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2013). Stocking of captive-reared fish of native, non-native, 
or mixed origin has become an integral part of the process 
to support threatened and endangered populations (Apraha-
mian et al. 2003; Hansen et al. 2009; Laikre et al. 2010). 
Although stocking is an important tool to achieve manage-
ment goals, numerous studies have shown that stocking 
with hatchery-reared fish can have a major impact on the 
genetic structure of wild salmonid populations (Eldridge et 
al. 2009; Hansen et al. 2009; Marie et al. 2010; Ozerov et al. 
2016; Östergren et al. 2021). Several studies have reported 
that stocking practices can result in variable admixture 
rates between donor and source populations (Campos et 
al. 2008; Sønstebø et al. 2008; Hansen et al. 2009; Perrier 
et al. 2011; Ozerov et al. 2016). Populations influenced 
by hatchery releases may show a reduction of genetic dif-
ferentiation (Susnik et al. 2004; Eldridge and Naish 2007; 
Hansen et al. 2009, 2010; Ozerov et al. 2016) and loss or 
increase of genetic variability and potential disruption 

Introduction

In the past century, widespread declines and even extirpa-
tions of salmonid populations due to increasing human-
related activities such as fisheries, pollution, habitat 
destruction, fragmentation, and alteration have occurred 
throughout most of salmonid fishes natural ranges (Parrish 
et al. 1998; Susnik et al. 2004; HELCOM 2011; Perrier et al. 
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of local adaptations (Hansen et al. 2001a, b; Borrell et al. 
2008; Laikre et al. 2008; Eldridge et al. 2009; Ozerov et al. 
2016; Östergren et al. 2021). Furthermore, hatchery-reared 
fish frequently show less accurate homing behaviour than 
wild conspecifics (Jensen et al. 2005; Vasemägi et al. 2005; 
Jonsson and Jonsson 2006; Hansen and Mensberg 2009), 
and released fish have been recovered in rivers other than 
those into which they were stocked (Vasemägi et al. 2005; 
Sønstebø et al. 2008; Degerman et al. 2012).

Genetic analysis of samples taken at two or more time 
points has become increasingly popular to assess the 
changes in diversity and population structure of wild fish 
(Laikre et al. 1998; Ostergaard et al. 2003; Palm et al. 2003; 
Jensen et al. 2005; Campos et al. 2007; Borrell et al. 2008; 
Nielsen and Hansen 2008; Hansen et al. 2009; Gudmunds-
son et al. 2013; Ozerov et al. 2013, 2016; Christensen et al. 
2018). This is because population genetic inferences based 
on a single sample typically are able to provide only a snap-
shot of evolutionary and demographic processes. In con-
trast, temporal analyses have led to important insights on 
the genetic stability of fish populations and changes in effec-
tive population size (Jorde and Ryman 1995; Hansen et al. 
2002; Laikre et al. 2002; Ostergaard et al. 2003; Palm et al. 
2003; Jensen et al. 2005; Campos et al. 2007; Borrell et al. 
2008), population responses to pronounced climate changes 
(Christensen et al. 2018) and habitat fragmentation (Yama-
moto et al. 2004; Sandlund et al. 2014). Furthermore, sev-
eral studies have assessed the short- and long-term genetic 
effects of stocking and fish farm escapees on wild salmonid 
populations using samples gathered over time (Tessier and 
Bernatchez 1999; Hansen et al. 2000, 2006; Finnegan and 
Stevens 2008; Eldridge et al. 2009; Hansen et al. 2009; Han-
sen and Mensberg 2009; Hansen et al. 2010; Gudmunds-
son et al. 2013; Perrier et al. 2013; Valiquette et al. 2014; 
Ozerov et al. 2016; Pritchard et al. 2016).

Anadromous brown trout (Salmo trutta L.), often called 
sea trout, reproduces in streams and rivers where juveniles 
spend one to several years before they undergo smoltifica-
tion and migrate to the sea, where they reach maturity after 
one or more years, and subsequently return back to their 
native rivers to spawn (Klemetsen et al. 2003). In the Bal-
tic Sea, the sea trout is one of the important diadromous 
fish species (ICES 2020). However, the populations have 
declined throughout their range in the Baltic Sea basin as 
a result of a number of anthropogenic stressors, including 
habitat degradation, migration barriers, poaching, pollution, 
and overfishing (HELCOM 2011b; Pedersen et al. 2012; 
HELCOM 2013; ICES 2019, 2020). Currently, ca. 500 sea 
trout populations reproduce naturally in the Baltic rivers 
(HELCOM 2011). Earlier studies have demonstrated that 
trout populations in the Baltic Sea are hierarchically struc-
tured according to the geographical regions (Koljonen et al. 

2014; Pocwierz-Kotus et al. 2014; Östergren et al. 2016). 
On a smaller geographical scale, e.g., among rivers of the 
same region or even among tributaries within large river 
systems, genetic relationships between populations also 
tend to reflect their geographical proximity and connectiv-
ity (Hansen et al. 2009; Lehtonen et al. 2009; Samuiloviene 
et al. 2009; Koljonen et al. 2014; Östergren et al. 2016).

In Estonia, sea trout populations are found in about 75 
rivers and streams, and more than half of them (39) are 
descending to the Gulf of Finland area (HELCOM 2011; 
ICES 2020). Due to the high harvest rate and deterioration 
of habitat quality in the 1990s, sea trout parr densities in 
Estonia decreased and stayed at a low level until the mid-
dle of the 2010s (HELCOM 2011b; Pedersen et al. 2012). 
As a result, a stocking programme in the Gulf of Finland 
was implemented from the 2000s to the end of the 2010s, 
when the situation in stocked rivers had improved. The riv-
ers were subjected to supportive stocking using hatchery-
reared offspring of local wild spawners (2001–2020) or 
alternatively, F1 offspring of hatchery broodstocks that were 
created based on local sea trout in the state-owned Põlula 
Fish Rearing Centre hatchery (2008–2014) (Ministry of the 
Environment 2020; Põlula Fish Rearing Centre 2021; pers. 
comm E. Saadre). The earlier population genetic character-
ization of Estonian sea trout, conducted using microsatellite 
markers, showed close genetic relationships among Gulf 
of Finland populations, with pairwise FST estimates rang-
ing from 0.002 to 0.041 (Koljonen et al. 2014). However, 
due to fluctuations in population size and the recent history 
of stocking, we currently do not know how these processes 
may have influenced genetic diversity and differentiation 
patterns among Estonian sea trout populations. Further-
more, estimates of demographic parameters obtained from 
temporal samples, such as effective population size (Ne), 
which determines the extent of random genetic drift and 
inbreeding, as well as the efficacy of selection (Frankham 
et al. 2002), can add useful information about the status of 
populations.

In this study, we characterized the spatial and temporal 
genetic variability of four Estonian sea trout (Salmo trutta 
L.) populations over a period of more than 20 years based 
on 14 microsatellite loci. We compared the genetic structure 
of these populations prior to, and several generations after, 
stocking activities which provided an excellent opportunity 
to explore the long-term effects of hatchery releases. Fur-
thermore, we describe the genetic effects of stocking on sea 
trout populations which either (i) have directly experienced 
hatchery releases (i.e. direct effect) or (ii) have not experi-
enced direct hatchery releases but may have been impacted 
by straying of hatchery fish (i.e. indirect effect). Our main 
goals were to: (i) assess the temporal changes in genetic 
diversity and differentiation over time, (ii) quantify changes 
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in effective population size and identify potential genetic 
bottlenecks, and (iii) evaluate the degree of introgression 
from hatchery releases.

Materials and methods

Study area, sample collection and stocking 
information

A sampling of sea trout juveniles (0 + and 1 + age; n = 600) 
was carried out using electrofishing during the annual 
national salmonid parr density surveys in four northern 
Estonian rivers flowing into the Gulf of Finland of the Bal-
tic Sea (R. Vasalemma, R. Loobu, R. Selja, and R. Kunda). 
The surveys were carried out by the Estonian Marine Insti-
tute, the University of Tartu and electrofished areas spanned 
from 100 to 400 m2 depending on location and water level 

(Fig. 1, red lines). Each river had physical obstacles to the 
upstream migration of fish, such as waterfalls or dams, and 
available stretches for sea trout upstream migration varied 
between rivers (Table S2). Sampling of juveniles was car-
ried out in August-September. Small pieces of fin clips were 
sampled non-lethally and stored in 96% ethanol for later 
genetic analysis. The first samples from each river were col-
lected in 1997–2001 and were assumed not to have been 
affected by stocking activities because during these years 
large-scale stocking activities had just started, while sub-
sequent samples were collected in 2017–2019 and were 
assumed to reflect the more recent status of the Estonian 
sea trout gene pool, which is potentially affected by stock-
ing activities (Table S3). To directly compare the temporal 
data sets all individuals were divided into cohorts according 
to their year of birth: earlier period samples (year-classes 
1996–2001) and later period samples (year-classes 2017–
2019; Table 1 and S3). In addition, to allow evaluation of the 

Fig. 1 Map illustrating the geographical location of the studied sea 
trout rivers (bold red lines), the rivers in which regular releases of 
hatchery-origin sea trout juveniles were carried out (black lines), and 
the rivers, where the broodstocks and the hatchery-reared juveniles 
of wild spawners originated are additionally marked with an asterisk. 

Black dots on the red lines indicate sampling points. Numbers cor-
respond to the rivers in Table S2. Inserted line plots indicate the mean 
density of 0 + sea trout per 100 m2 in the four studied rivers based on 
monitoring data from 1994 to 2020 (Kesler et al. 2021)
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Foster City, USA) as the internal molecular size. The sizes 
of the microsatellite alleles were determined using Gene-
Mapper software v. 5.0 (Applied Biosystems, Foster City, 
CA). Microsatellite genotypes were initially scored auto-
matically and were double-checked manually.

Data analysis

To assess the levels of genetic diversity, the number of 
unique alleles (private alleles) in a year-class, mean num-
ber of alleles (A), allelic richness (AR), observed (HO), and 
expected heterozygosity (unbiased genetic diversity, HE), 
were calculated using FSTAT v. 2.9.3.2 (Goudet 1995) 
and MICROSATELLITE TOOLKIT v. 3.1.1 (Park 2001). 
The FSTAT v. 2.9.3.2 software was also used to calculate 
Weir and Cockerham’s (1984) within year-class inbreeding 
coefficient (FIS) and pairwise FST values. Each year-class 
was checked for the presence of null alleles and scoring 
errors due to stuttering or large allele dropouts using the 
Brookfield 1 estimator (Brookfield 1996), implemented in 
the program MICRO-CHECKER v. 2.2.3 (Van Oosterhout 
et al. 2004). The significance of the FIS was estimated by 
the bootstrap method implemented in GENETIX v. 4.05.2 
software (Belkhir et al. 2004). GENEPOP v. 4.7.5 (Rousset 
2008) was used to test deviation from the Hardy-Weinberg 
equilibrium (HWE) (10,000 iterations each) for every locus 
year-class combination with Fisher’s exact test. All prob-
ability tests were based on the Markov chain method (Guo 
and Thompson 1992; Raymond and Rousset 1995) using 
1,000 de-memorization steps, 100 batches, and 1,000 itera-
tions per batch. All tests included Bonferroni corrections 
(Rice 1989). To identify closely related individuals (full- 
and half-siblings) the software COLONY v. 2.0.5.0 (Jones 
and Wang 2010) was used. The model used evaluated the 
number of full-sib families in all year-classes assuming 
polygamous reproduction among males and females (Flem-
ing 1996).

Temporal stability of population genetic structure

Statistical significance of differences in the estimates of 
genetic differentiation (Weir and Cockerham’s (1984) FST) 
of all studied populations and their year-classes between 
earlier (1996–2001) and later (2017–2019) time periods was 
estimated using FSTAT v. 2.9.3.2 (Goudet 1995). FSTAT 
was also applied for estimating the statistical significance of 
differences in the estimates of FST between earlier and later 
time periods for each population (groups of year-classes) 
separately using a permutation scheme implemented in 
FSTAT v. 2.9.3.2 (two-sided test with 1,000 permutations; 
Goudet 1995). Hierarchical analysis of molecular vari-
ance (AMOVA) (Excoffier et al. 1992) incorporated in 

degree of introgression from hatchery releases, the samples 
of juvenile individuals (0 + and 1 + age; n = 436) from four 
wild populations (Pudisoo, Mustoja, Selja, and Kunda Riv-
ers) and samples of adult individuals (9 + age; n = 159; fin 
clips) from Põlula Fish Rearing Centre hatchery broodstock 
were collected in 1997–2014 (Fig. 1; Table S1 and S2). No 
recent hatchery releases have been carried out in the Riv-
ers Vasalemma, Loobu, and Kunda, while regular releases 
of hatchery-reared trout into the River Selja occurred dur-
ing the period 2001–2006 (Table S2). The River Selja was 
subjected to supportive breeding using hatchery-reared 
offspring based on River Selja and River Pudisoo wild 
spawners (Table S2). Since 1994, the density of wild sea 
trout parr on spawning sites showed significant increases for 
three out of the four studied rivers (Vasalemma, Loobu, and 
Selja; simple linear regression’s R2 = 0.49–0.68, P < 0.05), 
while the density of parr in River Kunda, did not change 
significantly (R2 = 0.29, P > 0.05) (Kesler et al. 2021). Fur-
ther information on the hatchery releases to Estonian rivers 
flowing into the Gulf of Finland can be found in Fig. 1 and 
Table S2.

DNA extraction and microsatellite analysis

DNA from fin clips collected in 1997–2001 (a total of 278 
individual samples) was isolated according to the simplified 
method of Laird et al. (1991) and samples collected in 2012–
2019 (a total of 784 individual samples) were extracted 
using NucleoSpin® Tissue kit (Macherey-Nagel GmbH). 
All samples (n = 1062) were genotyped at 14 microsatellite 
loci: SsOsl417, SsOsl311 (Slettan et al. 1995), Str60INRA, 
Str15INRA, Str73INR (Estoup et al. 1993), Ssa407 (Cairney 
et al. 2000), Bs131 (Estoup et al. 1998), SsOsl438 (Slettan 
et al. 1996), Strutta58 (Poteaux et al. 1999), OneU9 (Scrib-
ner et al. 1996), Ssa85 (McConnell et al. 1995), Sssp1605 
(Paterson et al. 2004), Ssa197 (Oreilly et al. 1996) and 
Str85INRA (Presa and Guyomard 1996). Two multiplex 
PCR reactions (7 loci per multiplex) were carried out in a 
total reaction volume of 10 µl which contained 1 × Type-it 
Multiplex PCR Master Mix (Qiagen), 50–400 nM of each 
primer (concentration and fluorescent labelling of specific 
primers are described in Appendix 1 Table A2 in Koljonen 
et al. 2014), and ca. 10–20 ng of DNA template. Amplifica-
tions were performed using the following temperature pro-
file: initial denaturation at 95 °C for 5 min followed by 26 
cycles of denaturation at 95 °C for 30 s, annealing at 56 
ºC for 60 s, and extension at 72 °C for 30 s, all of which 
were followed by a final extension at 60 °C for 30 min. The 
amplification products were separated by capillary electro-
phoresis on AB3500 (1997–2014 samples) and AB3500XL 
(2017–2019 samples) Genetic Analyzers (Applied Biosys-
tems, Foster City, CA) using LIZ600 (Applied Biosystems, 
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maximum-likelihood method implemented in the program 
MLNe v. 1.0 (Wang and Whitlock 2003). This method esti-
mates Ne considering migration as an additional source of 
variation in allele frequencies and also quantifies the immi-
gration rate (m) from the assumed source population. For 
this, we created four putative source populations (poten-
tial sources of immigrants) based on spawners of a Põlula 
hatchery captive broodstock (source 1) and trout samples 
from the rivers, which were used as spawners for producing 
hatchery-reared offspring for subsequent stocking purposes: 
pooled samples of wild-caught fish from the R. Pudisoo 
and R. Mustoja (source 2), and earlier period samples from 
R. Selja (source 3) and R. Kunda (source 4) (Table S1 and 
S2). MLNe requires a user-specified upper limit for Ne, 
which was set at 200 after checking that similar results were 
obtained with higher upper limits for Ne. Furthermore, we 
assumed an average generation time of 3.5 years (Rannak 
et al. 1983). As the intervals between year-classes were not 
integers, all estimates were adjusted according to the equa-
tions provided by Wang and Whitlock (2003).

To detect recent population genetic bottlenecks, two tests 
were used: the Wilcoxon sign-rank test which is based on 
heterozygosity excess, and the mode-shift test which evalu-
ates the allele frequency distribution. Both bottleneck tests 
were performed with the program BOTTLENECK v. 1.2.02 
(Piry et al. 1999) using the stepwise mutation model (SMM) 
and the two-phase model (TPM) comprising 95% SMM and 
5% infinite allele model with the variance for mutation size 
set to 12 (Piry et al. 1999).

Results

Genetic diversity at microsatellite loci

We found no strong evidence for allele dropouts nor scor-
ing errors due to stuttering, although MICRO-CHECKER 
suggested a putative null allele at 8 out of 14 microsatellite 
loci in 13 year-classes (one to two loci per year-class; Table 
S3). Estimated null allele frequencies ranged from 0.063 to 
0.177 (Brookfield 1 estimator), and the highest frequency 
of null alleles was found in the locus SSsp1605 (Table S3). 
However, as only 15 out of 252 tests for null alleles were 
significant (5.9%, i.e., close to the expected Type-I error 
level), we decided not to exclude any loci from further 
analysis. Moreover, omitting some loci with putative null 
alleles (e.g. SSsp1605) had only a negligible effect on the 
main results (data not shown). Deviations from the Hardy-
Weinberg equilibrium (P < 0.05) were detected in 22 of 252 
locus-sample combinations. After correcting for multiple 
tests (Rice 1989), only a single combination remained sig-
nificant (α = 0.0002; Table S3). The significant deviation 

ARLEQUIN v. 3.5.2.2 (Excoffier and Lischer 2010) was 
used to quantify spatial and temporal genetic variation and 
its statistical significance. We quantified the amount of spa-
tial and temporal variation for the whole data set (1996–
2019) and for the two periods separately (1996–2001 and 
2017–2019). The hierarchy levels were set among popula-
tions (groups of year-classes of the same population; FCT), 
among year-classes within populations (FSC), and within 
year-classes (FST). The variance components were tested 
statistically by non-parametric randomization tests using 
10,000 permutations. The genetic distances between year-
classes were estimated according to Nei’s genetic distance 
(DA) (Nei et al. 1983), and a population tree was constructed 
with the neighbour-joining (NJ) algorithm (Saitou and Nei 
1987) using the POPULATIONS v. 1.2.31 software (Lan-
gella 1999). Branch support was estimated with 1,000 
bootstrap replications over loci and the resulting tree was 
visualized in MEGA v. 6.06 software (Tamura et al. 2013). 
Statistical significance of the differences in the average esti-
mates of the AR and HE between 1996–2001 and 2017–2019 
time periods for each population (groups of year-classes) 
were assessed using a non-parametric Wilcoxon signed-
rank test and a permutation scheme implemented in FSTAT 
v. 2.9.3.2 (two-sided test with 1,000 permutations; Goudet 
1995).

Estimation of effective population size, effective 
number of breeders, and bottlenecks

Three different methods were applied to estimate effective 
population size (Ne). First, we used the linkage disequilib-
rium (LD) method (Hill 1981) implemented in NeESTIMA-
TOR v2 (Do et al. 2014) to estimate Ne based on alleles with 
allele frequencies larger than 5%. Second, Ne was estimated 
by the sibship assignment (SA) approach implemented in 
COLONY v. 2.0.5.0 (Jones and Wang 2010). This approach 
estimates demographic parameters from the multilocus gen-
otypes of a sample allowing calculation of the probabilities 
that a pair of offspring taken at random from the population 
are half- or full-sibs. The COLONY runs were performed 
with the following options: female and male polygamy, ran-
dom mating, full-likelihood method, and medium-length 
run. Since both LD and SA methods require only a single 
sample, the Ne was separately calculated for each year-class 
resulting in 3–6-point estimates per population. The esti-
mation from a sample of individuals taken at random from 
a single year-class in a population with overlapping gen-
erations gives an estimate of an annual effective number of 
breeders (Nb) that produced the cohort (Wang 2009), rather 
than the Ne per generation (Waples et al. 2013). Therefore, 
for LD and SA approach we will use hereafter the notation 
as Nb, rather than Ne. Thirdly, Ne was estimated using a 

1 3

486



Conservation Genetics (2024) 25:481–497

higher in the earlier period (1996–2001, average pairwise 
FST = 0.035) than in the later period (2017–2019, average 
pairwise FST = 0.021) (Table 2). However, the change based 
on average FST estimates was not significant (two-sided tests 
P > 0.05; Goudet 1995). Genetic differentiation between 
year-classes from different populations showed significant 
estimates in 106 out of 119 pairwise comparisons (89.1%). 
All but one non-significant comparison (Vas-98 and Sel-19) 
involved the River Kunda samples. Comparisons between 
year-classes within the same river revealed significant dif-
ferentiation in 21 out of 34 tests (61.8%). The largest tem-
poral changes occurred in the Loobu and Selja populations 
(average pairwise FST = 0.031), while the Kunda population 
was more stable (average pairwise FST = 0.015) (Table 2). 
However, the changes between the later and earlier time 
period for each population (groups of year-classes) were 
not significant (two-sided tests P > 0.05; Goudet 1995). The 
hierarchical gene diversity analysis using AMOVA revealed 
that the highest proportion of variation was present within 
year-classes (FST = 0.026; P < 0.001), followed by variation 
among year-classes (FSC = 0.022; P < 0.001) and among 
populations (FCT = 0.004; P < 0.001) (Table 3). However, 
when both time periods were analysed separately, the rela-
tionships between temporal and spatial variation differed. 
For example, during the earlier period (1996–2001) tempo-
ral variation within populations (FSC = 0.023; P < 0.001) was 
almost four times higher than spatial differentiation (FCT = 
0.006; P < 0.05). On the other hand, based on later samples 
(2017–2019), both temporal and spatial differentiation esti-
mates were similar to each other (FSC = 0.010; P < 0.001; 
FCT = 0.012; P > 0.05) (Table 3). The AMOVAs, performed 
for two time periods separately, also indicated that genetic 
differentiation among populations was marginally higher 
during the earlier period (FST = 0.029, P < 0.001) compared 
to the later period (FST = 0.022, P < 0.001) (Table 3). The 
pattern of close genetic relationships among populations 
was further supported by a DA genetic distance-derived NJ 
dendrogram (Fig. 2). The NJ dendrogram also reflected the 
geographical relationships between populations (Fig. 2), 
with nearby Loobu, Selja, and Kunda samples grouping 
together (Fig. 2). Similarly, to River Vasalemma, all tempo-
ral replicates from the River Loobu grouped together, while 
those of R. Selja and R. Kunda were located on different 
branches of the tree.

Effective population size, effective number of 
breeders, and migration rate estimates

The single sample estimates of the effective number of 
breeders (Nb) were variable between year-classes and riv-
ers, ranging from 19.3 to 169.8 based on the linkage dis-
equilibrium (LD) method and from 16 to 69 for the sibship 

was not driven by the deficit nor the excess of the heterozy-
gotes (Table S3).

When sampling juveniles of trout using electrofishing, 
there is a risk of sampling individuals that share the same 
parents, i.e. that are full- or half-siblings. Analysis with 
COLONY v. 2.0.5.0 showed that our samples consisted of 
only small full-sib families (maximum of two full-sibs). 
We therefore did not exclude any individuals from further 
analysis, since small sibling groups are not expected to seri-
ously bias subsequent population genetic inferences, while 
removing individuals may reduce the precision and statisti-
cal power of different genetic analysis approaches (Waples 
and Anderson 2017).

A total of 175 alleles were observed across the 14 micro-
satellite loci with an average of 12.5 alleles per locus, rang-
ing from four alleles at Str60INRA to 38 alleles at Ssa407. 
The number of alleles varied little between the two time 
periods: a total of 157 and 159 alleles were observed dur-
ing the earlier and later time periods, respectively. However, 
we detected 16 alleles during the earlier period samples that 
were not observed in the later period, while 18 alleles were 
only observed in more recent samples (data not shown). All 
microsatellite loci were polymorphic in all year-classes, 
except Vas-98, for which the locus OneU9 was monomor-
phic. The average HE of the studied loci was 0.645 and var-
ied from 0.000 (OneU9) to 0.966 (Ssa407) (Table S3). The 
mean genetic diversity estimates over 14 microsatellite loci 
did not vary dramatically between populations and tempo-
ral replicates; it was the lowest in Lb-99 (AR = 5.07, HE = 
0.578) and the highest in Vas-18 (AR = 6.50, HE = 0.697) 
(Table S3). The number of private alleles was similar during 
both earlier and later period samples and their frequencies 
were low (below 3%, except Strutta58 in Kun-19 with a fre-
quency of 10.7%) (data not shown).

Spatio-temporal genetic variation and 
differentiation

Genetic diversity estimates, expressed as mean allelic rich-
ness (AR) and expected heterozygosity (HE), were on an 
average a little higher in the later period samples (mean AR 
= 5.8, range 5.1–6.5; mean HE = 0.65, range 0.62–0.70) 
compared to the earlier period (mean AR = 5.6, range 5.1–
5.9; mean HE = 0.64, range 0.58–0.67) (Table 1). However, 
the change in AR and HE was not significant (Wilcoxon 
signed-rank test P > 0.05 and two-sided test P > 0.05; Gou-
det 1995). Genetic differentiation, measured as FST, among 
year-classes from different populations, was low (global FST 
= 0.029) with pairwise estimates of FST ranging from 0.004 
(between Sel-17 and Kun-98) to 0.075 (between Lb-99 and 
Sel-19) (Table 2). Among periods, the level of differentia-
tion between year-classes of the studied populations was 
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Table 3 Hierarchical analysis of molecular variance (AMOVA) of the studied sea trout populations
Source of variation Number of population 

groups
Number of
year-classes

Percentage of 
variance

F-Statistics P-value

Whole dataset (1996–2019; Vasalemma, Loobu, Selja, and Kunda)
Among populations 4 0.46 FCT = 0.004 ***
Among year-classes 18 2.19 FSC = 0.022 ***
Within year-classes 97.36 FST = 0.026 ***
Earlier period1(1996–2001; Vasalemma, Loobu, and Kunda)
Among populations 3 0.59 FCT = 0.006 *
Among year-classes 9 2.28 FSC = 0.023 ***
Within year-classes 97.13 FST = 0.029 ***
Later period1(2017–2019; Vasalemma, Loobu, and Kunda)
Among populations 3 1.24 FCT = 0.012 NS
Among year-classes 6 1.04 FSC = 0.010 ***
Within year-classes 97.72 FST = 0.022 ***
1Selja population was not included in the analysis due to an insufficient number of year-classes during the period 1996–2001. *P < 0.05, 
**P < 0.01, ***P < 0.001, NS – non-significant

Fig. 2 Unrooted neighbour-joining dendrogram based on DA genetic 
(Nei et al. 1983) distances, demonstrating the genetic relationships 
between temporally replicated samples of four Estonian sea trout 
populations in the Gulf of Finland in Northern Estonia, the Baltic Sea. 
Temporally replicated samples of the same population are represented 

by the same colour and shape (green-square, yellow-triangle, red-cir-
cle, and blue-rhombus). The number on the node indicates branches 
with bootstrap support > 50% in 1,000 replicates. See Table 1 for the 
full names of the populations. (Colour figure online)
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putative sources 3 and 2 (m = 0.171 and m = 0.224, respec-
tively), and the lowest from putative hatchery sources 1 and 
4 (m = 0.087 and m = 0.066, respectively) (Table 4).

Recent bottleneck events

The mode-shift test did not reveal a shift from the L-shaped 
allele frequency distribution for any year-class of any stud-
ied population, suggesting a mutation-drift equilibrium (data 
not shown). Similarly, Wilcoxon sign-rank tests, conducted 
using both SMM and TMP models, did not reveal evidence 
for recent population bottlenecks (all P-values > 0.05).

Discussion

We evaluated the changes in the spatio-temporal population 
structure among four sea trout populations in northern Esto-
nia over two decades. Our results demonstrate weak genetic 
structuring among populations, a tendency for reduction of 
genetic differentiation, and an increased level of genetic 
diversity (heterozygosity and allelic richness) over time. 
Furthermore, we found evidence that both direct and indirect 
(via straying) effects of stocking most likely have influenced 
the genetic make-up of the studied wild trout populations. 
Our results demonstrate the dynamic nature of the popula-
tion genetic structure of sea trout and suggest that hatchery 
releases have significant but variable effects on the genetic 
composition of wild populations.

assignment (SA) method (Table 1). Despite both methods 
being based on different assumptions and methodologies, 
a strong positive correlation between Nb estimates derived 
from the LD and the SA methods (R2 = 0.752, P < 0.05) indi-
cates the consistency of these estimates. For the Vasalemma, 
Loobu, and Selja populations, we observed a tendency of 
increasing Nb estimates over time using both the LD and the 
SA methods (Table 1). The increase of Nb estimates coin-
cided with the increase of estimated 0 + sea trout parr densi-
ties based on national monitoring data (Fig. 1).

When the potential immigration from hatchery releases 
across the whole study period was taken into account, the Ne 
estimates were similar for R. Loobu and R. Selja (range Ne = 
37.2–62.3) for all four potential sources of immigration. On 
the other hand, the Ne estimate for R. Kunda and R. Vasa-
lemma varied depending on the source of putative immigra-
tion. In three out of four different scenarios of immigration, 
the Ne estimates for the R. Kunda population were similar to 
the R. Loobu and R. Selja (range Ne = 63.2–78.8) and the Ne 
estimates for R. Vasalemma were mostly 2–4 times higher 
(range Ne = 102.3–145.1) (Table 4). The estimates of immi-
gration rate (m) also varied among the studied rivers and 
depended on the putative immigration source. Considering 
the studied populations separately, and taking into account 
all putative sources of immigration from hatchery releases, 
the highest estimates of m were observed in the R. Loobu 
and R. Selja (range m = 0.122–0.458 and m = 0.122–0.251, 
respectively) (Table 4). Variable m estimates were observed 
for R. Vasalemma and R. Kunda. For R. Vasalemma, the 
estimated impact of hatchery immigration was low, or even 
absent, from source 1 and source 2, while it was higher from 
sources 3 and 4 (m = 0.171 and m = 0.124, respectively). For 
R. Kunda, the highest influx of immigrants originated from 

Table 4 Estimates of effective population size (Ne) and migration rate (m) and their 95% confidence intervals for the studied sea trout populations, 
obtained using the program MLNe v. 1.0 (Wang and Whitlock 2003)
Population Putative source population1 Ne (95% CI) m (95% CI)
Vasalemma Source 1: Põlula 145.1 (125.6–182.3) 0.000 (0.000–0.034)
Vasalemma Source 2: Pudisoo & Mustoja 120.3 (102.6–171.1) 0.054 (0.001–0.149)
Vasalemma Source 3: Selja 61.4 (53.7–101.8) 0.171 (0.077–0.305)
Vasalemma Source 4: Kunda 102.3 (64.0–130.5) 0.124 (0.029–0.358)
Loobu Source 1: Põlula 38.8 (27.7–57.6) 0.122 (0.071–0.186)
Loobu Source 2: Pudisoo & Mustoja 40.7 (27.8–62.4) 0.286 (0.178–0.492)
Loobu Source 3: Selja 37.2 (26.7–56.1) 0.213 (0.128–0.350)
Loobu Source 4: Kunda 41.1 (25.4–68.2) 0.458 (0.256–1.000)
Selja Source 1: Põlula 55.0 (40.0–76.2) 0.122 (0.079–0.177)
Selja Source 2: Pudisoo & Mustoja 50.5 (38.1–70.3) 0.302 (0.206–0.437)
Selja Source 3: Selja 62.3 (57.2–69.6) 0.159 (0.105–0.230)
Selja Source 4: Kunda 49.4 (37.8–66.6) 0.251 (0.176–0.346)
Kunda Source 1: Põlula 78.8 (56.4–117.4) 0.087 (0.050–0.133)
Kunda Source 2: Pudisoo & Mustoja 63.2 (46.2–91.7) 0.224 (0.135–0.349)
Kunda Source 3: Selja 66.2 (61.9–75.5) 0.171 (0.106–0.257)
Kunda Source 4: Kunda 124.7 (108.0–168.6) 0.066 (0.001–0.150)
1An overview of the origin of the putative hatchery-reared sources is given in Table S1
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highly unstable environment experience considerable tem-
poral genetic changes because of genetic drift and frequent 
population turnover. Similarly, temporal fluctuations in 
allele frequencies have been observed in small Danish trout 
populations (Jensen et al. 2005) and in smaller tributaries of 
larger river systems (Lehtonen et al. 2009). However, the 
observed temporal genetic changes in the sea trout popu-
lations studied by us cannot be explained by an unstable 
environment since both Baltic salmon and sea trout breed-
ers successfully reproduce annually in these rivers and thus, 
the observed changes can be explained by direct or indirect 
impacts of hatchery releases rather than variable environ-
ment (see below).

The pattern of higher temporal variation during the ear-
lier period and a tendency for increased effective popula-
tion size estimates in the later period for all rivers except 
R. Kunda indicates that the number of spawners most likely 
has increased in time and this is also reflected by an increase 
in juvenile densities in the studied rivers (ICES 2019, 
2020). However, despite generally lower effective popula-
tion size estimates in the earlier period, we didn’t find sig-
nificant genetic bottleneck signals in any of the analyzed 
samples. In terms of analysis power, our set of 14 highly 
variable microsatellite loci is expected to be sufficient for 
the detection of a drastic decrease in effective population 
size, since simulations have shown that using 10–20 poly-
morphic loci and at least 30 individuals should be sufficient 
to avoid unreasonably high type 1 error rates using mode-
shift distortion test for genetic bottlenecks (Piry et al. 1999). 
Thus, it is likely that the number of spawners during the 
earlier time period has not been small enough to yield dras-
tic declines in genetic diversity and an increase in genetic 
divergence between populations because of random genetic 
drift. Instead, we observed a small decrease in population 
divergence estimates over time which suggests that the 
gene flow (immigration of hatchery-reared fish) may have 
homogenized the among-population divergence over time.

The effective number of breeders

We used two different single-sample approaches to quan-
tify Nb, the linkage disequilibrium (LD) method proposed 
by Hill (1981) and the sibship assignment (SA) approach 
developed by Jones and Wang (2010) to better understand 
the population dynamics of studied trout populations. The 
Nb estimates for both single-sample approaches used here 
were rather small (average Nb = 51.2 for LD, and average 
Nb = 33.6 for the SA), being comparable with the estimated 
annual number of ascending trout in the nearby river (26 
to 125 spawners counted in R. Pirita in 2014–2019; ICES 
2020). Similarly, low Nb estimates have been observed 
among resident and anadromous brown trout, collected in 

Spatio-temporal variation

Analysis of the microsatellite DNA variation in four Esto-
nian sea trout populations revealed a level of genetic diver-
sity (14 loci; average AR = 5.67, average HE = 0.65; Table 1 
and Table S3) comparable with that found in a survey of 
microsatellite variation in other Baltic Sea trout rivers, e.g. 
within the Luga River, Gulf of Finland (six common loci 
with our study; average AR = 3.93, average HE = 0.70; 
Lehtonen et al. 2009), among Lithuanian (seven common 
loci; average AR = 4.23, average HE = 0.64; Samuiloviene 
et al. 2009), Swedish (eight common loci; average AR = 
6.22, average HE = 0.69; Östergren et al. 2016) and Pol-
ish populations (five common loci; average HE = 0.66; Was 
and Wenne 2003). Furthermore, the study demonstrated a 
low level of spatial structuring (global FST = 0.029) of the 
studied sea trout populations which is in concordance with 
earlier work on the spatial structuring of seven sea trout pop-
ulations in the Gulf of Finland (FST = 0.022, Koljonen et al. 
(2014). Despite the low level of genetic divergence between 
populations, significant genetic differentiation was observed 
in 106 out of 119 pairwise comparisons. We also observed 
considerable temporal changes in allele frequencies over a 
period of 23 years (i.e., 1996–2019). This was supported 
by several lines of evidence. First, the hierarchical analy-
sis of molecular variance (AMOVA) showed that temporal 
variation observed over a period of four to six generations 
between temporal replicates was high in comparison to spa-
tial differences; temporal variation explained approximately 
five times more genetic variation (2.20%) than the spatial 
variation (0.46%). Moreover, the level of temporal varia-
tion changed over time. During the earlier period (1996–
2001), temporal variation within populations was four times 
higher than the spatial differentiation, whereas the variance 
explained by the temporal and spatial components was more 
similar in the later samples (2017–2019). Secondly, the allele 
frequency changes over time were evident from significant 
genetic differentiation between year-classes of the Vasa-
lemma, Loobu, and Selja populations, while only R. Kunda 
population was genetically more stable. Thirdly, temporal 
changes were particularly evident in the NJ dendrogram for 
the Selja and Kunda populations (Fig. 2), where year-classes 
showed no tendency for clustering together. For Vasalemma 
and Loobu populations, year-classes of the later period 
showed more close genetic relationships and were clearly 
separated from those collected during the earlier period 
(Fig. 2). Overall, significant temporal variation observed in 
the studied trout populations is in accordance with several 
earlier studies of resident and anadromous brown trout (Lai-
kre et al. 2002; Ostergaard et al. 2003; Jensen et al. 2005; 
Lehtonen et al. 2009). Laikre et al. (2002) and Ostergaard et 
al. (2003) for example showed that populations inhabiting a 
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variability of wild populations (Marie et al. 2010; Lamaze et 
al. 2012; Ozerov et al. 2016; Östergren et al. 2021).

Simultaneously with temporal changes in diversity, 
a temporal decline in genetic divergence was observed 
between all pairwise population comparisons and also 
when two sampling periods were compared (average pair-
wise FST = 0.035 in 1996–2001 vs. FST = 0.021 in 2017–
2019), indicating that contemporary wild populations have 
become genetically more similar to each other over time. 
This homogenization trend is likely caused by the hatchery 
releases as evident from the joint estimation of Ne and immi-
gration rate (m) using Wang and Whitlock’s (2003) method. 
The highest estimated immigration rates from all four puta-
tive hatchery sources were observed in R. Selja and R. Loobu 
(range m = 0.122–0.458 and m = 0.122–0.251, respectively). 
On the other hand, the effect of hatchery releases was lower 
in R. Kunda and R. Vasalemma and in some cases, the 
95% CI of immigration rate estimates for specific hatchery 
sources also included zero, suggesting a negligible effect. 
The high immigration rates to R. Selja are likely explained 
by direct stocking during the period 2001–2006 (> 63 000 
reared juveniles) and relative proximity to other heavily 
stocked rivers (Fig. 1; Table S2). On the other hand, the high 
immigration rates of reared fish to R. Loobu are most likely 
related to the close proximity of heavily stocked rivers of 
Valgejõgi, Pudisoo, Mustoja, and others (> 370 000 intro-
duced juveniles) since R. Loobu has been not stocked with-
hatchery fish (Fig. 1; Table S2). Thus, our results suggest 
that hatchery releases associated with inaccurate homing 
and subsequent gene flow have played an important in influ-
encing spatio-temporal genetic structure of studied trout 
populations. This is not surprising since hatchery-reared sal-
monids tend to show weaker homing ability than wild con-
specifics (Quinn 1993; Schroeder et al. 2001; Jonsson et al. 
2003; Jonsson and Jonsson 2006) leading to increased gene 
flow (Hansen and Mensberg 2009; Hansen et al. 2010; Per-
rier et al. 2011; Ozerov et al. 2016). Interestingly, we also 
observed a potential geographical signal on the estimated 
immigration rates. Among the four studied populations, the 
lowest immigration rates from putative hatchery sources 
were observed in R. Vasalemma (range m = 0.000–0.171), 
which has not been stocked during the last decades and is 
the most distant from the heavily stocked rivers in the Gulf 
of Finland. In addition, a larger effective population size of 
R. Vasalemma compared to other studied populations may 
act as a buffer against hatchery-origin immigration - popu-
lations with smaller effective population sizes are expected 
to be more prone to admixture with hatchery-reared fish 
than larger populations (Vasemägi et al. 2005; Östergren 
et al. 2021). The indirect effects of stocking associated 
with straying found in this study are similar to earlier find-
ings in other salmonids. For example, Ozerov et al. (2016) 

different spawning and nursery grounds in Estonia (Ozerov 
et al. 2015), in small streams supporting wild brown trout 
in Norway (Serbezov et al. 2012), as well as in Bornholm 
(Ostergaard et al. 2003) and Gotland (Laikre et al. 2002). 
Furthermore, Nb estimates varied substantially from year to 
year but generally, we observed a tendency of increasing Nb 
over time. Thus, higher temporal differentiation compared 
to the spatial component likely reflects the smaller Nb and 
stronger effect of genetic drift in the earlier time period. 
In contrast, more stable genetic allele frequencies during 
the later period likely reflect the reduced level of genetic 
drift associated with an increase in population size or alter-
natively, the increased effect of gene flow from hatchery 
releases.

Impact of stocking

Large-scale stocking using hatchery-reared sea trout into 
rivers flowing into the Gulf of Finland started at the begin-
ning of the 2000s with the aim to support threatened popu-
lations in Estonia. Altogether, during this period, more than 
700 thousand fry and older fish were stocked into rivers and 
streams, where the juvenile densities were low (Ministry of 
the Environment 2020; Põlula Fish Rearing Centre 2021). 
The impact of stocking of hatchery-reared fish on wild 
populations has been estimated in a number of studies and 
frequently associated with the negative consequences on the 
existing genetic structuring among wild salmonid popula-
tions, e.g. stocking often leads to genetic homogenization 
(Susnik et al. 2004; Eldridge and Naish 2007; Hansen et al. 
2009, 2010; Ozerov et al. 2016) and loss of genetic variabil-
ity and potential disruption of local adaptations (Eldridge et 
al. 2009; Jasper et al. 2013; Östergren et al. 2021). Based 
on genetic analyses across more than decades, we found 
support for both direct and indirect impacts of stocking on 
the level of genetic divergence among populations. Firstly, 
we found a tendency, albeit non-significant, for an increase 
of genetic diversity over time (Table 1 and Table S3) and 
observed moderate change in the composition of alleles 
(loss of 16 alleles and addition of new 18 alleles in later 
period samples compared to earlier period samples) over 
the 20-year period (data not shown). The most parsimo-
nious explanation for the observed genetic change is the 
effect of introgression from hatchery-reared trout. Reared 
fish often possess reduced genetic diversity relative to wild 
fish (Ryman and Laikre 1991; Blanchet et al. 2008; Araki 
and Schmid 2010) and as a result, reduce the overall genetic 
variability of wild populations (Eldridge et al. 2009; Jas-
per et al. 2013). On the other hand, hatchery fish may also 
carry unique genetic variation not observed in wild popula-
tions (Verspoor 1998) leading to an increase in the genetic 
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