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Abstract
Amphibian populations world-wide are threatened by declines and extinctions mainly due to habitat loss and fragmenta-
tion. Habitat fragmentation threatens the yellow-bellied toad Bombina variegata in the northern and western regions of its 
distribution where it is strictly protected. We studied the genetic structure and diversity of populations at three geographical 
scales using microsatellite loci to detect potential threats for population persistence. At the local scale, we sampled four 
neighbouring localities at 1–2.6 km distance to detect effects of short-term (decades) fragmentation on connectivity. At the 
regional scale, five additional localities in the mountains of the Westerwald (Rhineland-Palatinate, Germany) were studied at 
up to 50.1 km distance to analyse genetic diversity and population structure. At the continental scale, we included data from 
regions in the northern distribution with fragmented populations (Hesse and Lower Saxony, Germany) and more continuous 
populations in the South (Alsace, France; Geneva, Switzerland; Trentino, Italy) to evaluate variation of genetic diversity. At 
the local scale, short-term fragmentation caused significant genetic differentiation between breeding assemblages only 1.4 km 
apart from each other. At the regional scale, we found notable genetic distance among localities. At the continental scale, 
we identified Alsace, Trentino and Geneva in the South as regions with low genetic structuring and high allelic richness, 
and the northern remaining regions in Germany as deeply structured with reduced allelic richness. We suggest that reduced 
genetic diversity and habitat fragmentation in northern regions makes these populations particularly vulnerable to decline. 
In conclusion, informed conservation management of B. variegata should focus on measures maintaining or improving con-
nectivity among neighbouring populations.

Keywords  Species conservation · Geographical scale · Microsatellites · Genetic diversity · Isolation by distance · Habitat 
fragmentation · Conservation management

Introduction

Worldwide declines affect increasing numbers of amphibian 
species (Stuart et al. 2004). Besides the main cause habi-
tat loss, environmental contaminants, UV-B irradiation, 
diseases, invasive species, exploitation and climate change 

contribute to the observed declines (Beebee and Griffiths 
2005; Hof et al. 2011). Reduced genetic variation may fur-
ther increase vulnerability of amphibian populations and 
enhance the risk of decline (Allentoft and O’Brien 2010; 
Chen et al. 2012). Isolation of populations and bottleneck 
effects, great intraspecific variation of genetic diversity and 
distinct effective population sizes were observed among 
amphibian populations (Funk et  al. 2005; Monsen and 
Blouin 2004; Razpet et al. 2016). In European amphibians, 
continental-scale decrease of genetic diversity is not only 
caused by anthropogenic habitat deterioration, but also 
associated with recolonization histories following the last 
glaciation (Dufresnes and Perrin 2015). Indeed, current dis-
tributions of European taxa are often explained by northern 
expansions from Pleistocene refuge areas, (i.e. from the 
three Mediterranean peninsulas Iberia, Italy and the Bal-
kans, or the Caucasus). These expansions were frequently 
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accompanied by reductions in genetic diversity (Zeisset and 
Beebee 2008). Many successful recolonizations originated 
in the Balkan refuge area, possibly because barriers to north-
ern migration were weaker than barriers on the way from the 
Alps or Pyrenees (Zeisset and Beebee 2008).

The European yellow-bellied toad Bombina variegata 
exemplifies a postglacial recolonization history (Gollmann 
and Gollmann 2012). The species is currently listed “least 
concern” according to the IUCN red list of endangered spe-
cies, but as the population trend is decreasing, it is protected 
under the EU Habitats Directive 92/43/EE and considered 
endangered in many European countries (Kuzmin et al. 
2009). At its northern range limit in Germany, many yellow-
bellied toad populations have gone extinct mainly due to 
habitat loss, while others have declined during the past dec-
ades (Gollmann and Gollmann 2012; Veith 1996). As extant 
populations are often fragmented because of a low disper-
sal capacity (e.g., Gollmann and Gollmann 2012; Jehle and 
Sinsch 2007) and habitat fragmentation (Veith 1996), B. 
variegata is presently considered “critically endangered” in 
Germany (Laufer et al. 2020; Schlüpmann et al. 2011).

In target species of conservation interest, patterns of 
genetic diversity and the impact of fragmentation on connec-
tivity among populations are commonly assessed by means 
of molecular tools (Balloux and Lugon-Moulin 2002; Hold-
eregger et al. 2019). As microsatellites are sensitive markers 
for the detection of gene flow and thus genetic structuring 
due to high mutation rates, they are often used as a surrogate 
measure for landscape connectivity (Baguette et al. 2013). 
Here we explore genetic diversity and connectivity among 
populations of yellow-bellied toads at the local, regional, 
and continental scale. At the local and regional scale, we 
used microsatellite analyses to test for the effects of short- 
and long-term habitat fragmentation on isolation and genetic 
drift to evaluate implications for conservation. We comple-
mented our data on the continental scale with published 
microsatellite data for B. variegata populations throughout 
Europe. In the following we explain our study objectives for 
the three geographic scales in detail:

1.	 At the local scale, we asked whether the appearance 
of dispersal barriers in a former panmictic continuous 
population caused interruption of gene flow and genetic 
structuring among breeding assemblages.

2.	 At the regional scale, we expected considerable popula-
tion structure owing to the expansion of road and rail 
networks during the last century.

3.	 At the continental scale, we compared genetic diversity 
and connectivity as well as isolation by distance effects 
between more northern and more southern populations 
and expected less fragmentation and higher diversity in 
the southern populations in line with phylogeographic 
patterns.

Materials and methods

Field study: sampling area and procedure

We sampled yellow-bellied toads B. variegata from nine 
study localities in Rhineland-Palatinate, Germany (Fig. 1; 
Table 1). At the local scale (approx. 2.5 km² survey area; 
Fig. 1a), we sampled four neighbouring study sites (1–4, 
Table  1) located at the former military training area 
Schmidtenhöhe near Koblenz (Hantzschmann and Sinsch 
2019; Hantzschmann et al. 2019). About 40 years ago, the 
toads at these localities formed a single panmictic popula-
tion considered as the largest B. variegata population in 
Rhineland-Palatinate (Veith 1996). At the regional scale 
(approx. 1000 km² survey area; Fig. 1b), we sampled toads 
at another five localities (5–9, Table 1) inhabiting clay 
and loamy sand pits in the Westerwald region of Rhine-
land-Palatinate. Geographical distances between localities 
are given as line-of-sight distance between the centres of 
breeding pond groups. The pairwise geographical dis-
tances range from 1.0 to 50.1 km (Table 2).

We hand-captured and toe-clipped 16–30 individu-
als per locality, obtaining 182 samples for microsatellite 
analyses (Table 1). We sampled toads from localities 1–4 
in May and July 2017, localities 5–8 in July 2018 and 
locality 9 in June 2019. We avoided replicate sampling by 
checking individuals for clipped toes and comparing the 
unique ventral pattern with the photographs of previously 
collected toads.

DNA extraction and genotyping

We genotyped the toads using 10 colour-labelled microsat-
ellite markers originally developed for Bombina bombina 
(Stuckas and Tiedemann 2006; Hauswaldt et al. 2007). 
DNA was extracted from phalange tissue (toe clips) using 
a Qiagen blood and tissue kit. DNA was then amplified 
in a locus-specific polymerase chain reaction (PCR) on 
a MultiGene OptiMax (Labnet International) in 10  µl 
volumes containing 4.55–5.55 µl dH2O, 1 µl Buffer (Bio-
line), 5 pmol (1.0 µl) Primer, 0.3–0.4 µl My-Taq-Poly-
merase (Bioline) and 1–2 µl undiluted DNA. PCR con-
ditions followed the protocol of Weihmann et al. (2009) 
using reduced elongation (3 min) and adapted annealing 
temperatures (Primer 1A and 8A: 59,5 °C; 5F and B14: 
56 °C; 9H: 48 °C; 10F: 68 °C; 12F: 58 °C; B13: 41 °C; 
F2: 54 °C; F22: 51 °C). For the B13 locus, we used a dif-
ferent procedure: 10 µl volume containing 3.45–6.45 µl 
dH2O, 2 µl HF-Buffer (Thermo Fisher), 0.2 µl dNTPs, 
0.5 µl MgCl2, 0.1 µl Phusion High Fidelity-Polymerase 
(Thermo Fisher), 5 pmol (1.0 µl) per primer and 1.0–2 
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0.0 µl undiluted DNA denaturated at 98 °C, followed by 
35 cycles at 98 °C (10 s), 41 °C (30 s), 72 °C (30 s) and a 
final elongation at 72 °C (8 min). Fragment lengths were 
analysed by Eurofins Genomics, Germany, at an ABI 3130 
XL sequencing machine and allele sizes were determined 
using the software GeneMapper 5.

Local and regional scale population genetic 
analyses

We checked the resulting fragment lengths using the soft-
ware Microchecker 2.2.3 for null alleles (Van Oosterhout 
et al. 2004). Genetic diversity was examined by calculat-
ing allele number and private alleles with corresponding 

frequencies in GeneAlEx (Peakall and Smouse 2012). 
Furthermore, allelic richness (AR), deviations from 
Hardy-Weinberg equilibrium using Fisher’s exact test, and 
inbreeding coefficients (FIS) with corresponding confidence 
intervals were calculated using the package diveRsity 1.9.9 
in R (Keenan et al. 2013). Linkage disequilibrium between 
loci (10,000 permutations), an analysis of molecular vari-
ance (AMOVA), observed (Ho) and expected (He) het-
erozygosity with corresponding standard deviation were 
calculated using the software Arlequin 3.5.2.2 (Excoffier 
and Lischer 2010). We examined population connectiv-
ity through an analysis of genetic isolation by geographic 
distance (IBD) transforming the raw FST values (formula: 
FST/(1-FST); Vacher and Ursenbacher 2014) and applying 

Fig. 1   Geographical distribution of study sites. Local scale with 
short-term fragmentation. a Former military training area Schmid-
tenhöhe. Regional scale with long-term fragmentation. B Northern 
Rhineland-Palatinate (localities 1–4: Schmidtenhöhe; 5: Mogendorf; 
6: Ruppach-Goldhausen; 7: Elkenroth; 8: Galgenkopf; 9: Bad Hön-
ningen). Continental scale (C): populations in Lower Saxony (green); 

Hesse (blue); Rhineland-Palatinate (yellow); Alsace (red); Geneva 
(purple); Trentino (turquoise). See Table  1 for coordinates. Maps 
were created using data by the Naturschutzverwaltung Rheinland-
Pfalz, Geobasisdata, Kataster- und Vermessungsverwaltung Rhein-
land-Pfalz, and GADM online platform (https​://gadm.org/data.html)

https://gadm.org/data.html
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a Mantel test in GeneAlEx (Peakall and Smouse 2012). In 
addition, pairwise genetic difference between populations 
(weighed FST-statistics according to Weir and Cockerham 
1984; Michalakis and Excoffier 1996) were calculated using 
the software Arlequin 3.5.2.2 (Excoffier and Lischer 2010). 
Genetic drift due to bottleneck effects was examined using 
the software Bottleneck 1.2.02 (Piry et al. 1999) with default 
settings. As it is unknown under which mutation models 
the microsatellite loci evolved, we compared the Wilcoxon’s 
sign rank test that is based on heterozygosity excess for (1) 
the stepwise mutation model (SMM) and (2) the two-phase 
model (TPM) with the mode shift test that uses allele fre-
quency distribution (Cornuet and Luikart 1996, Luikart et al. 

1998). We performed a cluster analysis to identify the num-
ber of genetic clusters in our data and a Discriminant Analy-
sis of Principal Components (DAPC) to describe diversity 
between populations using the package adegenet in R (Jom-
bart 2008). The population structure on the regional scale 
was alternatively investigated estimating the most probable 
number of genetic clusters in Structure 2.3 (Pritchard et al. 
2009) using the admixture model without prior information 
on sample population. The evaluated number of clusters (k) 
was set from 1 to 10 with 20 runs per k after a burn-in period 
of 100,000 followed by 500,000 iterations. We used the 
Evanno method (∆k; Evanno et al. 2005) in Structure Har-
vester (Earl and vonHoldt 2012) to evaluate the most appro-
priate number of genetic clusters k. Corresponding charts 

Table 1   Sampling localities in the Westerwald (northern Rhineland-Palatinate) with corresponding locality code, land use at each site and num-
ber of individuals sampled

Sampling 
localities

Loc. 
code

Latitude 
[°N]

Longitude 
[°E]

Altitude
[m asl]

Individuals
[n]

Actual land use

Schmidtenhöhe 1 50.348920 7.678354 339 20 Succession
Schmidtenhöhe 2 50.345374 7.668822 333 25 Pasture
Schmidtenhöhe 3 50.346560 7.644067 275 25 Pioneer area
Schmidtenhöhe 4 50.335656 7.655866 301 30 Clay pit 

(extensive)
Mogendorf 5 50.487802 7.758493 308 16 Clay pit 

(intensive)
Ruppach 6 50.462444 7.885331 276 16 Clay pit 

(intensive)
Elkenroth 7 50.727676 7.906109 480 16 Former loamy 

sand pit
Galgenkopf 8 50.723098 7.954793 451 18 Former loamy 

sand pit
Bad Hönningen 9 50.530513 7.314777 200 16 Clay pit 

(extensive)
Local scale (Schmidtenhöhe) is indicated by light grey; regional scale white

Table 2   Local and regional scale: matrix of pairwise genetic (FST- values; lower triangle) and geographic distance (km; upper triangle) among 
the Westerwald populations

Loc. 
Code

1 2 3 4 5 6 7 8 9

1 - 1.0 2.6 2.3 16.3 19.3 45.1 46.0 32.7
2 0.01 - 1.6 1.4 17.0 20.3 45.8 46.7 32.2
3 0.08 0.05 - 1.6 17.6 21.5 46.3 47.4 30.9
4 0.03 0.04 0.04 - 18.4 21.6 47.2 48.1 32.4
5 0.03 0.07 0.08 0.04 - 9.5 28.8 29.8 31.6
6 0.16 0.19 0.28 0.2 0.14 - 29.6 29.5 41.1
7 0.09 0.15 0.23 0.16 0.11 0.13 - 3.6 47.1
8 0.19 0.2 0.28 0.27 0.24 0.23 0.14 - 50.1
9 0.2 0.25 0.29 0.28 0.15 0.27 0.21 0.35 -

Local scale (Schmidtenhöhe) is shown in grey. Significant genetic distances (p < 0.05) are given in bold
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were obtained using CLUMPAK (Kopelman et al. 2015). We 
used the R package tess3r (Caye et al. 2018) to visualize the 
spatial population structure for the most appropriate number 
of genetic clusters. Gene flow was detected and visualised 
applying divMigrate-online (Sundqvist et al. 2016). We used 
the Nm migration statistic and default settings for the analy-
sis of relative migration at the local scale, while statistically 
significant directional migration was detected applying 1000 
bootstraps at the regional scale.

Continental scale population genetic analyses

For the continental-scale analysis (Fig. 1c), we retrieved 
published microsatellite data throughout the western 
range of B. variegata. This included regions at the north-
ern range margin in Germany (Lower Saxony: n = 150, 
11 localities, the same 10 microsatellite loci, Weihmann 
et al. 2009; Weihmann et al. 2019; Hesse: n = 281, 20 
localities, the same 10 microsatellite loci, Guicking et al. 
2017), urbanised areas in Geneva, Switzerland (n = 305, 
12 localities, 5 of the same loci, Tournier 2017), forested 
areas in Alsace, France (n = 290, 10 localities, 6 of the 
same loci, Vacher and Ursenbacher 2014) and different 
areas in Trento, Italy (n = 200, 9 localities, 9 of the same 
loci, Cornetti 2013; Cornetti et al. 2016), representing 
the southernmost region in this dataset. As raw data were 
not available for every region, we refrained from applying 
the same analyses we used for our data at the local and 
regional scale. Instead, we compared the published data 
sets on the six regions in respect to genetic diversity, i.e. 
AR and He, and genetic differentiation among popula-
tions, i.e. FST. We used an analysis of variance (ANOVA) 
to assess continental genetic diversity. If ANOVA detected 
significant differences among the regions, we applied a 
multiple regression analysis to test for the impact of lati-
tude, longitude and altitude to detect continental clines 
on the target variables. Within each region, the isolation 
by distance (IBD) pattern was modelled by calculating 
the linear relationship between geographical distance and 
transformed raw FST-value (Fst/[1-Fst], Vacher and Ursen-
bacher 2014). Slopes of regression lines as a measure of 
intensity of isolation among regional populations were 
compared using the 95% confidence intervals. Statistical 
procedures were performed using the program package 
Statgraphics Centurion version 18.1.01. The significance 
level was set at alpha = 0.05.

Results

Eight of the ten loci studied were polymorphic in the West-
erwald region (Table 3). The MicroChecker analysis did not 
provide evidence for null alleles or large allelic dropout in Ta
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any of the localities. Consequently, all sampled individu-
als were included in the analyses. We detected 40 alleles 
including eight private alleles (Tables 3 and 4). The average 
number of alleles per locus was 4.2 (range: 1–8; Table 3). 
Linkage disequilibrium (LD) was found in six out of nine 
localities (1, 5–9), but as the LD was neither consistent over 
loci nor localities, we assumed that genotypes were inde-
pendent among loci analogous to Guicking et al. (2017). 
We did not detect deviations from Hardy-Weinberg equilib-
rium (Fisher’s exact test; p > 0.05) or evidence for significant 
inbreeding at any of the localities (Table 4).

Local scale (Schmidtenhöhe): Genetic diversity, 
population structure and migration

The expected heterozygosity He was similar at the four locali-
ties of the Schmidtenhöhe (range: 0.43–0.45; Table 4). Toads 
at locality 3 had the lowest number of alleles and lowest AR 
and showed evidence for a bottleneck event (one-tailed Wil-
coxon’s test for two-phase model: p < 0.05, positive mode 
shift test; Table 4). Toads at locality 2 had the highest number 
of alleles and the highest AR (Table 4). Private alleles were 
found in low frequency at locality 1 (Table 4). Most of the 
genetic variation (96%) was explained by variation within 
localities, only 4% were attributable to variation among 
localities (AMOVA with weighted FST statistics over all loci: 
p < 0.001). Breeding assemblages that were at least 1.4 km 

distant from each other showed a corresponding genetic dif-
ferentiation (AMOVA with weighted FST statistics over all 
loci: p < 0.05; Table 2). Toads from localities 1 and 2 at about 
1 km distance did not show significant genetic differentiation. 
This is in line with the results of the analysis for migration 
indicating that gene flow still exists among the four locali-
ties (Fig. 2A). The highest gene flow was detected among 
the neighbouring localities 1 and 2, whereas migration to 
the most distant locality 3 seems to be limited. Directional 
migration was not statistically significant.

Regional scale (Westerwald, Rhineland‑Palatinate): 
genetic diversity, population structure 
and migration

The expected heterozygosity (He) at the nine study locali-
ties varied in a broader range than at the local scale (range: 
0.37–0.48; Table 4). Locality 7 had the lowest He, locali-
ties 6 and 8 the highest. Locality 6 showed the highest 
AR (Table 4). Private alleles were found in localities 6, 
8, and 9 in high frequencies (range: 0.16–0.19; Table 4). 
We found evidence for a recent bottleneck in toads at 
localities 6 and 9 (Table 4). Most of the genetic varia-
tion (83.9%) was explained by variation within popula-
tions, whereas 16.1% of the variation was attributable to 
variation among populations (AMOVA with weighted FST 
statistics over all loci: p < 0.001). We found significant 

Table 4   Local and regional scale: Genetic measures of the populations in northern Rhineland-Palatinate

Loc. 
code

A
[n]

PA
[n]

PA
[freq]

He
(±SD)

Ho
(±SD)

AR FIS
(CI)

BN
WTPM

BN
WSMM

BN
MS

1 21 1 0.03 0.45 
(±0.21)

0.45
(±0.2)

2.51 -0.01
(-0.16-0.14)

0.23 0.47 -

2 25 0 0 0.44
(±0.23)

0.46
(±0.26)

2.68 -0.06
(-0.17-0.04)

0.77 0.95 -

3 17 0 0 0.43 
(±0.23)

0.45
(±0.26)

2.11 -0.09
(-0.24-0.08)

0.04 0.05 shifted

4 20 0 0 0.45
(±0.11)

0.45
(±0.12)

2.25 -0.01
(-0.13-0.11)

0.08 0.72 -

5 22 0 0 0.41 
(±0.18)

0.42
(±0.22)

2.61 -0.06
(-0.19-0.07)

0.32 0.73 -

6 25 3 0.16 0.48
(±0.22)

0.46
(±0.21)

2.94 0.01
(-0.13-0.17)

0.04 0.27 -

7 20 0 0 0.37
(±0.21)

0.37
(±0.24)

2.38 -0.03
(-0.20-0.14)

0.27 0.58 -

8 21 3 0.16 0.48 
(±0.23)

0.51
(±0.22)

2.43 -0.09
(-0.24-0.05)

0.08 0.34 -

9 17 1 0.19 0.45 
(±0.15)

0.47
(±0.12)

2.11 -0.08
(-0.21-0.05)

0.08 0.22 shifted

A Allele number, PA number and frequency of private alleles, He expected and observed HO heterozygosity with corresponding standard devi-
ation (SD), AR allelic richness, FISinbreeding coefficient with corresponding 95% confidence interval (CI). P Significance levels of tests for 
genetic bottlenecks are given as well. BN WTPM One-tailed Wilcoxon’s test TPM, BN WSMM one-tailed Wilcoxon’s test SMM, BN MS mode 
shift test. Local scale (Schmidtenhöhe) is indicated by light grey; regional scale white
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genetic differentiation between locality pairs covering a 
distance range of 1.4–50.1 km (Table 2) with a signifi-
cant global FST value of 0.16 (AMOVA with weighted 
FST statistics over all loci: p < 0.001). The analysis of IBD 
showed a significant positive correlation between genetic 
and geographic distance (Mantel test: p < 0.05, R2 = 0.45; 

IBD = 0.06 + 0.0055*Geographical distance [km]; Fig. 3). 
The most likely population structure using the Evanno 
method suggested three different genetic clusters of B. 
variegata in the Westerwald (Fig.  4a). Localities 1–4 
were assigned to cluster 1, localities 6 and 9 to cluster 2 
and localities 7 and 8 to cluster 3; Toads from locality 5 

Fig. 2   a Gene flow visualized through relative migration among populations of the local scale. b Directional migration at the regional scale 
using 1000 bootstraps

Fig. 3   Isolation by distance: 
regression of genetic distance 
(Fst/(1-Fst)) on geographic dis-
tance in the Westerwald region
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were of admixed origin (Fig. 4b). This is in line with the 
tess3r graphical output displaying the spatial population 
structure for k = 3 (Fig. 4c). The Discriminant Analysis of 
Principal Components yielded a differentiated, finer scaled 
pattern of the genetic structure of B. variegata, as the BIC 
values decrease with the number of clusters (Suppl. Fig-
ure 1). The graphical output of the DAPC analysis how-
ever, jointly clustered toads at geographically close locali-
ties (Suppl. Figure 2). Statistically significant directional 
migration was detected for localities 6 and 9 (Fig. 2b).

Continental scale (Europe): genetic diversity 
and isolation by distance

Allelic richness of B. variegata differed significantly 
among study regions in Germany, France and Italy 

(ANOVA: F4,52  =  13.99, P < 0.0001; Table  5). Spe-
cifically, AR was significantly lower in Germany than 
that in France and Italy (Multiple group comparison: 
P < 0.05). Variation of latitude, longitude, and altitude 
of localities studied accounted for 41.8% of variance in 
AR (Multiple regression model: AR = 15.04–0.22*Lat-
itude-0.11*Longitude–0.00069*Altitude; F3,52=13.48, 
P < 0.0001). Specifically, AR decreased significantly from 
south to north and from east to west. In contrast, He was sim-
ilar in five out of six regions studied (ANOVA: F5,64=3.32, 
P = 0.0104; Table 5). The only significant deviation was 
detected between the Geneva and Alsace regions (Multiple 
group comparison: P < 0.05). Latitude, longitude, and alti-
tude of localities did not account for a significant amount 
of variance in He (Multiple regression analysis: F3,64=1.62, 
P = 0.1937). The genetic differentiation between pairs of 
localities within the six regions studied, i.e. global FST 
and slopes of IBD linear regression analyses, differed con-
siderably between the southern and the northern regions 
(Table 6). Isolation by distances up to 150 km was low in 
Trentino (Italy) and Alsace (France), whereas it was up to 
four times larger in a distance range of 20–70 km in the 
German and Swiss regions. There were exceptions from the 
rule in all regions, but the greatest genetic differentiation 
between locality pairs was detected in the neighbouring 
regions Hesse and Westerwald (Rhineland-Palatinate) at the 
northern range limit of B. variegata. Despite of the regional 
scatter of pairwise genetic differentiation, IBD regression 
models differed significantly with respect to slopes between 
Westerwald (Rhineland-Palatinate) on one side and Alsace, 
Geneva and Trentino on the other (Table 6).

Discussion

In this study we measured genetic population structure, con-
nectivity and genetic diversity at three geographical scales 
in the endangered yellow-bellied toad by applying popula-
tion genetic tools. At the local scale (Schmidtenhöhe) we 
found that a former panmictic population shows indications 
of increasing fragmentation despite low distances among 
breeding assemblages. At the regional scale (Westerwald) 
we found evidence for the existence of significant population 
structure, and at the continental scale we found that popu-
lation fragmentation is more severe and genetic diversity 
reduced in the northern study regions as compared to more 
southern study regions.

In the following we discuss the observed genetic diversity 
and population structure of yellow-bellied toads in the context 
of local, regional and continental scale and evaluate the pre-
dictions on genetic structuring in view of the short-term and 
long-term isolation of populations in the Westerwald region.

Fig. 4   a Delta K plot representing the most probable number (K = 3) 
of genetic groups in the Westerwald region; using the Evanno 
method. b Results of the structure analysis of study localities in the 
Westerwald region representing three (K = 3) genetic clusters. C Spa-
tial geographic population structure of the localities at the regional 
scale for k = 3
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Local scale

The small-scale system of breeding assemblages studied at 
the Schmidtenhöhe mirrors a 30–40 years’ history of habitat 
fragmentation, as toad dispersal has been impeded through 
succession that emerged rapidly after the withdrawal of 
tanks (Hantzschmann and Sinsch 2019). As predicted, this 
short-term fragmentation caused low, but significant, differ-
entiation among three of the four study localities. This is in 
line with a similar genetic structuring of B. variegata inhab-
iting the Geneva region in which structuring was attributed 
to habitat fragmentation by urbanisation (Tournier 2017).

The ability of individuals to reach a neighbouring con-
specific population, i.e. movement capacity, depends in 
part on density-dependent motivation to disperse, land-
scape resistance, and life expectancy (Cayuela et al. 2016; 

Hantzschmann et  al. 2019; Sinsch 2014; Stevens et  al. 
2006). Dry open grasslands without water bodies pose a 
high landscape resistance for movements of Bufo bufo, 
Rana dalmatina and Lissotriton vulgaris (Jeliazkov et al. 
2019) and the same may apply to B. variegata. CMR sur-
veys at the Schmidtenhöhe did not provide evidence for 
recent among-locality migrations of yellow-bellied toads 
even though distances are smaller than observed lifetime 
dispersal distances of the species (1.2–4.5 km; Gollmann 
and Gollmann 2005; Jehle and Sinsch 2007; Plytycz and 
Bigaj 1984). This suggests that dry open grasslands with-
out water bodies may constitute effective dispersal barriers 
for these toads (Hantzschmann and Sinsch 2019). However, 
gene flow still exists among the four localities, but decreases 
with increasing distance. This is in line with observations 
on the migratory behaviour of B. variegata (Hartel 2008), as 
the number of individuals reaching neighbouring breeding 

Table 5   Continental scale: 
average allelic richness (AR), 
expected heterozygosity 
(He) and corresponding 95% 
confidence intervals

Hyphenated letters refer to groups differing at p < 0.05. n.a. means unspecified

Geographic region AR
95% CI

He
95% CI

References

Rhineland-Palatinate, Germany 2.45 a
2.27–2.63

0.44 a,b

0.42–0.46
This study

Lower Saxony, Germany 2.41 a
2.15–2.69

0.43 a,b

0.38–0.48
Weihmann et al. (2019)

Northern Hesse, Germany 2.53 a
2.36–2.71

0.48 a,b

0.44–0.51
Guicking et al. (2017)

Alsace,
France

3.59 b
3.18–3.99

0.51 b
0.45–0.56

Vacher and Ursenbacher (2014)

Trentino, Alto Adige, Italy 3.14 b
2.86–3.43

0.47 a,b

0.43–0.51
Cornetti (2013)

Geneva,
Switzerland

n.a. 0.41 a
0.38–0.44

Tournier (2017)

Table 6   Continental scale: average genetic differentiation of B. variegata populations inhabiting six European regions. IBD is modelled by linear 
regression analyses. Slopes and intercepts of the regression models are given as least square means and corresponding 95% confidence intervals

Hyphenated letters refer to groups differing at P < 0.05; * means significantly distinct from zero at P < 0.05; ns means not significantly distinct 
from zero (P > 0.05)

Geographic region Global FST R²
[%]

Slope
95% CI

Intercept
95% CI

Reference

Rhineland-Palatinate, Germany 0.16 41.7* 0.00530 a
0.00310–0.00750*

0.0687 a
0.0007–0.1367*

This study

Lower Saxony,
Germany

0.19 10.9* 0.00169 a,b

0.00034–0.00310*
0.1709 a
0.1050–0.2368*

Weihmann et al. (2019)

Northern Hesse, Germany 0.21 8.8* 0.00222 a,b

0.00071–0.00382*
0.2207 a
− 0.1525 to 0.2889ns

Guicking et al. (2017)

Alsace,
France

0.13 0.2ns 0.00018 b
− 0.00093 to 0.00129ns

0.1637 a
0.0877–0.2397*

Vacher and Ursenbacher (2014)

Trentino, Alto Adige, Italy 0.11 0.1ns 0.00008 b
− 0.00198 to 0.00214ns

0.1384 a
0.0684–0.2784*

Cornetti (2013)

Geneva,
Switzerland

0.12 1.1ns 0.00096 a,b

− 0.00124 to 0.00223ns
0.1306 a
0.0879–0.1736*

Tournier (2017)
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sites decreased with increasing distance between ponds. The 
FST values are not significant between the two nearest sites 
(1 and 2, distance: 1 km) and some infrequent and therefore 
undetected migration might still occur over distances up to 
1 km. These numbers are in accordance with annual migra-
tory ranges of B. variegata (20–732 m) measured in capture-
mark-recapture studies (Abbühl and Durrer 1996; Beshkov 
and Jameson 1980; Hantzschmann and Sinsch 2019; Har-
tel 2008; Jacob et al. 2009; Jordan 2012). We assume that 
dispersal in the Schmidtenhöhe populations is limited by 
the absence of stepping stones, e.g. ponds. In line with our 
predictions, we conclude that in small-sized yellow-bellied 
toad populations, habitat fragmentation through succession 
leads to genetic structuring within a few decades.

Regional scale

Modelling genetic structure of the Westerwald region 
yielded different results depending on the statistical 
approach applied. The Evanno method (STRU​CTU​RE: 
Bayesian iterative algorithm; Porras-Hurtado et al. 2013) 
suggests the presence of three genetic clusters. One clus-
ter included geographically distant localities (6 and 9; 
Table 1). This assignment is compatible with unauthorized 
translocation of individuals or animal-mediated egg dis-
persal between those sites. The latter however has not been 
reported for yellow-bellied toads. Instead, the directional 
migration to localities 6 and 9 (Fig. 2B) indicates a founder 
effect for colonized regions. This is in line with the potential 
bottleneck detected for these localities and may explain the 
STRU​CTU​RE clustering as well. In contrast, the DAPC 
method (multivariate approach; Jombart et al. 2010) yielded 
a finer scaled pattern in which the grouping of localities 
to clusters was consistent with their spatial arrangement 
(Suppl. Figure 2). We suggest that these discrepancies result 
from the different statistical approaches and conclude that 
there are at minimum three genetic clusters that may be 
sub-structured.

Amphibians are strongly affected by habitat fragmen-
tation and subsequent isolation of local populations that 
promote bottlenecks as well as high inbreeding levels and 
thus reduced fitness (Andersen et al. 2004; Angelone 2010; 
Apodaca et al. 2012; Ficetola and De Bernardi 2004). The 
pronounced IBD in the Westerwald populations (steep 
regression line, Table 6) indicates an ancestry from a com-
mon metapopulation that has been recently fragmented 
and isolated. The low levels of gene flow emphasize the 
interrupted exchange of individuals in this region as well. 
The high frequency of private alleles indicates genetic drift 
effects due to the isolation of populations. Drift effects may 
be strengthened by the presumably small population size and 

the short reproductive lifespan in the investigated popula-
tions that decreases an individual´s chance to contribute to 
the local gene pool (Cayuela et al. 2019; Hantzschmann and 
Sinsch 2019). Landscape fragmentation in Hesse is consid-
ered the main cause of isolation among B. variegata popu-
lations (Guicking et al. 2017). This is probably true for the 
Westerwald region as well because during the 19th century 
the road and rail network expanded parallel to increased clay 
mining (Schenk 1993). Clay mines provided secondary habi-
tats for yellow-bellied toads, but the expansion of transport 
network contributed to landscape fragmentation. We suggest 
that this habitat fragmentation promoted the isolation of toad 
populations and resulted in the recent patchy distribution. 
Furthermore, many stepping-stone populations between the 
extant populations have disappeared during the past decades 
(Veith 1996). In conclusion, we consider the notable genetic 
structuring of the Westerwald populations as the result of 
long-term, i.e. about 100 years, habitat fragmentation and 
isolation.

Continental scale

The phylogeography of some European amphibians is 
characterised by genetic diversity gradients, e.g. declining 
diversity from south to north and east to west, caused by 
postglacial recolonization from glacial refuge areas (e.g. 
the European tree frog Hyla arborea, Dufresnes et al. 2013; 
the natterjack toad Epidalea calamita, Allentoft et al. 2009; 
Rowe et al. 1998, 2006; Beebee and Rowe 2000; the spa-
defoot toad Pelobates fuscus, Eggert et al. 2006; the Italian 
agile frog Rana latastei, Garner et al. 2004, the common 
frog Rana temporaria, Palo et al. 2004). As predicted, we 
observed a decrease of genetic diversity (AR) from south 
to north and from east to west for B. variegata as well. 
Allelic richness is a genetic diversity measure that is more 
sensitive to founder events followed by expansions than 
heterozygosity (Greenbaum et al. 2014). Thus, we consider 
demographic processes following the postglacial dispersal 
to account for the lower genetic diversity at the northern 
range margin in B. variegata (Fijarczyk et al. 2011; Rowe 
et al. 2006). Reduced genetic diversity may additionally be 
a consequence of small effective population size resulting 
from habitat fragmentation (Andersen et al. 2004; Arens 
et al. 2006; Hitchings and Beebee 1997; Marsh et al. 2008; 
Noël et al. 2006; Reh and Seitz 1990; Tournier 2017; Willi 
et al. 2006; Zancolli et al. 2014). Consequently, we attribute 
the marked IBD pattern among populations in the German 
regions to reduced gene flow caused by landscape fragmen-
tation and demographic processes, whereas the low genetic 
structuring in Alsace, Geneva and Trentino suggests a still 
intact connectivity among populations.
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Implications for conservation management

As the conservation status of post-glacial European amphib-
ian populations worsen with increasing distances from the 
species’ glacial refugia, reduced genetic diversity may affect 
resilience towards current threats such as habitat fragmenta-
tion (Dufresnes and Perrin 2015). Our study suggests that 
postglacial colonisation processes and habitat fragmenta-
tion are the main causes of pronounced genetic structur-
ing and reduced AR of B. variegata populations in German 
regions. As a reestablishment of connectivity between cur-
rently isolated populations over distances larger than 5 km 
is visionary because of current land use and low dispersal 
capacity of this species, conservation measures should focus 
on the preservation of remaining populations by improv-
ing habitats. In the case of small, isolated and genetically 
impoverished populations, translocation may improve adapt-
ability to changing environmental conditions (Frankham 
et al. 2017). However, translocation of specimens, even to 
populations following a bottleneck, should be considered 
with caution, as local populations may be adapted to distinct 
habitat features and pathogens may be spread unintentionally 
(Orizaola et al. 2010; Taft and Roff 2012; Verhoeven et al. 
2011). Improving connectivity between local populations 
seems to be the crucial factor to mitigate genetic structuring 
and to increase resilience towards the variation of environ-
mental factors (Frankham et al. 1999; Schön et al. 2011). 
Small-scale groups of isolated local breeding assemblages 
(example: Schmidtenhöhe) should be transformed to an 
interacting metapopulation system by stepping-stone ponds 
less than 1 km apart to enable movements of some indi-
viduals between neighbouring populations. Thus, informed 
conservation management of B. variegata populations could 
consist in the creation of small-scale metapopulations by 
offering satellite habitats around isolated extant breeding 
groups, for colonization. These metapopulation systems 
would still be isolated from each other, but more resilient to 
local extinction. On a regional scale, the still existing con-
nectivity among populations such as those in Alsace and 
Trentino should be conserved to avoid the negative effects 
of habitat fragmentation currently present in the three Ger-
man and threatening the persistence of yellow-bellied toads.
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