is the coarse state variable, computed by Eq. 14.
Hence, the misfit term is computed at the coarse scale—
the scale where data is assimilated—and the regularization
term is described at the fine scale—the scale at the model
parameters are described.

5.1 Multiscale gradient computation

As discussed in [42], the state vector can be described as a
combination of both sets of primary variables at the fine and
coarse scales, i.e.,

x =
[
x̆
x′

]

, (33)

and, similarly, the model equations can be represented as a
combination of the equations at both scales, i.e.,

g (x, θ) =
[
ğ
g′

]

= 0. (34)

The definition of the state vector as in Eq. 33 is a key aspect
of this development. It allows the description of the state
not only at the fine scale, but also at the coarse scale. The
simulator responses y obtained from the multiscale method
are represented as

y̆ = h̆ (x, θ) , (35)

the sensitivity matrix G can be computed in a multiscale
fashion as

G′ =
(

∂h̆
∂ x̆

+ ∂h̆
∂x′P

)

(RAP)−1R
(

∂A
∂θ

P + A
∂P
∂θ

)

x̆

− ∂h̆
∂x′

∂P
∂θ

x̆ + ∂h̆
∂θ

. (36)

Equation 36 allows capturing derivative information of the

coarse response, namely
∂h̆
∂ x̆

and
∂h̆
∂θ

.

In a similar way that MS methods represent (interpolate)
the coarse-scale solution at the fine scale, the partial
derivative of the prolongation operator w.r.t. the model

parameters,
∂P
∂θ

in Eq. 36, allows the representation of the

model parameters at the fine scale, even though the primary
variables are not solved at the model scale.

The gradient of Eq. 32 w.r.t. the model parameters at fine
scale can be computed as

∇θOMS = C−1
θ

(
θ − θprior

) +
(

dh̆
dθ

)T

C−1
D

(
h̆
(
x̆, θ

) − d̆
)

= C−1
θ

(
θ − θprior

) + G′T m̆, (37)

where

m̆ = C−1
D

(
h̆
(
x̆, θ

) − d̆
)
. (38)

The product G′T m̆ = (
m̆T G′)T can be solved at

costs proportional to one coarse-scale backward simulation,
regardless of the number of model parameters, via the MS
adjoint method presented in [42], by pre-multiplying Eq. 36
by the transpose of Eq. 38, defining

z̆ = (RAP)−T

(
∂h̆
∂ x̆

+ ∂h̆
∂x′P

)T

m̆, (39)

and rearranging the terms, it follows that

m̆T G′ = z̆T α + β
∂P
∂θ

x̆ + m̆T ∂h̆
∂θ

, (40)

where

α = R
∂A
∂θ

Px̆, (41)

and

β = zT RA − m̆T ∂h̆
∂x′ . (42)

5.1.1 Scaling operators partial derivative computation

The partial derivative computation of MSFV basis functions
was originally discussed in [20] and recast in an algebraic,
general mathematical framework expressed in terms of P
in [42]. An efficient algorithm that computes the product

β
∂P
∂θ

x in a backward-fashion was originally introduced in
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[42]. Here, we recast this computation in terms of the

wirebasket [60] submatrices of A and
∂g
∂θ

.

Proposition 1 (Partial derivative of MSFV prolongation
operator w.r.t. θ) Let A ∈ R

NF ×NF be the elliptic discrete
operator (13), P ∈ R

NF ×NF the permutation matrix that

re-orders from wirebasket to natural ordering, and
∂gϕ

∂θ
∈

R
NF ×Nθ the partial derivative of Eq. 13 w.r.t. θ, then

∂P
∂θ

,

the partial derivative of the MSFV prolongation operator
w.r.t. θ can be computed as

∂P
∂θ

= P

⎡

⎢
⎢
⎢
⎢
⎣

A−1
II

(

AIEĂ
−1
EE

∂gϕ
E

∂θ
− ∂gϕ

I

∂θ

)

−Ă−1
EE

∂gϕ
E

∂θ
0

⎤

⎥
⎥
⎥
⎥
⎦

, (43)

where
∂gϕ

I

∂θ
∈ R

NI ×Nθ and
∂gϕ

E

∂θ
∈ R

NE×Nθ are the partial

derivative submatrices from
∂gϕ

∂θ
∈ R

NF ×Nθ after the

wirebasket re-ordering of Eq. 13 and the application of the
MSFV localization assumptions and boundary conditions.

Proof The basis function can be computed from Eq. 18,
after applying the MSFV localization assumptions and
applying the appropriate boundary conditions

PT gϕ (x = ϕ, θ) =
⎡

⎣
gϕ
I

gϕ
E

gϕ
V

⎤

⎦ =
⎡

⎣
AII AIE 0
0 ÃEE AEV

0 0 IV V

⎤

⎦

⎡

⎣
ϕI

ϕE

ϕV

⎤

⎦−
⎡

⎣
0
0
0

⎤

⎦ ,

(44)

whose partial derivative w.r.t. θ, reads
⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂gϕ
I

∂θ
∂gϕ

E

∂θ
∂gϕ

V

∂θ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

∂AII

∂θ
ϕI + ∂AIE

∂θ
ϕE

∂ÃEE

∂θ
ϕE + ∂AEV

∂θ
ϕV

0

⎤

⎥
⎥
⎥
⎦
. (45)

The partial derivative of Eq. 17 w.r.t. θ is

∂P
∂θ

= P

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A−1
II

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− ∂AIE

∂θ
ϕE−

AIE

(

Ă−1
EE

(

− ∂ÃEE

∂θ
ϕE − ∂AEV

∂θ
ϕV

))

− ∂AII

∂θ
ϕI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Ã−1
EE

(

− ∂ÃEE

∂θ
ϕE − ∂AEV

∂θ
ϕV

)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (46)

Substituting Eq. 45 in Eq. 46, it follows that

∂P
∂θ

= P

⎡

⎢
⎢
⎢
⎢
⎣

A−1
II

(

AIEÃ
−1
EE

∂gϕ
E

∂θ
− ∂gϕ

I

∂θ

)

−Ã−1
EE

∂gϕ
E

∂θ
0

⎤

⎥
⎥
⎥
⎥
⎦
.

Hence, likewise, the MSFV prolongation operator can be
fully determined directly from the fine-scale system matrix,
while the partial derivative of the prolongation operator
w.r.t. the model parameters can fully determined from

both A and the partial derivative matrix
∂g
∂θ

. This allows

a more straightforward implementation of the method in
existing computational frameworks. Again, in the same way,
the MS method can be integrated to existing simulation
platforms if access to the system matrix and the grid
topology is available, our method can be implemented
in existing data assimilation frameworks if access to
the grid topology, system matrix and partial derivative
matrices are provided. Note that, however, as in any
adjoint derivative computation framework, the computation
of the partial derivative matrices for different parameters is
usually a challenge. Derivative computation techniques like
automatic differentiation [5] can be employed as a flexible
solution to this problem..

Note that, even though Proposition 1 indicates the

important ability of determining
∂P
∂θ

from
∂g
∂θ

, it does

not provide enough information about how to efficiently
compute this partial derivative. It is discussed in [42] how

to efficiently compute the left/right multiplication of
∂P
∂θ

in

the context of, respectively, the direct and adjoint methods.
Algorithm 4 in that paper presents an efficient way to

compute the product β
∂P
∂θ

x̆, at costs proportional to the

number of coarse cells and independent of the number of
parameters, suitable to be used in combination with Eq. 40
for its efficient solution.

Because we aim to compute the gradient of a scalar
function (see Eq. 6), the computational cost is proportional
to solving one so-called backward simulation. In our case,
this is proportional to the solution of the transposed linear
system of equations in Eq. 39, whose system matrix RAP
has size proportional to the number of coarse grid cells,

plus the solution of β
∂P
∂θ

x̆, the cost of which is equal to

the solution of the basis functions (43). See [42] for details.
Hence, the computational cost ratio of the proposed method
is also given by Eq. 20.
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Fig. 2 The synthetic inverted five-spot model used in the numerical
experiments. One of the 1000 permeability realizations is shown

6 Numerical experiments

We focus our analysis on incompressible, single-phase flow.
In our experiments, a simple synthetic model is considered
as proof of concept (see Fig. 2). It is a 2D inverted five-
spot model, consisting of a 21 × 21 equidistant Cartesian
mesh with grid block sizes of 33.3 × 33.3 × 2 m. The
reservoir porosity is constant and equal to 0.3. A fluid
dynamic viscosity of 0.5 × 10−3 Pa.s is considered. The
wells are controlled by bottom-hole pressure (BHP). The
injection pressure is 35 MPa and the production wells’ BHP
is 25 MPa.

The uncertainty around the absolute permeability distri-
bution is represented by an ensemble of different permeabil-
ity realizations. The ensemble is generated via the decom-
position of a reference permeability “image” using principal
component analysis (PCA) parameterization [29]. Figure 3
illustrates four different permeability realizations from the
ensemble of 1000 equiprobable permeability realizations.
In order to focus on the MS aspect of the data assimila-
tion process, we assume that pressures can be approximately
extracted from a time-lapse seismic survey [4, 34, 38, 39,
51]. However, it is important to note that this is not a lim-
itation. If one is interested to perform the data assimilation
in different domains, say, in the impedances domain [10],
the additional complexity involved is the appropriate incor-
poration of seismic forward model equations in the forward
model set of equations [9] and, consequentially, the com-
putation of the appropriate partial derivative information
necessary to compute Eq. 21.

The “true” observed data, ptrue, is obtained from a
twin experiment, where a MS simulation is run using a
permeability field randomly chosen from an ensemble of
equiprobable model realizations. The coarse observed data
is the coarse-scale pressure x̆ computed with Eq. 14, while

Fig. 3 Four different permeability realizations from the ensemble of
1,000 members of the toy model numerical experiment

the (hypothetical, for comparison purposes) fine observed
data is computed with Eq. 13. The pressure measurement
errors are considered to follow a spherical covariance
model with a 1% standard deviation in all experiments and
correlation lengths equal to 1 grid-block size. Noise is added
to the data by setting

pobs = ptrue +
√
CDz, (47)

where z is sampled from N (μ = 0, σ 2 = 1) and
√
CD

is computed from a Cholesky decomposition. More details
on the procedure can be found in [46]. The resulting noisy
observed coarse and fine pressure fields are illustrated,
respectively, in Fig. 4 d and c.

We consider the observation grid (Fig. 4b) where the
observed data is represented to be three times coarser than
the model grid (Fig. 4a) in the x and y directions. Hence, it
has 7×7 grid blocks with grid block size 99.9×99.9×2 m.

The covariance matrix Cθ is computed from the
ensemble of realizations as

Cθ = 1

Ne − 1

(
Θ − μeT

) (
Θ − μeT

)T

, (48)
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Fig. 4 Schematic representation
of the model (fine) grid (a) and
observation (coarse) grid (b).
Also, the (noisy) pressure data
distribution observed at the
fine-grid (hypothetical complete
observations) (c) and at the
actual observation grid
resolution (d)

where Θ is the NF × Ne matrix whose j th column is given
by the member of the ensemble θj , j ∈ {1, ..., Ne},

μ = 1

Ne

Ne∑

j=1

θj , (49)

is the ensemble mean, and e = [1, ..., 1]T is a vector of ones
of size Ne × 1. The prior is taken to be the ensemble mean,

θprior = μ. (50)

In the fine-scale data assimilation strategy, an adjoint model
[47] is used to calculate the OF gradient given by Eq. 6. In
the multiscale strategy, we employ the MS adjoint gradient
computation depicted in Algorithm 4 in [42]. Because the
spatially distributed observed data at the coarse scale is the
primary variable itself, in Eq. 32, we have

∂h̆
∂ x̆

= Ĭ, (51)

where Ĭ is the NC × NC identity matrix, and

∂h̆
∂x′ = 0. (52)

when pressure is observed at the coarse scale, and

∂h
∂x

= I, (53)

when pressure is observed at the fine scale.
Also, because in this case the relationship between the

primary variables and the outputs is not a function of the
parameter, it follows that

∂h̆
∂θ

= 0̆, (54)

and

∂h
∂θ

= 0. (55)

We utilize the limited memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) algorithm as presented in [44],
as it is the most efficient algorithm to deliver optimization
results for the solution of Eq. 7 [22].
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6.1 Construction of scaling operators

6.1.1 Observed data downscaling

Two different approaches on how to deal with the scale
dissimilarity via downscaling are considered here. In the
first one, we downscale the response measured at the coarse
scale by setting

D = RT . (56)

where R is the MSFV restriction operator. This strategy can
be viewed as a constant interpolation of the coarse-scale
observations at the fine-scale model scale.

In the second strategy, we build a multiscale prolongation
operator Pprior = P

(
θprior

)
, whose columns are comprised

of local multiscale basis functions [32], and prolong
(interpolate) the coarse-scale information by setting

D = Pprior . (57)

Note that Pprior is static and can be viewed as a MS
downscaling operator.

In the aforementioned strategies, Eq. 6 can be used
by making d = d′ and a conventional gradient–based
optimization to solve Eq. 7 is run at the model (fine) scale.

6.1.2 Model response upscaling

Two upscaling strategies are considered. In the first one, a
simple arithmetic average is applied by setting

U = M, (58)

where,

M (c, f ) =
⎧
⎨

⎩

1

NC
F

, if f ∈ Ωc

0, otherwise
. (59)

In Eq. 59, NC
F is the number of fine-grid cells within a given

coarse cell C, Ωc is the cth primal coarse-grid domain and
f is the fine-grid cell index.

In the second upscaling strategy, we again build a
prolongation operator Pprior based on θprior and upscale
the observed response by setting

U = P†, (60)

where the † symbol denotes the Moore-Penrose pseudo-
inverse. Here, we construct P† from its truncated singular
value decomposition (TSVD) [49]

P† = ΣΛΔT = [
Σp Σ0

]
[

Λp 0
0 0

] [
ΔT

p

ΔT
0

]

= ΣpΛpΔT
p

(61)

where Σ ∈ R
NF ×NF and Δ ∈ R

NC×NC are orthonormal
matrices, Λ ∈ R

NF ×NC is a diagonal matrix containing the
singular values of P, and the subscript p indicates the first
p columns of the matrices corresponding the p non-zero
singular values.

6.2 Maximum a posteriori probability estimate

In this section, we assess the performance of our newly
introduced method via the estimation of the maximym
a posteriori probability (MAP) in comparison to the
upscaling/downscaling strategies discussed in Section 6.1.
Therefore, six different data assimilation strategies are
considered, namely:

1. fine-scale data assimilation with constant prolongation
downscaling of observed pressure (56);

2. fine-scale data assimilation with prior MS prolongation
downscaling of observed pressure (57);

3. fine-scale data assimilation with arithmetic average to
upscale the simulated pressure (59);

4. fine-scale data assimilation with pseudo-inverse of MS
prolongation to upscale the simulated pressure (60);

5. multiscale data assimilation strategy introduced in this
work;

6. fine-scale data assimilation with complete observations
available at the model (fine) scale.

The latter, a hypothetical situation, is considered as the
reference case, as if enough resolution was available to
resolve the observed property at the (fine) model scale.
Also, note that MS operators are used in strategies 1, 2,
and 4. For comparison purposes, we consider the objective
function normalized by the number of data points Nd .
Furthermore, according to [46, 50], an acceptable data

match is achieved when
O

Nd

≈ 0.5.

It is important to highlight that strategies 1–4 have
similar computation cost of strategy 6, the hypothetical
situation considering complete observations. This is due to
the fact that, regardless of the upscaling/downscaling of
the quantities (i.e., observations or responses), which also
adds extra computations, the gradient computation is given
by Eq. 26. This means the solution of a transposed linear
system with size proportional to the number of fine-grid
cells.

Firstly, we present a qualitative discussion based on the
MAP conditioned permeability fields and final matched
pressure fields in comparison to the respective “true”
permeability and pressure fields. The results for the fine-
scale, complete observation data assimilation exercise is
illustrated in Fig. 5, followed by the results from the
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Fig. 5 Data assimilation results, fine-scale data assimilation, com-
plete, fine-scale observations. In the first row, the a true, b initial, and
c matched pressure fields are shown. In the second row, d the “ true,”

e the prior, and f the conditioned permeability fields are shown. The
color scales follow the color bars shown in Fig. 5

Fig. 6 Data assimilation results, fine-scale data assimilation, down-
scaling of data observations. In the first row, the a true, b initial, c
matched using the constant interpolation (RT ), and d matched using

the MS prolongation operator (P) pressure fields are shown. In the sec-
ond row, d the “true,” e the prior, g the conditioned using RT , and g
the conditioned using P permeability fields are shown. The color maps
follow the color bar found in Fig. 5
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downscaling and upscaling data conciliation strategies,
represented, respectively, by Figs. 6 and 7. Lastly, the results
of the data assimilation using our MS data assimilation
strategy are illustrated in Fig. 8.

From a qualitative point of view, the matched responses
from all data assimilation strategies, except the responses
obtained by the constant interpolation downscaling (Fig. 6c)
and arithmetic average upscaling (Fig. 7c), are fairly similar
to the observed data. The pressure matches are both in
accordance with the fine-scale pressure match (Fig. 5c)
and with the “true” pressure field. However, the simpler
upscaling/downscaling strategies result in somewhat poorer
matches around the injection well. It can be noted that
higher pressure responses are computed around the injection
well. This is due to the simpler interpolation employed in the
pressure upscaling/downscaling, which results in a constant
pressure for the fine-grid cells within the coarse grid block
where the injection well is located.

Also, it is possible to observe that, from the point of
view of the conditioned permeability fields, all assimila-
tion strategies were capable of recovering the main features.
Furthermore, not much difference is noted in the results
when comparing the upscaling to the downscaling matched
permeability fields. In order to better assess the quality of

the parameter matches, we investigate the permeability dis-
tribution from the different matching exercises. Therefore,
the density functions of the matched permeability fields are
plotted in Fig. 9. It is possible to note that, even though the
initial permeability distribution is considerably far from the
true model (due to the rather homogeneous prior used in the
MAP), the complete observation, fine-scale strategy is capa-
ble of reproduction of the reference permeability density
function. But, more importantly, the MS data assimilation,
with coarse scale only observations, can also provide a per-
meability field whose density function is consistent with the
“true” permeability density function. Also, it can be noted
that the permeability fields obtained by the other strategies
are also consistent with the “ true” permeability distribution.

We also analyze the optimization convergence behavior
shown in Fig. 10 for quantitative assessment of the match.
The fine-scale reference data assimilation reaches a normal-
ized OF value very close to the ideal value of 0.5, while
all other data assimilation strategies reach values relatively
higher, with the simpler constant interpolation and arith-
metic average scaling strategies reaching slightly higher OF
values. It is important to note that the optimization behavior
is remarkably similar for all upscaling/downscaling strate-
gies, as well as for the MS data assimilation strategy here

Fig. 7 Data assimilation results, fine-scale data assimilation, upscal-
ing of model responses. In the first row, the a true, b initial, c matched
using arithmetic average (M), and d matched using the MS prolon-
gation operator pseudo-inverse (P†) pressure fields are shown. In the

second row, d the “ true,” e the prior, g the conditioned using M, and
g the conditioned using P† permeability fields are shown. The color
maps follow the color bars found in Fig. 5
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Fig. 8 Data assimilation results, multiscale data assimilation. In the
first row, the a true, b initial and c matched pressure fields are shown.
In the second row, d the “ true,” e the prior, and f the conditioned per-
meability fields are shown. The color maps follow the color bars found

in Fig. 5. Note that MS assimilation provides a fine-scale improved
permeability field f while the observation is at coarse scale. The color
scales follow the color bars shown in Fig. 5

presented. As discussed in [42], even though in this exercise
the convergence behavior of our method is similar to the oth-
ers, the computational cost of the gradient computation is
proportional to the coarse grid dimensions, while in all other
methods the cost is proportional to fine-grid dimensions.

6.3 Uncertainty quantification

A RML is run for 100 randomly chosen permeability
realization from the 1000 members ensemble (Fig. 3), for
each data conciliation strategy. In order to estimate the
conditioned permeability distribution for each permeability
realization, a LBFGS optimization is run for each chosen
member. The results for the exercise are shown in Fig. 11.

It can be observed that the permeability marginal
PDFs conditioned to the pressure data obtained by
the MS data assimilation here introduced (Fig. 11e)
are closer to the reference fine-scale conditioned PDFs
(Fig. 11f). Additionally, by observing the spread of the
conditioned PDFs obtained from the RML employing the
upscaling/downscaling strategies, one can note that the MS

strategy is also capable of somewhat better representing the
uncertainty.

6.4 Discussion

Firstly, even though all data assimilation strategies were
capable of achieving similar MAP estimates, one should
note that the synthetic case used in the experiments
has low permeability contrasts. Moreover the five-spot
configuration is very simple and the well spacing is
relatively dense compared to the characteristic size of
the heterogeneities. Nonetheless, given the good results
observed in the employment of our MS data assimilation
strategy, we believe that the performance of the method
in more challenging scenarios is worth investigating. A
systematic study of the effects of the underlying geological
complexity on the MS assimilation procedure is necessary.
The MS ability to preserve fine-scale features is expected
to allow for more detailed description of the fine-scale
uncertain parameters. Additionally, we emphasize the
importance of the proper representation of the measurement
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Fig. 9 Permeability conditioned marginal PDFs for the different data
assimilation strategies

errors at different scales. One must take into account the
data redundancy in the case of downscaling the observed
data to the model scale.

One could consider a third, fine-scale only, MS-based
approach, based on the reconstruction of the prolongation
operator at every optimizer iteration γ , so that changes in
the permeability during the optimization process are also
captured by the basis functions update. Hence, one could
write

d′γ
obs = Pγ d̆, (62)

where Pγ is the reconstructed prolongation operator at every
optimization iteration γ . This can only be achieved at the

Fig. 10 Optimization performance of the data assimilation utilizing
the 6 different scale conciliation strategies as presented in this section.
Note that the FS represent the hypothetical case where both observed
data and model parameters are at fine scale (i.e., item 6 on our list of
strategies)

expense of the reconstruction of the basis function every γ .
We performed studies (not reported here) where we neglect
the partial derivative of P w.r.t θ but we did update P.
Similar results were obtained when P is not updated and
only based on the prior (57), as reported here. Moreover,
it is discussed in [42] how to efficiently compute ∂P/∂θ.
This can be an alternative to further take advantage of
MS principles even when a MS forward simulation is not
available.

In thiswork, we employ a two-stageMS simulation strategy,
and consequently a two-stage MS gradient computation
strategy. We make the primal MS coarse grid to be coincident
to the observation grid resolution. However, the idea of the
MS data assimilation can be extended to seamlessly address
data available at multiple scales, or even consider one, or
multiple MS grid resolution(s) for assimilation purposes
only and different one(s) for the forward simulation. To this
end, multilevel multiscale strategies [6] could be applied.
Following the same multilevel multiscale strategy, data
acquired at different scales (e.g., electromagnetics, high
resolution close to the well, along with seismic data, low
resolution in the vertical direction) could also be seamlessly
and simultaneously be assimilated.

Following our studies, and also reported by [42] and [20],
it can be noted that MSFV gradients can be less accurate
for highly heterogeneous media. In addition, one may
want to have error control on the MSFV gradient quality
for practical applications. Furthermore, LBFGS proposes
under/overshooting updates, mainly close to the wells [21],
which also configures a challenging scenario for the MSFV
gradient computation. These challenges can be addressed
from the optimization point of view or from the gradient
computation perspective. The former can be considered
via data misfit damping or parameter constraints [21]. The
latter by improved MS gradient quality, via more accurate
MSFV solutions [26, 57]. An iterative MSFV gradient
computation, following the solution strategy proposed by
[26], could allow for additional error control over the
gradient computation.

7 Final Remarks

Our numerical experiments indicate that the presented
method has the potential to outperform strategies that
rely on upscaling/downscaling of model responses/observed
data. An important result is the ability of our MS data
assimilation strategy to closely reproduce the reference
fine-scale uncertainty quantification results. Applications
in more complex cases, and for different types of
assimilation problems, should give more insights about
the computational and methodological advantages of MS
data assimilation, as indicated by the results of the simple
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Fig. 11 RML probability density functions for 100 permeability real-
izations randomly chosen from the original ensemble of 1000 realiza-
tions (see Fig. 3). The curves in red represent the prior permeability
distributions, while the curves in green the conditioned permeability
distributions and the curves in blue represent the reference (“true”)

permeability distribution. a Constant interpolation downscaling (RT ),
b arithmetic average downscaling (M), c MS prolongation opera-
tor downscaling, d MS prolongation operator upscaling P†, e the
multiscale data assimilation strategy, and f the reference fine scale
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example addressed in our study. Clearly, larger-scale tests,
with more complex heterogeneity, are required to further
quantify these potential benefits of MS data assimilation.
Our paper demonstrates how to consistently formulate such
MS data assimilation strategy, in particular in combination
with the use of adjoint-based techniques to efficiently obtain
MS gradient information, and in an algebraic framework
which allows for implementation in existing computational
platforms.
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