Skip to main content

Advertisement

Log in

Sensitivity of HF radar-derived surface current self-organizing maps to various processing procedures and mesoscale wind forcing

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We performed a number of sensitivity experiments by applying a mapping technique, self-organizing maps (SOM) method, to the surface current data measured by high-frequency (HF) radars in the northern Adriatic and surface winds modelled by two state-of-the-art mesoscale meteorological models, the Aladin (Aire Limitée Adaptation Dynamique Développement InterNational) and the Weather and Research Forecasting models. Surface current data used for the SOM training were collected during a period in which radar coverage was the highest: between February and November 2008. Different pre-processing techniques, such as removal of tides and low-pass filtering, were applied to the data in order to test the sensitivity of characteristic patterns and the connectivity between different SOM solutions. Topographic error did not exceed 15 %, indicating the applicability of the SOM method to the data. The largest difference has been obtained when comparing SOM patterns originating from unprocessed and low-pass filtered data. Introduction of modelled winds in joint SOM analyses stabilized the solutions, while sensitivity to wind forcing coming from the two different meteorological models was found to be small. Such a low sensitivity is considered to be favourable for creation of an operational ocean forecasting system based on neural networks, HF radar measurements and numerical weather prediction mesoscale models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohonen, T.: Self-organized information of topologically correct features maps. Biol. Cybern. 43, 59–69 (1982)

    Article  Google Scholar 

  2. Kohonen, T.: : Self-Organizing Maps, Springer Series Information Science, 3rd, vol. 30, p 501. Springer, New York (2001)

  3. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600 (2000)

    Article  Google Scholar 

  4. Fritzke, B.: Growing cell structures—a self-organizing network for unsupervised and supervised learning. Neural Netw. 7, 1441–1460 (1994)

    Article  Google Scholar 

  5. Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the self-organizing map. IEEE Proc. 84, 1358–1384 (1996)

    Article  Google Scholar 

  6. Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17, 126–136 (2001)

    Article  Google Scholar 

  7. Xu, R, Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)

    Article  Google Scholar 

  8. Kolehmainen, M., Martikainen, H., Ruuskanen, J.: Neural networks and periodic components used in air quality forecasting. Atmos. Environ. 35, 815–825 (2001)

    Article  Google Scholar 

  9. Fan, S., Chen, L.N.: Short-term load forecasting based on an adaptive hybrid method. IEEE Trans. Power Syst. 21, 392–401 (2006)

    Article  Google Scholar 

  10. Cavazos, T.: Using self-organizing maps to investigate extreme climate events: an application to wintertime precipitation in the Balkans. J. Clim. 13, 1718–1732 (2000)

    Article  Google Scholar 

  11. Hewitson, B.C., Crane, R.G.: Self-organizing maps: applications to synoptic climatology. Clim. Res. 22, 13–26 (2002)

    Article  Google Scholar 

  12. Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynova, M., Kysely, J., Tveito, O.E.: Classifications of atmospheric circulation patterns recent advances and applications. Trends Dir. Clim. Res. 1146, 105–152 (2008)

    Google Scholar 

  13. Richardson, A.J., Risien, C., Shillington, F.A.: Using self-organizing maps to identify patterns in satellite imagery. Prog. Oceanogr. 59, 223–239 (2003)

    Article  Google Scholar 

  14. Mau, J.C., Wang, D.P., Ullman, D.S., Codiga, D.L.: Characterizing Long Island Sound outflows from HF radar using self-organizing maps. Estuar. Coast. Shelf Sci. 74, 155–165 (2007)

    Article  Google Scholar 

  15. Richardson, A.J., Pfaff, M.C., Field, J.G., Silulwane, N.F., Shillington, F.A.: Identifying characteristic chlorophyll a profiles in the coastal domain using an artificial neural network. J. Plankton Res. 24, 1289–1303 (2002)

    Article  Google Scholar 

  16. Lee, Y.J., Lwiza, K.M.M.: Characteristics of bottom dissolved oxygen in Long Island Sound. New York Estuar. Coastal Shelf Sci. 76, 187–200 (2008)

    Article  Google Scholar 

  17. Gutierrez, J.M., Cano, R., Cofino, A.S., Sordo, C.: Analysis and downscaling multi-model seasonal forecasts in Peru using self-organizing maps. Tellus A 57, 435–447 (2005)

    Article  Google Scholar 

  18. Allen, J.I., Somerfield, P.J., Gilbert, F.J.: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. J. Mar. Syst. 64, 3–14 (2007)

    Article  Google Scholar 

  19. Liu, Y., Weisberg, R.H., Mooers, C.N.K.: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res. 111, C05018 (2006). doi:10.1029/2005JC003117

    Article  Google Scholar 

  20. Liu, Y., Weisberg, R.H., Shay, L.K.: Current patterns on the West Florida shelf from joint self-organizing map analyses of HF radar and ADCP data. J. Atmos. Ocean. Technol. 24, 702–712 (2007)

    Article  Google Scholar 

  21. Mihanović, H., Cosoli, S., Vilibić, I., Ivanković, D., Dadić, V., Gačić, M.: Surface current patterns in the northern Adriatic extracted from high frequency radar data using self-organizing map analysis. J. Geophys. Res. 116, C08033 (2011). doi:10.1029/2011JC007104

    Google Scholar 

  22. Essen, H.H., Gurgel, K.-W., Schlick, T.: On the accuracy of current measurements by means of HF radar. IEEE J. Ocean. Eng. 25, 472–480 (2000)

    Article  Google Scholar 

  23. Kim, S.Y., Terrill, E.J., Cornuelle, B.D., Jones, B., Washburn, L., Moline, M.A., Paduan, J.D., Garfield, N., Largier, J.L., Crawford, G., Kosro, P.M.: Mapping the U.S. West Coast surface circulation: a multiyear analysis of high-frequency radar observations. J. Geophys. Res. 116, C03011 (2011). doi:10.1029/2010JC006669

    Google Scholar 

  24. Paduan, J.D., Washburn, L.: High-frequency radar observations of ocean surface currents. Ann. Rev. Mar. Sci. 5, 115–136 (2013)

    Article  Google Scholar 

  25. Kirincich, A.R., Lentz, S.J., Farrar, J.T., Ganju, N.K.: The spatial structure of tidal and mean circulation over the inner shelf south of Martha’s Vineyard, Massachusetts. J. Phys. Oceanogr. 43, 1940–1958 (2013)

    Article  Google Scholar 

  26. Shay, L.K., Graber, H.C., Ross, D.B., Chapman, R.D.: Mesoscale ocean surface current structure detected by high-frequency radar. J. Atmos. Ocean. Technol. 12, 881–900 (1995)

    Article  Google Scholar 

  27. Gough, M.K., Garfield, N., McPhee-Shaw, E.: An analysis of HF radar measured surface currents to determine tidal, wind-forced, and seasonal circulation in the Gulf of the Farallones, California, United States. J. Geophys. Res. 115, C04019 (2010). doi:10.1029/2009JC005644

    Article  Google Scholar 

  28. Gurgel, K.W., Dzvonkovskaya, A., Pohlmann, T., Schlick, T., Gill, E.: Simulation and detection of tsunami signatures in ocean surface currents measured by HF radar. Ocean Dyn. 61, 1495–1507 (2011)

    Article  Google Scholar 

  29. Kovačević, V., Gačić, M., Mazzoldi, A., Dallaporta, G., Gaspari, A.: Sea-surface currents measured by coastal HF radar offshore Ancona. Boll. Geofis. Teor. Appl. 41, 339–355 (2000)

    Google Scholar 

  30. Chavanne, C., Janeković, I., Flament, P., Poulain, P.M., Kuzmić, M., Gurgel, K.W.: Tidal currents in the northwestern Adriatic: high-frequency radio observations and numerical model predictions. J. Geophys. Res. 112, C03S21 (2007). doi:10.1029/2006JC003523

    Article  Google Scholar 

  31. Cosoli, S., Mazzoldi, A., Gačić, M.: Validation of surface current measurements in the northern Adriatic Sea from high-frequency radars. J. Atmos. Ocean. Technol. 27, 908–919 (2010)

    Article  Google Scholar 

  32. Cosoli, S., Gačić, M., Mazzoldi, A.: Surface current variability and wind influence in the northeastern Adriatic Sea as observed from high-frequency (HF) radar measurements. Cont. Shelf Res. 33, 1–13 (2012)

    Article  Google Scholar 

  33. Cosoli, S., Ličer, M., Vodopivec, M., Malačič, V.: Surface circulation in the Gulf of Trieste (northern Adriatic Sea) from radar, model, and ADCP comparisons. J. Geophys. Res. Oceans 118, 6183–6200 (2013)

    Article  Google Scholar 

  34. Orlić, M., Dadić, V., Grbec, B., Leder, N., Marki, A., Matić, F., Mihanović, H., Beg Paklar, G., Pasarić, M., Pasarić, Z., Vilibić, I.: Wintertime buoyancy forcing, changing seawater properties and two different circulation systems produced in the Adriatic. J. Geophys. Res. 111, C03S07 (2006). doi:10.1029/2005JC003271

    Google Scholar 

  35. Campanelli, A., Grilli, F., Paschini, E., Marini, M.: The influence of an exceptional Po River flood on the physical and chemical oceanographic properties of the Adriatic Sea. Dyn. Atmos. Oceans 52, 284–297 (2011)

    Article  Google Scholar 

  36. Mihanović, H., Vilibić, I., Carniel, S., Tudor, M., Russo, A., Bergamasco, A., Bubić, N., Ljubešić, Z., Viličić, D., Boldrin, A., Malačič, V., Celio, M., Comici, C., Raicich, F.: Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Sci. 9, 561–572 (2013)

    Article  Google Scholar 

  37. Grisogono, B., Belušić, D.: A review of recent advances in understanding the meso and microscale properties of the severe Bora wind. Tellus A 61, 1–16 (2009)

    Article  Google Scholar 

  38. Janeković, I., Kuzmić, M.: Numerical simulation of the Adriatic Sea principal tidal constituents. Ann. Geophys. 23, 3207–3218 (2005)

    Article  Google Scholar 

  39. Prtenjak, M.T., Grisogono, B.: Sea/land breeze climatological characteristics along the northern Croatian Adriatic coast. Theor. Appl. Climatol. 90, 201–215 (2007)

    Article  Google Scholar 

  40. Allard, R., Rogers, E., Martin, P., Jensen, T., Chu, P., Campbell, T., Dykes, J., Smith, T., Choi, J., Gravois, U.: The US Navy coupled ocean-wave prediction system. Oceanography 27, 92–103 (2014)

    Article  Google Scholar 

  41. Barth, A., Alvera-Azcarate, A., Gurgel, K.W., Staneva, J., Port, A., Beckers, J.M., Stanev, E.V.: Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of high-frequency radar surface currents—application to the German Bight. Ocean Sci. 6, 161–178 (2010)

    Article  Google Scholar 

  42. Wahle, K., Stanev, E.V.: Consistency and complementarity of different coastal ocean observations: a neural network-based analysis for the German Bight. Geophys. Res. Lett. 38, L10603 (2013). doi:10.1029/2011GL047070

    Google Scholar 

  43. Thomson, R.E., Emery, W.J. Data Analysis Methods in Physical Oceanography, 3rd. Elsevier Science, Amsterdam, London, New York (2014)

  44. Gurgel, K.W., Essen, H.H., Kingsley, S.P.: HF radars: physical limitations and recent developments. Coast. Eng. 37, 201–218 (1999)

    Article  Google Scholar 

  45. Crombie, D.D.: Doppler spectrum of sea echo at 13.56 Mc/s. Nature 175, 681–682 (1955)

    Article  Google Scholar 

  46. Kohut, J.T., Glenn, S.M.: Improving HF radar surface current measurements with measured antenna beam patterns. J. Atmos. Ocean. Technol. 20, 1303–1316 (2003)

    Article  Google Scholar 

  47. Cosoli, S., Bolzon, G., Mazzoldi, A.: A real-time and offline quality control methodology for SeaSonde high-frequency radar currents. J. Atmos. Ocean. Technol. 29, 1313–1328 (2012)

    Article  Google Scholar 

  48. Lipa, B.J., Barrick, D.: Least-squares methods for the extraction of surface currents from Codar crossed-loop data – application at ARSLOE. IEEE J. Ocean. Eng. 8, 226–253 (1983)

    Article  Google Scholar 

  49. Barrick, D.E., Lipa, B.J.: An evaluation of least-squares and closed-form dual-angle methods for CODAR surface-current applications. IEEE J. Ocean. Eng. 11, 322–326 (1986)

    Article  Google Scholar 

  50. Chapman, R.D., Graber, H.C.: Validation of HF radar measurements. Oceanography 10(2), 76–79 (1997)

    Article  Google Scholar 

  51. Kovačević, V., Gačić, M., Mancero Mosquera, I., Mazzoldi, A., Marinetti, S.: HF radar observations in the northern Adriatic: surface current field in front of the Venetian Lagoon. J. Mar. Syst. 51, 95–122 (2004)

    Article  Google Scholar 

  52. de Paolo, T., Terrill, E.: Skill assessment of resolving ocean surface current structure using compact-antenna-style HF radar and the MUSIC direction-finding algorithm. J. Atmos. Ocean. Technol. 24, 1277–1300 (2007)

    Article  Google Scholar 

  53. Aladin International Team: The ALADIN project: mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research. WMO Bull. 46, 317–324 (1997)

    Google Scholar 

  54. Tudor, M., Ivatek-Šahdan, S., Stanešić, A., Horvath, K., Bajić, A.: Forecasting weather in Croatia using ALADIN numerical weather prediction model. In: Zhang, Y., Ray, P. (eds.) Climate Change and Regional/Local Responses, pp 59–88. InTech, Rijeka (2013)

  55. Ivatek-Šahdan, S., Tudor, M.: Use of high-resolution dynamical adaptation in operational suite and research impact studies. Meteorol. Z. 13(2), 1–10 (2004)

    Google Scholar 

  56. Tudor, M., Ivatek-Šahdan, S.: The case study of bura of 1st and 3rd February 2007. Meteorol. Z. 19, 453–466 (2012)

    Article  Google Scholar 

  57. Geleyn, J.-F.: Interpolation of wind, temperature and humidity values from model levels to the height of measurement. Tellus 40A, 347–351 (1988)

    Article  Google Scholar 

  58. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G.: A description of the advanced research WRF Version 3, NCAR Technical Note NCAR/TN–475 + STR (2008)

  59. Davies, H.C.: A lateral boundary formulation for multi-level prediction models. Q. J. Royal Meteorol. Soc. 102, 405–418 (1976)

    Google Scholar 

  60. Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102(D14), 16663–16682 (1997)

    Article  Google Scholar 

  61. Dudhia, J.: A multi-layer soil temperature model for MM5, pp 49–50. The Sixth PSU/NCAR MM5 Users’ Workshop, Boulder, Colorado (1996)

    Google Scholar 

  62. Hong, S.Y., Dudhia, J., Chen, S.H.: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 132, 103–120 (2004)

    Article  Google Scholar 

  63. Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107 (1989)

    Article  Google Scholar 

  64. Hong, S.Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006)

    Article  Google Scholar 

  65. žagar, N., Honzak, L., žabkar, R., Skok, G., Rakovec, J., Ceglar, A.: Uncertainties in a regional climate model in the mid-latitudes due to the nesting technique and the domain size. J. Geophys. Res. 118, 6189–6199 (2013)

    Google Scholar 

  66. Ceglar, A., Honzak, L., žagar, N., Skok, G., žabkar, R., Rakovec, J.: Evaluation of precipitation in the ENSEMBLES regional climate models over the complex orography of Slovenia. Int. J. Clim. 35, 2574–2591 (2014). doi:10.1002/joc.4158

    Article  Google Scholar 

  67. Kriesel, D.: A brief introduction to neural networks, available at http://www.dkriesel.com, (2007). Accessed 3 December 2014

  68. Liu, Y., Weisberg, R.H.: A review of self-organizing map applications in meteorology and oceanography. In: Mwasiagi, J.I. (ed.) Self-Organizing Maps-Applications and Novel Algorithm Design, pp 253–272. InTech, Rijeka (2011)

  69. Kaski, S., Kangas, J., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Comput. Surv. 1, 102–350 (1998)

    Google Scholar 

  70. Oja, M., Kaski, S., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1998–2001 addendum. Neural Comput. Surv. 3, 1–156 (2003)

    Google Scholar 

  71. Hewitson, B.C., Crane, R.G.: Neural Nets: Applications in Geography. Springer, New York (1994)

    Book  Google Scholar 

  72. Schuenemann, K.C., Cassano, J.J., Finnis, J.: Forcing of precipitation over Greenland: synoptic climatology for 1961-99. J. Hydrometeorol. 10, 60–78 (2009)

    Article  Google Scholar 

  73. Tambouratzis, T., Tambouratzis, G.: Meteorological data analysis using self-organizing maps. Int. J. Intell. Syst. 23, 735–759 (2008)

    Article  Google Scholar 

  74. Yip, Z.K., Yau, M.K.: Application of artificial neural networks on North Atlantic tropical cyclogenesis potential index in climate change. J. Atmos. Ocean. Technol. 29, 1202–1220 (2012)

    Article  Google Scholar 

  75. Iskandar, I.: Seasonal and interannual patterns of sea surface temperature in Banda Sea as revealed by self-organizing map. Cont. Shelf Res. 30, 1136–1148 (2010)

    Article  Google Scholar 

  76. Hong, Y., Chiang, Y.M., Liu, Y., Hsu, K.L., Sorooshian, S.: Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map. Int. J. Remote Sens. 27, 5165–5184 (2006)

    Article  Google Scholar 

  77. Liu, Y., Weisberg, R.H.: Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. J. Geophys. Res. 110, C06003 (2005). doi:10.1029/2004JC002786

    Google Scholar 

  78. Kropp, J., Klenke, T.: Phenomenological pattern recognition in the dynamical structures of tidal sediments from the German Wadden Sea. Ecol. Modell. 103, 151–170 (1997)

    Article  Google Scholar 

  79. Bandelj, V., Socal, G., Park, Y.S., Lek, S., Coppola, J., Camatti, E., Capuzzo, E., Milani, L., Solidoro, C.: Analysis of multitrophic plankton assemblages in the Lagoon of Venice. Mar. Ecol. Prog. Ser. 368, 23–40 (2008)

    Article  Google Scholar 

  80. Solidoro, C., Bastianini, M., Bandelj, V., Codermatz, R., Cossarini, G., Melaku Canu, D., Ravagnan, E., Salon, S., Trevisani, S.: Current state, scales of variability & trends of biogeochemical properties in the northern Adriatic Sea. J. Geophys. Res. 114, C07S91 (2009). doi:10.1029/2008JC004838

    Article  Google Scholar 

  81. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Toolbox for Matlab 5, Technical Report A57, FIN-02015 HUT, p 59. Helsinki University of Technology, Helsinki (2000)

    Google Scholar 

  82. Malačič, V., Viezzoli, D., Cushman-Roisin, B.: Tidal dynamics in the northern Adriatic Sea. J. Geophys. Res. 105, 26265–26280 (2000)

    Article  Google Scholar 

  83. Cushman-Roisin, B., Naimie, C.E.: A 3D finite-element model of the Adriatic tides. J. Mar. Syst. 37, 279–297 (2002)

    Article  Google Scholar 

  84. Pawlowicz, R., Beardsley, B., Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 28, 929–937 (2002)

    Article  Google Scholar 

  85. Raicich, F., Orlić, M., Vilibić, I., Malačič, V.: A case study of the Adriatic seiches (December 1997). Il Nuovo Cimento C 22, 715–726 (1999)

    Google Scholar 

  86. Krajcar, B., Orlić, M.: Seasonal variability of inertial oscillations in the northern Adriatic. Cont. Shelf Res. 15, 1221–1233 (1995)

    Article  Google Scholar 

  87. Whiteman, C.D., Bian, X.D.: Solar semidiurnal tides in the troposphere: detection by radar profilers. Bull. Am. Meteorol. Soc. 77, 529–542 (1996)

    Article  Google Scholar 

  88. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000)

    Article  Google Scholar 

  89. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press and McGraw-Hill (2009)

  90. Kundu, P.K.: Ekman veering observed near the ocean bottom. J. Phys. Oceanogr. 6, 238–242 (1976)

    Article  Google Scholar 

  91. Pasarić, Z., Belušić, D., Klaić, Z.B.: Orographic influences on the Adriatic sirocco wind. Ann. Geophys. 25, 1263–1267 (2007)

    Article  Google Scholar 

  92. Cavaleri, L., Bertotti, L., Tescaro, N.: The modelled wind climatology of the Adriatic Sea. Theor. Appl. Climatol. 56, 231–254 (1997)

    Article  Google Scholar 

  93. Malačič, V., Celio, M., Čermelj, B., Bussani, A., Comici, C.: Interannual evolution of seasonal thermohaline properties in the Gulf of Trieste (northern Adriatic) 1991-2003. J. Geophys. Res. 111, C08009 (2006). doi:10.1029/2005JC003267

    Google Scholar 

  94. Vilibić, I., Mihanović, H., Šepić, J., Matijević, S.: Using self-organising maps to investigate long-term changes in deep Adriatic water patterns. Cont. Shelf Res. 31, 695–711 (2011)

    Article  Google Scholar 

  95. Pölzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Paralič, J, Pölzlbauer, G, Rauber, A (eds.) Proceedings of the Fifth Workshop on Data Analysis (WDA’04), pp 67–82. Elfa Academic Press, Vysoké Tatry, Slovakia

  96. Jeffries, M.A., Lee, C.M.: A climatology of the northern Adriatic Sea’s response to bora and river forcing. J. Geophys. Res. 112, C03S02 (2007). doi:10.1029/2006JC003664

    Article  Google Scholar 

  97. Lee, T.L., Jeng, D.S.: Application of artificial neural networks in tide-forecasting. Ocean Eng. 29, 1003–1022 (2002)

    Article  Google Scholar 

  98. Makarynskyy, O.: Improving wave predictions with artificial neural networks. Ocean Eng. 31, 704–729 (2004)

    Article  Google Scholar 

  99. Cowles, G.W.: Parallelization of the FVCOM coastal ocean model. Int. J. High Perform. Comput. Appl. 22, 177–193 (2008)

    Article  Google Scholar 

  100. Haidvogel, D.B., Beckmann, A.: Numerical Ocean Circulation Modeling. Imperial College Press, London (1999)

    Google Scholar 

  101. Hall, D.: Rejuvenation, diversification and imagery: sustainability conflicts for tourism policy in the Eastern Adriatic. J. Sustain. Tour. 11, 280–294 (2009)

    Article  Google Scholar 

  102. Ferraro, G., Bernardini, A., David, M., Meyer-Roux, S., Muellenhoff, O., Perkovic, M., Tarchi, D., Topouzelis, K.: Towards an operational use of space imagery for oil pollution monitoring in the Mediterranean basin: a demonstration in the Adriatic Sea. Mar. Pollut. Bull. 53, 403–422 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Vilibić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilibić, I., Kalinić, H., Mihanović, H. et al. Sensitivity of HF radar-derived surface current self-organizing maps to various processing procedures and mesoscale wind forcing. Comput Geosci 20, 115–131 (2016). https://doi.org/10.1007/s10596-015-9550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9550-3

Keywords

Mathematics Subject Classification (2010)

Navigation