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Abstract
Hydraulic fracturing processes are surrounded by uncertainty, as available data is typically scant. In this work, we present
a sampling-based stochastic analysis of the hydraulic fracturing process by considering various system parameters to be
random. Our analysis is based on the Perkins-Kern-Nordgren (PKN) model for hydraulic fracturing. This baseline model
enables computation of high fidelity solutions, which avoids pollution of our stochastic results by inaccuracies in the
deterministic solution procedure. In order to obtain the desired degree of accuracy of the computed solution, we supplement
the employed time-dependent moving-mesh finite element method with two new enhancements: (i) global conservation
of volume is enforced through a Lagrange multiplier; (ii) the weakly singular behavior of the solution at the fracture
tip is resolved by supplementing the solution space with a tip enrichment function. This tip enrichment function enables
the computation of the tip speed directly from its associated solution coefficient. A novel incremental-iterative solution
procedure based on a backward-Euler time-integrator with sub-iterations is employed to solve the PKN model. Direct
Monte-Carlo sampling is performed based on random variable and random field input parameters. The presented stochastic
results quantify the dependence of the fracture evolution process—in particular the fracture length and fracture opening—on
variations in the elastic properties and leak-off coefficient of the formation, and the height of the fracture.

Keywords Hydraulic fracturing · Perkins-Kern-Nordgren model · Finite element method · Moving-boundary problem ·
Stochastic analysis · Random fields · Sensitivity analysis · Monte-Carlo method

� Hasini Garikapati
h.garikapati@tue.nl

Clemens V. Verhoosel
c.v.verhoosel@tue.nl

E. Harald van Brummelen
e.h.v.brummelen@tue.nl

Sergio Zlotnik
sergio.zlotnik@upc.edu

Pedro Dı́ez
pedro.diez@upc.edu

1 Eindhoven University of Technology, PO Box 513, 5600 MB,
Eindhoven, The Netherlands
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1 Introduction

Hydraulic fracturing processes—i.e., the fracturing of
rock formations by a pressurized liquid to improve
connectivity of reservoirs and geothermal formations—are
surrounded by uncertainty, as rock formations are highly
heterogeneous and available formation data is limited.
Further improvement of models and simulation tools
to understand this process is instrumental to increasing
operational effectivity and to reliably quantify the risks and
uncertainties that are involved.

Hydraulic fracturing models involve the coupling of three
sub-models: (i) a solid mechanics model which describes
the deformation of the rock formation induced by the fluid
load; (ii) a fluid flow model to describe the fracturing
fluid in the crack, as well as its leak-off into the rock
formation; and (iii) a fracture mechanics model including
a fracture propagation criterion. Intrinsic characteristics of
such models are the (strong) non-linearities related to the
coupling between the solid and fluid, the singularities in the
physical fields near the fracture front, the moving (fracture)
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domain boundaries, the degeneration of the governing
equations near the tip region, and pronounced multiscale
effects with the length scales varying from millimeters for
the fracture opening near the tip to kilometers for the length
of the fracture.

Various practical model simplifications—most com-
monly restricting the model to a single two-dimensional
planar fracture—have been proposed, the most prominent
of which are (i) the Perkins-Kern-Nordgren (PKN) model
[29, 31] for a fracture of fixed height and elliptical cross-
section (leveraging the Sneddon solution for the elasticity
problem [37]), which propagates horizontally in one direc-
tion; (ii) the radial model for a horizontal Penny-shaped
crack that evolves evenly in all directions in accordance
with Sneddon’s solution [36]; and (iii) the Khristianovic-
Geertsma-De Klerk (KGD) model [11, 22, 47] for a vertical
fracture of fixed height that propagates horizontally in one
direction. Various pseudo-three-dimensional (P3D) models
[34] and planar-three-dimensional (PL3D) models [2, 35]
have been proposed over the years to enable consideration
of more complex fracture patterns and fractures in multi-
layer formations. These P3D models typically extend the
abovementioned two-dimensional models by considering a
variation of fracture height in combination with fracture
length and width. Although these classical models are gen-
erally based on restrictive and often ad hoc assumptions,
they are still widely used in the industry [19].

Despite the simplifications in the abovementioned
models, analytical solutions can only be obtained in limiting
cases (e.g., [22, 29, 47]). General solution strategies for
these models rely on the use of computational techniques.
Versatile and reliable simulators for hydraulic fracturing
processes are indispensable in gaining further understanding
of the process, in particular because direct observation
possibilities (typically several kilometers below the earth
surface) are limited. The most prominent computational
techniques used for hydraulic fracturing are finite volume
methods (e.g., [30]), finite element methods (e.g., [4,
28, 40]), boundary integral methods (e.g., [9]) and
discrete element methods (e.g., [26]). Recent advancements
in numerical methods for hydraulic fracturing that are
particularly noteworthy are the eXtended Finite Element
Techniques (X-FEM) (e.g., [12, 20, 32, 33]) and phase-field
methods (e.g., [24, 25, 42, 43]).

Although the importance of considering realistic geologi-
cal situations is acknowledged [7], hydraulic fracture evolu-
tion in formations with uncertain heterogeneous rock prop-
erties (e.g., elastic moduli, compression/tensile strength,
porosity, permeability) have not been studied in detail. In
[46], a reliability analysis is conducted using analytical
models for hydraulic fracturing. The possibility of consider-
ing stochastic heterogeneities in combination with computa-
tional models has been explored in [44], where the initiation

and evolution of fracture has been studied using Monte-
Carlo sampling. The main challenge in such studies relates
to the computational feasibility, in the sense that the compu-
tational effort of the deterministic simulations (whose error
must be controlled in relation to the stochastic variations)
is prohibitive in the context of sampling-based stochastic
techniques.

In this work, we present a detailed probabilistic analysis
of the hydraulic fracturing process based on Monte-
Carlo simulations. The computational tractability of the
stochastic framework considered herein motivates the use
of the two-dimensional PKN model. We represent the
(epistemic) uncertain parameters of the PKN model as
random variables and/or random fields, and investigate the
influence of these uncertain input parameters on the fracture
geometry (in particular the fracture length and opening
at the well bore). As part of the stochastic analysis, we
present a sensitivity analysis of the deterministic model.
It is worth mentioning that similar analyses can be found
in the literature for the deterministic setting [14, 45]. The
primary focus of this work is the direct analysis of the
propagation of heterogeneous uncertainties in the hydraulic
fracturing process. As part of this study, we present a
detailed derivation of the PKN model in the context of
random (spatially correlated) heterogeneous data. Control
over accuracy of the numerical approximation of the PKN
model is of paramount importance, because excessive
numerical errors would pollute the stochastic uncertainty
quantification. In this regard, we propose to use two new
features in the numerical method for the PKN model to
control its accuracy: (i) a Lagrange multiplier method
to enforce the conservation of volume and (ii) a special
enrichment function for the finite element discretization of
the PKN model to overcome tip singularity issues.

In Section 2, the governing equations are discussed, with
a special focus on the incorporation of rock heterogeneities
in the PKN model. In Section 3, the weak formulation
and finite element discretization of the model are presented
including various algorithmic details. The stochastic setting
and Monte-Carlo method are introduced in Section 4,
where the random field discretization of the heterogeneous
properties using the Karhunen-Loève expansion is also
discussed. Numerical simulations are presented in Section 5
to study the influence of input uncertainties in hydraulic
fracturing. Finally, conclusions are presented in Section 6.

2 The PKNmodel for hydraulic fracturing

In this section, we review the PKN model for hydraulic
fracturing in the context of stochastic analyses with
heterogeneous random fields. The PKN model—which
was originally formulated by Perkins and Kern [31]
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and later amended with a leak-off model by Nordgren
[29] and a propagation condition by Kemp [16]—is
a practical candidate for preliminary studies of the
probabilistic behavior of hydraulic fracturing by virtue of its
computational tractability. Although highly simplified, the
PKN model is based on fundamental physical principles and
is capable of generating practically meaningful results [39].

2.1 Problem definition

The key assumption of the PKN model is that it
considers a planar fracture with a constant height H (see
Fig. 1). Displacements and displacement gradients in the
surrounding solid are assumed to remain small, and the
material is assumed to be linear elastic and isotropic. The
fracture surface resides in the xy-plane, while the fracture
opens in the z-direction. The fracture aperture in the fracture
plane is denoted by w(x, y, t), and the aperture at the y = 0
center line by ŵ(x, t). The fracture connects to the well at
x = 0 and its evolving front is situated at x = L(t).

A Newtonian fluid is injected into the fracture at the
well with a controlled flow rate i(t), and the flow inside
the permeable crack is assumed to be laminar. The fracture
process is assumed to be in the viscosity-based regime,
where toughness effects can be neglected (propagation is
governed by friction and leak-off effects). At the front of the
fracture, a fluid lag is assumed to be zero, i.e., the fracture
front coincides with the fluid front. Moreover, a spurt losses
due to the creation of new fracture surfaces (see e.g., [39])
that are ignored.

2.2 Governing equations

In this section, the governing equations of the sub-models
are reviewed. In the presented derivations, we focus on those
aspects of the sub-models that need careful consideration
in the context of the stochastic analysis discussed in the
remainder of this work.

2.2.1 Fluid flowmodel

The PKN model is based on the conservation of mass of the
fluid, which establishes a link between the injected volume,
the created fracture volume and the leak-off volume. The
differential material balance for the fracturing fluid is given
by the following:

∂q

∂x
+ ∂A

∂t
= −scl

(1)

for all x ∈ (0, L(t)), where q(x, t) is the volume
rate of flow through the cross-sectional area A(x, t) =∫ H/2
−H/2 w(x, y, t) dy and scl

(x, t) is the rate of fluid volume
loss per unit length of the fracture. At the well (x = 0)

the flow rate is equal to the injection rate according to
q(0, t) = i(t).

The flow rate inside the fracture is related to the pressure
gradient by assuming Poiseuille flow [48]. For such a flow,
the advective terms are assumed to remain small, so that
the incompressible Navier-Stokes equations reduce to the
Stokes equations. The PKN model moreover assumes a
horizontal slot flow [6] with a parabolic fluid velocity
profile as follows:

v = − 1

2μf

∂p

∂x

(
w2

4
− z2

)

(2)

where w(x, y, t) is the opening of the fracture and μf is the
fluid viscosity. As will be discussed in more detail in the
context of the solid model (Section 2.2.2), the assumptions
of the PKN model lead to an ellipsoidal cross-section. The
fracture aperture is then given by the following:

w = ŵ

√
1 − 4y2/H 2, (3)

where ŵ(x, t) is the maximum aperture at y = 0. The
cross-sectional area is A(x, t) = π

4 Hŵ(x, t) and the fluid
flow follows by integration of the fluid velocity in Eq. 2 as
follows:

q =
H/2∫

−H/2

w/2∫

−w/2

v dydz = − 1

12μf

∂p

∂x

H/2∫

−H/2

w3 dy

= −πHŵ3

64μf

∂p

∂x
.

(4)

The leak-off volume rate per unit length of fracture in Eq. 1
follows the phenomenological law proposed by Carter [15]:

scl
= 2Hcl√

t − τ
(5)

In this expression, cl is the leak-off coefficient and τ(x) is
the arrival time of the fracture tip at location L, i.e., τ(x) =
L−1(x). The main assumptions behind this model are that
(i) the fracturing fluid deposits a thin layer of relatively
low permeability material (known as the filter cake) on the
inner faces of the fracture, with the deposition rate being
proportional to the leak-off rate, and (ii) the viscosity of
the filtrate is high enough to fully displace the fluid already
present in the rock pores.

Substitution of Eqs. 4 and 5 in the material balance (1)
then yields the fluid flow mass balance for all x ∈ (0, L(t)):

πH

64μf

∂

∂x

(

ŵ3 ∂p

∂x

)

= 2Hcl√
t − τ(x)

+ πH

4

∂ŵ

∂t
(6)

2.2.2 Solid deformation model

To derive the relation between the fluid pressure and the
solid deformation as used in the PKN model, we consider
the infinite domain � = R+ × R × R with material
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Fig. 1 Schematic representation of the fracture geometry and
boundary conditions for the PKN model. Note that both the fracture
aperture, w, and the fracture length, L, are time-dependent

coordinates x = (x, y, z) and an evolving fracture surface
(see Fig. 1):

�c(t) = {x ∈ � | x ≤ L(t),−H

2
≤ y ≤ H

2
, z = 0} (7)

Assuming inertia and gravity effects to be negligible,
the solid deformation, u = (ξ, η, ζ ), follows from the
momentum balance as follows:

∇ · σ = 0 in �, (8)

where σ is the Cauchy stress tensor. The Cauchy stress
follows Hooke’s law for isotropic materials as follows:

σ = 2μsε + λs tr(ε)I, (9)

where ε = ∇su is the infinitesimal strain tensor. In
the context of the stochastic analysis considered herein,
the Lamé parameters μs(x) and λs(x) are heterogeneous
fields directly related to the Young’s modulus, E(x),
and Poisson’s ratio, ν(x). Under the horizontal slot flow
assumption, the viscous contribution to the normal stress
along the fracture surface vanishes, and the solid is loaded
by the fluid pressure, i.e., σn = −pn on �c where n is the
normal vector internal to the fluid domain.

An important aspect of the PKN model is that it
relies on a planar deformation solid mechanics sub-
model, which provides a local relation between the
pressure and the fracture aperture. This reduction of the
elasticity problem (8)—which in the literature is generally
considered with homogeneous material properties—is key
to the computational tractability of the PKN model, but
evidently hinges on the postulation of additional modeling
assumptions, viz.: (i) The deformations are planar, in the
sense that the solid does not deform in the direction of
the fracture propagation (ξ = 0), and that a plane strain

condition in that direction applies (εxx = εxy = εxz = 0);
(ii) heterogeneous variations perpendicular to the fracture
propagation direction are assumed to be negligible, i.e.,
the model parameters are independent of the y- and z-
coordinates.

The assumptions that lead to the local solid mechanics
model evidently restrict the applicability of the model. Even
in the generally considered case of heterogeneous material
properties, the planarity assumption is debatable in the
vicinity of the fracture tip, where both the geometry and
pressure loading vary significantly in the x-direction (see,
e.g., [3]). Although highly simplified, the local elasticity
model is widely recognized to yield meaningful results
in a variety of simulation scenarios [39]. An important
point to make in the context of this contribution is
that we consider the material properties to be random
fields (see Section 4), which are parametrized by a
mean value, a standard deviation, and an auto-correlation
length, �. This auto-correlation length is a measure of the
correlation between any two material points in a random
field, where a large correlation length implies that the
spatial frequency of the heterogeneous field is low. In
order for the planarity assumption to be meaningful, we
consider sufficiently large auto-correlation lengths. More
specifically, high wavenumber variations in the material
properties along the x-axis are not considered herein.
Moreover, the heterogeneities in the planes perpendicular
to the x-direction are assumed to be negligible, at least
in the sense that their influence is averaged out when
considering the integrated opening of the fracture. In line
with these assumptions, in this manuscript, we only consider
random heterogeneities in the direction of propagation with
sufficiently large auto-correlation lengths.

Under the assumptions discussed above, the deformation
in an arbitrary plane perpendicular to the x-direction can be
deduced from the momentum balance (8) and constitutive
relation (9), which, written out in components, yields:

2μs(x)
∂2η

∂y2
+λs(x)

(
∂2η

∂y2
+ ∂2ζ

∂y∂z

)

+μs(x)

(
∂2η

∂z2
+ ∂2ζ

∂y∂z

)

= 0

μs(x)

(
∂2η

∂y∂z
+ ∂2ζ

∂y2

)

+ 2μs(x)
∂2ζ

∂z2
+ λs(x)

(
∂2η

∂y∂z
+ ∂2ζ

∂z2

)

= 0

(10)

Supplemented with the boundary conditions σzz(x) =
−p(x)nz and σyz = 0 on the fracture boundary
and vanishing far field conditions, this problem can be
solved analytically. The fracture opening in the case of
a constant pressure in the yz-plane is given by (see e.g.,
Lowengrub [21] and Sneddon [37] for details)

w(x, y) = 4p(x)

∫ H/2

y

ȳ(1 − ν(x)2)

E(x)
√

ȳ2 − y2
dȳ

= 2Hp(x)

E′(x)

√
1 − 4y2/H 2 |y| ≤ H

2
,

(11)
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where E′(x) = E(x)/(1 − ν(x)2) is the plane strain
modulus, which is heterogeneous only in the x-direction.
We note that the elliptical profile in Eq. 3 is a direct result
of the setting of the elasticity problem considered here, with
the maximum aperture equal to

ŵ(x) = 2Hp(x)

E′(x)
. (12)

An essential property of this solution is that along the crack
path the fracture aperture is linearly related to the pressure.
The local nature of this relation is a direct consequence of
the assumed planar deformation. Note that the stress field
and displacement field can be derived in the form of integral
representations [8].

2.2.3 Fracture propagationmodel

In the PKN model, it is assumed that once the fracture
has exceeded a certain distance, the energy dissipation
associated with the fracture of the rock material is small
compared to energy dissipation associated with the viscous
flow of the fracturing fluid. This effectively neglects the
fracture toughness, and fracture propagation is purely
driven by the fluid velocity. Herein, we adopt the standard
assumption of zero fluid lag [29]—i.e., the velocity of
the fluid at the fluid front and the tip propagation speed

are equal—so that tip propagation follows the Stefan
condition

v(L(t), t) = lim
x→L(t)

q(x, t)

A(x, t)
= L̇(t). (13)

Substitution of the flow rate (4) and surface area then yields:

L̇(t) = − 1

16μf

lim
x→L(t)

ŵ2 ∂p

∂x
(14)

The limits in Eqs. 13 and 4 are one-sided, from below.

2.3 The coupled initial boundary value problem

The hydraulic fracture problem is characterized by a strong
coupling of the sub-models discussed above. The solid
deformation is coupled to the fluid through the pressure
loading along the fracture surface, while the fluid depends
on the fracture opening though the Poiseuille flow profile.
The fracture propagation condition is coupled directly to
the fluid flow through the Stefan condition (13), and
in turn influences the fluid flow by virtue of the fact
that fracture propagation extends the fluid flow domain.
The pointwise relation between pressure and the fracture
opening in Eq. 12 allows the formulation of a single-
field free-boundary problem. Herein, we consider the initial
boundary value problem for the fracture opening on the time
interval (0, T ) � t with evolving domain (0, L(t)) � x:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π
128μf

∂
∂x

(
ŵ3 ∂(E′ŵ)

∂x

)
= 2Hcl√

t−τ
+ πH

4
∂ŵ
∂t

∀x ∈ (0, L(t)), ∀t ∈ ×(0, T ) (15a)

− π
128μf

(
ŵ3 ∂(E′ŵ)

∂x

)∣
∣
∣
x=0

= i(t) ∀t ∈ (0, T ) (15b)

ŵ(L(t), t) = 0 ∀t ∈ (0, T ) (15c)
ŵ(x, 0) = 0 ∀x ∈ (0, L0) (15d)

L̇(t) = − 1
96μf H

∂
(
E′ŵ3)

∂x

∣
∣
∣
∣
x=L(t)

∀t ∈ (0, T ) (15e)

L(0) = L0 (15f)

Note that the omission of fluid lag in the model results in
the tip boundary condition ŵ(L(t), t) = 0, reflecting zero
fracture opening at the tip. This boundary condition leads to
singular behavior of the fracture opening (and pressure) at
the tip, which is an important characteristic of the coupled
problem (15a–f). In Refs. [1, 10, 19], it is shown that in
the viscosity-dominated regime, the toughness of the solid
is small enough that the solution of a hydraulic fracture
can be approximated by the zero toughness solution and the
aperture solution in the proximity of the tip is proportional
to:

ŵ(x, t) ∝ 3
√

L(t) − x (16)

We note that, due to the nature of this singularity, and
assuming a finite plane strain modulus, the tip propagation
relation ((15e)) results in a finite propagation speed.

3 Deterministic computational methodology

In this section, we present a methodology that enables
the computation of solutions of the PKN model with
an accuracy that makes it suitable for conducting a
sampling-based stochastic analysis. In Section 3.1, we first
discuss the incremental-iterative solution procedure, which
is used to integrate the time-dependent moving-boundary
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Algorithm 1 Incremental-iterative solution procedure

Input: m = {L0, T , . . .}, n = {�t, �L, tolL, . . .} #model parameters, numerical parameters
Output: {(Lı, wı(x))}nt

ı=1 #discrete solution

#Initialization (t ı = ı�t = 0)
L0 = L0

τ 0(x) = 0
w0(x) = 0

#Time-iteration loop
for ı from 1 to T/�t:

#Sub-iteration initialization (j = 0, 1)
Lı

0 = Lı−1

wı
0(x) = solve aperture(Lı

0, w
ı−1(x), τ ı−1(x), m, n)

L̇ı
0 = evaluate tip speed(wı

0(x), m)
rı

0 = −�tL̇ı
0

Lı
1 = Lı−1 + �L

wı
1(x) = solve aperture(Lı

1, w
ı−1(x), τ ı−1(x), m, n)

L̇ı
1 = evaluate tip speed(wı

1(x), m)
rı

1 = �L − �tL̇ı
1

#Sub-iteration loop
while |Lı

j − Lı
j−1| ≥ tolL:

#Increment sub-iteration index (j = 2, 3, . . .)
j = j + 1

#Secant computation
Lı

j = Lı
j−1 − rı

j−1(L
ı
j−2 − Lı

j−1)/(r
ı
j−2 − rı

j−1)

wı
j (x) = solve aperture(Lı

j , w
ı−1(x), τ ı−1(x), m, n)

L̇ı
j = evaluate tip speed(wı

j (x), m)

rı
j = Lı

j − Lı−1 − �tL̇ı
j

#False position update
if rı

j · rı
j−1 > 0:

Lı
j−1 = Lı

j−2
rı
j−1 = rı

j−2

end
end

#Set converged solution
Lı = Lı

j

wı(x) = wı
j (x)

τ ı(x) = update tau(τ ı−1(x), Lı)
end

problem. In Section 3.2, we then discuss the spatial finite
element discretization of the nonlinear system of equations
introduced above, including two essential enhancements,
viz. incorporation of a Lagrange multiplier to enforce
the volume-conservation constraint, and a solution space
enrichment to resolve the singularity at the fracture tip.

3.1 Incremental-iterative solution procedure

To solve the time-dependent moving-boundary problem
(15a–f), we employ the incremental-iterative solution
procedure outlined in Algorithm 1. We denote the time step
size and index by �t and ı = 0, . . . , nt , respectively, such
that t ı = ı�t and T = nt�t . The solution at time step ı and
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We consider the implicit time integration of both
the fracture aperture and the fracture length, such that
the coupled system (15a–f) is discretized in time as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

π
128μf

∂
∂x

((
ŵı

)3 ∂(E′ŵı)
∂x

)
= 2Hcl√

t ı−τ ı−1
+ πH

4
ŵı−ŵı−1

�t
∀x ∈ (0, L(t)) (17a)

− π
128μf

((
ŵı

)3 ∂(E′ŵı)
∂x

)∣
∣
∣
x=0

= i(t ı) (17b)

ŵı(Lı) = 0 (17c)

Lı−Lı−1

�t
= − 1

96μf H

∂
(
E′(ŵı)

3
)

∂x

∣
∣
∣
∣
∣
x=Lı

(17d)

for all ı = 1, . . . , nt with initial conditions ŵ0(x) = 0
and L0 = L0.

To solve this moving-boundary problem at time step ı =
1, . . . , nt , within each time step, we sub-iterate between the
aperture problem (17a)–(17c) and the propagation problem
(17d) until convergence is achieved. The solution of the
aperture problem (solve aperture in Algorithm 1)
is approximated using a finite element discretization in
combination with a Newton-Raphson procedure to resolve
the non-linearity. Details regarding the finite element
discretization will be discussed in Section 3.2. The
propagation problem is solved by using the regula falsi
method to find the root of the residual function

rı
j = r(Lı

j ) = Lı
j − (Lı−1 + �tL̇ı

j ). (18)

Given an iterate for the fracture length, Lı
j , the cor-

responding fracture aperture wı
j is computed using the

solve aperture procedure, after which the procedure
evaluate tip speed is called to determine the associ-
ated tip speed in accordance with the following:

L̇ı
j = − 1

96μf H

∂

(

E′
(
ŵı

j

)3
)

∂x

∣
∣
∣
∣
∣
∣
∣
∣
x=Lı

j

(19)

The regula falsi procedure is initialized with the fracture
length at the previous time step, Lı

0 = Lı−1, and with the
forced propagation, Lı

1 = Lı−1 + �L. We note that the
residual rı

0 = −�tL̇ı
j is non-negative as a consequence of

the non-negativity of the propagation speed. The residual
rı

1 = �L − �tL̇ı
j is forced to be positive by selecting

the numerical parameter �L > 0 to be sufficiently large.
For all simulations in Section 5, we set �L equal to the
element size at the fracture tip, and take a time step that is
sufficiently small to ensure positivity of the residual rı

1.
The sub-iteration procedure is terminated when the

fracture length converges to a specified tolerance, i.e.,
|Lı

j − Lı
j−1| < tolL. The converged iterates ŵı

j (x) and
Lı

j for the fracture aperture and length are then used as
the initial conditions for the next time step. The fracture
arrival function τ ı(x) for the next time step is updated in
the update tau routine. Since the arrival time function
is evaluated by linear interpolation in the list {(Lı̂, t ı̂ )}ı

ı̂=0,
this update routine merely appends the converged fracture
length to this list. Note that we assume zero leak-off in the
initial crack, so that we do not need to evaluate the arrival
function for x ≤ L0. For x > Lı−1 the arrival time is taken
as the time at which the crack reached Lı−1. As a result
t ı − τ ı−1(x) ≥ �t , everywhere in the interval (L0, Lı)

which effectively bypasses the occurrence of a singularity
in the leak-off term at the fracture tip.

3.2 Finite element discretization

The solve aperture routine uses the finite element
method to compute the fracture aperture ŵı

j based on the
fracture length Lı

j and the aperture and arrival time at

the previous time step, wı−1 and τ ı−1, respectively. To
derive the finite element formulation, the weak form of
Eq. 17a–d is considered, where the sub-iteration index has
been dropped for notational convenience:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find ŵı ∈ V ı such that:

π
4

Lı∫

0

(
(ŵı)

3

32μf

∂(E′ŵı)
∂x

∂v
∂x

+ H
�t

ŵıv

)

dx =

πH
4�t

Lı−1∫

0
ŵı−1v dx − 2Hcl

Lı∫

L0

v√
t ı−τ ı−1

dx + i(t ı)v(0) ∀v ∈ V ı (20)

sub-iteration j = 0, 1, 2, . . . is written as wı
j (x) and Lı

j .
The sub-iteration index j is omitted for converged solutions,
i.e., wı(x) and Lı .
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The time-dependent test and trial space V ı specified below
are defined such that the Dirichlet boundary conditions
at the tip are satisfied, and all integrals in the above
formulation are bounded. Note that the right-hand-side
integral involving the fracture aperture at the previous time
step is computed over the fracture domain at the previous
time step, which reflects the fact that ahead of the fracture
tip the aperture is equal to zero. Moreover, the initial crack
is excluded from the integration domain for the right-hand-
side term involving the leak-off, which results from the
assumption that there is no leak-off in the initial crack.

The weak formulation (20) is discretized using the finite
element method by approximating the maximum aperture as
follows:

ŵı,h(x) =
∑

i∈Iı

Nı
i (x)aı

i , (21)

where the index set I ı contains the indices of the
shape functions {Ni}i∈Iı constructed over a mesh T ı that
partitions the evolving domain (0, Lı). The corresponding
discrete trial and test space are given by V ı,h =
span({Ni}i∈Iı ) ⊂ V ı .

The finite element discretization considered in this work
is based on linear Lagrange finite elements, where the linear
basis function associated with the tip node is constrained
in accordance with the zero-aperture Dirichlet condition at
the tip. Because of the nature of the solution, we grade the
mesh toward the tip by specifying the element size at the tip,
the increase ratio between two adjacent elements, and the
maximal element size that is approached toward the inflow
boundary. A schematic representation of such a graded mesh
is shown in Fig. 2. Note that the first right-hand-side integral
term in Eq. 20 involves the product of functions defined on
two different meshes, and hence requires evaluation on an
overlay mesh.

A discretization of the problem (20) based on linear
finite elements—even though graded toward the tip—leads

to an unacceptable loss of accuracy at meshes that are
computationally tractable within the scope of this work.
This performance deterioration is a consequence of (i)
the flux (4) being highly non-linearly dependent on the
fracture aperture and (ii) the singular behavior at the tip not
being represented by the linear finite element basis. In the
remainder of this subsection, we propose two enhancements
to ameliorate this performance degradation. In Section 5.1,
the numerical performance of these enhancements will be
assessed in the scope of a benchmark simulation.

3.2.1 Mass conservation constraint

Although the weak formulation (20) is consistently derived
from the mass balance (6), the finite element approximation
of Eq. 20 does not strictly comply with the local mass
balance and its integrated global version. Since adequate
representation of the conservation of mass is of critical
importance for obtaining accurate solutions, we herein
propose to explicitly enforce global conservation in our
approximation. We obtain the global balance of mass by
integration of the time-discrete version of Eq. 6 over the
entire domain:

i(t ı) = 2Hcl

Lı∫

L0

1√
t ı − τ ı−1

dx + πH

4�t

Lı−1∫

0

ŵı − ŵı−1 dx

+πH

4�t

Lı∫

Lı−1

ŵı dx (22)

This global balance clearly shows that the injected volume
is conserved by leak-off through the fracture (first term),
fracture opening (second term), and fracture propagation
(third term). We explicitly enforce the global conservation
law (22) in the weak formulation (20) by means of a
Lagrange multiplier, �ı :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find ŵı ∈ V ı and �ı ∈ R such that:

π
4

Lı∫

0

(
(ŵı)

3

32μf

∂(E′ŵı)
∂x

∂v
∂x

+ H
�t

ŵıv

)

dx − �ı

(
πH
4�t

Lı∫

0
v dx

)

=

πH
4�t

Lı−1∫

0
ŵı−1v dx − 2Hcl

Lı∫

L0

v√
t ı−τ ı−1

dx + i(t ı)v(0) ∀v ∈ V ı

�

(

i(t ı) − 2Hcl

Lı∫

L0

1√
t ı−τ ı−1

dx − πH
4�t

Lı−1∫

0
ŵı − ŵı−1 dx − πH

4�t

Lı∫

Lı−1

ŵı dx

)

= 0 ∀� ∈ R (23)

3.2.2 Singular tip enrichment

As discussed in Section 2.3, the aperture solution to
the problem (15a–f) is singular at the tip in accordance

with Eq. 16. Evidently, this singular solution behavior is
approximated poorly by the linear finite element basis. As
a matter of fact, when solely using the linear finite element
basis, the tip propagation speed will always vanish when
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Fig. 2 Schematic representation
of the time-dependent graded
finite element mesh with a linear
finite element basis and a tip
enrichment function

evaluated through Eq. 15e. To improve the finite element
approximation, we enrich the test and trial space V ı with the
tip asymptote (16):

ϕı(x) = 3
√

Lı − x (24)

We localize this enrichment function to the tip region using
the partition-of-unity method (see, e.g., [23]). The enriched
finite element interpolation of the aperture is then given by
the following:

ŵı,h(x) =
∑

i∈Iı

Nı
i (x)aı

i +
∑

j∈J ı

Nı
j (x)ϕı(x)bı

j (25)

where the index set J ı ⊂ I ı contains the indices of
the nodes that are enriched. In the numerical simulations
considered in Section 5, we only enrich the linear finite
element function associated with the tip, which we have
found to be effective. A schematic representation of this
enrichment is shown in Fig. 2.

4 Stochastic setting

In this section, we introduce the stochastic setting of the
PKN problem. Section 4.1 introduces the Monte-Carlo
method that we use in this work. In Section 4.2, we discuss
the random variables and random fields for the model
parameters. We do this in an abstract setting, where we
denote the set of model parameters by m = {m1, m2, . . .}.
For a given set of model parameters, we can compute
the response of the system, which is characterized by
the fracture length L(t) and space-time-dependent fracture
aperture function ŵ(x, t) : [0, L(t)] → R defined over
the moving domain. From this response, we can deduce the
observable parameters as d = {d1, d2, . . .}. In the remainder
of this work, we will consider some of the model parameters
to be uncertain, viz. the plane strain modulus Ẽ′, the leak-off
coefficient, c̃l , and the fracture height H̃ . We use the tilde
diacritic to indicate that these parameters are stochastic. As
observable parameters, we will focus on the final fracture
length, L̃(T ), and the maximum fracture mouth opening,
˜̂w(T ).

4.1 Direct Monte-Carlo sampling

In this work, we use direct Monte-Carlo sampling to
compute the stochastic response of the PKN model. The
primary reason for using direct Monte-Carlo sampling is
that it does not pose any restrictions on the distributions
of the model parameters and the observables. Moreover,
the non-intrusive character of the method enables its
direct application to the PKN model. More advanced
stochastic techniques, such as perturbation methods or
spectral methods (see [13] for an overview) can aid in
reducing the computational effort of the stochastic problem,
but application of such techniques to the highly non-linear
moving-boundary problem considered here is non-standard
and beyond the scope of the current work.

We denote a realization, or sample, of the random set
of model parameters m̃ by mk , where the subscript k is
the index of the sample. The direct Monte-Carlo method
generates a sequence of model parameter realizations,
{m1,m2, . . . ,mN }, and applies the model to construct the
corresponding sequence of observables, {d1, d2, . . . , dN },
where N denotes the number of samples. An estimate of
the stochastic set of observables, d̃, can then be obtained
through statistical analysis of the sequence of samples.
In particular, the mean and standard deviation of an
observable, d̃ i , are computed by the estimators as follows:

μdi ≈ 1

N

N∑

k=1

di
k, σdi ≈

√√
√
√ 1

N − 1

N∑

k=1

(
di
k − μdi

)2
, (26)

where the symbols μdi and σdi denote the mean and
standard deviation, respectively. Evidently, the accuracy of
the estimators depends on the number of samples N . Given
a confidence level Cμ for the estimated mean μ (omitting
the subscript di for notational convenience)—meaning that
the estimated mean has a relative accuracy of ±(1 − Cμ)/2
with probability Cμ—the minimal number of samples can
be estimated by [17, 27] the following:

N �
(

�−1(
1+Cμ

2 )

1 − Cμ

)2

V 2
di , (27)

where � is the cumulative density function of a standard
normal random variable, and Vdi = σdi /μdi is the
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coefficient of variation of the random observable d̃ i . A
rough estimate of this coefficient of variation can be
obtained using a Monte-Carlo simulation with a small
number of samples.

From Eq. 27, it becomes apparent that a draw-back of
the direct Monte-Carlo method is the slow convergence
of the sampling error (an increase in confidence level)
with increase in the number of samples. In the context of
computational models, such as that considered in this work,
this practically means that the stochastic simulations are
computationally very intensive in the case of practically
meaningful confidence levels. The fact that Monte-Carlo
sampling is non-intrusive—in the sense that it is a method
that does not interfere with the deterministic model—makes
parallelization possible. We have implemented a parallel
master/slave algorithm for our simulations, which shows
excellent scalability.

4.2 Random variable and random field
parametrization

In this work, we represent the considered scalar model
parameters, m̃i , by means of log-normal distributions,
which are parametrized by the mean value and the standard
deviation. Log-normal distributions are considered to avoid
physically impossible negative realizations. We employ
standard random number generators [5] to obtain the
sequence of samples required for Monte-Carlo sampling.

In the case of heterogeneous random fields, m̃i(x), we
employ stationary log-normal random fields whose spatial
correlation is represented by the auto-correlation function as
follows:

ρmi (x1, x2) = exp

(

−|x1 − x2|
lmi

)

, (28)

where x1 and x2 are two points in a background domain,
which is larger than all fracture length realizations, and
lmi is the correlation length. To generate samples of the
random field, m̃i(x), it must be discretized. To obtain a
discretization, the log-normal random field is considered as
the exponential of an underlying stationary normal random
field g̃i :

m̃i(x) = exp(g̃i(x)) (29)

The statistical moments of the underlying Gaussian
distribution can be expressed in terms of those of the random
field m̃i(x) by (see, e.g., [18])

μgi = ln(μmi )− 1

2
ln(1 +V 2

mi ), Vgi =
√

ln(1 + V 2
mi ), (30)

where Vmi = σmi /μmi is the coefficient of variation of
the model parameter mi . Similarly, the auto-correlation
function can be written as follows:

ρgi (x1, x2) = ln (1 + ρmi (x1, x2)V
2
mi )

ln(1 + V 2
mi )

. (31)

Discretization of the underlying Gaussian random field
g̃i (x) is then achieved by means of the Karhunen-Loève
expansion (see, e.g., [38]) as follows:

g̃i (x) ≈ g(x, z̃) = μgi +
n∑

j=1

√
ξj rj (x)z̃j , (32)

where z̃ is a vector of n independent standard normal ran-
dom variables, and where ξj and rj (x) are the eigenvalues
and eigenfunctions corresponding to the spatial covari-
ance function σ 2

gi ρgi (x1, x2), respectively. We discretize
the eigenfunctions in space by means of a uniform linear
finite element discretization over the background domain,
which results in a generalized eigenvalue problem that we
solve using a direct eigenvalue solver (see, e.g., Ref. [13]
for details). In Fig. 3a, the first 12 numerically deter-
mined eigenfunctions are shown for the auto-correlation
function (28) with lmi = 10 m. To illustrate the effective-
ness of the Karhunen-Loève expansion, Fig. 3b shows the
auto-correlation function reconstructed from the Karhunen-
Loève expansion (blue dots), which conveys that for this
selection of the correlation length, an excellent approxima-
tion of the auto-correlation function is attained using 12
modes.

The log-normal random field m̃i(x) is then obtained by
back-substitution of Eq. 32 into the transformation (29):

m̃i(x) ≈ μmi
√

1 + V 2
mi

n∏

j=1

exp(
√

ξj rj (x)z̃j ). (33)

Realizations of the random field m̃i(x) can now be
generated by sampling a sequence of n independent
standard normal random variables.

5 Numerical simulations

In this section, we present numerical results based on
the methodology presented above. In Section 5.1, we first
validate our methodology in a deterministic setting by
consideration of the benchmark results presented in the
comparative study by Warpinski et al. [41]. In this section,
we demonstrate the necessity to use a tip enrichment
function and enforcement of volume conservation, and
we study the influence of the mesh size and time
step size on the numerical results. In Section 5.2, the
sensitivity of the observables—in particular, the fracture
length and aperture—to the uncertain model parameters is
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Fig. 3 a Karhunen-Loève
modes, rj (x), and a single
realization (solid black line) in
accordance with the expansion
(32). b Prescribed and
approximated auto-correlation
function ρmi (x1, x2) for a
correlation length of lmi = 10 m

studied, which serves as a starting point for the stochastic
simulations discussed in Section 5.3. In the stochastic
setting, the uncertain model parameters are represented by
discrete random fields.

5.1 Deterministic benchmark

To demonstrate the validity of the presented methodology,
we consider the benchmark case studied by Warpinski et
al. [41], which is based on a staged-field experiment of the
Gas Research Institute [41, p. 26]. The considered model
parameters are assembled in Table 1. The injection rate is
gradually increased until the indicated value, and then held
constant for 200 min. The material parameters resemble
that of a tight gas sand reservoir, for which spurt losses are
omitted.

In Fig. 4, we show the evolution of the fracture in time,
where it should be noted that the height of the fracture, H , is
constant. Since the width is symmetric with respect to the x-
axis, Fig. 4 displays half of the aperture. The shown results
are based on a mesh size of �x = 1 m and a time step size
of �t = 1 s. As we will study in detail below, these results
are objective with respect to these numerical parameters.
Fig. 5 shows the corresponding increase in fracture length
and fracture mouth opening over time. The observed
time evolution corresponds well with the results reported
for various simulators in [41] (displayed in Fig. 5 for
reference). It is noted that the reported results in [41] vary

Table 1 Reservoir data used for the validation of the deterministic
problem

Leak-off coefficient cl 9.84 × 10−6 m/s1/2

Spurt losses Sp 0 m

Fracture height H 51.8 m

Plane strain modulus E′ 6.13 × 1010 Pa

Viscosity μf 0.2 Pa.s

Injection rate i 0.0662 m3/s

Pumping time T 12000 s

significantly as a result of variations in model assumptions
and simulation frameworks. The fracture length of 1429 m
as computed here also corresponds reasonably well with
the analytical model in [39], which—using additional
simplifying assumptions—predicts a fracture length of
1340 m. Note that in the absence of leak-off our model
predicts a fracture length of 1730 m. This stipulates
that leak-off is appropriately represented in our numerical
simulations. The fracture length and fracture opening
computed by our methodology are in the higher part of the
spectrum of simulators considered in [41] and analytical
models, which we attribute to the explicit enforcement of the
volume constraint, which will be discussed in detail below.

Our benchmark results are based on the formulation
including the enrichment of the tip functions and the
enforcement of the global volume conservation constraint
(see Section 3). The results in Figs. 6 and 7 serve to illustrate
that both these aspects are essential to obtain numerical
results with an acceptable level of accuracy for meshes and
time step sizes that are computationally tractable in the
scope of stochastic simulations.

Figure 6 displays the behavior of the global volume con-
servation without and with Lagrange multiplier constraint.
The total volume rate—which is the sum of the leak-off
rate and fracture-widening rate—should equate to the input
flow rate. Note that in the absence of the Lagrange mul-
tiplier constraint, a significant mismatch between the total
rate and the inflow rate is observed. The presented figure is
based on a mesh size of �x = 1 m and a time step size
of �t = 1 s. The mismatch between the rates depends on
these discretization parameters, as it originates from signif-
icant errors in the local volume balance in the finite element
discretization (17a–d). These local inaccuracies in the finite
element solution are closely related to the highly nonlinear
character of the constitutive relation. By enforcing global
conservation of volume using a Lagrange multiplier—as
shown in Fig. 6a—the global loss of volume is rigorously
resolved. As observed, the total volume rate in this case
matches that of the inflow rate.
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Fig. 4 Aperture profiles
evolving in time for the PKN
benchmark simulation

In Fig. 7, we display the tip velocity over time, without
and with tip enrichment function. For both simulations, a
mesh size of �x = 1 m and a time step size of �t = 1 s
is used. In the case of tip enrichment, Eq. 14 is used to
compute the tip speed. In the absence of enrichment, the tip
speed cannot be obtained by this equation, as the adequate
singular tip behavior is then not represented in the discrete
solution space. The speed results presented in Fig. 7b are
based on the finite difference approximation as follows:

L̇(t) = − E′

96μf H

(
ŵ3|L(t) − ŵ3|(L(t)−�x)

�x

)

(34)

From Fig. 7, it is observed that without the use of
the enrichment function, for the computational setting
considered here significant oscillations in the fracture
propagation speed occur. Enriching the solution space with
the tip singularity dramatically reduces these oscillations,
and hence significantly improves the quality of the obtained
result.

The enforcement of the volume constraint by means
of a Lagrange multiplier, and the representation of the
tip behavior by means of an enrichment function, provide
numerical approximations with a level of accuracy that
enables studying stochastic variations. In Figs. 8 and 9,
we show the dependence of the results on independent
variations in the time step size and mesh size, respectively.
Note that in all simulations, we consider a duration of 50 s
only, in order to make the converge studies feasible in terms
of computational effort.

Figure 8 displays the results for a mesh size of �x = 1 m
using three time step sizes, viz. �t = 1.0, 0.5, 0.25 s. From

both the length evolution plot and the tip speed evolution
plot, it is observed that the variations with the time step size
are very limited. The most notable difference is observed
at the onset of fracture, where the maximum tip speed for
�t = 0.25 s is observed to be 2% higher than that for
�t = 1.0 s. This difference is significantly smaller once
steady propagation occurs, e.g. at t = 50 s, where the
difference is only 0.8%. Since the length of the fracture is
generally not dominated by the onset phase, the observed
variation in fracture length is generally also very small. At
t = 50 s, the fracture length for �t = 1.0 underestimates
that of �t = 0.25 by 0.5%. Although not presented here
for the sake of brevity, similar results can be established for
other indicators such as the fracture mouth opening.

The evolution of the fracture length and tip speed for
�t = 0.5 s and �x = 0.5, 1, 2 m are depicted in Fig. 9.
The figures show that although a mesh size of �x = 2.0 m
correctly mimics the tip speed behavior, fluctuations in
the speed can be observed as a consequence of the mesh
coarseness. These fluctuations can be attributed to the fact
that due to the limited number of elements in this simulation
(i.e., only 10 elements at t = 50 s), the spatial discretization
errors resulting from the employed moving-mesh approach
are significant. Upon mesh refinement, these fluctuations
vanish. The maximum tip speed at the onset of fracture for
a mesh with �x = 0.5 m is only 0.5% lower than that
using a twice coarser mesh. When the fracture is steady at
t = 50 s, this relative difference is even smaller. In terms of
the fracture length at t = 50 s, the result for �x = 1.0 m
underestimates that for �x = 0.5 m by a mere 0.5%.

In the context of the sensitivity studies and stochastic
simulations considered in the remainder of this section, it is
essential that the numerical errors do not pollute the results.
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Fig. 5 Evolution of a the
fracture length and b the
maximum aperture over time as
computed by the finite element
methodology proposed in this
contribution (solid blue line).
The benchmark results reported
in Ref. [41] are displayed for
references. See Appendix for
further details

This means that the variations discussed above should
be negligible in comparison to the stochastic variations
in the input parameters. On the other hand, making the
mesh sizes and time step sizes too small will dramatically
increase the computational effort due to the large number
of samples that is required in accordance with Eq. 27.
Herein, we select a mesh size of �x = 1.0 m and a
time step size �t = 1.0 s, which provides a good balance
between numerical accuracy (see above) and computational
effort.

5.2 Sensitivity analysis

In this section, we apply the deterministic model outlined
above to identify the input factors that drive the variation
in the output. As output observables, we consider the
fracture length and fracture aperture. As input parameters,
we consider the model parameters that cannot be established
with a high degree of certainty in reality, viz. the plane
strain modulus E′, the fracture height, H , and the leak-off
coefficient, cl . In our sensitivity analysis, we independently
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Fig. 6 Influence of the
Lagrange multiplier on the
conservation of volume

Fig. 7 Influence of the
enrichment function on the tip
propagation velocity

Fig. 8 a Fracture length with
time for constant mesh size
�x = 1 m, and b Tip velocity
profile with time for constant
mesh size �x = 1 m

Fig. 9 a Fracture length with
time for constant time step
�t = 0.5 s, and b tip velocity
profile for constant time step
�t = 0.5 s
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Fig. 10 a Fracture length and
aperture with varying plane
strain modulus and b fracture
geometry profile with varying
plane strain modulus

vary the input factors and study their impact on the output
observables. This screening procedure is often considered
as the first step in a forward uncertainty analysis, since it
identifies the dominant sources of randomness.

In Fig. 10, we consider the effect of the plane strain
modulus on the fracture geometry, while keeping all other
model parameters unchanged. A range of plane strain
moduli from 1×103 to 1×104 MPa is considered. Figure 10
conveys that a stiffer formation results in a longer and
narrower fracture, compared to a more compliant formation.
Considering the nature of the model—which revolves
around the conservation of volume—this is plausible, since
in the case of a stiff formation fracture propagation is
favored over fracture widening. From Fig. 10a, we observe
that the dependence of the output observables on the plane
strain modulus is highly nonlinear, in the sense that the
rate of change of the output observables is significantly
lower than that of the plane strain modulus. For example,
an increase of 45% in the fracture length is observed when
increasing the plane strain modulus by a factor of 8. This
same increase in plane strain modulus, moreover leads to
a reduction of the fracture mouth opening by only 35%.
As a result, the well pressure—which is proportional to
the product of the fracture mouth opening and plane strain

modulus—increases with an increase in formation stiffness,
which is in line with the experimental results in [41]. In
addition, this sensitivity analysis conveys that the response
of the observables is non-symmetric, in the sense that the
rate of change of the length and fracture mouth opening for
stiff formations is smaller than for compliant formations.

Figure 11 shows the dependence of the output observ-
ables on a range of leak-off coefficients, ranging from the
impermeable case (cl = 0 m/s1/2) to cl = 5e−5 m/s1/2,
which is 50% more than the value taken in the GRI exper-
iment [41] based on tight gas sands. As anticipated from
the conservation of volume, an increasing leak-off coeffi-
cient yields a shorter and narrower crack. Increasing the
deterministic value considered in the previous section by a
factor of 5 yields a decrease in fracture length of 14% and a
decrease in fracture mouth opening of 7%. From Fig. 11b,
it is observed that the fracture profile shape is insensitive to
the leak-off coefficient. In contrast to the dependence on the
plane strain modulus considered above, the rate of change
of the observables is practically constant for the considered
range of leak-off coefficients.

Figure 12 displays the variation of the output observables
for fracture heights ranging from 25 to 95 m. Doubling
the fracture height from 25 m reduces the fracture mouth

Fig. 11 a Fracture length and
aperture with varying leak-off
coefficient and b fracture
geometry profile with varying
leak-off coefficient
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Fig. 12 a Fracture length and
aperture with varying fracture
height, and b fracture geometry
profile with varying fracture
height

opening by 15% and the fracture length by 44%. As
expected from volume conservation (where in this particular
case leak-off effects are not pronounced), the product of
these two observables is approximately reduced by a factor
of two. The direct impact of the fracture height on the
volume conservation model results in a strong sensitivity of
the output observables. The non-symmetry of the response
observables is consistent with the expected behavior in the
extreme cases, for which a large height should yield a very
short and narrow crack, and a small height should yield an
extremely long and wide fracture.

5.3 Stochastic setting

In this section, we present the results of Monte-Carlo
simulations. In Section 5.3.1, we first study the stochastic
results for the case where each of the uncertain input

Fig. 13 Evolution of the mean (solid blue line) and 98% confidence
interval (shaded area) of the fracture length in time corresponding to a
variation in the plane strain modulus of VE′ = 50%

parameters is varied independently, which closely connects
this section to the sensitivity analysis presented above. The
stochastic analysis presented here provides insight into the
evolution of the randomness in time, and on the dependence
of the uncertain observables on the magnitude of the random
input variables. In Section 5.3.2, we then consider the case
of a random field for the plane strain modulus, which
elucidates the dependence of the observables on the spatial
correlation of the uncertain input parameter. The reported
sample sizes are all based on the estimate (27) with a
confidence level for the estimator of the mean fracture
length.

5.3.1 Independent variation of uncertain parameters

We first consider the plane strain modulus, E′, to be the
only uncertain parameter. Since the plane strain modulus is
positive by definition, we represent this uncertain parameter
by a log-normal distribution with mean value μE′ = 6.13 ×
104 MPa and coefficient of variation VE′ = 50%. To achieve
a confidence level of 98% for the mean fracture length, a
sample size of N = 304 is required. To avoid pollution
of the stochastic results by excessive discretization errors
for this 98% confidence interval, a mesh size �x = 1 m
and a time step size �t = 1 s is used in combination
with the volume conservation constraint and tip enrichment
function. In this computational setting, a single realization
with T = 800 s requires 96 min on a Intel Core i5
vPro processor. Without the use of the volume constraint
and enrichment function, significantly smaller mesh and
time step sizes would be required to achieve the numerical
accuracy required for a 98% confidence interval, which
would dramatically increase the total simulation time of the
Monte-Carlo simulation.

In Fig. 13, we show the evolution of the fracture length
in time, where the mean value is represented by the solid
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Fig. 14 Histograms of the
fracture length and maximum
fracture aperture for 50%
variation of the plane strain
modulus, E′, at t = 100 s

Table 2 Statistical moments of
the fracture length and fracture
aperture corresponding to a
coefficient of variation
VE′ = 50% for the plane strain
modulus

t μL σL VL μŵ σŵ Vŵ

100 33.619 3.348 9.9 0.0056 0.0005 8.9

200 59.040 5.790 9.8 0.0066 0.0006 9.1

400 110.166 10.030 9.1 0.0076 0.0007 9.2

Fig. 15 Coefficients of variation
of the fracture length, L, and
maximum aperture, ŵ, as a
function of the variation of the
plane strain modulus, E′, at
different time instances

Fig. 16 Statistical moments of
the fracture length, L, and
maximum aperture, ŵ, as a
function of the variation of the
plane strain modulus, E′, at
t = 100 s. The perturbation
results, Lp and ŵp , are
indicated by the dashed lines
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Fig. 17 Evolution of the mean (solid blue line) and 98% confidence
interval (shaded area) of the fracture length in time corresponding to a
variation in the leak-off coefficient of Vcl

= 50%

line, and the shaded area indicates the 98% confidence
interval of the fracture length. Typical distributions for the
fracture length and fracture mouth opening at t = 100 s
are displayed in Fig. 14, from which we infer that the
distributions are unimodal. The error bars in Fig. 13 show
that the standard deviation of the fracture length (and with
that its confidence interval) increases proportionally with
the mean. This observation is confirmed in Table 2, from
which it is observed that the coefficients of variation of the
length and fracture mouth opening only vary moderately.

In Fig. 15, we study the dependence of the results on
the coefficient of variation of the plane strain modulus
at two time instances. Note that the used sample size
is different for each coefficient of variation in order to
achieve the same confidence level for the mean estimator
of the fracture length. At both time instances, we observe
that the coefficient of variation of the fracture length is

proportional to that of the input parameter. This behavior
can be explained by considering the dependence of the mean
and the standard deviation on the coefficient of variation of
the input, as displayed in Fig. 16. This figure conveys that
the standard deviation of the fracture length increases with
an increasing variation of the plane strain modulus. Using
the results from the sensitivity analysis presented above,
we verify the correspondence of the observed behavior
with that predicted by a first-order perturbation analysis
[13],

σL ≈
∣
∣
∣
∣
∂L

∂E′

∣
∣
∣
∣
E′=μE′

∂E

∂z
≈

∣
∣
∣
∣
∂L

∂E′

∣
∣
∣
∣
E′=μE′

σE′ , (35)

which is displayed in Fig. 16b by the dashed lines. The
observed decrease in the mean value is also in good
agreement with the results of the sensitivity analysis, as
shown by the dashed lines in the Fig. 16a, where the mean
values are approximated using second-order perturbation
theory [13]:

μL ≈ L|E′=μE′ + 1

2

∂2L

∂E′2 σ 2
E′ (36)

For the case considered here, the variation in the mean of
the fracture length is moderate (Fig. 16a), as a result of
which the observed behavior of the coefficient of variation
in Fig. 15 is governed by the behavior of the standard
deviation of the fracture length. Similarly, the results for the
fracture mouth opening are also observed to correspond well
with the sensitivity analysis.

In Fig. 17, we show the evolution of the fracture length
for the case in which the leak-off coefficient is described
by a log-normal distribution with mean value μcl

= 9.84 ×
10−6 m/s1/2 and coefficient of variation Vcl

= 50%.
The probability distributions at t = 100 s are shown
in Fig. 18. Figure 19 presents the corresponding relation
between the coefficients of variation of the observables,
viz. the fracture length and maximum aperture, and that
of the leak-off coefficient at two time instances, where
the sample sizes have been selected in accordance with

Fig. 18 Histograms of the
fracture length and maximum
fracture aperture for 50%
variation of the leak-off
coefficient, cl , at t = 100 s
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Fig. 19 Coefficients of variation
of the fracture length, L, and
maximum aperture, ŵ, as a
function of the variation of the
leak-off coefficient, cl , at
different time instances

the confidence level of the mean estimator of the fracture
length. From Fig. 19, one can observe that the coefficients of
variation of the output observables increase only modestly
(by approximately a factor of 2 from t = 100 s to
t = 500 s) in time. The observed relation between the
coefficients of variation of the input and output is explained
by the fact that the mean value is affected minimally by
the coefficient of variation of the leak-off coefficient, while
the standard deviation increases proportionally with it. From
Fig. 20, it is observed that the behavior of the mean and
standard deviation of the observables is in good agreement
with the perturbation results following from the sensitivity
analysis.

We finally consider the independent random variation of
the fracture height, which is represented by a log-normal
distribution with mean μH = 51.8 m and coefficient of
variation VH = 50%. A sample size of N = 553 (providing
a confidence level of 95%) is selected to compute the time
evolution of the fracture length as shown in Fig. 21, for
which the probability distributions of fracture length L and
maximum aperture ŵ at time t = 100 s are shown in
Fig. 22. The coefficient of variation is essentially invariant
in time, which is confirmed by comparison of the relation
between the input and output coefficients of variation at

two time instances as shown in Fig. 23. From Fig. 24, we
observe that both the mean and the standard deviation of the
observables match well with the results from the sensitivity
analysis.

Comparing the effects of the random input variable
on the fracture length reveals that it is more sensitive to
randomness in the plane strain modulus (Fig. 15) than to
randomness in the leak-off coefficient (Fig. 19), in the
sense that a coefficient of variation in the fracture length of
VL ≈ 2.5% corresponds to a coefficient of variation of the
plane strain modulus of VE′ ≈ 15% and a coefficient of
variation of the leak-off coefficient of Vcl

= 50% (results at
t = 500 s). The sensitivity to the fracture height is observed
to be even stronger (Fig. 23), in the sense that VL ≈ 10%
corresponds to coefficients of variation of VE′ ≈ 50% and
VH ≈ 15% for the plane strain modulus and fracture height,
respectively.

5.3.2 Heterogeneous random plane strain modulus field

We now consider the case in which the plane strain modulus,
E′, is described by a heterogeneous random field instead
of a scalar variable. We consider a random field with
mean μE′ = 6.13 × 103 MPa and coefficient of variation

Fig. 20 Statistical moments of
the fracture length, L, and
maximum aperture, ŵ, as a
function of the variation of the
leak-off coefficient, cl , at
t = 100 s. The perturbation
results, Lp and ŵp , are
indicated by the dashed lines
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Fig. 21 Evolution of the mean (solid blue line) and 95% confidence
interval (shaded area) of the fracture length in time corresponding to a
variation in the fracture height of VH = 50%

VE′ = 50%. We vary the length scale of the auto-correlation
function in Eq. 31 from lE′ = 5 m to lE′ = 25 m. The
random field for the plane strain modulus is discretized
using 12 Karhunen-Loève modes, which is sufficient for
the representation of the random field corresponding to
the smallest correlation length considered. Table 3 lists the
statistical moments of the observables at t = 100 s based
on a Monte-Carlo simulation with N = 384, which is
in accordance with a 95% confidence level for the mean
estimator in the fracture length.

The most notable observation from the results in Table 3
is that the coefficient of variation of the output observables
is significantly higher than in the case of a homogeneous
plane strain modulus with equal coefficient of variation
(see Table 2). To better understand this observation, in
Fig. 25, we perform a closer inspection of the realizations
that lead to Table 3. In the rows of this figure, we collect
the Monte-Carlo results for the correlation lengths reported
in Table 3, starting with the smallest correlation length.
In the second and third column, we show the probability
distributions for the fracture length and the fracture mouth
opening, respectively. The first column displays the plane
strain modulus field that leads to three distinct realizations
in the sample, viz. the smallest fracture length, the largest
fracture length, and the fracture length closest to the mean
value. We observe that the realizations of the plane strain
modulus field that lead to the smallest fracture lengths in
all cases correspond to the situation in which the elastic
modulus is very small near the well. When this happens,
the injected fluid causes fracture widening near the well,
rather than fracture propagation into the formation. More
generally, in the case of heterogeneous fields, local zones in
which the formation is very compliant can lead to blockage

of propagation, as the injected fluid volume can be locally
accumulated in this zone. Long fractures are obtained in
the case that the plane strain modulus is large near the
well, and high (in a spatially averaged sense) compared
to the mean value. In such situations, the blockage of
propagation due to a compliant zone does not occur, and the
injected fluid volume is effectively transferred to the crack
tip.

In terms of the dependence of the results on the
correlation length, it is observed that the mean fracture
length decreases as the correlation length decreases. This
is explained by the fact that in the case of a smaller
correlation length, the chance of a locally compliant zone
in the formation increases. The blockage of propagation in
such zones is then more frequent, which leads to a reduction
in fracture length expectation. From Table 3, we moreover
observe a moderate increase in coefficient of variation of the
fracture length as the correlation length increases.

From the distributions of the fracture mouth opening
in Fig. 25c1–c5, we observe a notable difference in
comparison to that for the homogeneous random plane
strain modulus case (Fig. 14b). In the homogeneous case,
there exists a strong correlation between the fracture length
and the fracture mouth opening, in the sense that long
cracks are narrow by virtue of the fact that their volume is
similar (assuming leak-off effects to be limited). Figure 10
in the sensitivity study clearly confirms this observation;
see also the discussion in Section 5.2. Although the fracture
length and fracture width in the case of a heterogeneous
field are not uncorrelated, the fracture mouth opening is
most strongly influenced by the local plane strain modulus
near the well. Since the fracture opening in the PKN model
depends locally on the plane strain modulus, the log-normal
distribution of the plane strain modulus reflects directly on
that of the fracture mouth opening, as can be seen in the third
column of Fig. 25. The sensitivity of the fracture mouth
opening to local variations in the plane strain modulus field
also results in coefficients of variation that are significantly
higher than those in the homogeneous case (see Table 3).

6 Conclusions

We have presented a sampling-based stochastic analysis
of the hydraulic fracturing process based on the Perkins-
Kern-Nordgren (PKN) model. The consideration of this
model is motivated by the fact that in the deterministic
case high-accuracy solutions can be computed with feasible
computational effort, which makes its application in the
context of direct Monte-Carlo sampling practical. Although
this model significantly simplifies the hydraulic fracturing
process, it bears practical relevance, especially for fractures
in the viscosity-dominated regime. A limitation of the model
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Fig. 22 Histograms of the
fracture length and maximum
fracture aperture for 50%
variation of the fracture height,
H , at t = 100 s

Fig. 23 Coefficients of variation
of the fracture length, L, and
maximum aperture, ŵ, as a
function of the variation of the
fracture height, H , at different
time instances

Fig. 24 Statistical moments of
the fracture length, L, and
maximum aperture, ŵ, as a
function of the variation of the
fracture height, H , at t = 100 s.
The perturbation results, Lp and
ŵp , are indicated by the dashed
lines

Table 3 Statistical moments of the fracture length, L, and the maximum aperture, ŵ, at t = 100 s corresponding to a variation of the plane strain
modulus of VE′ = 50% for random fields with varying correlation lengths, lE′

lE′ [m] μL [m] σL [m] VL[%] μŵ [m] σŵ [m] Vŵ[%]

5 27.545 6.682 24.3 0.0071 0.0030 42.3

10 28.496 7.177 25.2 0.0078 0.0041 52.6

15 29.319 6.204 21.2 0.0075 0.0037 49.3

20 29.735 6.601 22.2 0.0074 0.0029 39.2

25 31.091 6.158 19.8 0.0067 0.0021 31.3

∞ 33.619 3.348 9.9 0.0056 0.0005 8.9

Note that the case of lE′ = ∞ corresponds to the homogeneous case discussed in Section 5.3.1
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Fig. 25 a1–a5 Examples of realization for lE′ = (5, 10, 15, 20, 25) m,
respectively. b1–b5 Histograms of the fracture length for lE′ =

(5, 10, 15, 20, 25) m, respectively. c1–c5 Histograms of the maximum
aperture for lE′ = (5, 10, 15, 20, 25) m, respectively
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pertains to the local elasticity relation in the PKN model,
which restricts its application to low-frequency spatial
variations of the model parameters.

In order to compute high fidelity solutions that do
not pollute stochastic analyses with numerical errors, a
moving-mesh finite element method is developed. The
employed backward-Euler time integration scheme is
supplemented with a sub-iteration technique, such that
the mesh propagation relation becomes implicit. The non-
linearity of the model is solved using Newton iterations. We
have performed detailed mesh size and time integration step
convergence studies. We have found that in order to attain
solutions with acceptable accuracy in the context of the
stochastic analysis, the finite element methodology had to
be enhanced in two manners. First, the global conservation
of volume was found to be significantly violated due to the
highly non-linear character of the model. The observed loss
of volume led to significant underestimation of the fracture
length. To circumvent this problem, volume conservation
was enforced explicitly by means of a Lagrange multiplier
approach. Second, the weakly singular behavior of the
fracture opening and pressure at the tip was found to
be troublesome in the case of a standard finite element
basis. On one hand, the improper representation of the
singularity by the basis required the use of an ad hoc tip
velocity relation. On the other hand, the mesh resolution
of the uniform finite element mesh was found to be
insufficient. These issues were resolved by enrichment
of the standard finite element space with a singular tip
function. We established that in the deterministic setting,
our finite element simulations show very good agreement
with results reported in literature for a realistic test case even
on relatively coarse meshes.

The sensitivity of the fracture evolution process with
respect to various random input parameters was studied.
From the direct Monte-Carlo simulations, it was found
that the mean and standard deviation of the fracture length
and fracture mouth opening correspond well to those
values obtained using perturbation theory. This observation
conveys that—at least for the test case considered—
linearization of the model provides meaningful information
on the behavior of the stochastic moments, despite the
complexity of the model and its solution procedure.

To demonstrate the suitability of the developed method-
ology for studying random heterogeneities in formation
properties, we have considered a test case in which the
formation stiffness was described by a random field. The
random dimension was discretized using a Karhunen-
Loéve expansion. The sampling results demonstrate that
the response uncertainty is amplified by the heterogeneous
character of the random material property field. For the
fracture length, this is explained by the fact that fracture

propagation is sensitive to local variations in the elas-
tic properties of the formation because locally compliant
regions can inhibit transfer of the fracturing fluid and,
hence, propagation of the crack. For the fracture mouth
opening an even stronger amplification is observed as a con-
sequence of the fact that the fracture opening is directly
related to the material property. Although this observation
can be explained well based on the structure of the PKN
model, it requires further study to understand to what extend
a similar conclusion can be drawn for more sophisticated
hydraulic fracturing models.

Although the results presented herein provide fundamen-
tal insight into the primary characteristics of the stochastic
behavior of the hydraulic fracturing process, it is evident
that more detailed information can be obtained by more
versatile models and simulation strategies. In particular,
the PKN model does not rely on a fracture mechanics
model based on the material’s fracture toughness, which
restricts the scope of this work to fractures in the viscosity-
dominated regime. When considering uncertainty quantifi-
cation using physically richer models, it will remain key
to not pollute the results with numerical errors, which
will inevitably lead to computationally complex Monte-
Carlo methods. The use of alternative stochastic tech-
niques, such as the perturbation method can be expected to
yield meaningful results at a much lower cost than direct
Monte-Carlo sampling.
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Appendix: Benchmark results

In Section 5.1, we have considered the deterministic bench-
mark result based on the case study by Warpinski et al. [41].
The parameters for the considered simulation can be found
in Table 1. Figure 5 in Section 5.1 shows the results for
this benchmark case as obtained using the finite element
technique developed in this manuscript, as well as the results
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Table 4 Numerical output of the model considered in this manuscript
formatted consistently with the results in Ref. [41]

Time Fracture height Fracture length Maximum aperture

t [s] H [m] L [m] ŵ [m]

0 51.8 2.0000 0.0037

1200 51.8 246.1651 0.0089

2400 51.8 421.3913 0.0101

3600 51.8 575.4035 0.0109

4800 51.8 716.5376 0.0114

6000 51.8 848.7358 0.0119

7200 51.8 974.0853 0.0122

8400 51.8 1093.9648 0.0126

9600 51.8 1209.3184 0.0129

10400 51.8 1320.8104 0.0131

12000 51.8 1428.9438 0.0134

for the simulators included in Ref. [41]. Note that the results
of these simulators have been reported with intervals of
1200 s. For completeness, in Table 4, we report the results
obtained by the method proposed herein with a mesh size of
�x = 1 m and a time step size of �t = 1 s. Note that the
presented results have been rounded off to 4 decimals.
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