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Abstract
Introducing factors such as linguistic features has long been proposed in machine 
translation to improve the quality of translations. More recently, factored machine 
translation has proven to still be useful in the case of sequence-to-sequence systems. 
In this work, we investigate whether this gains hold in the case of the state-of-the-
art architecture in neural machine translation, the Transformer, instead of recurrent 
architectures. We propose a new model, the Factored Transformer, to introduce an 
arbitrary number of word features in the source sequence in an attentional system. 
Specifically, we suggest two variants depending on the level at which the features are 
injected. Moreover, we suggest two combination mechanisms for the word features 
and words themselves. We experiment both with classical linguistic features and 
semantic features extracted from a linked data database, and with two low-resource 
datasets. With the best-found configuration, we show improvements of 0.8 BLEU 
over the baseline Transformer in the IWSLT German-to-English task. Moreover, we 
experiment with the more challenging FLoRes English-to-Nepali benchmark, which 
includes both  low-resource and very distant languages, and obtain an improvement 
of 1.2 BLEU. These improvements are achieved with linguistic and not with seman-
tic information.
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1  Introduction

Many classical Natural Language Processing (NLP) pipelines used either lin-
guistic or semantic features (Koehn and Hoang 2007; Du et al. 2016), including 
machine translation applications. In recent years, the rise of neural architectures 
has diminished the importance of the aforementioned features. Nevertheless, 
some works have still shown the effectiveness of introducing linguistic informa-
tion into neural machine translation systems, typically in recurrent sequence-to-
sequence (seq2seq) architectures (Sennrich and Haddow 2016; García-Martínez 
et al. 2016; España-Bonet and van Genabith 2018).

The motivation for studying strategies for incorporating linguistic or semantic 
information into state-of-the-art neural machine translation systems is two-fold. 
On the one hand, it can slightly improve the results in generic settings. On the 
other hand, and most importantly, it can play a key role in major challenges for 
machine translation, such as low-resource settings and morphologically different 
languages. In this work, we provide successful use cases for both situations. We 
suggest a modification to adapt the current state-of-the-art neural machine trans-
lation architecture, the Transformer (Vaswani et  al. 2017), to working with an 
arbitrary number of factors such as linguistic or semantic features. Specifically, 
we study the effect of incorporating such features at the embedding level or at the 
encoder level, with two different combination strategies and using different lin-
guistic and semantic features, the former being extracted from NLP taggers and 
the latter from a linked data database. We report improvements in IWSLT and 
FLoReS benchmarks.

By factored Neural Machine Translation (NMT), we refer to the use of word 
features alongside words themselves to improve translation quality. Both the 
encoder and the decoder of a Seq2seq architecture can be modified to obtain bet-
ter translations (García-Martínez et al. 2016). The most prominent approach con-
sists of modifying the encoder such that instead of only one embedding layer, the 
encoder has as many embedding layers as factors, one for words themselves and 
one for each feature, and then the embedding vectors are concatenated and input 
to the rest of the model, which remains unchanged (Sennrich and Haddow 2016). 
The embedding sizes are set according to the respective vocabularies of the fea-
tures. Notice that in the latter the authors applied Byte Pair Encoding (BPE) (Sen-
nrich et al. 2016), an unsupervised preprocessing step for automatically splitting 
words into subwords with the goal of improving the translation of rare or unseen 
words. Thus, the features had to be repeated for each subword. García-Martínez 
et al. (2016) used the exact same architecture, except that this new proposal used 
concepts extracted from a linked data database, BabelNet (Navigli and Ponzetto 
2012). These semantic features, synsets, were shown to improve zero-shot trans-
lations. All the cited works obtained moderate improvements with respect to the 
BLEU scores of the corresponding baselines.

The main goal of this work, and differently from previous works using NMT 
architectures based on recurrent neural networks, is to modify the Transformer to 
make it compatible with factored NMT with an architecture that we call Factored 
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Transformer and inject classical linguistic knowledge, especially from lemmas, 
which is the best performing feature in other works (Sennrich and Haddow 2016), 
and concepts extracted from the semantic linked data database, BabelNet (Navigli 
and Ponzetto 2012). We are focusing our attention on low-resource datasets.

2 � Factored transformer

Unlike the vanilla Transformer (Vaswani et al. 2017), the Factored Transformer can 
work with factors; that is, instead of just being input the original source sequence, 
it can work with an arbitrary number of feature sequences. Those features can be 
injected at embedding-level, as in the previous works we described above (but in 
a Transformer instead of a recurrent-based seq2seq architecture), or at the encoder 
level. We have implemented the two model variants.

2.1 � 1‑Encoder model

Similarly to Sennrich and Haddow (2016), this architecture consists of only one 
encoder, but multiple embedding layers (one for each feature and one for the words 
themselves). The embedding vectors are looked up for each factor separately. Then, 
the respective outputs are combined. In Sect. 2.3, we will discuss the different com-
bination strategies. Finally, positional embeddings are summed to the combined 
embedding vector, and the first attention/feed-forward layer of the Transformer’s 
encoder is input this vector as in the vanilla model. Positional embeddings are 
summed to the final vector and not to the individual embeddings because we are 
modifying the individual token embeddings, not the length of the sequence, which 
remains unchanged, so the positions in the sequence are the same. We can think of 
these embedding layers as a factored embedding layer. Apart from the embedding 
layer of the encoder, the rest of the Transformer remains unchanged. This model 
variant is depicted in Fig. 1.

2.2 � N‑encoder architecture

Using multiple encoders for factored NMT, one for each factor, is not a common 
approach in the literature. In fact, we are not aware of any other work that does so. 
Instead, it has been used for multi-source MT, which is a task that consists in trans-
lating from multiple sources (ie. languages) referring to the same sentence into a 
single target sequence, always with RNN-based models as far as we know, as Zoph 
and Knight (2016). We had the intuition that having one encoder for each factor 
could improve the results, particularly for features that have a vocabulary size com-
parable to the ones of the words (specially, lemmas and semantic features).

In this architecture, we have N encoders, one for each factor. These encoders are 
not different from the one of the vanilla Transformer. Instead of combining the out-
puts of the embedding layers of one encoder as in the single-encoder architecture, 
in this architecture the outputs of the multiple encoders are combined (factored 
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encoder). The rest of the model remains unchanged. This architecture variant is 
depicted in Fig. 2.

2.3 � Combination strategies

Sennrich and Haddow (2016) proposed that features and words embeddings were 
combined by the means of concatenating. However, it is not the only possible 
combination strategy. OpenNMT (Klein et  al. 2017) allows both summation and 

Fig. 1   1-Encoder model: In this example, a tokenized sentence in English and the corresponding Part-
of-Speech tags are input to the encoder. The respective embedding outputs are combined, which can be 
done in different ways. Then, positional embeddings, which in the Transformer are used for encoding the 
position of each token in the sequence, are summed, and these vectors are input to the remaining layers 
of the encoder. The rest of the model remains unchanged. Notice that positional embeddings are summed 
to the combined embeddings and not to the individual embeddings separately because we are modifying 
the individual token embeddings, not the length of the sequence, which remains unchanged, so the posi-
tions do not change
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concatenation. In the multi-source MT work we mentioned, the authors tried both 
concatenation and a tangent activation (as in LSTMs) and a full-blown LSTM for 
combining the outputs of the two encoders.

If we have N neural modules, F
i
 with 1 ≤ i ≤ N , one for each feature and one for 

the words themselves, an input to each of them of dimensions [# tokens in 
sentence]1 and an output from each of them, �

�
 with 1 ≤ i ≤ N , of dimensions 

[# tokens in sentence, F_i embedding_size], we can consider the 
following combination strategies:

Fig. 2   N-encoder model: In this example, a tokenized sentence in German and the corresponding Part-
of-Speech tags are input to their respective encoders. The encoders remain unchanged with respect to the 
vanilla Transformer. Each encoder has its own embedding layer and positional embeddings. The encoder 
outputs are combined, which can be done in different ways. The rest of the model remains unchanged. 
The decoder for the target sequence generates the sentence from the combined encoder outputs in the 
target language, in this example, English

1  Here we are considering the inputs to the neural modules themselves. Usually, inputs are batched into 
a number of sentences, such that we have dimensions [# sentences, # tokens per sen-
tence], but this fact does not affect our observations in this section.
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–	 Concatenation: The respective outputs of each F
i
 , �

�
 , are concatenated, such that 

the resulting dimension is: 

and input to the next layer. Obviously, all F
i
share the number of tokens (and the 

number of sentences if we were considering the full batch), because they are 
referring to the same sentences, but notice that is not necessary for the embed-
ding sizes to be equal. The operation can be represented as: 

 where ’;’ is the tensor concatenation along the corresponding axis.
–	 Summation: The respective outputs of each F

i
 are summed and input to the 

next layer, instead of concatenated. Thus, the embedding size of each factor 
must be equal, and the resulting dimension is [# tokens in sentence, 
embedding size of each F

i
]: 

2.4 � Embedding sizes

The bigger the embedding size, the more vocabulary can be learnt. However, at 
some point the embedding layer can start to overfit. In addition, we do not want 
the embedding size to be that big that it makes the model too computationally 
expensive.

In OpenNMT, the embedding size cannot be specified for each feature. Instead, 
either all of them have the same size, or the embedding size is computed from this 
formula2:

With feature exponent = 0.7 by default. This formula tries to capture the principle 
that the embedding size should grow with the vocabulary size. In practice, it can 
result in large, infeasible embeddings for features with big vocabulary sizes, and it is 
not flexible enough to let introduce a different exponent for each feature.

Sennrich and Haddow (2016) used a total size of the embedding layer of 500. 
Features with a few dozens of possible values were assigned an embedding size of 
10, for instance, while words had an embedding size of 350. However, in practice 
the Transformer is known to need bigger embeddings (Popel and Bojar 2018). It 

[

#������ �� ��������,

N
∑

i=1

embedding size of F
i

]

[�
�
;�

�
; … ;�

�
]

�
�
+⋯ +�

�
=

N
∑

i=1

�
�

embedding size
i
= vocabulary size

feature exponent

i
∀i ∈ Features

2  OpenNMT training options: http://​openn​mt.​net/​OpenN​MT-​py/​optio​ns/​train.​html.

http://opennmt.net/OpenNMT-py/options/train.html
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could be the case that a word embedding size smaller than 512 (without counting the 
features) was not enough for learning the words vocabulary.

Needless to say, the total embedding size of the encoder should match the 
embedding size of the decoder, because otherwise there would be a dimension 
mismatching.

Another issue to consider is the fact that while RNN-based embeddings can be 
of arbitrary dimensions, in the Transformer they must be a multiple of the num-
ber of attention heads. Recall from previous sections that the multi-head attention 
mechanism applies multiple blocks in parallel (one for each head), concatenates 
their outputs and finally applies a linear transformation. Notice that as many out-
puts as the number of heads will be concatenated. Thus, the embedding dimension 
must be divisible by the number of heads. Otherwise, there would be a dimension 
mismatching.

The reader will notice that the last restriction affects the total embedding size of 
the encoder, but not the individual embedding sizes. That is to say, in the N-encoder 
architecture, each factor should verify the restriction. In contrast, this does not need 
to be the case for each factor in the 1-encoder architecture (the total sum must be a 
multiple of the number of heads, but not each embedding individually). Ideally, the 
embedding size of each factor should be optimized by some search procedure. In 
practice, we will have computational limitations for doing so.

One alternative for avoiding overfitting would be to freeze the weights (ie. stop 
updating weights) at an early epoch, but only for the features with small vocabulary 
size, and keep training and updating the rest of the model. We implemented this fea-
ture as well, although it did not obtain noticeable gains.

3 � Linguistic and semantic features

In the previous section, we detailed the neural architectures that we are proposing 
in this work. Their key addition is that they allow to introduce multiple sequences 
referring to the same source sentence, factors. Thus, we are going to be able to input 
both the words (or subwords) themselves, the first factor, and a set of features associ-
ated to them, the other factors.

In this section, we go through the features that we are going to consider to use 
alongside words in order to try to improve MT. Intuitively, linguistic information 
should be useful for getting a better representation of the text.

However, one novelty presented in this work is the study of the use linked data, 
which has barely been exploited in NMT (García-Martínez et  al. 2016). In par-
ticular, we extracted semantic and language-agnostic information. In addition, it 
is worth noting the implications of using features alongside subwords (instead of 
whole words).

3.1 � Linguistic features

Sennrich and Haddow (2016) proposed the use of the following features:
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–	 Lemmas.
–	 Part-Of-Speech tags.
–	 Word dependencies
–	 Morphological features.

The vocabulary size of each feature, which as we have said in the previous section 
is very relevant to the size of their respective embeddings, is very small in most of 
the cases, except in the case of lemmas. Lemmas have a vocabulary size of the same 
order of magnitude than the original words (without subword splitting), but smaller, 
because all the different inflections and derivations of a word will collapse into the 
same base form.

There are different taggers available and nowadays some of them are based on 
deep learning. Sennrich and Haddow (2016) used Stanford’s CoreNLP taggerMan-
ning et  al. (2014). For this work, we started with TreeTagger, a Part-Of-Speech 
tagger that also offers lemmatization, but later on we pivoted to Stanford models, 
through a Spacy Python wrapper3.

As a matter of fact, linguistic taggers are not infallible. Even though they are 
supposed to help the NLP system by providing additional information, at least in 
some cases they could be providing wrong annotations. In addition, tagging can 
be a resource-intensive task, and the corresponding neural network will need more 
parameters at least for dealing with the feature embeddings.

3.2 � Linked data

As we have said, by linked data we mean structured data that forms a graph, that 
is, an ontology-based database. In the context of NLP, linked data is often used to 
describe a dataset such that thanks to its interlinked nature, semantic information 
can be extracted.

There are many different linked data databases that we could use with our pro-
posed architectures, without any modifications, provided that words could be tagged 
by discrete identifiers. For instance, domain-specific linked data could be used for 
domain adaption of an NMT system, by inputting domain features, as we will fur-
ther suggest as future work, in Sect. 5. Nevertheless, for this work we explore linked 
data for the general domain.

3.2.1 � BabelNet

In particular, we are keen on BabelNet (Navigli and Ponzetto 2012), the linked data 
used by García-Martínez et al. (2016). BabelNet is a very large multilingual ency-
clopedic dictionary and semantic network.

3  spaCy + StanfordNLP: https://​github.​com/​explo​sion/​spacy-​stanf​ordnlp.

https://github.com/explosion/spacy-stanfordnlp
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BabelNet is automatically built from the combination of many sources4, such 
as Wikipedia, WordNet (a computational lexicon of different languages), Wikidata 
(a machine-readable knowledge base), Wiktionary (Wikimedia’s multilingual dic-
tionary), and ImageNet (an image database organized according to the WordNet 
hierarchy).

Apart from the large amount of data, its potential comes from the way the dif-
ferent sources are integrated. For instance, as we have said, ImageNet is organized 
according to WordNet’s hierarchy, while Wikipedia entries are linked to Wikidata 
and Wiktionary terms.

Thanks to this deep integration, BabelNet makes available a large semantic net-
work. In particular, there are approximately 16 million entries, called synsets. Syn-
sets are language-agnostic, that is to say, the same concept will have the same synset 
assigned in all the 271 languages in which BabelNet is available. Perhaps even more 
importantly, synsets are shared for synonyms as well.

The reader will notice that BabelNet has a great potential for both entity recog-
nition (identifying target entities in text, eg. identifying countries) and word sense 
disambiguation (determining to which particular meaning a polysemous word or 
expression may be referring to), which intuitively should be useful for improving 
MT, particularly the latter. In addition, unlike linguistic taggers, BabelNet is uni-
formly available for many languages.

Nevertheless, BabelNet itself is just a large and interlinked database with REST 
and Java APIs to extract word-level information. Plain BabelNet will retrieve all 
the possible synsets that a particular word may have, and links to possibly linked 
concepts. It is up to the developer to actually perform the sense disambiguation by 
building a rule based system or a MT application.

In García-Martínez et  al. (2016), the authors used plain BabelNet id’s, without 
sense disambiguation. Instead, for this work we are going to use Babelfy.

3.2.2 � Babelfy

Babelfy5Moro et al. (2014) is a service based on BabelNet that performs both entity 
recognition and word sense disambiguation. Both its Java and REST APIs retrieve 
only one synset for each word given its context (that is to say, its sentence), instead 
of returning the list of all the possible synsets. We used Babelfy instead of plain Bal-
belnet for obtaining the disambiguated synsets.

In Fig. 3 we provide an example of a sentence tagged with synsets.

4  See Wikipedia: https://​www.​wikip​edia.​org/, WordNet: https://​wordn​et.​princ​eton.​edu/, Wikidata: 
https://​www.​wikid​ata.​org/​wiki/​Wikid​ata:​Main_​Page, Wiktionary: https://​www.​wikti​onary.​org/ and Ima-
geNet: http://​www.​image-​net.​org/, among others.
5  Babelfy: http://​babel​fy.​org/​about.

https://www.wikipedia.org/
https://wordnet.princeton.edu/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wiktionary.org/
http://www.image-net.org/
http://babelfy.org/about
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3.3 � Features and subword encoding

As we have seen, some form of subword encoding is required for achieving state 
of the art results in most MT tasks. However, linguistic features are usually word-
level features. The same holds for BabelNet synsets, which in fact can even refer 
to a set of words instead of only one. In addition, if the number of word tokens 
and the number of token features did not agree, in most configurations we would 
probably end up with a dimension disagreement and we would not even be able to 
input that information to the neural network.

Therefore, we must align the tokens corresponding to the features to the tokens 
corresponding to subwords. That is to say, we must have the same number of sub-
word tokens than word features, and the n-th feature must refer to the correspond-
ing word of the n-subword. Also, we can take into account that the fact that one 
word feature belongs to, say, an intermediate subword, can have a slightly differ-
ent meaning than the same feature belonging to the final subword. That is to say, 
the same way BPE adds the tag ’@@’ to the subword tokens in order to encode 
where the original word started, we could find an equivalent way of encoding this 
information in the feature side. We can consider different strategies for doing so 
or at least tackling this difficulty:

–	 Not using BPE: We discarded this option because the baseline would be 
weaker.

–	 Just repeating the word features for each subword: This approach has the ben-
efit of being simple, trivially compatible with the proposed architectures and not 
increasing the vocabulary size of the features. However, it does not encode the 
fact that consecutive tags are part of the same word.

–	 Using ’@@’ in word features, the same was that this tag is used in BPE: Again, 
this approach has the benefit of being trivially compatible with architectures such 
as the multi-encoder architecture and the single-encoder architecture with sum-
mation instead of concatenation, and not requiring an additional feature, but it 

in|APPR der|ART zwischenzeit|NN ,|$, wurde|VAFIN die|ART alte|bn:00107787a
RPPA|nov,$|,MF|aAJDA|messorgRPPA|tim,$|,n08345000:nb|tätilatnem

seinem|PPOSAT vater|bn:00009616n repräsentiert|bn:00090234v ,|$, dem|ART
vorsitzenden|ADJA der|ART nigerianischen|bn:00107300a bank|bn:00008364n ,|$,
der|PRELS die|ART cia|bn:00017182n vor|APPR seinem|PPOSAT sohn|bn:03854737n
warnte|bn:00095642v ,|$, der|PRELS kurz|bn:00098854a vor|APPR dem|ART
angriff|bn:00006994n stand|bn:00021644n ,|$, und|KON diese|PDAT
warnung|bn:17105905n traf|bn:00085339v auf|APPR taube|bn:00062350n ohren|NN
.|$.

Fig. 3   Synsets of a German sentence from IWSLT14 German-to-English. Notice that prepositions, arti-
cles and punctuation signs, among others, have been assigned their respective morphological features, 
since they did not have a defined synset. Features starting with bn: are BabelNet synsets. Most impor-
tantly, we can see that the word bank, which in German is polysemous as in English (the financial insti-
tution or the bench for sitting), is mapped to the synset bn:00008364n. If we search this synset in 
BabelNet(BabelNet: bn:00008364n: https://​babel​net.​org/​synset?​word=​bn:​00008​364n), we can see that 
it is the one corresponding to financial institutions, as it should, since the sentence is talking about the 
chairman of a Nigerian bank.

https://babelnet.org/synset?word=bn:00008364n
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has the drawback that it approximately doubles the vocabulary. The latter hap-
pens because the same feature can appear in different positions of the word. 
Therefore, there will be one token with ’@@’ and one token without this tag.

–	 The approach used by Sennrich and Haddow (2016): Repeating the word features 
for each subword and introducing a new factor, subword tags, to encode the posi-
tion of the subword in the original word. The 4 possible tags are:

–	 B: Beginning of word.
–	 I: Intermediate subword.
–	 E: End of word.
–	 O: Whole word (not split into subwords).

	    This approach has the benefit of both encoding the position of the word which 
the subword belongs to and not increasing the vocabulary of the features. How-
ever, it is not compatible with the multi-encoder architecture, at least not trivi-
ally, because it would not make sense to have a specific encoder just for learning 
the 4 tokens of the vocabulary of subword tags. However, it could be used with 
a modified multi-encoder architecture by the means of an hybrid approach (each 
feature encoder having its own subword tags as an additional feature).

Each approach presents its own advantages and disadvantages and it is unclear 
which one should be followed. The procedure of choice should be the most practical 
one (eg. the one that it is compatible with our architecture, or the simplest one) or 
the one that performs better experimentally.

4 � Experiments

4.1 � Preliminary experiments

We experimented with BPE alignment strategies (including the approaches from 
Sect. 4.2), and different classical linguistic features (lemmas, part-of-speech, word 
dependencies, morphological features). The preliminary experiments showed that 
BPE alignment strategies were not very relevant, so we adopted the alignment with 
BPE by repeating the word feature. In addition, we found that the most promising 
classical linguistic feature was lemmas, consistently with the results obtained by 
Sennrich and Haddow (2016).

4.2 � Data

The first experiments were conducted with a pair composed of similar languages, 
the German-to-English translation direction of the IWSLT14 (Cettolo et al. 2014), 
which is a low-resource dataset (the training set contains about 160,000 sen-
tences). For cleaning and tokenizing, we use the data preparation script proposed 
by the authors of Fairseq (Ott et al. 2019). As test sets, we took the test sets from 
the corpus released for IWSLT14 and IWSLT16. The former was used to test the 
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best configuration, and the latter was used to see the improvement of this configura-
tion in another set. A joint BPE (ie. German and English share subwords) of 32,000 
operations is learned from the training data, with a threshold of 50 occurrences for 
the vocabulary. The second round of experiments was conducted with the Eng-
lish-to-Nepali translation direction of the FLoRes Low Resource MT Benchmark 
(Guzmán et al. 2019). Although this pair has more sentences than the previous one 
(564,000 parallel sentences), it is considered to be extremely low-resource and far 
more challenging because of the lack of similarity between the involved languages. 
In this case, we learn a joint BPE of 5000 operations (both with an algorithm based 
on BPE, sentencepiece (Kudo and Richardson 2018), as proposed by the FLoRes 
authors, and with the original BPE algorithm).

4.3 � Hyperparameters and configurations

In the case of German-to-English, we used the Transformer architecture with the 
hyperparameters proposed by the Fairseq authors: specifically, 6 layers in the 
encoder and the decoder, 4 attention heads, embedding sizes of 512 and 1024 for the 
feedforward expansion size, a dropout of 0.3 and a total batch size of 4000 tokens, 
with a label smoothing of 0.1. For English-to-Nepali, we used the baseline proposed 
by the FLoRes authors: specifically, 5 layers in the encoder and the decoder, 2 atten-
tion heads, embedding sizes of 512 and 2048 for the feedforward expansion size and 
a total batch size of 4000 tokens, with a label smoothing of 0.2. In both cases, we 
used the Transformer architecture with the corresponding parameters we described 
above as the respective baseline systems, and we introduced the modifications of the 
Factored Transformer without modifying the rest of the architecture and parameters. 
As mentioned previously, linguistic features were obtained through StanfordNLP 
(Qi et  al. 2018) and regarding the Babelnet synsets, we found that approximately 
70% of the tokens in the corpus we used did not have an assigned synset and were 
therefore assigned part-of-speech.

4.4 � Reported results

After the preliminary research, we report experiments with features (lemmas and 
synsets), architectures (1-encoder and N-encoders systems), and combination strat-
egies (concatenation and summation). Regarding this preliminary research, we 
include the results using the exact same configuration as Sennrich and Haddow 
(2016) but with the Transformer instead of a recurrent neural network. We found 
that while this setting outperformed the baseline, using just lemmas with summation 
was slightly better, so we dropped the rest of the features, being the lemmas-only 
configuration both simpler and obtaining better results.

Then, for the best feature, lemmas, Table 1 compares different architectures, and 
it is shown that the best architecture is the 1-encoder with summation. Finally, the 
best performing system (lemmas with a 1-encoder and summation) is evaluated in 
another test set, IWSLT16. The selected model is relatively efficient, because it only 
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needs an additional embedding layer with respect to the baseline, while the total 
embedding size does not have to be increased because the embeddings are summed 
instead of concatenated.

Once we had found that the 1-encoder Factored Transformer with summation 
and lemmas was a configuration performing well for low-resource settings, we 
applied this combination the more challenging Facebook Low Resource (FLoRes) 
MT Benchmark. Specifically, we wanted to compare how this architecture performs 
against the baseline reported in the original work of this benchmark. The authors 
report the results before applying backtranslation and with sentence piece, which 
is 4.30 BLEU. We reproduced that baseline and we got slightly better results (up to 
4.38 BLEU). However, our system is designed to work with BPE, not sentencepiece, 
which is more challenging to align to features (since subwords coming from differ-
ent words can be combined into a single token). Table 1 shows that our configu-
ration clearly outperformed the baseline with BPE (almost 40% up), and was very 
close to the results with sentencepiece.

5 � Conclusions

We have shown that the Transformer can take advantage of linguistic features. We have 
not found any configuration with the semantic ones that outperformed the baseline set-
tings, but it should be further investigated. We conclude that the best configuration for 
the Factored Transformer was the 1-encoder model (with multiple embedding layers) 
with summation instead of concatenation. For the German-to-English IWSLT task, the 
best configuration for the Factored Transformer shows an improvement of 0.8 BLEU, 
and for the  low-resource English-to-Nepali task, the improvement is 1.2 BLEU.

Table 1   BLEU results

In bold, best results

IWSLT14

Model Comb.* Feature BLEU

Baseline – – 34.08
1-Encoder Concat All in Sennrich and 

Haddow (2016)
34.21

1-Encoder Sum Lemmas 34.35
1-Encoder Sum Babelnet 33.66
1-Encoder Concat Lemmas 27.10
N-encoders Concat Lemmas 33.58
N-encoders Sum Lemmas 9.71
IWSLT16
Baseline – – 36.67
1-Encoder Sum Lemmas 37.46
FLoReS
Baseline – – 3.06
1-Encoder Sum Lemmas 4.27
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With regard to the proposed architectures, in general, the results show that the 
N-encoder architecture is not an effective strategy for factored NMT, at least the way 
we have implemented and used it, because the obtained translations are worse than the 
ones obtained with the single-encoder architecture (and even the baseline), while being 
more complex. It seems to be more prone to overfitting because features, which are not 
providing that much information, instead of having just an embedding layer have multi-
ple self-attention layers. Moreover, we suspect that having a different encoder for each 
factor seems to produce disentangled representations and the decoder struggles at com-
bining the different sources. This seems to be the reason why concatenation performs 
better than summation in the case of the multiple-encoder architecture, because with 
the former at least the decoder can learn to ignore or treat differently different parts of 
the factored sequence. In the case of the single-encoder architecture, summing seems to 
work better because it produces a more compact factored embedding and it allows the 
decoder embedding size not to be doubled (if there are two source factors), preventing 
overfitting.

As far as the used features are concerned, we hypothesize that lemmas outperform 
synsets because of Babelnet. When tagging, a big proportion of the tokens do not get 
a synset (as detailed before, in this case we apply a backup linguistic feature, namely 
part-of-speech). Instead, all words can be tagged with lemmas (even if tagging is not 
perfect and can give wrong lemmas in some cases). In addition, the use of semantic 
features (BabelNet) was intended to help at disambiguating, but some recent papers 
have shown that the Transformer is already good at disambiguating (Tang et al. 2018). 
Instead, lemmas can help by providing the normalized term of a given word that may 
be very infrequent in the training corpus (but its respective lemma might be frequent 
enough).

In future work, we suggest adapting the alignment algorithm to sentencepiece by 
combining features coming from different words into a single feature, provided their 
respective subwords have been merged into a single token. In addition, whether the 
advantage provided by linguistic features still holds once backtranslation has been 
applied and up to what point this holds should be investigated.
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