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Abstract
Shape optimization methods have been proven useful for identifying interfaces in
models governed by partial differential equations. Here we consider a class of shape
optimization problems constrained by nonlocal equations which involve interface–
dependent kernels. We derive a novel shape derivative associated to the nonlocal
systemmodel and solve the problemby established numerical techniques. The code for
obtaining the results in this paper is published at (https://github.com/schustermatthias/
nlshape).

Keywords Shape optimization · Nonlocal convection–diffusion · Finite element
method · Interface identification

1 Introduction

Many physical relations and data-based coherences cannot satisfactorily be described
by classical differential equations. Often they inherently possess some features, which
are not purely local. In this regard, mathematical models which are governed by non-
local operators enrich our modeling spectrum and present useful alternatives as well
as supplemental approaches. That is why they appear in a large variety of applications
including among others, anomalous or fractional diffusion [10, 11, 19], peridynamics
[25, 27, 54, 64], image processing [31, 38, 42], cardiology [14], machine learning
[44], as well as finance and jump processes [5, 6, 26, 37, 59]. Nonlocal operators
are integral operators allowing for interactions between two distinct points in space.
The nonlocal models investigated in this paper involve kernels that are not necessarily
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symmetric and which are assumed to have a finite range of nonlocal interactions; see,
e.g, [23, 24, 26, 60] and the references therein.

Not only the problem itself but also various optimization problems involving non-
local models of this type are treated in literature. For example matching-type problems
are treated in [18, 20, 21] to identify system parameters such as the forcing term or
a scalar diffusion parameter. The control variable is typically modeled to be an ele-
ment of a suitable function space.Moreover, nonlocal interface problems have become
popular in recent years [13, 17, 29, 32, 43]. However, shape optimization techniques
applied to nonlocal models can hardly be found in literature. For instance, the articles
[9, 41, 55] deal with minimizing (functions of) eigenvalues of the fractional Laplacian
with respect to the domain of interest. Also, in [8, 15] the energy functional related to
fractional equations is minimized. In [12] a functional involving a more general kernel
is considered. All of the aforementioned papers are of theoretical nature only. To the
best of our knowledge, shape optimization problems involving nonlocal constraint
equations with truncated kernels and numerical methods for solving such problems
cannot yet be found in literature.

Instead, shape optimization problems which are constrained by partial differential
equations appear in many fields of application [34, 46, 52, 53] and particularly for
inverse problems where the parameter to be estimated, e.g., the diffusivity in a heat
equation model, is assumed to be defined piecewise on certain subdomains. Given a
rough picture of the configuration, shape optimization techniques can be successfully
applied to identify the detailed shape of these subdomains [48–50, 62].

In this paper we transfer the problem of parameter identification into a nonlocal
regime. Here, the parameter of interest is given by the kernel which describes the
nonlocal model. We assume that this kernel is defined piecewise with respect to a
given partition {�i }i of the domain of interest �. Thereby, the state of such a nonlocal
model depends on the interfaces between the respective subdomains �i . Under the
assumption that we know the rough setting but are lacking in details, we can apply
the techniques developed in the aforementioned shape optimization papers to identify
these interfaces from a given measured state.

For this purpose we formulate a shape optimization problem which is constrained
by an interface–dependent nonlocal convection–diffusion model. Here, we do not aim
at investigating conceptual improvements of existing shape optimization algorithms.
On the contrary, wewant to study the applicability of establishedmethods for problems
of this type.

The realization of this plan basically requires two ingredients both of which are
worked out here. First, we define a reasonable interface–dependent nonlocal model
and provide a finite element code which discretizes a variational formulation thereof.
Second, we need to derive the shape derivative of the corresponding nonlocal bilinear
form which is then implemented into an overall shape optimization algorithm.

This leads to the following organization of the present paper. In Sect. 2 we formulate
the shape optimization problem including an interface–dependent nonlocal model.
Once established, we briefly recall basic concepts from the shape optimization regime
in Sect. 3. Then Sect. 4 is devoted to the task of computing the shape derivative of
the nonlocal bilinear form and the reduced objective functional. Finally we present
numerical illustrations in Sect. 5 which corroborate theoretical findings.
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2 Problem formulation

The systemmodel to be considered is the homogeneous steady-state nonlocal Dirichlet
problem with volume constraints, given by{

−L�u = f� on �

u = 0 on �I ,
(1)

posed on a bounded domain � ⊂ R
d , d ∈ N and its nonlocal interaction domain �I ;

see, e.g, [4, 23, 24, 26, 60] and the references therein. Here, we assume that this domain
is partitioned into a simply connected interior subdomain �1 ⊂ � with boundary
� := ∂�1 and a domain �2 := �\�1. Thus we have � = �(�) = �1∪̇�∪̇�2,
where ∪̇ denotes the disjoint union. In the following, the boundary � of the interior
domain �1 is called the interface and is assumed to be an element of an appropriate
shape space; see also Sect. 3 for a related discussion. The governing operator L� is an
interface–dependent, nonlocal convection–diffusion operator of the form

−L�u(x) :=
∫
Rd

(u(x)γ�(x, y) − u(y)γ�(y, x)) dy, (2)

which is determined by a nonnegative, interface–dependent (interaction) kernel
γ� : Rd ×R

d → R. The second equation in (1) is called Dirichlet volume constraint.
It specifies the values of u on the interaction domain

�I :=
{
y ∈ R

d\� : ∃x ∈ � : γ�(x, y) �= 0
}

,

which consists of all points in the complement of � that interact with points in �. For
ease of exposition, we set u = 0 on �I , but generally we can use the constraint u = g
on �I , if g satisfies some appropriate regularity assumptions.
Furthermore, we assume that the kernel depends on the interface in the following way

γ�(x, y) =
∑

i, j=1,2

γi j (x, y)χ�i ×� j (x, y) +
∑

i=1,2

γi I (x, y)χ�i ×�I (x, y), (3)

where χ�i ×� j denotes the indicator of the set �i × � j . For instance, in [51] the
authors refer to γi j and γi I as inter– and intra–material coefficients. Notice that we do
not need kernels γI i , since u = 0 on�I . Furthermore, for i = 1, 2 let {Si (x)}x∈�, with
Si (x) ⊂ R

d for x ∈ �, be a family of sets, where the symmetry y ∈ Si (x) ⇔ x ∈ Si (y)
for x, y ∈ � holds. We additionally assume for i ∈ {1, 2} that there exist two radii
0 < ε1i ≤ ε2i < ∞ such that Bε1i

(x) ⊂ Si (x) ⊂ Bε2i
(x) for all x ∈ �, where Bεk

i
(x)

denotes the Euclidean ball of radius εk
i .

Throughout this work we consider truncated interaction kernels, which can be
written as
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γi j (x, y) = φi j (x, y)χSi (x)(y) and γi I (x, y) = φi I (x, y)χSi (x)(y) for i, j = 1, 2

(4)

for appropriate positive functions φi j : Rd ×R
d → R and φi I : Rd ×R

d → R, which
we refer to as kernel functions. In this paper we differentiate between square integrable
kernels and singular symmetric kernels. For square integrable kernels we require γi j ∈
L2(�×�) and γi I ∈ L2(�×�I ), which also implies γ� ∈ L2((�∪�I )×(�∪�I )).
We do not assume that (3) is symmetric for this type of kernels.
In the case of singular symmetric kernels we require the existence of constants 0 <

γ∗ ≤ γ ∗ < ∞ and a fraction s ∈ (0, 1), such that

γ∗ ≤ γ (x, y)||x − y||d+2s
2 ≤ γ ∗

for x ∈ � and y ∈ S1(x) ∪ S2(x). Also, since the singular kernel is required to be
symmetric, the condition γ (x, y) = γ (y, x), and, respectively, φ12(x, y) = φ21(y, x),
φi i (x, y) = φi i (y, x) has to hold. Because we do not need to define γI i , as described
above, there is no further symmetry condition for γi I required.

Example 2.1 One example of such a singular symmetric kernel is given by

γi j (x, y) := σi j (x, y)

||x − y||d+2s
2

χBε(x)(y), γi I (x, y) := σi I (x, y)

||x − y||d+2s
2

χBε(x)(y),

for i, j = 1, 2,

where s ∈ (0, 1), 0 < ε < ∞ and the functions σi j , σi I : Rd ×R
d → R are bounded

from below and above by some positive constants, say γ∗ and γ ∗. Additionally, the
σi i are assumed to be symmetric on � × � and σ12(x, y) = σ21(y, x) holds for
x, y ∈ � ∪ �I .

For the forcing term f� in (1)we assume a dependency on the interface in the following
way

f�(x) :=
{

f1(x) : x ∈ �1

f2(x) : x ∈ �2,
(5)

where we assume that fi ∈ H1(�), i = 1, 2, because we need that f is weakly
differentiable in Sect. 4. Figure1 illustrates our setting.

Next, we introduce a variational formulation of problem (1). For this purpose we
define the corresponding forms

A�(u, v) := (−L�u, v)L2(�) and F�(v) := ( f�, v)L2(�) (6)

for some functions u, v : �∪�I → R, where v = 0 on�I . By inserting the definitions
of the nonlocal operator (2) with the kernel given in (4) and the definition of the forcing
term (5), we obtain the nonlocal bilinear form
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Fig. 1 Here you can see one
example configuration, where
the domain � is divided in �1
and �2 with � = ∂�1 and �I is
the nonlocal interaction domain.
In this case the support of
γ11(x, ·) for one x ∈ �1 is
depicted in blue and the support
of γ22(y, ·) for one y ∈ �2 is
colored in red, where the latter
can be expressed by using the
|| · ||∞-ball in R

2

A�(u, v) =
∫

�

v(x)
∫
Rd

(u(x)γ�(x, y) − u(y)γ�(y, x))dydx

=
∑

i, j=1,2

∫
�i

v(x)
∫

� j

(
u(x)γi j (x, y) − u(y)γ j i (y, x)

)
dydx

+
∑

i=1,2

∫
�i

v(x)u(x)
∫

�I

γi I (x, y)dydx (7)

=
∑

i, j=1,2

1

2

∫
�i

∫
� j

(v(x) − v(y))
(
u(x)γi j (x, y) − u(y)γ j i (y, x)

)
dydx

+
∑

i=1,2

∫
�i

v(x)u(x)
∫

�I

γi I (x, y)dydx (8)

and the linear functional

F�(v) =
∫

�

f�v dx =
∫

�1

f1v dx +
∫

�2

f2v dx. (9)

In order to derive the second bilinear form (8) we used Fubini’s theorem. We employ
both representations (7) and (8) of the nonlocal bilinear form in the proofs of Sect. 4.
For singular symmetric kernels we also use another equivalent representation of the
nonlocal bilinear form given by

A�(u, v) = 1

2

∫∫
(�∪�I )

2

(v(x) − v(y))(u(x) − u(y))γ�(x, y) dydx,
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where we again used Fubini’s theorem and applied that u, v = 0 on �I . Next, we
employ the nonlocal bilinear form to define a seminorm

|||u||| := √
A�(u, u).

With this seminorm, we further define the energy spaces

V (� ∪ �I ) := {u ∈ L2(� ∪ �I ) : ||u||V (�∪�I ) := |||u||| + ||u||L2(�∪�I )
< ∞} and

Vc(� ∪ �I ) := {u ∈ V (� ∪ �I ) : u = 0 on �I }.
(10)

We now formulate the variational formulation corresponding to problem (1) as follows

given f� ∈ H1(�) f ind u ∈ Vc(� ∪ �I ) such that
A�(u, v) = F�(v) f or all v ∈ Vc(� ∪ �I ).

(11)

Additionally, for s ∈ (0, 1) we define the seminorm

|u|Hs (�∪�I ) :=
∫

�∪�I

∫
�∪�I

(u(x) − u(y))2

||x − y||d+2s
2

dydx

and the fractional Sobolev space as

Hs(� ∪ �I ) := {u ∈ L2(� ∪ �I ) : ||u||Hs(�∪�I )

:= ||u||L2(�∪�I )
+ |u|Hs (�∪�I ) < ∞}.

Moreover, we denote the volume-constrained spaces by

L2
c(� ∪ �I ) := {u ∈ L2(� ∪ �I ) : u = 0 on �I } and

Hs
c (� ∪ �I ) := {u ∈ Hs(� ∪ �I ) : u = 0 on �I } for s ∈ (0, 1).

Then, for square integrable kernels one can show the equivalence between(
V (� ∪ �I ), || · ||V (�∪�I )

)
and

(
L2(� ∪ �I ), || · ||L2(�∪�I )

)
, i.e., there exist con-

stants C1, C2 > 0 such that

C1||u||L2(�∪�I )
≤ ||u||V (�∪�I ) ≤ C2||u||L2(�∪�I )

and consequently u ∈ V (� ∪ �I ) ⇔ u ∈ L2(� ∪ �I ). Additionally, one can proof
the equivalence of (Vc(� ∪ �I ), ||| · |||) and (

L2
c(� ∪ �I ), || · ||L2(�∪�I )

)
, see related

results in [24, 28, 61]. Moreover, the well-posedness of problem (11) for symmetric
(square integrable) kernels is proven in [24] and in [28] the well-posedness for some
nonsymmetric cases is also covered (again under certain conditions on the kernel
and the forcing term f ). For the singular symmetric kernels the well-posedness of
problem (11), the equivalence between

(
V (� ∪ �I ), || · ||V (�∪�I )

)
and the fractional
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Sobolev space
(
Hs(� ∪ �I ), || · ||Hs (�∪�I )

)
and between (Vc(� ∪ �I ), ||| · |||) and(

Hs
c (� ∪ �I ), | · |Hs (�∪�I )

)
is shown in [24].

Finally, let us suppose we are given measurements ū : � → R on the domain �,
which we assume to follow the nonlocal model (11) with the interface–dependent
kernel γ� and the forcing term f� defined in (3) and (5), respectively. In order to
formulate the shape derivative in Chapter 4 we need ū ∈ H1(�). Then, given the data
ū we aim at identifying the interface � for which the corresponding nonlocal solution
u(�) is the “best approximation” to these measurements. Mathematically spoken, we
formulate an optimal control problem with a tracking-type objective functional where
the interface � represents the control variable and is modeled as an element of a shape
space A, which will be specified in Chapter 3.1. We now assume � := (0, 1)2 and
introduce the following nonlocally constrained shape optimization problem

min
�∈A

J (u, �) (12)

s.t. u ∈ Vc(� ∪ �I ) :
A�(u, v) = F�(v) for all v ∈ Vc(� ∪ �I ).

The objective functional is given by

J (u, �) := j(u, �) + jreg(�) := 1

2

∫
�

(u − ū)2 dx + ν

∫
�

1 ds.

The first term j(u, �) is a standard L2 tracking-type functional, whereas the second
term jreg(�) is known as the perimeter regularization, which is commonly used in the
related literature to overcome possible ill-posedness of optimization problems [3].

3 Basic concepts in shape optimization

For solving the constrained shape optimization problem (12) we want to use the same
shape optimization algorithms as they are developed in [47, 48, 50] for problem classes
that are comparable in structure. Thus, in this section we briefly introduce the basic
concepts and ideas of the therein applied shape formalism. For a rigorous introduc-
tion to shape spaces, shape derivatives and shape calculus in general, we refer to the
monographs [16, 56, 62]. From now on, we restrict ourselves to the cases d ∈ {2, 3}
for the remaining part of this paper, since shape optimization problems are typically
formulated for a two- or three-dimensional setting.
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3.1 Notations and definitions

Based on our perception of the interface, we now refer to the image of a simple closed
and smooth sphere as a shape, i.e., the spaces of interest are subsets of

A :=
{
� := ϕ(Sd−1) : ϕ ∈ C∞(Sd−1,�) injective; ϕ′ �= 0

}
, (13)

where Sd−1 is the unit sphere in Rd . By the Jordan-Brouwer separation theorem [33]
such a shape � ∈ A divides the space into two (simply) connected components with
common boundary �. One of them is the bounded interior, which in our situation can
then be identified with �1.
Functionals J : A → R which assign a real number to a shape are called shape
functionals. Since this paper deals with minimizing such shape functionals, i.e., with
so-called shape optimization problems, we need to introduce the notion of an appro-
priate shape derivative. To this end we consider a family of mappings Ft : � → R

d

with F0 = id, where t ∈ [0, T ] and T ∈ (0,∞) sufficiently small, which transform
a shape � into a family of perturbed shapes

{
�t

}
t∈[0,T ], where �t := Ft(�) with

�0 = �. Here the family of mappings {Ft}t∈[0,T ] is described by the perturbation of
identity, which for a smooth vector field V ∈ Ck

0 (�,Rd), k ∈ N, is defined by

Ft(x) := x + tV(x), for all x ∈ �.

We note that for sufficiently small t ∈ [0, T ] the function Ft is injective, and thus
�t ∈ A. Then the Eulerian or directional derivative of a shape functional J at a shape
� in direction of a vector field V ∈ Ck

0 (�,Rd), k ∈ N, is defined by

D� J (�)[V] := d

dt

∣∣∣∣
t=0+

J (Ft(�)) = lim
t↘0

(J (Ft(�)) − J (�))

t
. (14)

If D� J (�)[V] exists for all V ∈ Ck
0 (�,Rd), V �→ D J (�)[V] is continuous and in

the dual space
(
Ck
0 (�,Rd)

)∗
, then D J (�)[V] is called the shape derivative of J [62,

Definition 4.6].
At this point, let us also define the material derivative of a family of functions
{vt : � → R : t ∈ [0, T ]} in direction V by

Dmv(x) := d

dt

∣∣∣∣
t=0+

vt (Ft(x)).

For functions v, which do not explicitly depend on the shape, i.e., vt = v for all t ∈
[0, T ], we find

Dmv = ∇v�V.

For more details on shape optimization we refer to the literature, e.g., [16] or [56].
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Remark 3.1 In case of the nonlocal problem (12) we extend the vector field V to
� ∪ �I by zero, i.e, V ∈ Ck

0 (� ∪ �I ,R
d) := {V : � ∪ �I → R

d : V|� ∈
Ck
0 (�,Rd) and V = 0 on �I }. Accordingly, the shape of the interaction domain �I

does not change. Moreover, in this work V ∈ C1
0(� ∪ �I ,R

d) is sufficient for all
computations.

3.2 Optimization approach: averaged adjoint method

Let us assume, that for each admissible shape �, there exists a unique solution u(�) of
the constraint equation, i.e., u(�) satisfies A�(u(�), v) = F�(v) for all v ∈ Vc(� ∪
�I ). Then we can consider the reduced problem

min
�

Jred(�) := J (u(�), �). (15)

In order to employ derivative based minimization algorithms, we need to derive the
shape derivative of the reduced objective functional Jred . By formally applying the
chain rule, we obtain

D� Jred(�)[V] = Du J (u(�), �)D�u(�)[V] + D� J (u(�), �)[V],

where Du J and D� J denote the partial derivatives of the objective J with respect
to the state variable u and the control �, respectively. In applications we typically
do not have an explicit formula for the control-to-state mapping u(�), so that we
cannot analytically quantify the sensitivity of the unique solution u(�) with respect to
the interface �. Thus, a formula for the shape derivative D�u(�)[V] is unattainable.
One possible approach to circumvent D�u(�)[V] and access the shape derivative
D� Jred(�)[V] is the averaged adjoint method (AAM) developed in [36, 57, 58],
which is a Lagrangian method, where the so-called Lagrangian functional is defined
as

L(u, �, v) := J (u, �) + A�(u, v) − F�(v).

The basic idea behind Lagrangian methods is the aspect, that we can express the
reduced functional as

Jred(�) = L(u(�), �, v), ∀v ∈ Vc(� ∪ �I ).

Now let� be fixed and denote by�t := Ft(�) and�t
i := Ft(�i ) the deformed interior

boundary and the deformed domains, respectively. Furthermore we indicate bywriting
�(�t ) that we use the decomposition�(�t ) = �t

1∪�t ∪�t
2 (= �), where�t = ∂�t

1.
Consequently, the norm || · ||V (�(�t )∪�I ) of the space V (�(�t ) ∪ �I ) differs from
the norm || · ||V (�∪�I ) of the space V (� ∪ �I ) due to the interface-sensitivity of the
kernel, see (10). Then we consider the reduced objective functional regarding �t , i.e.,

Jred(�t ) = L(u(�t ), �t , v), ∀v ∈ Vc(�(�t ) ∪ �I ), (16)
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where u(�t ) ∈ Vc(�(�t ) ∪ �I ). If we now try to differentiate L with respect to t
in order to derive the shape derivative, we would have to compute the derivative for
u(�t ) ◦ Ft and v ◦ Ft, where u(�t ), v ∈ Vc(�(�t ) ∪ �I ) may not be differentiable.
Additionally the norm || · ||V (�(�t )∪�I ), and therefore the space Vc(�(�t ) ∪ �I ),
is also dependent on t . Instead, since Ft is a homeomorphism, we can use that for
u, v ∈ Vc(�(�t ) ∪ �I ), there exist functions ũ, ṽ ∈ Vc(� ∪ �I ), such that

u = ũ ◦ F−1
t and v = ṽ ◦ F−1

t .

Moreover let T ∈ (0,∞) be sufficiently small. Then we define

J : [0, T ] × Vc(� ∪ �I ) → R,

J (t, u) := J (u ◦ F−1
t , �t ),

A : [0, T ] × Vc(� ∪ �I ) × Vc(� ∪ �I ) → R,

A(t, u, v) := A�t (u ◦ F−1
t , v ◦ F−1

t ),

F : [0, T ] × Vc(� ∪ �I ) → R,

F(t, v) := F�t (v ◦ F−1
t ),

G : [0, T ] × Vc(� ∪ �I ) × Vc(� ∪ �I ) → R,

G(t, u, v) := L(u ◦ F−1
t , �t , v ◦ F−1

t ) = J (t, u) + A(t, u, v) − F(t, v). (17)

Then we can reformulate (16) as

Jred(�t ) = G(t, ut , v), ∀v ∈ Vc(� ∪ �I ),

where ut ∈ Vc(�∪�I ) is the unique solution of the nonlocal equation corresponding
to �t

A(t, u, v) − F(t, v) = 0, ∀v ∈ Vc(� ∪ �I ).

Furthermore A(t, u, v) − F(t, v) is obviously linear in v for all (t, u) ∈ [0, T ] ×
Vc(�∪�I ), which is one prerequisite of the AAM. Then, in order to use the AAM to
compute the shape derivative, the following additional assumptions have to be met.

• Assumption (H0): For every (t, v) ∈ [0, T ] × Vc(� ∪ �I )

1. [0, 1] � s �→ G(t, sut + (1 − s)u0, v) is absolutely continuous and
2. [0, 1] � s �→ du G(t, sut + (1 − s)u0, v)[ũ] ∈ L1((0, 1)) for all ũ ∈ Vc(� ∪

�I ).

• For every t ∈ [0, T ] there exists a unique solution vt ∈ L2(�), such that vt solves
the averaged adjoint equation

∫ 1

0
duG(t, sut + (1 − s)u0, vt )[ũ]ds = 0 for all ũ ∈ Vc(� ∪ �I ). (18)
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• Assumption (H1):
Assume that the following equation holds

lim
t↘0

G(t, u0, vt ) − G(0, u0, vt )

t
= ∂t G(0, u0, v0).

In our case, due to the linearity of A(t, ũ, vt ) in the second argument, the left-hand
side of the averaged adjoint equation (18) can be formulated as

∫ 1

0
du G(t, sut + (1 − s)u0, vt )[ũ] ds = A(t, ũ, vt ) +

∫
�

(
1

2
(ut + u0) − ūt

)
ũξ t dx,

where ξ t (x) := det DFt(x) and ūt (x) := ū(Ft(x)). As a consequence, (18) is equiva-
lent to

A(t, ũ, vt ) = −
∫

�

(
1

2

(
ut + u0

)
− ūt

)
ũξ t dx ∀ũ ∈ Vc(� ∪ �I ).

For t = 0 we get

A(0, ũ, v0) = −
∫

�

(u0 − ū)ũ dx ∀ũ ∈ Vc(� ∪ �I ). (19)

In this case we call (19) adjoint equation and the solution v0 is referred to as the adjoint
solution. Moreover the nonlocal problem (11) for t = 0 is also called state equation
and the solution u0 is named state solution.

Finally, the next theoremyields a practical formula for deriving the shape derivative.

Theorem 3.2 ([36, Theorem 3.1]) Let the assumptions (H0) and (H1) be satisfied and
suppose there exists a unique solution vt to the averaged adjoint equation (18). Then
for v ∈ Vc(� ∪ �I ) we obtain

D� Jred(�)[V] = d

dt

∣∣∣∣
t=0+

Jred(�t ) = d

dt

∣∣∣∣
t=0+

G(t, ut , v) = ∂t G(0, u0, v0).

(20)

Proof See proof of [36, Theorem 3.1]. ��
Remark 3.3 Under the assumption that the material derivatives of u and v exist and
that Dmu, Dmv ∈ Vc(� ∪ �I ), one can also use the material derivative approach of
[7] to derive the shape derivative of the reduced functional (15).

3.3 Optimization algorithm

Let us assume for a moment that we have an explicit formula for the shape derivative
of the reduced objective functional. We now briefly recall the techniques developed
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in [50] and describe how to exploit this derivative for implementing gradient based
optimization methods or even Quasi-Newton methods, such as L-BFGS, to solve the
constrained shape optimization problem (12).

In order to identify gradients we need to require the notion of an inner product,
or more generally a Riemannian metric. Unfortunately, shape spaces typically do not
admit the structure of a linear space. However, in particular situations it is possible to
define appropriate quotient spaces, which can be equipped with a Riemannian struc-
ture. For instance consider the set A introduced in (13). Since we are only interested
in the image of the defining embedding, a re-parametrization thereof does not lead
to a different shape. Consequently, two spheres that are equal modulo (diffeomor-
phic) re-parametrizations define the same shape. This conception naturally leads to
the quotient space Emb(Sd−1,Rd)/Diff(Sd−1, Sd−1), which can be considered an
infinite-dimensional Riemannian manifold [39, 62]. This example already intimates
the difficulty of translating abstract shape derivatives into discrete optimization meth-
ods; see, e.g., the thesis [63] on this topic. A detailed discussion of these issues is not
the intention of this work and we now outline Algorithm 1.

The basic idea can be intuitively explained in the following way. Starting with an
initial guess �0, we aim to iterate in a steepest-descent fashion over interfaces �k until
we reach a “stationary point” of the reduced objective functional Jred . The interface
�k is encoded in the finite element mesh and transformations thereof are realized by
adding vector fields U : � → R

d (which can be interpreted as tangent vectors at a
fixed interface) to the finite element nodes which we denote by �k .

Thus, the essential part is to update the finite element mesh after each iteration by
adding an appropriate transformation vector field. For this purpose, we use the solution
U(�) : �(�) → R

d of the so-called deformation equation

a�(U(�),V) = D� Jred(�)[V] for all V ∈ H1
0 (�(�),Rd). (21)

The right-hand side of this equation is given by the shape derivative of the reduced
objective functional (20) and the left-hand side denotes an inner product on the vector
field space H1

0 (�,Rd). In the view of the manifold interpretation, we can consider a�

as inner product on the tangent space at �, so thatU(�) is interpretable as the gradient
of the shape functional Jred at �. The solution U(�) : � → R

d of (21) is then added
in a scaled version to the coordinates �k of the finite element nodes.
A common choice for a� is the bilinear form associated to the linear elasticity equation
given by

a�(U,V) =
∫

�(�)

σ (U) : ε(V) dx,

for U,V ∈ H1
0 (�,Rd) and the identity function Id : Rd → R

d , where

σ(U) := λtr(ε(U)) Id+2με(U) (22)
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and

ε(U) := 1

2
(∇U + ∇UT )

are the strain and stress tensors, respectively. Deformation vector fields V which do
not change the interface do not have an impact on the reduced objective functional, so
that

D� Jred(�)[V] = 0 for all V with supp(V) ∩ � = ∅.

Therefore, the right-hand side D� Jred(�)[V] is only assembled for test vector fields
whose support intersects with the interface � and set to zero for all other basis vector
fields. This prevents wrong mesh deformations resulting from discretization errors
as outlined and illustrated in [49]. Furthermore, λ and μ in (22) denote the Lamé
parameters which do not need to have a physical meaning here. It is more important
to understand their effect on the mesh deformation. They enable us to control the
stiffness of the material and thus can be interpreted as some sort of step size. In [47],
it is observed that locally varying Lamé parameters have a stabilizing effect on the
mesh. A good strategy is to choose λ = 0 and μ as solution of the following Laplace
equation

−�μ = 0 in �

μ = μmax on �

μ = μmin on ∂�.

(23)

Therefore μmin, μmax ∈ R influence the step size of the optimization algorithm. A
small step is achieved by the choice of a large μmax. Note that a� then depends on the
interface � through the parameter μ = μ(�) : �(�) → R.

How to perform the limited memory L-BFGS update in Line 13 of Algorithm 1
within the shape formalism is investigated in [49, Section 4]. Here, we only mention
that the therein examined vector transport is approximated with the identity operator,
so that we finally treat the gradientsUk : �k → R

d as vectors inRd|�k | and implement
the standard L-BFGS update [47, Section 5]. For the sufficient decrease condition in
Line 18 a small value for c, e.g., c = 10−4, is suggested in [40].

4 Shape derivative of the reduced objective functional

In Sect. 3 we have depicted the optimization methodology, that we follow in this work
to numerically solve the constrained shape optimization problem (12). First, we need
the following conclusion from [56, Proposition 2.32].

Lemma 4.1 If γ ∈ W 1,1(Rd × R
d ,R) and Ṽ ∈ C1

0(R
d × R

d ,Rd × R
d), then t �→

γ ◦ F̃t, where F̃t := (x, y) + tṼ(x, y), is differentiable in L1(Rd × R
d ,R) and its

derivative is given by
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Algorithm 1: Shape optimization algorithm

1 Initialize: γ�, f�, �0, ū, k = 1, maxiter ∈ N

2 while k ≤ maxiter (alternatively ‖D Jred (�k )‖ > tol) do
3 Interpolate ū onto the current finite element mesh �k
4 Assemble A� and solve state (11) and adjoint equation (19)
5 → u(�k ), v(�k )

6 Compute the mesh deformation

7 Assemble shape derivative D� Jred (�k )[V] = D� L(u(�k ), �k , v(�k ))[V] (20)
8 Set D� Jred (�k )[V] = 0 for all V with supp(V) ∩ �k = ∅
9 Compute locally varying Lamé parameter by solving (23)

10 Assemble linear elasticity a�k and solve the deformation equation (21)
11 → Uk
12 if curvature condition is satisfied then
13 Ũk = L-BFGS-Update
14 else
15 Ũk = −Uk
16 end if
17 Backtracking line search (with parameters α = 1, τ, c ∈ (0, 1))

18 while Jred ((Id+αŨk )(�k )) > Jred (�k ) + cD� Jred (�k )[Ũk ] do
19 α = τα

20 end while
21 → αk
22 Update mesh

23 �k+1 = (Id+αk Ũk )(�k )

24 k = k + 1
25 end while

d

dt

∣∣∣∣
t=0

γ ◦ F̃t = ∇γ T Ṽ.

Proof See proof of [56, Proposition 2.32]. ��
Remark 4.2 Given a subset D ⊂ R

d × R
d of nonzero measure, we can replace the

set Rd × R
d by D in Lemma 4.1 and the statement still holds, which can be proven

by extending functions γ ∈ W 1,1(D,R) and Ṽ ∈ C1
0(D, D) by zero to functions

γ̂ ∈ W 1,1(Rd × R
d ,R) and

V̂ ∈ C1
0(R

d × R
d ,Rd × R

d).

In our case, we set Ṽ(x, y) := (V(x),V(y)) in order to use Lemma 4.1 to derive
several derivatives in this section.

In order to prove the requirements of the AAM, we need some additional assump-
tions.
Assumption (P0):

• For every t ∈ [0, T ], there exist unique solutions ut , vt ∈ Vc(� ∪ �I ), such that

A(t, ut , v) = F(t, v) for all v ∈ Vc(� ∪ �I ) and

A(t, u, vt ) =
(

−(
1

2
(ut + u0) − ūt )ξ t , u

)
L2(�∪�I )

for all u ∈ Vc(� ∪ �I ),

(24)
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where A(t, u, v) and F(t, v) are defined as in (17), ūt (x) := ū(Ft(x)) and
ξ t (x) := det DFt(x).

• Additionally assume that there exists a constant 0 < C0 < ∞, such that

A(t, u, u) ≥ C0||u||2L2(�)
for all t ∈ [0, T ] and u ∈ Vc(� ∪ �I ),

where A is defined as in (17).

Assumption (P1):
For each class of kernels additional requirements have to hold:

• Define the sets Dn := {(x, y) ∈ (� ∪ �I )
2 : ||x − y||2 > 1

n } for n ∈ N.

Then, singular kernels are assumed to have weak derivatives ∇xγ,∇yγ ∈
L1(Dn,R

d) for all n ∈ N with

|∇xγi j (x, y)�V(x) + ∇yγi j (x, y)�V(y)|||x − y||d+2s
2 ∈ L∞(� × �) and

|∇xγi I (x, y)�V(x)|||x − y||d+2s
2 ∈ L∞(� × �I ).

• Square integrable kernels have to meet the following conditions

γi j ,∇γi j ∈ L∞(� × �) and

γi I ,∇γi I ∈ L∞(� × �I ).

Remark 4.3 We recall that there exists a Lipschitz constant L > 0 such that

||F−1
t (x) − F−1

t (y)||2 ≤ 1

L
||x − y||2 for x, y ∈ � ∪ �I and t ∈ [0, T ],

if T > 0 is chosen small enough. Consequently we derive

γ t (x, y) = γ (Ft(x),Ft(x)) ≤ γ ∗
||Ft(x) − Ft(y)||d+2s

2

≤ Lγ ∗
||x − y||d+2s

2

for x, y ∈ � ∪ �I .

Therefore γ t (x, y) ≤ Lγ ∗
||x−y||d+2 s

2
< Lγ ∗nd+2 s for (x, y) ∈ Dn , t ∈ [0, T ] and we get

γ t ∈ W 1,1(Dn,R) for singular symmetric kernels if Assumption (P1) is fulfilled.

Singular kernels already satisfy Assumption (P0) since the nonlocal equations in
the first condition are well-posed, which can trivially be proven by using the theory
of [24, 61]. Additionally, singular kernels also fulfill the second requirement of (P0),
which is shown in the following Lemma:

Lemma 4.4 In the case of a singular kernel, there exists a constant 0 < C0 < ∞, so
that

A(t, u, u) ≥ C0||u||L2(�), for every t ∈ [0, T ], u ∈ Hs(�).
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Proof Let ε := min{ε11, ε12}. Applying [24, Lemma 4.3] there exists a constant C∗ > 0
for the kernel γ∗

||x−y||d+2 s χBε(x)(y), s.t.

C∗||u||L2(�) ≤
∫∫

(�∪�I )
2

1

2
(u(x) − u(y))2

γ∗
||x − y||d+2s

2

χBε(x)(y) dydx

=
∫∫

(Ft(�)∪�I )
2

1

2
(u(x) − u(y))2

γ∗
||x − y||d+2s

2

χBε(x)(y) dydx

≤
∫∫

(Ft(�)∪�I )
2

1

2
(u(x) − u(y))2γ (x, y)χBε(x)(y) dydx = A�t (u, u)

So we conclude

C∗||u ◦ F−1
t ||2L2(�)

≤ A�t (u ◦ F−1
t , u ◦ F−1

t ) = A(t, u, u).

Since T is chosen small enough, [0, T ] × �̄ is a compact set and ξ t is continuous
on [0, T ] × �̄, there exists ξ∗ > 0, s.t. ξ t (x) ≥ ξ∗ for every t ∈ [0, T ] and x ∈ �̄.
Therefore, by using that Ft(�) = �, we derive

||u ◦ F−1
t ||2L2(�)

=
∫

�

(u ◦ F−1
t )2 dx =

∫
Ft(�)

(u ◦ F−1
t )2 dx

=
∫

�

u2ξ t dx ≥ ξ∗
∫

�

u2 dx = ξ∗||u||2L2(�)
.

��
In the following we prove that assumption (P1) also holds for a standard example of
a singular symmetric kernel.

Example 4.5 For γ (x, y) = σ(x,y)
||x−y||d+2 s χBε(x)(y) of Example 2.1, where additionally

there exists a constant σ ∗ ∈ (0,∞) with |∇xσ |, |∇yσ | ≤ σ ∗, the assumption (P1)
holds, since � ∪ �I is a bounded domain and

|∇xγ (x, y)�V(x) + ∇yγ (x, y)�V(y)|||x − y||d+2s
2

≤ |σ(x, y)
(x − y)�(V(x) − V(y))

||x − y||22
| + |∇xσ(x, y)�V(x) + ∇yσ(x, y)�V(y)|

≤ Lγ ∗ + 2σ ∗V∗ < ∞,

where we used that V ∈ C1
0(� ∪ �I ,R

d) is Lipschitz continuous for some Lipschitz
constant L > 0 and that there exists a V∗ > 0 with |V(x)| ≤ V∗ for x ∈ � ∪ �I .

Now we can show, that the additional requirements of AAM are satisfied by problem
(12):
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Lemma 4.6 Let G be defined as in (17) and let the assumptions (P0) and (P1) be
fulfilled. Then the assumptions (H0) and (H1) are satisfied and for every t ∈ [0, T ]
there exists a solution vt ∈ Vc(� ∪ �I ) that solves the averaged adjoint equation (18).

Proof Because of the length of the proof, we move it to Appendix A. ��
As a direct consequence of Theorem 3.2 and Lemma 4.6 we can state the next

Corollary.

Corollary 4.7 Let G be defined as in (17) and (P0) and (P1) be fulfilled. Then the
reduced cost functional of (12) is shape differentiable and the shape derivative of the
reduced cost functional can be expressed as

D� Jred(�)[V] = ∂t G(0, u0, v0),

where u0 is the solution to the state equation (11) and v0 the solution to the adjoint
equation (19).

The missing piece to implement the respective algorithmic realization presented in
Section 3.3 is the shape derivative of the reduced objective functional, which is used
in
Line 7 of Algorithm 1 and given by

D� Jred(�)[V] = ∂t G(0, u0, v0) = d

dt

∣∣∣∣
t=0+

J (t, u0) + d

dt

∣∣∣∣
t=0+

A(t, u0, v0) − d

dt

∣∣∣∣
t=0+

F(t, v0).

(25)

As a first step, we formulate the shape derivative of the objective functional J and the
linear functional F , which can also be found in the standard literature.

Theorem 4.8 (Shape derivative of the reduced objective functional) Let the assump-
tions (P0) and (P1) be satisfied. Further let � be a shape with corresponding state
variable u0 and adjoint variable v0. Then, for a vector field V ∈ C1

0(� ∪ �I ,R
d) we

find

D� Jred(�)[V] =
∫

�

−(u0 − ū)∇ū�V + (u0 − ū)2 divV dx

+ ν

∫
�

divV − n�∇V�n ds

−
∫

�

Dm f�v0 + divV( f v0) dx + D� A�(u0, v0)[V].

(26)

Proof In order to prove this theorem, we just have to compute the shape derivative
of the objective function J (u0, �) and of the linear functional F�(v0). Therefore, let
ξ t (x) := det DFt(x).
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Then, we have ξ0(x) = det DF0(x) = det(I) = 1 and d
dt

∣∣
t=0+ ξ t = divV(see, e.g.,

[45]), such that the shape derivative of the right-hand side F� can be derived as a
consequence of [56, Proposition 2.32] and the product rule of Fréchet derivatives as
follows

D� F�(v0)[V] = d

dt

∣∣∣∣
t=0+

F�t (v0 ◦ F−1
t ) =

∫
�

d

dt

∣∣∣∣
t=0+

( f� ◦ Ft)v
0ξ t dx

=
∫

�

Dm f�v0 dx +
∫

�

f�v0 divV dx.

Moreover, the shape derivative of the objective functional can be written as

D� J (u0, �)[V] = D� j(u0, �)[V] + D� jreg(�)[V] = d

dt

∣∣∣∣
t=0+

j(u0 ◦ F−1
t , �t )

+ d

dt

∣∣∣∣
t=0+

jreg(�
t ).

Here the shape derivative of the regularization term is an immediate consequence of
[62, Theorem 4.13] and is given by

D� jreg(u
0, �)[V] = ν

∫
�

div� V ds = ν

∫
�

divV − n�∇V�n ds,

where n denotes the outer normal of �1. Additionally, we obtain for the shape deriva-
tive of the tracking-type functional

D� j(u0, �)[V] = d

dt

∣∣∣∣
t=0+

j(u0 ◦ F−1
t , �t ) = 1

2

d

dt

∣∣∣∣
t=0+

∫
Ft(�)

(u0 ◦ F−1
t − ū)2 dx

= 1

2

∫
�

d

dt

∣∣∣∣
t=0+

(u0 − ū ◦ Ft)
2ξ t dx

=
∫

�

−(u0 − ū)∇ū�V + (u0 − ū)2 divV dx.

Putting the above terms into equation (25) yields the formula of Theorem 4.8. ��

The last step to derive the shape derivative of the reduced objective functional (25) is
to compute the shape derivative of the nonlocal bilinear form A� .

Lemma 4.9 (Shape derivative of the nonlocal bilinear form) Let the assumptions (P0)
and (P1) be satisfied. Further let � be a shape with corresponding state variable u0
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and adjoint variable v0. Then for a vector field V ∈ C1
0(� ∪ �I ,R

d) we find for a
square integrable kernel γ that

d

dt

∣∣∣∣
t=0+

A(t, u0, v0) = D� A�(u0, v0)[V]

=
∑

i, j=1,2

∫
�i

∫
� j

(
v0(x) − v0(y)

) (
u0(x)∇xγi j (x, y) − u0(y)∇yγ j i (y, x)

)�
V(x)

+ (v0(x) − v0(y))(u0(x)γi j (x, y) − u0(y)γ j i (y, x)) divV(x) dydx

+
∑

i=1,2

∫
�i

∫
�I

u0(x)v0(x)∇xγi I (x, y)
�V(x) + u0(x)v0(x)γi I (x, y) divV(x) dydx.

(27)

and for a singular kernel γ that

D� A�(u0, v0)[V]
=

∑
i, j=1,2

1

2

∫
�i

∫
� j

(u0(x) − u0(y))(v0(x)

− v0(y))
(
∇xγi j (x, y)�V(x) + ∇yγi j (x, y)�V(y)

)
dydx

+
∑

i, j=1,2

∫
�i

∫
� j

(u0(x) − u0(y))(v0(x) − v0(y))γi j (x, y) divV(x) dydx

+
∑

i=1,2

∫
�i

∫
�I

(u0(x) − u0(y))(v0(x)

− v0(y))
(
∇xγi I (x, y)�V(x) + γi I (x, y) divV(x)

)
dydx.

Proof Define ξ t (x) := det DFt(x) and γ t
i j (x, y) := γi j (Ft(x),Ft(y)).

Case 1: Square integrable kernels
Then, we can write by using representation (8) of the nonlocal bilinear form A

A(t, u0, v0) = A�t (u0 ◦ F−1
t , v0 ◦ F−1

t )

= 1

2

∑
i, j=1,2

∫
�i

∫
� j

(
v0(x) − v0(y)

) (
u0(x)γ t

i j (x, y) − u0(y)γ t
j i (y, x)

)

ξ t (x)ξ t (y) dydx

+
∑

i=1,2

∫
�i

∫
�I

u0(x)v0(x)γi I (Ft(x), y)ξ t (x) dydx.

First, we recall that the function ξ t is continuously differentiable and d
dt

∣∣
t=0 ξ t (x) =

divV(x), see, e.g., [45].
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So we derive the shape derivative of the nonlocal bilinear form by applying Lemma
4.1, as described in Remark 4.2, on γi j ∈ W 1,1(�×�,R) and γi I ∈ W 1,1(�×�I ,R)

and by using the product rule for Fréchet derivatives

d

dt

∣∣∣∣
t=0+

A(t, u0, v0)

= 1

2

∑
i, j=1,2

∫
�i

∫
� j

(
v0(x) − v0(y)

) (
u0(x)∇xγi j (x, y) − u0(y)∇yγ j i (y, x)

)�
V(x)

+
(
v0(x) − v0(y)

) (
u0(x)∇yγi j (x, y) − u0(y)∇xγ j i (y, x)

)�
V(y)

+ (v0(x) − v0(y))(u0(x)γi j (x, y) − u0(y)γ j i (y, x))(divV(x) + divV(y)) dydx

+
∑

i=1,2

∫
�i

∫
�I

u0(x)v0(x)∇xγi I (x, y)
�V(x) + u0(x)v0(x)γi I (x, y) divV(x) dydx

=
∑

i, j=1,2

∫
�i

∫
� j

(
v0(x) − v0(y)

) (
u0(x)∇xγi j (x, y) − u0(y)∇yγ j i (y, x)

)�
V(x)

+ (v0(x) − v0(y))(u0(x)γi j (x, y) − u0(y)γ j i (y, x)) divV(x) dydx

+
∑

i=1,2

∫
�i

∫
�I

u0(x)v0(x)∇xγi I (x, y)
�V(x) + u0(x)v0(x)γi I (x, y) divV(x) dydx.

For the second equation, the following computations are used, which can be obtained
by applying Fubini’s theorem and by swapping x and y

∫
�i

∫
� j

(v0(x) − v0(y))(−u0(y)∇xγ j i (y, x)�V(y)) dydx

=
∫

� j

∫
�i

(v0(x) − v0(y))(u0(x)∇xγ j i (x, y)�V(x)) dydx,

∫
�i

∫
� j

(v0(x) − v0(y))u0(x)∇yγi j (x, y)�V(y) dydx

= −
∫

� j

∫
�i

(v0(x) − v0(y))u0(y)∇yγi j (y, x)�V(x) dydx and

∫
�i

∫
� j

(v0(x) − v0(y))(u0(x)γi j (x, y) − u0(y)γ j i (y, x)) divV(y) dydx

=
∫

� j

∫
�i

(v0(x) − v0(y))(u0(x)γ j i (x, y) − u0(y)γi j (y, x)) divV(x) dydx.

Case 2: Singular kernels
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Since ξ t (x) = det DFt(x) is continuous and therefore bounded on � ∪ �I , we get
that the double integral

A(t, u0, v0) = 1

2

∫∫
(�∪�I )

2

(u0(x) − u0(y))(v0(x) − v0(y))γ t (x, y)ξ t (x)ξ t (y) dydx

is well-defined(see also Remark 4.3). Moreover since γ t ∈ W 1,1(Dn,R) we can
conclude, as outlined in Remark 4.2, that the function γ t is differentiable in L1(Dn,R)

with

d

dt

∣∣∣∣
t=0

γ t (x, y) = ∇xγ (x, y)�V(x) + ∇yγ (x, y)�V(y).

Therefore, we follow
for the singular symmetric kernel

d

dt

∣∣∣∣
t=0

A(t, u0, v0) = lim
n→∞

d

dt

∣∣∣∣
t=0

1

2

∫∫
Dn

(u0(x) − u0(y))(v0(x)

− v0(y))γ t (x, y)ξ t (x)ξ t (y) dydx

= lim
n→∞

1

2

∫∫
Dn

(u0(x) − u0(y))(v0(x) − v0(y))

(
∇xγ (x, y)�V(x) + ∇yγ (x, y)�V(y)

)
dydx

+ lim
n→∞

1

2

∫∫
Dn

(u0(x) − u0(y))(v0(x) − v0(y))γ (x, y) (divV(x) + divV(y)) dydx

= 1

2

∫∫
(�∪�I )

2

(u0(x) − u0(y))(v0(x) − v0(y))
(
∇xγ (x, y)�V(x) + ∇yγ (x, y)�V(y)

)
dydx

+ 1

2

∫∫
(�∪�I )

2

(u0(x) − u0(y))(v0(x) − v0(y))γ (x, y) (divV(x) + divV(y)) dydx

=
∑

i, j=1,2

1

2

∫
�i

∫
� j

(u0(x) − u0(y))(v0(x) − v0(y))

(
∇xγi j (x, y)

�V(x) + ∇yγi j (x, y)
�V(y)

)
dydx (28)

+
∑

i, j=1,2

∫
�i

∫
� j

(u0(x) − u0(y))(v0(x) − v0(y))γi j (x, y) divV(x) dydx (29)

+
∑

i=1,2

∫
�i

∫
�I

(u0(x) − u0(y))(v0(x) − v0(y))

(
∇xγi I (x, y)

�V(x) + γi I (x, y) divV(x)
)

dydx, (30)
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where the integrals (28)–(30) are also well-defined, since divV is bounded on � and
Assumption (P1) yields the existence of derivatives ∇γi j and ∇γi I and of constants
0 ≤ C1, C2 < ∞ with

|∇xγi j (x, y)�V(x)+∇yγi j (x, y)�V(y)| ≤ C1

||x−y||d+2s
2

for a.e. (x, y) ∈ � × � and

|∇xγi I (x, y)�V(x)| ≤ C2

||x − y||d+2s
2

for a.e. (x, y) ∈ � × �I .

��

5 Numerical experiments

In this section,wewant to put the above derived formula (26) for the shape derivative of
the reduced objective functional into numerical practice. In the following numerical
examples we test one singular symmetric and one nonsymmetric square integrable
kernel. Specifically,

γ
sym
� (x, y) = φsym(x, y)χBδ(x)(y),

where

φsym(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
100dδ

1
||x−y||2+2s

2
if (x, y) ∈ �1 × �1,

1.0dδ
1

||x−y||2+2s
2

if (x, y) ∈ �2 × �2,

10dδ
1

||x−y||2+2s
2

else,

with with scaling constants dδ := 2−2 s
πδ2−2 s and

γ
nonsym
� (x, y) = φnonsym(x, y)χBδ(x)(y),

where

φnonsym(x, y) =
{
5.0cδ if x ∈ �1,

3.0cδ if x ∈ �2,

with scaling constants cδ := 1
δ4
. We truncate all kernel functions by ‖ · ‖2-balls of

radius δ = 0.1 so that � ∪ �I ⊂ [−δ, 1 + δ]2. As a right-hand side we choose a
piecewise constant function

f�(x) = 100χ�1(x) − 10χ�2(x),
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i.e., f1 = 100 and f2 = −10. We note that the nonsymmetric kernel γ nonsym satisfies
the conditions for the class of integrable kernels considered in [61], such that the cor-
responding nonlocal problem is well-posed and also assumptions (P0) and (P1) can
easily be verified in this case. The symmetric kernel γ sym is a special case of Example
2.1 and therefore the assumptions (P0) and (P1) are met. The well-posedness of the
nonlocal problem regarding the singular kernel is shown in [24]. As a perimeter regu-
larization we choose ν = 0.001 and, since we only utilize V with supp(V) ∩ �k �= ∅,
where �k is the current interface in iteration k of Algorithm 1, we additionally assume
that the nonlocal boundary has no direct influence on the shape derivative of the nonlo-
cal bilinear form D� A� , such that for allV ∈ C1

0(�∪�I ,R
2)with supp(V) ∩ �k �= ∅

we have for the square integrable kernel

D� A�(u0, v0)[V] =
∑

i, j=1,2

∫∫
�i ×� j

(
v0(x) − v0(y)

)
(

u0(x)∇xγi j (x, y) − u0(y)∇yγ j i (y, x)
)�

V(x) + (v0(x)

− v0(y))(u0(x)γi j (x, y) − u0(y)γ j i (y, x)) divV(x) dydx

and for the singular symmetric kernel

D� A�(u0, v0)[V]
=

∑
i, j=1,2

∫∫
�i ×� j

1

2
(u0(x) − u0(y))(v0(x) − v0(y))

(
∇xγi j (x, y)�V(x) + ∇yγi j (x, y)�V(y)

)
+ (u0(x) − u0(y))(v0(x) − v0(y))γi j (x, y) divV(x) dydx.

In order to solve problem (12), we apply a finite element method, where we employ
continuous piecewise linear basis functions on triangular grids for the discretization of
the nonlocal constraint equation. In particular we use the free meshing software Gmsh
[30] to construct themeshes and a customized version of thePythonpackage nlfem [35]
to assemble the stiffness matrices of the nonlocal state and adjoint equation as well as
the load vector regarding the shape derivative D� A� . Moreover, to assemble the load
vector of the state and adjoint equation and the shape derivatives D� J and D� F� ,
we employ the open-source finite element software FEniCS [1, 2]. For a detailed
discussion on the assembly of the nonlocal stiffness matrix we refer to [22, 35].
Here we solely emphasize how to implement a subdomain–dependent kernel of type
(3). During the mesh generation each triangle is labeled according to its subdomain
affiliation. Thus, whenever we integrate over a pair of two triangles, we can read out
the labels (i, j) and choose the corresponding kernel γi j .

The data ū is generated as solution u(�) of the constraint equation associated to a
target shape �. Thus the data is represented as a linear combination of basis functions
from the finite element basis. For the interpolation task in Line 3 of Algorithm 1
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Fig. 2 Example 1 for the singular symmetric kernel

Fig. 3 Example 1 for the nonsymmetric integrable kernel

we solely need to translate between (non-matching) finite element grids by using the
project function of FEniCS. In all examples below the target shape � is chosen to be
a circle of radius 0.25 centered at (0.5, 0.5).

We now present two different non-trivial examples which differ in the choice of the
initial guess �0. They are presented and described in the Figs. 2 and 4 for the singular
symmetric kernel and in the Figs. 3 and 5 for the nonsymmetric integrable kernel. In
each plot of the aforementioned figures the black line represents the target interface
�. Moreover the blue area depicts �1, the grey area �2 and the red area the nonlocal
interaction domain �I .

Since the start shapes are smaller than the target shape, the shape needs to expand
in the first few iterations. Thereby the nodes of the mesh are pushed towards the
boundary, so that the mesh quality decreases and the algorithm stagnates, because
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Fig. 4 Example 2 for the singular symmetric kernel

Fig. 5 Example 2 for the nonsymmetric integrable kernel

nodes are prohibited to be pushed outside of �. Therefore, we apply a remeshing
technique, where we remesh after the fifth and tenth iteration. In order to remesh, we
save the points of our current shape as a spline in a dummy.geo file, that also contains
the information of the nonlocal boundary, and then compute a new mesh with Gmsh.
In this new mesh the distance between the nodes and the boundary is sufficiently large
to attain a better improvement regarding the objective function value by the new mesh
deformations.

It is important to mention that computation times and the performance of Algo-
rithm 1 in general are very sensitive to the choice of parameters andmay strongly vary,
which is why reporting exact computation times is not very meaningful at this stage.
Particularly delicate choices are those of the system parameters including the kernel
(diffusion and convection) and the forcing term, which both determine the identifia-
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Fig. 6 In the first six or seven iterations the improvement regarding the objective function value is quite
high. After that the objective function value decreases in a much slower fashion. Due to the regularization
term the objective functional value will not converge to zero

bility of the model. But also the choice of Lamé parameters to control the step size,
specifically μmax (we set μmin = 0 in all experiments). The convergence history of
each experiment is shown in Fig. 6.

Moreover, especially in the case of systemparameterswith high interface-sensitivity
in combinationwith an inconveniently smallμmax , mesh deformationsmay be large in
the early phase of the algorithm. Thus, such mesh deformations Ũk of high magnitude
lead to destroyed meshes so that an evaluation of the reduced objective functional
Jred((Id+αŨk)(�k)), which requires the assembly of the nonlocal stiffness matrix,
becomes a pointless computation. In order to avoid such computations we first perform
a line search depending on one simple mesh quality criterion. More precisely, we
downscale the step size, i.e., α = τα, until all finite element nodes of the resulting
mesh (Id+αŨk)(�k) are a subset of �. After that, we continue with the backtracking
line search in Line 18 of Algorithm 1.

6 Concluding remarks and future work

We have conducted a numerical investigation of shape optimization problems which
are constrained by nonlocal systemmodels. We have proven through numerical exper-
iments the applicability of established shape optimization techniques for which the
shape derivative of the nonlocal bilinear form represents the novel ingredient. All
in all, this work is only a first step along the exploration of the interesting field of
nonlocally constrained shape optimization problems.
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A Proof of Lemma 4.6

Proof Define ūt (x) := ū(Ft(x)), ξ t (x) := det DFt(x), γ t
�(x, y)

:= γ�(Ft(x),Ft(y)), f t
�(x) := f�(Ft(x)) and ∇ f t

�(x) := ∇ f�(Ft(x)).
Assumption(H0):
Set G̃ : [0, 1] → R, G̃(s) = G(t, sut + (1 − s)u0, v). We show that G̃ is continuous
differentiable and therefore also absolutely continuous. By using the linearity of A we
can compute

∂s G̃(s) = duG(t, sut + (1 − s)u0, v)[ut − u0]
= du A(t, sut + (1 − s)u0, v)[ut − u0] + du J (t, sut + (1 − s)u0)[ut − u0]
= A(t, ut − u0, v) +

∫
�

(
sut + (1 − s)u0 − ūt

) (
ut − u0

)
ξ t dx

= A(t, ut − u0, v) + s
∫

�

(
ut − u0

)2
ξ t dx +

∫
�

(
u0 − ūt

) (
ut − u0

)
ξ t dx,

which is obviously continuous and therefore the first condition of Assumption (H0)
holds.

Furthermore the second criterion of (H0) is also satisfied:

∫ 1

0
|duG(t, sut + (1 − s)u0, v)[ũ]| ds

=
∫ 1

0
|A(t, ũ, v) +

∫
�

(sut + (1 − s)u0 − ū)ũξ t dx|ds

≤ |A(t, ũ, v)| +
∫ 1

0
s ds|

∫
�

(ut − u0)ũξ t dx| + |
∫

�

(u0 − ūt )ũξ t dx|

= |A(t, ũ, v)| + 1

2
|
∫

�

(ut − u0)ũξ t dx| + |
∫

�

(u0 − ūt )ũξ t dx| < ∞.

As mentioned in Sect. 3.2 the averaged adjoint equation (18) can be reformulated as

A(t, ũ, vt ) = −
∫

�

(
1

2
(ut + u0) − ūt

)
ũξ t dx for all ũ ∈ Vc(� ∪ �I ). (31)

Since the right hand side of (31) is a linear and continuous operator with regards to
ũ, Eq. (31) is a well-defined nonlocal problem, which has a unique solution vt due to
the assumptions (P0). By further using assumptions (P0), we can conclude for ut , that
there exists a C2 > 0, such that

||ut ||2L2(�)
≤ C1|A(t, ut , ut )| = C1|( f tξ t , ut )L2(�)| ≤ C1|| f tξ t ||L2(�)||ut ||L2(�)

⇒ ||ut ||L2(�) ≤ C1|| f tξ t ||L2(�) ≤ C2,

where we used in the last step, that || f t
�ξ t ||L2(�) → || f�||L2(�) ( [58, Lemma 2.16]).

Since ξ t (x) = det(I + t DV(x)) is continuous on [0, T ] × �̄, there exists a ξ̄ , such
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that |ξ t (x)| ≤ ξ̄ for all (t, x) ∈ [0, T ] × �̄. Because ūt → ū in L2(�), there exists a
C3 > 0 with ||ūt ||2 < C3 for t ∈ [0, T ]. Then we derive for vt that

||vt ||2L2(�)
≤ C1|A(t, vt , vt )| = C1|(1

2
(ut + u0) − ūt )ξ t , vt )L2(�)|

≤ ξ̄C1||1
2
(ut + u0) − ūt ||L2(�)||vt ||L2(�)

⇒ ||vt ||L2(�) ≤ ξ̄C1||1
2
(ut + u0) − ūt ||L2(�) ≤ ξ̄C1||ūt ||L2(�)

+ 1

2
ξ̄C1(||ut ||L2(�) + ||u0||L2(�))

≤ ξ̄C1C3 + ξ̄C1C2.

Assumption (H1):
Since ut and vt are bounded for t ∈ [0, T ], then for every sequence {tn}n∈N with
tn → 0 there exist subsequences {tnk }k∈N and {tnl }l∈N, such that there exist functions
q1, q2 ∈ L2(� ∪ �I ) with utnl ⇀q1 vtnk ⇀q2 in L2(� ∪ �I ).
In the next part of the proof, we will make use of the following observation: Let
{tk}k∈N ∈ [0, T ]N be a sequence with tk → 0 for k → ∞ and gt , htk , h0 ∈ L2(� ∪
�I ) for t ∈ [0, T ] and k ∈ N. Additionally, assume that gt → g0 and htk ⇀h0 in
L2(� ∪ �I ) holds. Then, we can conclude∣∣∣∣

∫
�

htk gt dx −
∫

�

h0g0 dx

∣∣∣∣ ≤
∣∣∣∣
∫

�

htk (gt − g0) dx

∣∣∣∣ +
∣∣∣∣
∫

�

(htk − h0)g0 dx

∣∣∣∣
≤ ||htk ||L2(�)||gt − g0||L2(�)+|

∫
�

(htk −h0)g0 dx| → 0 for k → ∞ and t ↘ 0.

(32)

Case 1: Proof of (H1) for square integrable kernels
Since φi j is essentially bounded on � × �, φi I is essentially bounded on � × �I and
ξ t is continuous and therefore bounded on �̄, we can conclude that

ψt (y) := (v(x) − v(y))γ t
�(x, y)ξ t (x)ξ t (y) ∈ L2(� ∪ �I )

Then, applying [58, Lemma 2.16] yields γ t → γ in L2(� × (� ∪ �I )) and therefore
γ t (x, y) → γ (x, y) for a.e. (x, y) ∈ � × (� ∪ �I ). As a consequence by using the
dominated convergence theorem we get

ψt (y) → (v(x) − v(y))γ�(x, y) in L2(� ∪ �I ) for t ↘ 0.

Thus, by (32) we derive

∫
�

(v(x) − v(y))(utnl (x)γ
tnl
� (x, y) − utnl (y)γ

tnl
� (y, x))ξ tnl (x)ξ tnl (y) dy

→
∫
�

(v(x) − v(y))(q1(x)γ�(x, y) − q1(y)γ�(y, x)) dy for x ∈ �, v ∈ L2
c(� ∪ �I ).
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Due to the continuity of parameter integrals, we have∫
�

∫
�

(v(x) − v(y))(utnl (x)γ
tnl
� (x, y) − utnl (y)γ

tnl
� (y, x))ξ tnl (x)ξ tnl (y) dydx

→
∫

�

∫
�

(v(x) − v(y))(q1(x)γ�(x, y) − q1(y)γ�(y, x)) dydx.

Analogously, we can show∫
�

utnl (x)v(x)
∫

�I

γ
tnl
� (x, y)ξ tnl (x) dydx →

∫
�

q1(x)v(x)
∫

�I

γ�(x, y) dydx.

So we can conclude liml→∞ A(tnl , utnl , v) = A(0, q1, v). Because f t
�ξ t → f� in

L2(�) according to [58, Lemma 2.16], we can compute for all v ∈ L2
c(� ∪ �I )

A(0, q1, v) = lim
l→∞ A(tnl , utnl , v) = lim

l→∞

∫
�

f
tnl
� vξ tnl dx =

∫
�

f�v dx.

Since the solution is unique we derive q1 = u0 and ut⇀u0. Similarly, we have for q2
and for all ũ ∈ L2

c(� ∪ �I )

A(0, ũ, q2) = lim
k→∞ A(tnk , ũ, vtnk ) = − lim

k→∞

∫
�

(
1

2
(utnk + u0) − ūtnk )ũξ tnk dx

= −
∫

�

(u0 − ū)ũ dx.

So we conclude q2 = v0 and vt⇀v0(t ↘ 0). By using the mean value theorem, there
exist st ∈ (0, t), s.t. st → 0(t ↘ 0) and

G(t, u0, vt ) − G(0, u0, vt )

t
= ∂t G(st , u0, vt ).

Therefore we now prove assumption (H1) by showing

lim
s,t↘0

∂t G(t, u0, vs) = ∂t G(0, u0, v0).

Computing the derivative regarding t yields

∂t G(t, u0, vs) = ∂t A(t, u0, vs) − ∂t F(t, vs) + ∂t J (t, u0).

First we can show

∂t F(t, vs) =
∫

�

(∇ f t
�)�Vvsξ t dx +

∫
�

f t
�vs d

dr

∣∣∣∣
r=t+

ξ r dx

→
∫

�

(∇ f�)�Vv0 dx +
∫

�

f�v0 divV dx = ∂t F(0, v0) as follows:

(33)
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By applying [58, Lemma 2.16], we obtain ∇ f t
�ξ t → ∇ f� in L2(�,Rd) and

f t
� → f� in L2(�). Since every V ∈ C1

0(� ∪ �I ,R
d) is bounded, we can con-

clude (∇ f t
�)�Vξ t → ∇ f �

� V in L2(�). Moreover for every t ∈ [0, T ) the derivative
d
dr

∣∣
r=t+ ξ r = d

dr

∣∣
r=t+ det(I + r DV) is continuous in r and d

dr

∣∣
r=0+ ξ r = divV(see

e.g. [45]), so we derive f t
�

d
dr

∣∣
r=t+ ξ r → f� divV in L2(�). Again by using (32), we

obtain the convergence in (33).
Analogously, the convergence of limt↘0 ∂t J (t, u0) = ∂t J (0, u0) can be shown.
Furthermore, we now employ representation (7) of the nonlocal bilinear form A to
compute the partial derivative of A regarding t

∂t A(t, u0, vs)

=
∫
�

∫
�∪�I

vs(x)
(

u0(x)∇xγ
t
�(x, y) − u0(y)∇yγ

t
�(y, x)

)�
V(x)ξ t (x)ξ t (y)︸ ︷︷ ︸

=:A1(t,u0)(x,y)

dydx

+
∫
�

∫
�∪�I

vs(x)
(

u0(x)∇yγ
t
�(x, y) − u0(y)∇xγ

t
�(y, x)

)�
V(y)ξ t (x)ξ t (y)︸ ︷︷ ︸

A2(t,u0)(x,y)

dydx

+
∫
�

∫
�∪�I

vs(x)
(

u0(x)γ t
�(x, y) − u0(y)γ t

�(y, x)
) d

dr

∣∣∣∣
r=t+

(
ξr (x)ξr (y)

)
︸ ︷︷ ︸

A3(t,u0)(x,y)

dydx.

Since d
dr

∣∣
r=t+ ξ r (x) and ξ t (x) are continuous in x ∈ �̄, φi j ,∇φi j are essen-

tially bounded for (x, y) ∈ �̄ × �̄ and φi I ,∇φi I are essentially bounded for
(x, y) ∈ �̄ × �̄I , we can conclude in the same manner as above that Ai (t, u0)(x, ·) ∈
L2(� ∪ �I ) for all x ∈ � \ � and therefore

∫
�

∫
�∪�I

vs(x)Ai (t, u0)(x, y) dydx

→
∫

�

∫
�∪�I

v0(x)Ai (0, u0)(x, y) dydx (i = 1, 2, 3).

As a consequence, we derive lims,t↘0 ∂t A(t, u0, vs) = ∂t A(0, u0, v0).
All in all, we obtain

lim
s,t↘0

∂t G(t, u0, vs) = lim
s,t↘0

∂t A(t, u0, vs) − lim
s,t↘0

∂t F(t, vs) + lim
t↘0

∂t J (t, u0)

= ∂t A(0, u0, v0) − ∂t F(0, v0) + ∂t J (0, u0) = ∂t G(0, u0, v0).

Case 2: Proof of (H1) for singular kernels
Define Dn := {(x, y) ∈ (� ∪ �I )

2 : ||x − y||2 > 1
n } for n ∈ N. Since, as shown in

Remark 4.3, γ t (x, y) < Lγ ∗nd+2 s for all t ∈ [0, T ], (x, y) ∈ Dn and ξ t is continuous
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on �̄ ∪ �̄I , we can conclude that∫∫
(�∪�I )

2

(
(v(x) − v(y))γ tl (x, y)ξ tl (x)ξ tl (y)χDn (x, y)

)2
dydx < ∞

and by using [58, Lemma 2.16] that

lim
l→∞

∫∫
(�∪�I )

2

(v(x) − v(y))γ tl (x, y)ξ tl (x)ξ tl (y)χDn (x, y) dydx

=
∫∫

(�∪�I )
2

(v(x) − v(y))γ (x, y)χD0
n
(x, y) dydx.

With this convergence and (32), we derive the second step and with the dominated
convergence theorem we get the first and third step of the following computation

1

2

∫∫
(�∪�I )

2

(v(x) − v(y))(q1(x) − q1(y))γ (x, y) dydx

= lim
n→∞

1

2

∫∫
Dn

(v(x) − v(y))(q1(x) − q1(y))γ (x, y) dydx

= lim
n→∞ lim

l→∞
1

2

∫∫
Dn

(v(x) − v(y))(utl (x) − utl (y))γ tl (x, y)ξ tl (x)ξ tl (y) dydx

= lim
l→∞

1

2

∫∫
(�∪�I )

2

(v(x) − v(y))(utl (x) − utl (y))γ tl (x, y)ξ tl (x)ξ tl (y) dydx

= lim
l→∞

∫
�

f tl vξ tl dx =
∫

�

f v dx.

So we can conclude, that q1 = u0 and ut⇀u0. Analogously, we can show

1

2

∫∫
(�∪�I )

2

(u(x) − u(y))(q2(x) − q2(y))γ (x, y) dydx

= lim
n→∞

1

2

∫∫
Dn

(u(x) − u(y))(q2(x) − q2(y))γ (x, y) dydx

= lim
k→∞ lim

n→∞
1

2

∫∫
Dn

(u(x) − u(y))(vtk (x) − vtk (y))γ tk (x, y)ξ tk (x)ξ tk (y) dydx

= lim
k→∞

1

2

∫∫
(�∪�I )

2

(u(x) − u(y))(vtk (x) − vtk (y))γ tk (x, y)ξ tk (x)ξ tk (y) dydx
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= − lim
k→∞

∫
�

(
1

2
(utk + u0) − ūtk

)
uξ tk dydx = −

∫
�

(u0 − ū)u dx

and therefore derive q2 = v0 and vt⇀v0. As in case 1, the next step is to prove

lim
s,t↘0

∂t G(t, u0, vs) = ∂t G(0, u0, v0).

By again applying (32) and the dominated convergence theorem we conclude

lim
s,t↘0

∂t A(t, u0, vs)

= lim
s,t↘0

1

2

∫∫
(�∪�I )

2

(vs(x) − vs(y))(u0(x) − u0(y))γ t (x, y)
d

dr

∣∣∣∣
r=t+

(ξ r (x)ξ r (y)) dydx

+ lim
s,t↘0

1

2

∫∫
(�∪�I )

2

(vs(x) − vs(y))(u0(x) − u0(y))(∇xγ
t (x, y)�V(x)

+ ∇yγ
t (x, y)�V(y))ξ t (x)ξ t (y) dydx

= lim
n→∞ lim

s,t↘0

1

2

∫∫
Dn

(vs(x) − vs(y))(u0(x) − u0(y))γ t (x, y)
d

dr

∣∣∣∣
r=t+

(ξ r (x)ξ r (y)) dydx

+ lim
n→∞ lim

s,t↘0

1

2

∫∫
Dn

(vs(x) − vs(y))(u0(x) − u0(y))(∇xγ
t (x, y)�V(x)

+ ∇yγ
t (x, y)�V(y))ξ t (x)ξ t (y) dydx

= lim
n→∞

1

2

∫∫
Dn

(v0(x) − v0(y))(u0(x) − u0(y))γ (x, y)(divV(x) + divV(y)) dydx

+ lim
n→∞

1

2

∫∫
Dn

(v0(x) − v0(y))(u0(x) − u0(y))(∇xγ (x, y)�V(x)

+ ∇yγ (x, y)�V(y)) dydx

= 1

2

∫∫
(�∪�I )

2

(v0(x) − v0(y))(u0(x) − u0(y))γ (x, y)(divV(x) + divV(y)) dydx

+ 1

2

∫∫
(�∪�I )

2

(v0(x) − v0(y))(u0(x) − u0(y))(∇xγ (x, y)�V(x)

+ ∇yγ (x, y)�V(y)) dydx

= ∂t A(0, u0, v0)
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Analogously to case 1, we obtain

lim
s,t↘0

∂t G(t, u0, vs) = lim
s,t↘0

∂t A(t, u0, vs) − lim
s,t↘0

∂t F(t, vs) + lim
t↘0

∂t J (t, u0)

= ∂t A(0, u0, v0) − ∂t F(0, v0) + ∂t J (0, u0) = ∂t G(0, u0, v0).
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