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Abstract
Functional connectivity (i.e., the movement of individuals across a landscape) is essential for the maintenance of genetic vari-
ation and persistence of rare species. However, illuminating the processes influencing functional connectivity and ultimately 
translating this knowledge into management practice remains a fundamental challenge. Here, we combine various population 
structure analyses with pairwise, population-specific demographic modeling to investigate historical functional connectivity 
in Graham’s beardtongue (Penstemon grahamii), a rare plant narrowly distributed across a dryland region of the western US. 
While principal component and population structure analyses indicated an isolation-by-distance pattern of differentiation 
across the species’ range, spatial inferences of effective migration exposed an abrupt shift in population ancestry near the 
range center. To understand these seemingly conflicting patterns, we tested various models of historical gene flow and found 
evidence for recent admixture (~ 3400 generations ago) between populations near the range center. This historical perspective 
reconciles population structure patterns and suggests management efforts should focus on maintaining connectivity between 
these previously isolated lineages to promote the ongoing transfer of genetic variation. Beyond providing species-specific 
knowledge to inform management options, our study highlights how understanding demographic history may be critical to 
guide conservation efforts when interpreting population genetic patterns and inferring functional connectivity.
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Introduction

Intensifying interactions between habitat destruction and 
climate change are a major threat to the persistence of many 
native species across the globe (Travis 2004; Mantyka-
Pringle et al. 2012). As these processes fragment a species’ 
range, isolated populations may experience stronger genetic 
drift and inbreeding, leading to the loss of genetic diver-
sity and increasing the chance of local extinction over time 
(Wright 1931; Allendorf et al. 2012). Species with geneti-
cally diverse and interconnected populations are likely more 
resilient to environmental change (Fisher 1930; Sgro et al. 
2011) and may ultimately contribute to more stable com-
munities and ecosystems (Hughes et al. 2008). Maintaining 

functional connectivity (i.e., the movement of individuals 
and genes across the landscape; Crooks & Sanjayan, 2006) 
between populations of rare species in the face of increasing 
habitat fragmentation is therefore essential for the conserva-
tion of biodiversity (Allendorf et al. 2012).

The expanding accessibility of genome sequencing tech-
nologies and analytical tools has greatly facilitated studies 
of functional connectivity and gene flow across a diverse 
array of rare, threatened, and ecologically important species 
(Manel and Holderegger 2013). However, inferring patterns 
of gene flow from genomic data remains a fundamental chal-
lenge in population genetics and landscape genetics (Cruick-
shank and Hahn 2014; Richardson et al. 2016; Beichman 
et al. 2018). The challenge stems largely from the similar 
genetic patterns that may be produced by multiple demo-
graphic and ecological processes (e.g., see Lawson et al., 
2018; Meirmans, 2012). For instance, regions of a species’ 
range marked by relatively sharp transitions in genetic differ-
entiation may occur when current gene flow is restricted by 
environmental gradients (Manthey and Moyle 2015; Weber 
et al. 2017), physical barriers (e.g., mountain ranges, rivers, 
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or roads; Frantz et al., 2012), or poor habitat quality or habi-
tat disturbance (Williams et al. 2003). Often, spatial patterns 
of genetic differentiation are correlated with landscape-level 
variables to infer putative ecological mechanisms shaping 
connectivity (i.e., landscape genetics; Manel et al. 2003). 
However, a central assumption of many correlative land-
scape genetics approaches is that contemporary patterns 
of genetic variation reflect a historical equilibrium of gene 
flow and genetic drift (Manel and Holderegger 2013), an 
assumption that may be seldom met in species with recently 
fragmented ranges (Whitlock and McCauley 1999). If the 
strength of gene flow or genetic drift has changed through 
time (e.g., recent dispersal barriers or admixture between 
previously isolated lineages), then traditional landscape 
genetic inferences may be confounded (Landguth et al. 2010; 
Epps and Keyghobad 2015). Understanding population his-
tory (i.e., demographic history) is therefore crucial for deter-
mining whether particular regions of a species’ range war-
rant focused management actions to increase connectivity 
(Epps and Keyghobad 2015).

Graham’s beardtongue (Penstemon grahamii D.D. Keck; 
Plantaginaceae) is a rare perennial forb endemic to the Uinta 
Basin of eastern Utah and western Colorado. Populations 
are patchily distributed across the oil shale-rich Green River 
formation, but the species is relatively common where it 
occurs (total population census estimate of 56,385 indi-
viduals across 9585 acres of occupied habitat; U.S. Fish 
and Wildlife Service 2020). P. grahamii is adapted to xeric 
environments (annual precipitation ~ 6–12 inches) and adult 
plants appear capable of going into dormancy during excep-
tionally dry conditions, which may facilitate its long-term 
persistence (U.S. Fish and Wildlife Service 2020). Within 
a year, temperatures can vary substantially across its range, 
with average summer highs reaching approximately 34 °C 
(~ 93°F) and average winter lows of − 14 °C (~ 7°F). P. gra-
hamii seeds are primarily gravity- or wind-dispersed and 
pollinators include bees, wasps, and occasionally humming-
birds. Pollination is believed to be crucial to the reproductive 
success of P. grahamii, yet it remains unclear whether dis-
persal and pollination are sufficient for maintaining genetic 
variation across its range.

Penstemon grahamii faces numerous threats from energy 
development, mining, off-road vehicle use, and livestock 
disturbance. Energy development is particularly threaten-
ing, as half of known P. grahamii occurrences and 5 of 6 of 
its largest occurrences are on lands currently leased for oil 
and gas exploration (US Fish and Wildlife Service 2005). 
Individuals are also relatively long-lived (up to 10 years) 
and populations may have low recruitment (US Fish and 
Wildlife Service 2005), which naturally limits their ability 
to recover from disturbances that can persist across multiple 
generations. Given these factors, the federal protection status 
of P. grahamii has been the focus of substantial litigation, 

with proposals to list the species as endangered or threatened 
under the US Endangered Species Act in 1975, 1990, 2002, 
2006, and 2013 (US Fish and Wildlife Service 2005, 2020). 
To inform ongoing conservation efforts, there is a pressing 
need to characterize genetic diversity and infer connectivity 
across the species’ range.

Here, we performed double-digest restriction site-asso-
ciated DNA sequencing (ddRADseq) to investigate range-
wide patterns of genetic diversity and functional connec-
tivity in P. grahamii. First, to understand broad patterns of 
genetic structure reflecting historical gene flow across the 
range, we characterized the spatial distribution of genetic 
variation using principal component and population struc-
ture analyses. Then, to more precisely understand the his-
torical demographic factors shaping these spatial patterns 
of genetic diversity and population structure we modeled 
the history of divergence, gene flow, and population size 
between P. grahamii lineages. Specifically, we were inter-
ested in testing whether P. grahamii lineages have expe-
rienced recent histories of isolation or secondary contact, 
which might influence the interpretation of recent gene flow 
based on population structure patterns. Our study provides 
valuable insights into functional connectivity of P. grahamii 
and highlights important and often overlooked challenges 
in elucidating the timing of gene flow from genomic data in 
species of conservation concern. Specifically, this research 
reinforces the idea that correct interpretation of contempo-
rary genetic patterns first necessitates knowledge of histori-
cal demographic processes.

Methods

Sample collection, DNA isolation and library 
preparation

To obtain representative samples spanning the distribu-
tion of P. grahamii, we visited the 27 Element Occurrences 
(EOs) of P. grahamii defined by the U.S. Fish and Wildlife 
Service (U.S. Fish and Wildlife Service 2020) during the 
summer of 2019. Here, EOs are defined as occupied habi-
tats separated from other occupied habitats by at least 2 km 
(km) (U.S. Fish and Wildlife Service 2020). Plants were 
found at 11 EOs across 22 individual sites and leaf tissues 
were sampled from 2 to 11 plants at each site (average 8.7 
individuals per site, 192 individuals total; Supplementary 
Table 1) separated from one another by at least 5 m to avoid 
sampling close relatives.

We extracted genomic DNA using DNeasy 96 Plant Kits 
(Qiagen, Germantown, MD, USA) following the manufac-
turer’s protocol. DNAs were individually barcoded and pro-
cessed into ddRAD libraries using EcoRI and MspI restric-
tion enzymes (Peterson et al. 2012). Individual libraries were 
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pooled and amplified using 18 polymerase chain reaction 
cycles. Amplified libraries were then size-selected using a 
Pippin Prep (Sage Science, Beverly, MA, USA) to isolate 
fragments ranging in length from 400 to 600 base pairs 
(bp). The final pooled library was sequenced on a HiSeq 
4000 (Illumina, San Diego, CA, USA) at the University of 
Oregon’s Genomics and Cell Characterization Core Facility 
to generate single-end, 100 bp reads.

Genomic data preprocessing

Raw sequence data were processed and aligned using 
Stacks v2.41 (Rochette et al. 2019). We cleaned raw data 
by removing reads containing uncalled bases or with an 
average phred-scaled quality score below 22 within a 15 bp 
sliding window. We also trimmed the last 10 bp from high-
quality reads due to declining quality scores. We determined 
the appropriate de novo assembly and filtering parameter 
settings in Stacks following Rochette & Catchen (2017). 
Briefly, we first processed a test data set while varying the 
parameters M (the maximum nucleotide distance allowed 
between stacks) and n (the number of mismatches allowed 
between loci during catalog construction) from 1 to 9 and 
while keeping M = n and setting m = 3 (minimum depth of 
coverage to create a stack). The test data set consisted of 12 
samples from 12 sites (1 random sample per site; mean cov-
erage 17.27 ×) that were chosen to evenly span the range (see 
Supplementary Table 1). Based on these tests, we processed 
the full data set with M = 5 and n = 5 because the total num-
ber of loci retained in 80% of individuals (r80) and the dis-
tribution of the number of single nucleotide polymorphisms 
(SNPs) per locus stabilized at these values (Supplementary 
Fig. 1). Next, we filtered out singletons, sites with heterozy-
gosity > 0.75, and sites covered by fewer than 50% of indi-
viduals. Finally, we restricted our data set to include only 1 
SNP per locus to minimize the number of non-independent 
SNPs (i.e., reduce linkage in the data set).

Population structure

We inferred genetic structure patterns using a principal com-
ponents analysis (PCA) in EIGENSOFT v6.1.4 (Patterson 
et al. 2006). In addition, we performed population cluster 
analyses in Structure (Pritchard et al. 2000) and tested K 
values (representing the number of population clusters) 
from 1 to 8, performing 5 iterations under each K value. 
For each iteration, we performed 100,000 MCMC repeti-
tions following a burn-in of 20,000 repetitions assuming a 
diploid model (other parameters were set to default values). 
We used the program Structure Harvester v0.6.94 (Earl and 
VonHoldt 2012) to determine the optimal K value using the 
Evanno method (Evanno et al. 2005). We calculated Weir 

and Cockerham’s FST between the Structure-defined genetic 
clusters using vcftools (Danecek et al. 2011).

To examine associations between the spatial distribution 
of genetic variation and geography, we performed a Pro-
crustes analysis (Wang et al. 2010). In a population genetic 
context, a Procrustes analysis transforms (i.e., rotates and 
scales) a two-dimensional principal component (PC) plot 
of genetic data to match a geographic map of sampling 
locations, with the goal of minimizing the overall distance 
between the two data sets (Wang et al. 2010). When genetic 
relatedness is strongly correlated with geographic proxim-
ity (i.e., isolation-by-distance; IBD; Wright 1943), genetic 
PC plots are expected to mirror the geographic sampling 
map. As a result, Procrustes analyses can highlight devia-
tions from an IBD pattern that arise from biological or his-
torical phenomena (e.g., Knowles et al. 2016; Wang et al. 
2012). A Procrustes analysis was performed with the PC 
axes generated in EIGENSOFT using the ‘protest’ function 
of the VEGAN package (Oksanen et al. 2013) in R. The sig-
nificance of the association statistic (t0) between the genetic 
PC values and geography was evaluated based on 10,000 
permutations, where geographic locations were randomly 
permuted across the different sampling localities (note that 
all individuals from the same locality were assigned to a 
single geographic location in the permuted data set, such that 
observed levels of population structure were maintained).

Effective migration and diversity surfaces

We visualized spatially explicit patterns of genetic diversity 
and population structure using the program EEMS (Esti-
mated Effective Migration Surfaces; Petkova et al. 2016). 
EEMS models the relationship between genetic variation 
and geography assuming stepping-stone migration between 
a predefined number of demes (i.e., occupied sites) arranged 
evenly in a grid across a species’ range. Landscape surface 
models of ‘effective diversity’ (i.e., relative genetic dissimi-
larity within demes) and ‘effective migration’ (i.e., relative 
genetic dissimilarity between demes) are fit to empirical 
genetic data, with sampled sites assigned to the closest deme 
on the landscape grid. Good models are those with a high 
correlation between observed and expected genetic dissimi-
larity both within and between demes. The effective migra-
tion surface allows the identification of specific geographic 
regions that deviate from an IBD pattern of genetic differ-
entiation (i.e., with higher or lower than expected decay in 
genetic similarity across space).

We performed EEMS analyses assuming either 20, 50, or 
100 demes across the P. grahamii range. These deme values 
represent a biologically realistic number of occupied sites 
based on the current estimated number of EOs (n = 27; U.S. 
Fish and Wildlife Service 2020) while allowing higher val-
ues due to the potential for incomplete survey information 
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across the species’ range. For each deme value, we per-
formed 3 independent runs and checked results for consist-
ency between runs. We used default hyper-parameter values 
and tuned the proposal variances such that proposals were 
accepted approximately 30% of the time. We ran EEMS for 
2 million iterations with a burn-in of 1 million iterations and 
thinning iteration of 9999.

Inferring admixture and demographic history

We used the program ∂a∂i (Gutenkunst et  al. 2009) to 
estimate the timing of population divergence (t), ancestral 
effective population sizes (Nanc), contemporary effective 
population sizes (N), and the timing and level of gene flow 
between geographically adjacent genetic clusters identified 
with Structure (W and C clusters, C and SE clusters, and 
SE and NE clusters; see Results). To represent the C and 
SE genetic clusters, we used individuals from a subset of 
sites that were geographically closest to the paired cluster 
being analyzed. We inferred demographic parameters using 
a folded site frequency spectrum (SFS; i.e., major/minor 
allele calls rather than derived/ancestral) due to the lack of 
a closely related reference genome. We scaled the t and m 
parameters (i.e., reported in coalescent units by ∂a∂i) by θ, 
assuming the tomato neutral mutation rate (μ = 1e–8; Lin 
et al., 2014) and a 121:1 ratio of callable sites:SNPs (based 
on output from Stacks).

For each pair of genetic clusters, we tested four alterna-
tive demographic models: (1) no migration, (2) isolation-
with-migration (IM), (3) recent admixture, and (4) recent 
isolation (see Fig. 2A). The IM model includes a symmetri-
cal migration rate (m; migrants per generation) between pop-
ulations immediately following divergence t generations ago. 
Under the admixture model, populations are initially isolated 
for t1 generations and then experience symmetrical migra-
tion starting t2 generations in the past. Finally, the recent 
isolation model includes symmetrical migration between 
populations for t1 generations following divergence, after 
which migration ceases t2 generations ago. For each model, 
we performed 20 independent runs starting with parameter 
values sampled randomly across a uniform distribution 
(0.01 < ν < 100, 0 < 2Nanct < 20, 0 < 2Nancm < 5; here, ν is the 
relative change in population size compared to Nanc). This 
modeling strategy was designed to test among simple alter-
native scenarios that may approximate the actual population 
histories underlying contemporary patterns of genetic differ-
entiation and not to elucidate the full, complex evolutionary 
histories of these populations. Larger genomic data sets may 
be able to discern among more complex (i.e. parameter-rich) 
models, but this is beyond the scope of our study.

We determined which of the four maximum likelihood 
demographic models produced the best overall fit to the data 
using a composite-likelihood ratio test with the Godambe 

Information Matrix (GIM; Coffman et al. 2016) and Akaike 
Information Criterion (AIC) scores. Confidence intervals 
(CI) for each parameter were estimated with the Godambe 
Information Matrix with 100 bootstrap data sets comprising 
30% of SNPs randomly selected from the full data set. We 
validated the final model by comparing the predicted SFS to 
the observed SFS for each population.

Results

Population genetic structure and diversity

Across 192 P. grahamii individuals, we obtained 7805 SNPs 
from a total of 941,633 sequenced sites (0.83% of sites were 
polymorphic; mean sequence coverage of 17.3 ± 1.8 × stand-
ard deviation). Nucleotide diversity was 0.00122 ± 0.00002 
standard error and FIS was 0.0013 ± 0.02885 standard error 
across the entire data set (see Supplementary Table 1 for 
summary statistics for individual sampling sites).

A range-wide PCA and Procrustes analysis revealed 
genetic variation largely follows an IBD pattern, with indi-
viduals approximately clustering according to their geo-
graphic sampling coordinates (Fig.  1A, Supplementary 
Fig. 2B). Procrustes transformations uncovered a strong 
and highly significant correlation (t0 = 0.86; p = 0.0001) 
between individual’s coordinates in PC space and sampling 
locations in geographic space. Structure analyses revealed 
that a K = 4 model provided the best fit to the data (Sup-
plementary Fig. 3). Under K = 4, we found genetic clusters 
corresponding to the 3 western-most sites (hereafter, the W 
cluster), 9 central sites (C cluster), 8 southeastern sites (SE 
cluster), and 2 northeastern sites (NE cluster; see Fig. 1B). 
Estimates of genome-wide pairwise FST between geneti-
cally defined clusters were relatively low (W and C clusters 
FST = 0.039; C and SE clusters FST = 0.016; SE-NE clusters 
FST = 0.026, W and NE clusters FST = 0.06). The 95% empiri-
cal quantiles for FST estimated across individual RAD loci 
were − 0.024–0.0272 for W and C cluster, − 0.015–0.112 
for C and SE clusters, − 0.052–0.289 for SE and NE clusters, 
and − 0.050–0.394 for W and NE clusters.

We found evidence of mixed ancestry across sites, par-
ticularly those along the approximate edges of each cluster 
(Fig. 1B), which may reflect continuous population structure 
(i.e., IBD) or admixture between discrete genetic clusters. 
It is well established that the presence of IBD can confound 
clustering algorithms, leading to false inferences of hierar-
chical population structure, and vice versa (Meirmans 2012; 
Lawson et al. 2018). Acknowledging this uncertainty, we 
also present results for K = 2 and K = 3 (Supplementary 
Fig. 2C) to demonstrate general spatial genetic patterns that 
emerged from the data. Under K = 2, individuals from the 
three western sites formed a distinct cluster relative to the 
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individuals across the remainder of the range, which was 
expected based on similar patterns in the PCA. Under K = 3, 
we found the main genetic cluster under K = 2 breaks into 

two clusters, resulting in a western, central, and eastern 
cluster.

Range‑wide effective diversity and migration

EEMS runs produced strong correlations between observed 
and expected genetic dissimilarity both within and between 
demes, indicating good model fit (Petkova et  al. 2016; 
Supplementary Fig. 4). Under the 20 deme model, only 
6 demes were represented by empirical data, resulting in 
poor spatial resolution of effective diversity and migration 
(Supplementary Fig. 4). We therefore focus on the results 
for the 50 and 100 deme models. Across both deme values, 
effective diversity surfaces revealed relatively low genetic 
diversity towards the eastern and western extents of the 
range (~ 10–15% lower than average diversity under the 50 
deme model; Supplementary Fig. 4). Reduced variation at 
the range edges is unsurprising as populations along range 
margins are often predicted to occur at low densities, result-
ing in lower levels of genetic diversity (Antonovics 1976; 
Kirkpatrick and Barton 1997; Pfennig et al. 2016).

We found evidence of average to somewhat low effective 
migration across the western portion of the range (spanning 
a ~ 50 km sampling gap; Fig. 1C, Supplementary Fig. 4). 
This pattern is generally suggestive of IBD and poten-
tially indicates the presence of suitable habitat across our 
sampling gap. However, we uncovered several regions of 
strongly reduced effective migration, including one across 
the eastern part of the range and one in the center of the 
range (Fig. 1C and Supplementary Fig. 4). This pattern was 
particularly striking under the 50 deme model, where effec-
tive migration was ~ 5–30-fold lower than average in these 
regions, indicating a significant deviation from a homog-
enous IBD pattern.

The history of population divergence and gene flow

Demographic modeling of Structure-defined genetic clusters 
(K = 4) revealed relatively high rates of historical gene flow 
across the range. Across the western portion of the range (W 
and C clusters), we found strong support for an IM model 
over a model without migration (AIC p-value = 1.3e–62). 
Under the IM model, populations diverged ~ 72 thousand 
generations ago and experienced a gene flow rate (m) of 
1.13 migrants/generation (Table 1). Moreover, we uncovered 
relatively large effective population sizes for each cluster (W 
cluster Ne = 24,905, C cluster Ne = 48,104, Nanc = 15,824). 
Similarly, we found strong support for an IM model between 
the SE and NE clusters over a model with no migration 
(AIC p-value = 1.1e–30), with a divergence time of ~ 115 
thousand generations, 1.84 migrants/generation, and large 
effective population sizes (SE cluster Ne = 34,874, NE clus-
ter Ne = 25,886, Nanc = 9848). Although an IM model was 

Fig. 1  A A map of Penstemon grahamii sampling localities (white 
diamonds) in Utah and Colorado. Individual plants are represented 
by colored points and are positioned relative to one another in two 
principal component axes based on a Procrustes analysis (black lines 
connect individuals to their sampling locality). Under a perfect iso-
lation-by-distance (IBD) scenario, individual points are expected to 
be placed on top of their sampling locality. Here, our results depict 
a highly significant IBD relationship across the P. grahamii range 
(t0 = 0.86, p = 0.0001). B Spatial visualization of the optimal K = 4 
Structure results. The proportion of each color in each pie represents 
the average proportion of ancestry assigned to that genetic cluster 
at each locality. The arrows and numbers indicate pairwise FST val-
ues between the indicated clusters. C Effective migration surface 
estimated in EEMS using 50 demes. Blue values indicate regions of 
relatively high effective migration (m) while orange values indicate 
regions of relatively low effective migration (here,  log10(m) = 1 indi-
cates tenfold faster migration compared to the average across the 
range; Petkova et al., 2016). Circles indicate occupied deme localities 
with the size of the circle corresponding to the number of samples
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the best supported model based on AIC scores for both 
W-C and C-SE population pairs, we were unable to rule 
out an admixture model (for both pairs) or a recent isola-
tion model (for W and C clusters), as these more complex 
models produced a similar overall fit to the data (see Sup-
plementary Fig. 5). Between the C and SE clusters, however, 
we found significant support for an admixture model over an 
IM model (GIM p-value = 1.28e–6; AIC p-value = 0.002). 
Here, we estimated that populations diverged under isola-
tion ~ 40 thousand generations ago (although confidence 
intervals for the initial divergence date are large (standard 
error = 24,411 generations); Table 1) and ~ 3388 generations 
ago gene flow between populations began occurring at a rate 
of 3.23 migrants/generation. Estimates of effective popula-
tion sizes under this model were similarly large (C cluster 
Ne = 29,802, SE cluster Ne = 13,468, Nanc = 8969).

To make inferences into relative rates of gene flow across 
P. grahamii’s distribution, we standardized our estimates 
of m between clusters by the average geographic distance 
between sites used to represent each cluster in the analy-
sis. Thus, our standardized estimates of gene flow are 56.3 
migrants/gen/km between W and C clusters, 49.1 migrants/
gen/km between C and SE clusters, and 46.6 migrants/gen/
km between SE and NE clusters.

Discussion

The maintenance of functional connectivity between popu-
lations of rare species experiencing habitat fragmentation 
is essential for the conservation of biodiversity (Allendorf 
et al. 2012). As such, characterizing population structure and 
gene flow within threatened and endangered species is nec-
essary to identify appropriate management units (Palsbøll 
et al. 2007) and prescribe adequate recovery plans (Allen-
dorf et al. 2012). However, as we demonstrate through our 
investigation of spatial genetic patterns in P. grahamii, cor-
rect interpretation of contemporary genetic patterns may 
also necessitate the inclusion of a historical perspective to 
best inform management.

Population structure and demographic history of P. 
grahamii

Inferences of population structure within P. grahamii offered 
potentially conflicting interpretations regarding the extent of 
functional connectivity across contemporary populations. 
A genome-wide PCA and Procrustes analysis uncovered 
a general IBD pattern (Fig. 1A, Supplementary Fig. 2B), 
which arises when local demes are connected to adjacent 
demes through migration (Wright 1943). Likewise, Struc-
ture revealed a generally continuous pattern of population 
structure across the range, potentially indicative of IBD or 
admixture between adjacent, hierarchically defined popu-
lations. Notably, however, we observed striking shifts in 
genetic ancestry between the inferred C (green) and SE 
(pink) clusters and the SE and NE (blue) clusters across a 
small spatial scale, which could indicate historically reduced 
gene flow in these regions. In support of this interpretation, 
effective migration surfaces indicated regions marked by 
relatively strong genetic differentiation (~ 5–30-fold lower 
effective migration than average) near the central and eastern 
portions of the range (Fig. 1C).

To gain more detailed insights into the genetic patterns 
that influence the interpretation of functional connectivity 
across P. grahamii populations, we fit empirical genetic data 
to a suite of alternative demographic models allowing for 
different histories of gene flow between adjacent popula-
tion pairs (Fig. 2A). Although we were unable to conclu-
sively determine the precise historical model (e.g., IM versus 
admixture) for two population pairs (W-C and SE-NE), we 
can rule out models without gene flow for all populations. 
For W-C and SE-NE comparisons, continuous migration fol-
lowing population divergence was the most likely model, 
consistent with population genetic analyses described above. 
Prior to this study, it was unclear whether suitable P. gra-
hamii habitat exists between the W and C clusters (a ~ 50 km 
gap; Fig. 1) because permitting restrictions prevented sur-
veys. Our results indicate high historical functional con-
nectivity across the western portion of the range, suggest-
ing suitable habitat is likely present and occupied. This is 
consistent with previous ecological modeling work in P. 

Table 1  Maximum likelihood demographic parameter values and their standard errors from the best fit model for pairs of adjacent genetic clus-
ters of Penstemon grahamii 

The AIC weight (i.e., proportion of predictive power of a model relative to all other models examined) is given for each model (see Supplemen-
tary Fig. 5 for all model scores). Parameters include the ancestral effective population size (Nanc), effective population sizes of genetic clusters 
(N1 and N2, corresponding to the first and second labelled cluster), divergence time between clusters in generations (t), the time in generations 
since the beginning of admixture (t2), and the migration rate between clusters in migrants per generation (m)

Genetic clusters Model AIC weight Nanc N1 N2 t t2 m

W-C IM 0.53 15,824 ± 280 24,905 ± 1617 48,104 ± 4953 72,456 ± 9274 – 1.13 ± 0.15
C-SE Admixture 0.995 8,969 ± 1001 29,802 ± 21,469 13,468 ± 4792 40,180 ± 24,411 3,388 ± 1018 3.23 ± 0.46
SE-NE IM 0.73 9,848 ± 240 34,874 ± 3082 25,886 ± 1006 115,236 ± 5771 – 1.84 ± 0.15
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grahamii showing relatively continuous predicted suitable 
habitat across this portion of the range (Decker et al. 2006). 
In contrast to the IM model between populations within the 
eastern and western portions of the species’ range, demo-
graphic modeling suggests that gene flow commenced more 
recently at the range center between the C and SE clusters 
(Table 1). Recent admixture would explain the conflicting 
patterns revealed by population structure analyses—specifi-
cally, that low effective migration at the range center could 
reflect historical isolation rather than ongoing restricted gene 
flow—and provide guidance for appropriate management 
actions, which we discuss below.

Management implications

Recent anthropogenic-mediated changes in the western US 
(e.g., habitat destruction, drought, wildfires, grazing, and the 
spread of invasive species) have been linked to range frag-
mentation and reduced connectivity in a number of native 
plant and animal species (Hargis et al. 1999; Theobald et al. 
2011; Pilliod et al. 2015; Warren et al. 2016). Similar to the 
challenges faced by other rare species, small and fragmented 
populations of P. grahamii are likely vulnerable to habitat 
destruction and modification from oil and gas development, 

livestock, or other human-mediated alterations (US Fish 
and Wildlife Service 2005). Yet, it remains unclear how 
to design management efforts to mitigate these influences. 
By assessing both contemporary patterns of genetic diver-
sity and differentiation and historical population dynamics, 
we can illuminate the processes affecting connectivity and 
develop more informed species recovery plans.

Our study suggests that, despite range fragmentation, 
P. grahamii can be treated as a single management unit 
because the low genetic differentiation across the species’ 
range (pairwise FST ≈ 0.02–0.06) appears to be the result 
of high levels of historical gene flow (at least since ~ 3400 
generations ago; Table 1). Moreover, large effective popula-
tion size estimates (similar to population census size esti-
mates) suggest a low risk of inbreeding depression and the 
potential for local adaptation within populations. Therefore, 
conservation efforts may be optimized by maintaining or 
enhancing opportunities for local dispersal through habi-
tat preservation wherever suitable habitat is less abundant 
or occupied sites are geographically distant, as gene flow 
between similar environments will help maintain existing 
genetic diversity while not swamping potential patterns of 
local adaptation.

Fig. 2  A Illustration of alterna-
tive demographic models tested 
in ∂a∂i (Gutenkunst et al. 2009). 
Parameters include ancestral 
effective population size (Nanc), 
contemporary effective popula-
tion sizes (N1 and N2), migration 
rate (m, migrants per genera-
tion), the timing of population 
divergence (t), and the timing 
of changes in migration rates 
(t2). B Illustration of best fit 
demographic modeling results 
for three pairwise population 
comparisons (W-C, C-SE, and 
SE-NE). The thickness of lines 
indicates relative differences in 
population sizes and migration 
rates
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Two geographic regions across the P. grahamii range may 
disproportionately benefit from management efforts. Firstly, 
we find the lowest standardized rates of historical gene 
flow (46.6 migrants/gen/km) across the eastern range edge 
where genetic diversity is also relatively low. This portion 
of the range has experienced the most intensive oil and gas 
development (US Fish and Wildlife Service 2005). Focused 
efforts to preserve habitat and facilitate gene flow may help 
maintain these low diversity edge populations, which are 
often essential populations for the long-term persistence of 
species under changing environments (Rehm et al. 2015). 
We also find that the range center appears to be a recent 
contact zone between eastern and western lineages. Con-
tingent on the preservation of habitat, the range center is 
likely an important corridor for the transfer of unique genetic 
variation between previously isolated lineages, which could 
support adaptive responses to rapidly changing environ-
ments (e.g., Hamilton and Miller 2016; Jones et al. 2018; 
Pardo-Diaz et al. 2012; Song et al. 2011). Future studies 
with expanded genomic and individual sampling may be 
able to assess more recent levels of gene flow across dif-
ferent portions of the range, which would further improve 
our understanding of functional connectivity and help guide 
management efforts.

On the use of demographic models in conservation

Although it is widely recognized that historical processes 
can produce non-equilibrium spatial patterns of genetic vari-
ation (Landguth et al. 2010; Manel and Holderegger 2013; 
Epps and Keyghobad 2015; Aitken and Bemmels 2016), 
many landscape genetic studies still fail to consider historical 
perspectives when analyzing current patterns of population 
structure (e.g., Aavik et al. 2014; Milanesi et al. 2017; Parks 
et al. 2015). Our study illustrates the potential danger of 
neglecting historical demography when investigating func-
tional connectivity in rare species and the value of demo-
graphic models for guiding conservation decision-making.

The assumption of migration-drift equilibrium in P. gra-
hamii could lead to the erroneous conclusion that the range 
center experiences significantly reduced gene flow relative 
to other parts of the range. Instead, demographic modeling 
reveals the striking shift in population ancestry and low 
effective migration in this region is likely the result of recent 
secondary contact between previously isolated lineages, with 
a rate of gene flow (49.1 migrants/generation/km) similar 
to other population pairs. Importantly, if our demographic 
model is accurate, parameter estimates indicate populations 
at the range center are likely not in migration-drift equilib-
rium. Thus, simple correlations between spatial patterns of 
genetic variation and landscape-level variables would likely 
produce misleading inferences into ecological factors shap-
ing gene flow. In general, the problem of inferring spatial 

patterns of gene flow in non-equilibrium populations may 
be alleviated in rare or geographically restricted species, as 
small populations reach migration-drift equilibrium more 
quickly than large populations (Whitlock and McCauley 
1999). However, as shown in this and other studies (e.g., 
Barrett and Kohn 1991; Ellstrand and Elam 1993; Jones 
et al. 2021a), it is not uncommon for endemic species to 
be locally abundant or for rare species to have unexpect-
edly high genetic diversity. We therefore recommend that 
demographic modeling be performed in conjunction with 
correlative landscape genetic analyses to determine whether 
populations likely meet the assumption of migration-drift 
equilibrium.

Beyond the importance of accounting for historical pro-
cesses in landscape genetic studies of functional connectiv-
ity, demographic models themselves have important value 
for conservation. In particular, the estimation of effective 
population size and migration rates are essential to the 
development of conservation strategies (Mills and Allendorf 
1996; Leitwein et al. 2020). Understanding effective popula-
tion sizes is crucial for guiding management actions towards 
the populations that are most susceptible to inbreeding 
depression and the accumulation of deleterious mutations 
(Lynch et al. 1995; Charlesworth and Willis 2009; Harmon 
and Braude 2010). For instance, an effective population size 
of at least 50 is expected to reduce the chances of inbreeding 
depression in the short-term, while an effective population 
size of at least 500 is required to minimize the loss of genetic 
diversity due to drift (Harmon and Braude 2010). Moreover, 
inferences of migration rates between populations may aid 
in determining where efforts to enhance connectivity should 
be focused to preserve genetic diversity (e.g., based on the 
one-migrant-per-generation rule; Mills and Allendorf 1996). 
Beyond inferring rates of gene flow, understanding historical 
changes in gene flow can also provide important context for 
conservation decision-making. For instance, here, the iden-
tification of a putative region of admixture in P. grahamii 
may be important for developing management strategies to 
facilitate the exchange and maintenance of genetic variation 
between previously isolated lineages.

Although estimating demographic history has important 
applications for conservation, we urge caution when apply-
ing demographic modeling to rare species due to the known 
limitations of the analytical framework. For instance, infer-
ring recent historical events (e.g., hundreds of generations in 
the past) using SFS-based demographic modeling is difficult 
or impossible without very large sample sizes (Robinson 
et al. 2014; Beichman et al. 2018). If P. grahamii experi-
enced recent population declines or fragmentation, then cur-
rent levels of gene flow may be lower than our demographic 
model estimates. Demographic estimation can also be 
strongly skewed if genetic loci experience linked selection 
(Ewing and Jensen 2016; Johri et al. 2020), which is usually 
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impossible to infer in non-model species. Moreover, distinct 
demographic models can produce similar fits to the same 
genetic data set, as we have observed in this study (Supple-
mentary Fig. 5), and thus testing, comparing, and validating 
alternative historical models is essential. Throughout, we 
avoided interpreting our modeling results as reflecting the 
precise history of these populations or contemporary demo-
graphic processes. Rather demographic modeling gives an 
indication of historical averages of gene flow, which likely 
fluctuate over time in magnitude and direction. With a clear 
understanding of the limitations and assumptions inherent 
to these methods, the inclusion of a historical perspective is 
critical to correctly interpret genetic patterns and thus pre-
scribe management recommendations for rare, threatened, 
or endangered species.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10592- 021- 01392-9.
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