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Abstract

Shape optimization methods have been proven useful for identifying interfaces in
models governed by partial differential equations. Here we consider a class of shape
optimization problems constrained by nonlocal equations which involve interface—
dependent kernels. We derive a novel shape derivative associated to the nonlocal
system model and solve the problem by established numerical techniques. The code for
obtaining the results in this paper is published at (https://github.com/schustermatthias/
nlshape).

Keywords Shape optimization - Nonlocal convection—diffusion - Finite element
method - Interface identification

1 Introduction

Many physical relations and data-based coherences cannot satisfactorily be described
by classical differential equations. Often they inherently possess some features, which
are not purely local. In this regard, mathematical models which are governed by non-
local operators enrich our modeling spectrum and present useful alternatives as well
as supplemental approaches. That is why they appear in a large variety of applications
including among others, anomalous or fractional diffusion [10, 11, 19], peridynamics
[25, 27, 54, 64], image processing [31, 38, 42], cardiology [14], machine learning
[44], as well as finance and jump processes [5, 6, 26, 37, 59]. Nonlocal operators
are integral operators allowing for interactions between two distinct points in space.
The nonlocal models investigated in this paper involve kernels that are not necessarily
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symmetric and which are assumed to have a finite range of nonlocal interactions; see,
e.g, [23, 24, 26, 60] and the references therein.

Not only the problem itself but also various optimization problems involving non-
local models of this type are treated in literature. For example matching-type problems
are treated in [18, 20, 21] to identify system parameters such as the forcing term or
a scalar diffusion parameter. The control variable is typically modeled to be an ele-
ment of a suitable function space. Moreover, nonlocal interface problems have become
popular in recent years [13, 17, 29, 32, 43]. However, shape optimization techniques
applied to nonlocal models can hardly be found in literature. For instance, the articles
[9,41, 55] deal with minimizing (functions of) eigenvalues of the fractional Laplacian
with respect to the domain of interest. Also, in [8, 15] the energy functional related to
fractional equations is minimized. In [12] a functional involving a more general kernel
is considered. All of the aforementioned papers are of theoretical nature only. To the
best of our knowledge, shape optimization problems involving nonlocal constraint
equations with truncated kernels and numerical methods for solving such problems
cannot yet be found in literature.

Instead, shape optimization problems which are constrained by partial differential
equations appear in many fields of application [34, 46, 52, 53] and particularly for
inverse problems where the parameter to be estimated, e.g., the diffusivity in a heat
equation model, is assumed to be defined piecewise on certain subdomains. Given a
rough picture of the configuration, shape optimization techniques can be successfully
applied to identify the detailed shape of these subdomains [48-50, 62].

In this paper we transfer the problem of parameter identification into a nonlocal
regime. Here, the parameter of interest is given by the kernel which describes the
nonlocal model. We assume that this kernel is defined piecewise with respect to a
given partition {€2;}; of the domain of interest 2. Thereby, the state of such a nonlocal
model depends on the interfaces between the respective subdomains €2;. Under the
assumption that we know the rough setting but are lacking in details, we can apply
the techniques developed in the aforementioned shape optimization papers to identify
these interfaces from a given measured state.

For this purpose we formulate a shape optimization problem which is constrained
by an interface—dependent nonlocal convection—diffusion model. Here, we do not aim
at investigating conceptual improvements of existing shape optimization algorithms.
On the contrary, we want to study the applicability of established methods for problems
of this type.

The realization of this plan basically requires two ingredients both of which are
worked out here. First, we define a reasonable interface—dependent nonlocal model
and provide a finite element code which discretizes a variational formulation thereof.
Second, we need to derive the shape derivative of the corresponding nonlocal bilinear
form which is then implemented into an overall shape optimization algorithm.

This leads to the following organization of the present paper. In Sect. 2 we formulate
the shape optimization problem including an interface—dependent nonlocal model.
Once established, we briefly recall basic concepts from the shape optimization regime
in Sect.3. Then Sect.4 is devoted to the task of computing the shape derivative of
the nonlocal bilinear form and the reduced objective functional. Finally we present
numerical illustrations in Sect. 5 which corroborate theoretical findings.
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2 Problem formulation

The system model to be considered is the homogeneous steady-state nonlocal Dirichlet
problem with volume constraints, given by

—Lru = fr onQ
u=0 on§&y,

ey

posed on a bounded domain 2 C RY, d € N and its nonlocal interaction domain Is
see, e.g, [4,23, 24,26, 60] and the references therein. Here, we assume that this domain
is partitioned into a simply connected interior subdomain 21 C 2 with boundary
I' := 0 and a domain 2, = Q\ﬁl. Thus we have Q = Q(I') = QUI'UQ,,
where U denotes the disjoint union. In the following, the boundary I" of the interior
domain 21 is called the inferface and is assumed to be an element of an appropriate
shape space; see also Sect. 3 for a related discussion. The governing operator Lr is an
interface—dependent, nonlocal convection—diffusion operator of the form

—Lru(x) = A{d w)yr(x,y) —u(y)yr(y.x))dy, @)

which is determined by a nonnegative, interface—dependent (interaction) kernel
yr: R? x RY — R. The second equation in (1) is called Dirichlet volume constraint.
It specifies the values of u on the interaction domain

Q= [y eRd\Q: Ix e Q:yrx,y) 750},

which consists of all points in the complement of €2 that interact with points in 2. For
ease of exposition, we set u = 0 on €2/, but generally we can use the constraintu = g
on 2y, if g satisfies some appropriate regularity assumptions.

Furthermore, we assume that the kernel depends on the interface in the following way

Y = Y Vi, &Y+ Y Vil Ve xe, &y, (3)
i,j=1.2 i=1,2

where X xQ; denotes the indicator of the set €; x £2;. For instance, in [51] the
authors refer to y;; and y;; as inter— and intra-—material coefficients. Notice that we do
not need kernels yy;, since u = 0 on ;. Furthermore, fori = 1, 2 let {S; (X) }xeq, wWith
Si(x) c Reforx e 2, be afamily of sets, where the symmetryy € S;(x) < x € S;(y)
for x,y €  holds. We additionally assume for i € {1, 2} that there exist two radii
0 < sil < 81.2 < 00 such that Bgil x) C Si(x) C Bsf(x) for all x € 2, where Bgt_k (x)
denotes the Euclidean ball of radius sl{‘.

Throughout this work we consider truncated interaction kernels, which can be
written as
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Vii(X, ¥) = @i (X, Y) x50 () and yi1 (X, y) = ¢i1 (X, ¥) x5, (y) fori, j =1,2
“4)

for appropriate positive functions ¢;; : RY x RY — Rand ¢;;: RY x RY — R, which
we refer to as kernel functions. In this paper we differentiate between square integrable
kernels and singular symmetric kernels. For square integrable kernels we require y;; €
L*2(QxQ)and y;; € L?(Q2x Q7), which also implies yr € L2((QUL;) x (QUL)).
We do not assume that (3) is symmetric for this type of kernels.

In the case of singular symmetric kernels we require the existence of constants 0 <
ys < ¥* < oo and a fraction s € (0, 1), such that

Ve < vEYIX —y|[4TF < p*

forx € Qandy € S1(x) U S>(x). Also, since the singular kernel is required to be
symmetric, the condition y (X, y) = y (y, X), and, respectively, ¢12(X, y) = ¢21(y, X),

¢ii (X, y) = ¢ii(y, X) has to hold. Because we do not need to define yy;, as described
above, there is no further symmetry condition for y;; required.

Example 2.1 One example of such a singular symmetric kernel is given by

%1 (x. ¥) xXB.x)(y), Yir(x,y): %ir (. y) XB.(x)(¥)
T 5. e (X ’ i ’ = T 5. e (X ’
lIx — y||4+2 lIx — y||972

fori,j=1,2,

vij(X,y) =

where s € (0, 1), 0 < ¢ < oo and the functions oj;, 0y : RY x R? — R are bounded
from below and above by some positive constants, say Y, and y*. Additionally, the
oj; are assumed to be symmetric on 2 x 2 and o12(X,y) = o21(y, X) holds for
X,y € QUQy.

For the forcing term fT in (1) we assume a dependency on the interface in the following
way

) xe
Jrx) = {fz(X) Cxe )

where we assume that f; € H 1(Q), i = 1,2, because we need that f is weakly
differentiable in Sect. 4. Figure 1 illustrates our setting.

Next, we introduce a variational formulation of problem (1). For this purpose we
define the corresponding forms

Ar(u,v) = (—Lru, U)LZ(Q) and Fr(v) := (fr, U)L2(sz) (6)
for some functions u#, v: QU — R, where v = O on 2. By inserting the definitions

of the nonlocal operator (2) with the kernel given in (4) and the definition of the forcing
term (5), we obtain the nonlocal bilinear form
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Fig.1 Here you can see one Q
example configuration, where L
the domain €2 is divided in
and 2, with T' = 9 and ; is 0y
the nonlocal interaction domain.
In this case the support of
y11(x, -) forone x € Q1 is
depicted in blue and the support
of y22(y, ) foroney € Q3 is
colored in red, where the latter
can be expressed by using the Ql
| - |loo-ball in R?

Y22

Ar(u, v) —/QU(X) Ad(u(X)Vr(X,y) —u(y)yr(y, x))dydx

3 /Q kS /Q (55 Y) — w3y ) dydx

ij=12

+ Z /Q v(X)u(x) /Qz il (X, y)dydx 0

i=1,2

1
= Y 5[ 0w - v @y - uyi0) dya
o Ja,

ij=12

+ Z /Q v(X)u(x) /Qz vir (X, y)dydx ®)

i=1,2

and the linear functional
F]"(U):/ frvdx=/ flvdx+f frv dx. O]
Q Ql QZ

In order to derive the second bilinear form (8) we used Fubini’s theorem. We employ
both representations (7) and (8) of the nonlocal bilinear form in the proofs of Sect. 4.
For singular symmetric kernels we also use another equivalent representation of the
nonlocal bilinear form given by

1
ArGe,v) = 5 / (W) — v ) — u¥)yr(x, y) dyds,
(QUQY)?
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where we again used Fubini’s theorem and applied that #, v = 0 on ;. Next, we
employ the nonlocal bilinear form to define a seminorm

ulll :== v/ Ar (u, u).

With this seminorm, we further define the energy spaces

VQUQ) = {ue LXQU : llullvue,) = llulll + llull2qug,) < o} and

Ve(QUQ ) i={ueV(QUS) :u=0o0ny).
(10)

We now formulate the variational formulation corresponding to problem (1) as follows

given fr € HY(Q) findu € V(U Q) such that

Ar(u,v) = Fr(v) forall v e V. (QUQy). an

Additionally, for s € (0, 1) we define the seminorm

lu| is (Que,) = / / (u(x) — u(y)” dydx
! Que; Jaug, ||x—y||dJr2Y

and the fractional Sobolev space as

H QU Q) := {u € LX(QU Q) : llullusuey)

= lullp2uey + ulEs (Que,) < 00}
Moreover, we denote the volume-constrained spaces by

L2(QUQ) :={ue L*(QUR) :u=0o0n;}and
HI(QUQ) ={ue H(QUSQ) :u=0o0n}fors € (0, 1).

Then, for square integrable kernels one can show the equivalence between
(viQuap, Il llvuep) and (L2 QU Q). || - lI12ua,) ) i-e.. there exist con-
stants Cq, Cp > 0 such that

Cl||M||L2(QUQ,) < [lullv@ue) < C2||M||L2(QUQ,)

and consequently u € V(QU Q) & u € L2 QU Q)). Additionally, one can proof
the equivalence of (V.(Q U ;). ||| - ||]) and (L2(Q U /). || - I;2(qug,)). see related
results in [24, 28, 61]. Moreover, the well-posedness of problem (11) for symmetric
(square integrable) kernels is proven in [24] and in [28] the well-posedness for some
nonsymmetric cases is also covered (again under certain conditions on the kernel
and the forcing term f). For the singular symmetric kernels the well-posedness of
problem (11), the equivalence between (V(Q uan, Il -llveua 1)) and the fractional
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Sobolev space (H* (U /), || - [l s @ug,)) and between (Ve(2 U ), || - [I]) and
(HL‘?(Q uen, |- |HS(QUQI)) is shown in [24].

Finally, let us suppose we are given measurements : 2 — R on the domain €2,
which we assume to follow the nonlocal model (11) with the interface—dependent
kernel yr and the forcing term fr defined in (3) and (5), respectively. In order to
formulate the shape derivative in Chapter 4 we need it € H'(2). Then, given the data
u we aim at identifying the interface I" for which the corresponding nonlocal solution
u(T") is the “best approximation” to these measurements. Mathematically spoken, we
formulate an optimal control problem with a tracking-type objective functional where
the interface I represents the control variable and is modeled as an element of a shape
space A, which will be specified in Chapter 3.1. We now assume  := (0, 1)? and
introduce the following nonlocally constrained shape optimization problem

min J(u, " 12
min (u,T) (12)

s.t.u e Ve (QUQp) :
Ar(u,v) = Fr(v) forallv e V. (QU Q).

The objective functional is given by
. . 1 _2
JW,T) = j, ) + jreg(I) :=§ (u—u) dx—+v | lds.
Q r

The first term j(u, I') is a standard L? tracking-type functional, whereas the second
term joq (I') is known as the perimeter regularization, which is commonly used in the
related literature to overcome possible ill-posedness of optimization problems [3].

3 Basic concepts in shape optimization

For solving the constrained shape optimization problem (12) we want to use the same
shape optimization algorithms as they are developed in [47, 48, 50] for problem classes
that are comparable in structure. Thus, in this section we briefly introduce the basic
concepts and ideas of the therein applied shape formalism. For a rigorous introduc-
tion to shape spaces, shape derivatives and shape calculus in general, we refer to the
monographs [16, 56, 62]. From now on, we restrict ourselves to the cases d € {2, 3}
for the remaining part of this paper, since shape optimization problems are typically
formulated for a two- or three-dimensional setting.
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3.1 Notations and definitions

Based on our perception of the interface, we now refer to the image of a simple closed
and smooth sphere as a shape, i.e., the spaces of interest are subsets of

A:=pw=¢w¢h:¢ecm@*%9ﬁmmma¢gﬁq, (13)

where $9~! is the unit sphere in R¢. By the Jordan-Brouwer separation theorem [33]
such a shape I € A divides the space into two (simply) connected components with
common boundary I". One of them is the bounded interior, which in our situation can
then be identified with 1.

Functionals J: A — R which assign a real number to a shape are called shape
functionals. Since this paper deals with minimizing such shape functionals, i.e., with
so-called shape optimization problems, we need to introduce the notion of an appro-
priate shape derivative. To this end we consider a family of mappings Fy: Q@ — R4
with Fg = id, where t € [0, T] and T € (0, 0o) sufficiently small, which transform
a shape I into a family of perturbed shapes {Ft}relo,rl’ where I'" := F¢(I") with

I'% = I". Here the family of mappings {Ft}c[0,1 1s described by the perturbation of
identity, which for a smooth vector field V € Clg (2, R4 ), k € N, is defined by

Fi(x) :=x+1tV(x), forallx € Q.
We note that for sufficiently small 7 € [0, T'] the function F¢ is injective, and thus

I'" € A. Then the Eulerian or directional derivative of a shape functional J at a shape
I" in direction of a vector field V € C(’)‘(Q, R4 ), k € N, is defined by

d J(Fy(I)) — J(T
DrJ(M)[V] = - J(Fy(I)) 22%( (Fe( )2 ( ))

=071

(14)

If DrJ(I)[V] exists forall V e Cg (€2, Rd), V — DJ(I')[V] is continuous and in

the dual space (CS(Q, Rd))*, then DJ (I")[V] is called the shape derivative of J [62,
Definition 4.6].

At this point, let us also define the material derivative of a family of functions
{v': Q — R:t € [0, T]} in direction V by

Dyv(x) := 4 v (Fy(x)).
dt

=0t

For functions v, which do not explicitly depend on the shape, i.e., v’ = v forallt €
[0, T], we find

Dyv=Vv'V.
For more details on shape optimization we refer to the literature, e.g., [16] or [56].
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Remark 3.1 In case of the nonlocal problem (12) we extend the vector field V to
QU Q; by zero, ie, V € CE(QUQ,RY) = {V:QUQ — R? : V|g €
CS(Q, R4) and V = 0 on Q;}. Accordingly, the shape of the interaction domain ;
does not change. Moreover, in this work V € C(l)(Q U Qy, R4 ) is sufficient for all
computations.

3.2 Optimization approach: averaged adjoint method

Let us assume, that for each admissible shape I', there exists a unique solution u(I") of
the constraint equation, i.e., u(I") satisfies Ar(u(I"), v) = Fr(v) forallv € V. (Q U
7). Then we can consider the reduced problem

min Je Ty == J (), T). (15)

In order to employ derivative based minimization algorithms, we need to derive the
shape derivative of the reduced objective functional J"¢?. By formally applying the
chain rule, we obtain

DrJ"(T)[V] = D,J ('), T)Dru()[V] + DrJ u(T'), T)[V],

where D,J and DrJ denote the partial derivatives of the objective J with respect
to the state variable u and the control I, respectively. In applications we typically
do not have an explicit formula for the control-to-state mapping u(I"), so that we
cannot analytically quantify the sensitivity of the unique solution « (I") with respect to
the interface I". Thus, a formula for the shape derivative Dru(I")[V] is unattainable.
One possible approach to circumvent Dru(I')[V] and access the shape derivative
DrJ"¢d(I")[V] is the averaged adjoint method (AAM) developed in [36, 57, 58],
which is a Lagrangian method, where the so-called Lagrangian functional is defined
as

Lu,T,v):=Ju, ')+ Ar(u, v) — Fr(v).

The basic idea behind Lagrangian methods is the aspect, that we can express the
reduced functional as

JTy) = Lw@),T,v), Yve V.(QUQ).

Now let I be fixed and denote by I'’ := F¢(I") and Qf := F(£2;) the deformed interior
boundary and the deformed domains, respectively. Furthermore we indicate by writing
Q(I'") that we use the decomposition Q(I'") = Q| UT"UQ) (= Q), where I = 9.
Consequently, the norm || - ||y qrug,) of the space V(Q(I'") U Q) differs from
the norm || - ||y (qug;,) of the space V (€2 U €2) due to the interface-sensitivity of the
kernel, see (10). Then we consider the reduced objective functional regarding ', i.e.,

JAThy = L(u(), T, v), Yve V.(QIHUQ, (16)
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where u(I'") € V.(Q('") U Q). If we now try to differentiate L with respect to ¢
in order to derive the shape derivative, we would have to compute the derivative for
u(I'") o Fy and v o Fy, where u(I'"), v € V.(Q(I'") U ;) may not be differentiable.
Additionally the norm || - ||y rug,), and therefore the space V.(Q(I'") U Q)),
is also dependent on 7. Instead, since Fy is a homeomorphism, we can use that for
u,v € V.(Q(") UQ), there exist functions i, U € V(2 U /), such that

uzﬁoF;I andv:ﬁoF{l.
Moreover let T € (0, oo) be sufficiently small. Then we define

J:[0,T] x V.(QUQ;) — R,
J(t,u) = JwoF ', T,
A:[0, T] x V. (QUR) x V.(QUL) — R,
A(t,u,v) := Ari(uo B ' v o B Y,
F:[0,T]xV.(QU;) — R,
F(t,v) == Fri(vo F ),
G:[0,T] x Va(QU) x V(QU Q) — R,
G(t,u,v) == LuoF ', T voF ")y =J(t,u) + A(t,u,v) — F(t,v). (17)

Then we can reformulate (16) as
Jr = G, u',v), Yve V(QUK,

where u’ € V,(2UQy) is the unique solution of the nonlocal equation corresponding
to '’

A(t,u,v) — F(t,v) =0, Vve V.(QU&Q).

Furthermore A(t, u, v) — F(t,v) is obviously linear in v for all (t,u) € [0, T] x
V(22U @), which is one prerequisite of the AAM. Then, in order to use the AAM to
compute the shape derivative, the following additional assumptions have to be met.

e Assumption (HO): For every (¢, v) € [0, T] x V(U Qp)

1. [0,1] 35 — G(t, sul + (1 — s)uo, v) is absolutely continuous and
2. 10,113 s — d,G(t, su’ + (1 — s)u®, v)[a] € L'((0, 1)) forall i € V.(QU
Q).

e Foreveryt € [0, T] there exists a unique solution v’ € LZ(Q), such that v solves

the averaged adjoint equation

1
/ duG(t, su' + (1 —s)u®, v)[ilds =0 foralli e V.(QUKQ). (18)
0
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e Assumption (H1):
Assume that the following equation holds

. G, ul v — G, u’ v
lim
IAN] t

= 9,G(0,u’, v°).

In our case, due to the linearity of A(z, i, v") in the second argument, the left-hand
side of the averaged adjoint equation (18) can be formulated as

1
f duG(t, su' + (1 —s)u, v))[i] ds =A(t,ﬁ,v’)+f (%(ut—f—uo)—ﬁt) it dx,
0 Q

where &'(x) := det DF¢(x) and i’ (x) := u(F¢(x)). As a consequence, (18) is equiva-
lent to

1
Al i, o) = _/ <_ (uf 4 u0> — iﬁ) A" dx Vi € V.(QU Q).
o \2
Fort = 0 we get

A0, i,0%) = —/ w® — i dx Vi e V.(QUQ)). (19)
Q

In this case we call (19) adjoint equation and the solution v is referred to as the adjoint
solution. Moreover the nonlocal problem (11) for t = 0 is also called state equation
and the solution 1 is named state solution.

Finally, the next theorem yields a practical formula for deriving the shape derivative.

Theorem 3.2 ([36, Theorem 3.1]) Let the assumptions (HO) and (H1) be satisfied and
suppose there exists a unique solution v' to the averaged adjoint equation (18). Then
forv € V.(2U Q) we obtain

d d

DrJ™(M)[V] = — Jredarhy = — G(t,u',v) = 8,G(0, u’, v°).
dt =0t dt =01

(20)

Proof See proof of [36, Theorem 3.1]. O

Remark 3.3 Under the assumption that the material derivatives of u# and v exist and
that D,,u, D,,v € V(2 U /), one can also use the material derivative approach of
[7] to derive the shape derivative of the reduced functional (15).

3.3 Optimization algorithm

Let us assume for a moment that we have an explicit formula for the shape derivative
of the reduced objective functional. We now briefly recall the techniques developed
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in [50] and describe how to exploit this derivative for implementing gradient based
optimization methods or even Quasi-Newton methods, such as L-BFGS, to solve the
constrained shape optimization problem (12).

In order to identify gradients we need to require the notion of an inner product,
or more generally a Riemannian metric. Unfortunately, shape spaces typically do not
admit the structure of a linear space. However, in particular situations it is possible to
define appropriate quotient spaces, which can be equipped with a Riemannian struc-
ture. For instance consider the set A introduced in (13). Since we are only interested
in the image of the defining embedding, a re-parametrization thereof does not lead
to a different shape. Consequently, two spheres that are equal modulo (diffeomor-
phic) re-parametrizations define the same shape. This conception naturally leads to
the quotient space Emb(Sd’] , Rd) / Diff (Sd’], Sd’]), which can be considered an
infinite-dimensional Riemannian manifold [39, 62]. This example already intimates
the difficulty of translating abstract shape derivatives into discrete optimization meth-
ods; see, e.g., the thesis [63] on this topic. A detailed discussion of these issues is not
the intention of this work and we now outline Algorithm 1.

The basic idea can be intuitively explained in the following way. Starting with an
initial guess I'g, we aim to iterate in a steepest-descent fashion over interfaces 'y until
we reach a “stationary point” of the reduced objective functional J"¢¢. The interface
I’y is encoded in the finite element mesh and transformations thereof are realized by
adding vector fields U: © — R? (which can be interpreted as tangent vectors at a
fixed interface) to the finite element nodes which we denote by Q.

Thus, the essential part is to update the finite element mesh after each iteration by
adding an appropriate transformation vector field. For this purpose, we use the solution
U): Q) — R? of the so-called deformation equation

ar(U("), V) = DrJ"()[V] forall V e H}(Q(I'), RY). (21)

The right-hand side of this equation is given by the shape derivative of the reduced
objective functional (20) and the left-hand side denotes an inner product on the vector
field space HO1 (2, R4 ). In the view of the manifold interpretation, we can consider ar
as inner product on the tangent space at I, so that U(I") is interpretable as the gradient
of the shape functional J"¢¢ at I". The solution U(I'): 2 — R< of (21) is then added
in a scaled version to the coordinates 2; of the finite element nodes.

A common choice for ar is the bilinear form associated to the linear elasticity equation
given by

ar(U, V) = / o(U) :e(V)dx,
Q)

forU,V € H(} (€2, R4 ) and the identity function Id : RY — RY, where
o (U) := Atr(e(U)) Id +2 e (U) 22)
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and
1
e(U) := E(VU +vu’h)

are the strain and stress tensors, respectively. Deformation vector fields V which do
not change the interface do not have an impact on the reduced objective functional, so
that

DrJ" 4 ()[V] =0 forall V with supp(V) N T = f.

Therefore, the right-hand side DrJ"¢4(I")[V] is only assembled for test vector fields
whose support intersects with the interface I" and set to zero for all other basis vector
fields. This prevents wrong mesh deformations resulting from discretization errors
as outlined and illustrated in [49]. Furthermore, A and p in (22) denote the Lamé
parameters which do not need to have a physical meaning here. It is more important
to understand their effect on the mesh deformation. They enable us to control the
stiffness of the material and thus can be interpreted as some sort of step size. In [47],
it is observed that locally varying Lamé parameters have a stabilizing effect on the
mesh. A good strategy is to choose A = 0 and p as solution of the following Laplace
equation

—Au =0 in
M= Umax onT (23)
M= [min ON 3.

Therefore pimin, Umax € R influence the step size of the optimization algorithm. A
small step is achieved by the choice of a large jtmax. Note that ar then depends on the
interface I through the parameter © = w(I'): Q) — R.

How to perform the limited memory L-BFGS update in Line 13 of Algorithm 1
within the shape formalism is investigated in [49, Section 4]. Here, we only mention
that the therein examined vector transport is approximated with the identity operator,
so that we finally treat the gradients Uy : € — R as vectors in R4/*! and implement
the standard L-BFGS update [47, Section 5]. For the sufficient decrease condition in
Line 18 a small value for ¢, e.g., c = 1074, is suggested in [40].

4 Shape derivative of the reduced objective functional

In Sect. 3 we have depicted the optimization methodology, that we follow in this work
to numerically solve the constrained shape optimization problem (12). First, we need
the following conclusion from [56, Proposition 2.32].

Lemma4.1 Ify € WH(RY x RY Ry and V € CLRY x R, RY x RY), then t
y o Ft, where i‘t = (X,y) + tV(x, y), is differentiable in LYRY x R4, R) and its
derivative is given by
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Algorithm 1: Shape optimization algorithm

1 Initialize: yr, fT, FO, U, k=1 maxiter e N
2 while k < maxi ter (alternatively | DJ"¢ (Ty)|| > tol) do

3 Interpolate i onto the current finite element mesh €2

4 Assemble Ar and solve state (11) and adjoint equation (19)

5 = u(Tg), v(ly)

6 Compute the mesh deformation

7 Assemble shape derivative Dp J”fd(Fk)[V] = DrL(Ty), Tk, v(Tr))[V] (20)
8 Set Dp J’ed(l“k)[V] =0 for all V with supp(V) N Ty =@

9 Compute locally varying Lamé parameter by solving (23)

10 Assemble linear elasticity ar, and solve the deformation equation (21)
11 — Uy

12 if curvature condition is satisfied then

13 ‘ ka = L-BFGS-Update

14 else

15 ‘ ka = —Uy

16 end if

17 Backtracking line search (with parameters « = 1, 7, ¢ € (0, 1))

18 while J7¢4 (Id +aUp)(Ty)) > J"¢4(Ty) + ¢ D J"¢4 () [Ux] do
19 ‘ o =rTa

20 end while

21 — ag

2 Update mesh

23 Qg1 = (d +o Ug ) ()

24 k=k+1

25 end while

d = v, TV
— o = .
ar| Ve B=vr

Proof See proof of [56, Proposition 2.32]. O

Remark 4.2 Given a subset D C R? x R? of nonzero measure, we can replace the
set R? x R by D in Lemma 4.1 and the statement still holds, which can be proven
by extending functions y € W!(D,R) and Ve Cé(D, D) by zero to functions
7y e WhI(RY x R, R) and

Ve CRY x R, RY x RY).

In our case, we set V(x, y) = (V(x), V(y)) in order to use Lemma 4.1 to derive

several derivatives in this section.
In order to prove the requirements of the AAM, we need some additional assump-

tions.
Assumption (P0):
e Forevery t € [0, T], there exist unique solutions u’, v’ € V(2 U ), such that

A(t,u',v) = F(t,v) forall v € V.(QU Q) and
1
At,u,v") = (—(—(ut +u%) — ahHe, u) forallu € V.(QU Qp),
2 L2(QUQ)
(24)
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where A(t, u, v) and F (¢, v) are defined as in (17), u’ (x) := u(F¢(x)) and
£1(x) := det DF¢(x).
e Additionally assume that there exists a constant 0 < Cp < oo, such that

A(t,u,u) = Collull?5 g, forall 1 € [0, T and u € V(U L)),

(€2)
where A is defined as in (17).

Assumption (P1):
For each class of kernels additional requirements have to hold:

e Define the sets D, := {(x,y) € (QU Q)% : ||x —yl||2 > %} forn € N.
Then, singular kernels are assumed to have weak derivatives Vyy, V,y €
LY (D,,R?) forall n € N with

IVxyij (%, ¥) T V) + Vyyi (x, ) T V)IIIX — yII5T € L®(Q x Q) and
IVayir (%, ) V)|l — yl[§72 € L®(Q x Q).

e Square integrable kernels have to meet the following conditions

Yij» Vvij € L%(2 x ©) and
Yir. Vvir € L%(2 x Q).

Remark 4.3 We recall that there exists a Lipschitz constant L > 0 such that
-1 -1 1
IFy" () —F Wl = L lIx —yll2 forx,y € U2 and t € [0, T,
if T > 0 is chosen small enough. Consequently we derive

y* - Ly
IF(x) — FeIIG 7~ (Ix —ylI3 2

Y (x,y) = y(Fe(x), Fe(x) < forx,y € QU Q.

Therefore y!(x,y) < HxLy% < Ly*n?*2$ for (x,y) € Dy, t € [0, T] and we get
—Jll2

yl e wbh1(D,, R) for singular symmetric kernels if Assumption (P1) is fulfilled.

Singular kernels already satisfy Assumption (P0) since the nonlocal equations in
the first condition are well-posed, which can trivially be proven by using the theory
of [24, 61]. Additionally, singular kernels also fulfill the second requirement of (P0),
which is shown in the following Lemma:

Lemma 4.4 In the case of a singular kernel, there exists a constant 0 < Cy < 00, S0
that

A(t,u,u) > Collullj2(q), foreveryt €[0,T], u € H*(Q).
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Proof Lete := min{e} , e;}. Applying [24, Lemma 4.3] there exists a constant C,, > 0
for the kernel Hx_y”% XB. ) (¥), s-t.

1
Cullull 2 < / / 5 G —u(y)? M X0 (¥) dydx

(QUQ)?

/ f —(u(x) —u(y)? o ”M X500 (¥) dydx
(Fr(Q)UQ))?

1

// E(”(X) —u(¥)?y (X, V) xB. 0 () dydx = A (u, 1)

(Fr(Q)UQ))?
So we conclude
Cyllu o Fy ||L2(Q) < Ari(u oFt ,uoFy ) = A(t,u,u).

Since T is clzosen small enough, [0, T] x Qisa compact set and &' is continuogs
on [0, T] x , there exists & > 0, s.t. £7(x) > &, forevery ¢t € [0, T] and x € Q.
Therefore, by using that F¢(2) = 2, we derive

llu o e 172 =/§2<qu:1>261>¢=/ (uoFh)? dx

Fe ()
=/u25f dxzs*/ u? dx = Ellull}2q)-
Q Q

O

In the following we prove that assumption (P1) also holds for a standard example of
a singular symmetric kernel.
ox

W XB.(x)(y) of Example 2.1, where additionally

there exists a constant 6* € (0, co) with |Vyxo|, |[Vyo| < o*, the assumption (P1)
holds, since 2 U 2; is a bounded domain and

Example 4.5 For y(x,y) =

IVxy (%, y) V&) + Vyy x, ) V)IlIx — ylI§ T
x—y T (V) - V(y)
lIx — ylI3

< Ly*+20*"V* < o0,

< lox,y)

|+ |Vxo (X, ) V(%) 4+ Vyo (x,¥) " V(y)|

where we used that V € C(l) (Q U Q7, RY) is Lipschitz continuous for some Lipschitz
constant L > 0 and that there exists a V* > 0 with [V(x)| < V*forx € QU ;.

Now we can show, that the additional requirements of AAM are satisfied by problem
12):
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Lemma 4.6 Let G be defined as in (17) and let the assumptions (P0) and (P1) be
fulfilled. Then the assumptions (HO) and (H1) are satisfied and for every t € [0, T
there exists a solution v' € V(2 U Q) that solves the averaged adjoint equation (18).

Proof Because of the length of the proof, we move it to Appendix A. O

As a direct consequence of Theorem 3.2 and Lemma 4.6 we can state the next
Corollary.

Corollary 4.7 Let G be defined as in (17) and (P0O) and (P1) be fulfilled. Then the
reduced cost functional of (12) is shape differentiable and the shape derivative of the
reduced cost functional can be expressed as

DrJ"(Q)[V] = G0, u’, "),

where u® is the solution to the state equation (11) and V0 the solution to the adjoint
equation (19).

The missing piece to implement the respective algorithmic realization presented in
Section 3.3 is the shape derivative of the reduced objective functional, which is used
in
Line 7 of Algorithm 1 and given by

d d
DrJ"()[V] = 8,G(0,u’, %) = — J(t,u) + —
dt t=0"* =0+
(25)
0.0 d 0
A(t,u”,v’) — — F(t,v).
dt =0+

As a first step, we formulate the shape derivative of the objective functional J and the
linear functional F, which can also be found in the standard literature.

Theorem 4.8 (Shape derivative of the reduced objective functional) Let the assump-
tions (P0) and (P1) be satisfied. Further let I" be a shape with corresponding state
variable u® and adjoint variable v°. Then, for a vector field V € Cé QU RY) we
find

DrJ"(M)[V] = / —w® — )V 'V + @’ — ) divV dx
Q
+v / divV —n'VvV'nds (26)
r
— f Dy frv° + div V(fv°) dx + DrAr@®, v*)[V].
Q

Proof In order to prove this theorem, we just have to compute the shape derivative
of the objective function J (u°, I') and of the linear functional Fr(v°). Therefore, let
£1(x) := det DF¢(x).

@ Springer



M. Schuster et al.

Then, we have £°(x) = det DFy(x) = det(I) = 1 and j_t|t=0+ &' = div V(see, e.g.,
[45]), such that the shape derivative of the right-hand side Fr can be derived as a
consequence of [56, Proposition 2.32] and the product rule of Fréchet derivatives as
follows

d
DrFr")[Vl= —

d
0 —1
dr Frt(v OFt ):/ —_—

Fou's’ d
o +(fFO Vv & dx

=0t

=/ Dy, fr° dx+f fro° divVdx.
Q Q

t=0

Moreover, the shape derivative of the objective functional can be written as

d
DrJu®, T)[V] = Drj@®, T)[V] + Drjreg(T)[V] = —

o j@® o F T

=071

d
+ —

ar Jreg(T").

=07t

Here the shape derivative of the regularization term is an immediate consequence of
[62, Theorem 4.13] and is given by

Drjregu®, T)[V] = v/ divp Vds = u/ divV —n' VvV nds,
r r

where n denotes the outer normal of 21. Additionally, we obtain for the shape deriva-
tive of the tracking-type functional

1 d
juloF LTy == —
.

d
Drjw®, T)[V]= —
2 dt

dt|,_o

_1/ d
2 g dt

= / —w® —)Vai'V+ @ — a)*divV dx.
Q

f @’ o F ' —i1)? dx
=0+ JF¢(Q)

u® — i o F)2€" dx

=0t

Putting the above terms into equation (25) yields the formula of Theorem 4.8. O

The last step to derive the shape derivative of the reduced objective functional (25) is
to compute the shape derivative of the nonlocal bilinear form Ar.

Lemma 4.9 (Shape derivative of the nonlocal bilinear form) Let the assumptions (P0)
and (P1) be satisfied. Further let T be a shape with corresponding state variable u®
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and adjoint variable v°. Then for a vector field V e Cé(Q U Q7, R?) we find for a
square integrable kernel y that

d

r A, u®, %) = DrAr @, v0)[V]

=0t

-
= Z // (UO(X)—UO()’)) (MO(X)VxVij(X,y)—uo(y)Vyyj,-(y,x)) V(x)
i j=1,27% 7%,

+ ) — ")’ @)y x, y) — 1)y (v, %) div V(x) dydx
+ ) /Q /Q W0 X)) Vayi (%, 1) T VE) + 1?00 %)y (x, y) div V(%) dydx.
1.2 i 1

27)

and for a singular kernel y that

DrAr@u®, v9)[V]

1
-y / / W) — ) (W x)
o Jo;

i,j=1,2
=) (Varij (% 9TV + Yy (5. V) ) dydx

+ Y @) = u’ ()@ x) — v°¥))yi; (%, y) div V(%) dydx

ij=12

£y /Q @ —aenete

i=1,2
=) (Varir 5 1) V) + 7 (%, ¥) div V() ) dydx,

Proof Define &' (x) := det DF¢(x) and yl.’j (x,y) =y Fe(x), Fe(y)).
Case 1: Square integrable kernels
Then, we can write by using representation (8) of the nonlocal bilinear form A

A(t,u®, 0% = Apu® o B 00 o BT
=53 2 [ [ (w0 - ®) () — i wrin)
21’,/:1,2 i JQj Y !

E' ()& (y) dydx
+ Z /;ZL MO(X)vO(X)ViI(Ft(X),y)gt(x) dydx.

i=1,2

First, we recall that the function &’ is continuously differentiable and j—t | =0 £(x) =
divV(x), see, e.g., [45].
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So we derive the shape derivative of the nonlocal bilinear form by applying Lemma
4.1,as described in Remark 4.2,0on ;; € WH(Q@xQ, R)and y;; € WH(Qx Q/, R)
and by using the product rule for Fréchet derivatives

d

“ AI,O,O
7 (t,u’,v”)

=07t

1 T
=5 /Q | /Q (1% =) (100 Varyy (%, = 1 ®Vy75i (3.0 V)
i j=1,2"%% "8

.
+ (1000 = 2°®) (Vi &0 — Vi %)) V)
+ 0@ — @)@ @y x.y) = 1’ @)y (v, %)) (div V() + div V() dydx

+ > / f w0 ()0 (X) Vs (%, 1) T VE) + 1000 ®)yi7 (x, y) div V(x) dydx
i=1,2"%% 7

.
= 2 [ ] (0= 20) (0¥ k) ~ Ty ) VO
i j=1,275 78

+ @) = @@y x y) — 1 @)y (v, %)) div V(x) dydx

+ > /Q /Q w0 )0 X) Vi (%, 1) T VE) + 100 (x)yi (x, y) div V(x) dydx.
i=1,27 % 7Rl

For the second equation, the following computations are used, which can be obtained
by applying Fubini’s theorem and by swapping x and y

./;z,/Q.(UO(X)_”O(Y))(_“O(Y)Vx)/ji(y, X TV(y)) dydx
:/;2/;2(UO(X)_vo(y))(u()(x)vxyjl(x’ y)TV(X)) dydx,
./Q- fg.(vo(x) — '@’ ®) Vi (x, y) TV(y) dydx

— —A L (UO(X) - Uo(y))uo()’)vy%/ (y’ X)TV(X) dde and

fﬂ | /Q @' =" @) @y % y) = u’ ()i, %)) div V(y) dydx

_ /Q | /Q 0000 )51, ¥) — )35 (v, ) div V) dyd.

Case 2: Singular kernels
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Since £7(x) = det DF¢(x) is continuous and therefore bounded on Q U Q;, we get
that the double integral

1
At u®, v°)=§ / / @ x) — u’(y) ' x) — ¥y (x, y)E' ®)E (y) dydx

(QU)?

is well-defined(see also Remark 4.3). Moreover since y’ € wbLl(D,,R) we can
conclude, as outlined in Remark 4.2, that the function y’ is differentiable in L1 (D, R)
with

r YY) = Vay(x,y) V) + Vyy(x,y) ' V(y).

t=0

Therefore, we follow
for the singular symmetric kernel

d
0 0 _
A(t,u",v’) = nhm o

/ @’ x) - u’(y) ' x)

dt|,—g 1=0 2

=" @)y (x Y& @8 ) dydx
= tim 3 [[ @m0 - e®@ - )
Dy
(Var x0TV + Vyy . ) V) dydx
+ im 3 [P0 100600 — 105y (x.3) @iy Vi) + div Vi) dyax
Dy
1
=3 / 0@ = u’ )00 o) (Var x0TV + Vyy (1 V) dydx
Quey)?

1
+3 / @0 x) — u’ (1) Ox) — 2 (y)y (x, y) [div V(x) + div V(y)) dydx
(QUQ)?

=y f / @) = u’(y) 0 ®) = ()

i,j=1,2

(Varij TV + Vx0T V() ) dydx (28)

+ ¥ f / W) — w0 @) x) — 10§y (%, y) div V() dydx (29)
i,j=1,2

+ ) / / @) — (¥ =)

i=1,2
(Varir x0TV + 711 (. ¥) divV(0) dydx, (30)
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where the integrals (28)—(30) are also well-defined, since div V is bounded on €2 and
Assumption (P1) yields the existence of derivatives Vy;; and Vy;; and of constants
0 < Cy, Cy < o0 with

Cq
|Vxyij (%, 9) V&) +Vyyi (x,3) V)] < Tyl e (y) € @ x R and

I
C
|Vxyir(x,y) V(x)| < W forae. (x,y) € Q x ;.
yilz

Cllx—

5 Numerical experiments

In this section, we want to put the above derived formula (26) for the shape derivative of
the reduced objective functional into numerical practice. In the following numerical
examples we test one singular symmetric and one nonsymmetric square integrable
kernel. Specifically,

svm

x,y) =" X, ¥) xBs %) (¥),
where

IOOd(sW if (x,y) € Q1 x Qp,
2
oM (x, y) = 1.0d5ﬁ if (x,y) € Q x Q,

10d5 W CISC,

with with scaling constants ds := % and

nomym x,y) = ¢nonsym (x, y)XBa (x) (¥),

where
F1ONIM (x 3y = 5.0cs ifx e Qq,
3.0cs ifx € Qo,
with scaling constants c5 := 5%. We truncate all kernel functions by | - ||2-balls of

radius § = 0.1 so that QU Q; C [—68,1 4 8]>. As a right-hand side we choose a
piecewise constant function

Jr(x) = 100xq, (x) — 10xq, (%),
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i.e., f1 = 100 and f> = —10. We note that the nonsymmetric kernel y""*¥" satisfies
the conditions for the class of integrable kernels considered in [61], such that the cor-
responding nonlocal problem is well-posed and also assumptions (P0O) and (P1) can
easily be verified in this case. The symmetric kernel y 5" is a special case of Example
2.1 and therefore the assumptions (PO) and (P1) are met. The well-posedness of the
nonlocal problem regarding the singular kernel is shown in [24]. As a perimeter regu-
larization we choose v = 0.001 and, since we only utilize V with supp(V) N 'y # @,
where It is the current interface in iteration k of Algorithm 1, we additionally assume
that the nonlocal boundary has no direct influence on the shape derivative of the nonlo-
cal bilinear form Dr Ar, such that forall V € C}(QUQ;, R?) with supp(V) N Ty # @
we have for the square integrable kernel

prar’ V= Y [[ (00 - ')

i,j=1,29[_ XQj

0 0 T 0
(4200 (%, ) =WV, 755(3.0) V0 + (0700
— "W @y (x,y) — u’(¥)yji(y, X)) div V(x) dydx

and for the singular symmetric kernel

DrAr@®, v)[V]
1
- / / S0 —u’ @) =)

i’jzl’zﬂixﬁj
(Varii 6 TV + Yy (x0T V))
+ @) — u’ (1)) " x) — v°(¥)yij (x, y) div V(x) dydx.

In order to solve problem (12), we apply a finite element method, where we employ
continuous piecewise linear basis functions on triangular grids for the discretization of
the nonlocal constraint equation. In particular we use the free meshing software Gmsh
[30] to construct the meshes and a customized version of the Python package nlfem [35]
to assemble the stiffness matrices of the nonlocal state and adjoint equation as well as
the load vector regarding the shape derivative Dr Ar. Moreover, to assemble the load
vector of the state and adjoint equation and the shape derivatives DrJ and Dr Fr,
we employ the open-source finite element software FEniCS [1, 2]. For a detailed
discussion on the assembly of the nonlocal stiffness matrix we refer to [22, 35].
Here we solely emphasize how to implement a subdomain—dependent kernel of type
(3). During the mesh generation each triangle is labeled according to its subdomain
affiliation. Thus, whenever we integrate over a pair of two triangles, we can read out
the labels (i, j) and choose the corresponding kernel y;;.

The data it is generated as solution «(T") of the constraint equation associated to a
target shape . Thus the data is represented as a linear combination of basis functions
from the finite element basis. For the interpolation task in Line 3 of Algorithm 1
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Fig.2 Example 1 for the singular symmetric kernel
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Fig.3 Example 1 for the nonsymmetric integrable kernel

we solely need to translate between (non-matching) finite element grids by using the
project function of FEniCS. In all examples below the target shape I is chosen to be
a circle of radius 0.25 centered at (0.5, 0.5).

We now present two different non-trivial examples which differ in the choice of the
initial guess I'g. They are presented and described in the Figs. 2 and 4 for the singular
symmetric kernel and in the Figs.3 and 5 for the nonsymmetric integrable kernel. In
each plot of the aforementioned figures the black line represents the target interface
T. Moreover the blue area depicts 1, the grey area €, and the red area the nonlocal
interaction domain ;.

Since the start shapes are smaller than the target shape, the shape needs to expand
in the first few iterations. Thereby the nodes of the mesh are pushed towards the
boundary, so that the mesh quality decreases and the algorithm stagnates, because
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—— Example 1 singular symmetric kernel
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Fig. 6 In the first six or seven iterations the improvement regarding the objective function value is quite
high. After that the objective function value decreases in a much slower fashion. Due to the regularization
term the objective functional value will not converge to zero

bility of the model. But also the choice of Lamé parameters to control the step size,
specifically tqx (We set w,in = 0 in all experiments). The convergence history of
each experiment is shown in Fig. 6.

Moreover, especially in the case of system parameters with high interface-sensitivity
in combination with an inconveniently small ;4. , mesh deformations may be large in
the early phase of the algorithm. Thus, such mesh deformations Uy, of high magnitude
lead to destroyed meshes so that an evaluation of the reduced objective functional
J" ed((Id +aﬁk)(52k)), which requires the assembly of the nonlocal stiffness matrix,
becomes a pointless computation. In order to avoid such computations we first perform
a line search depending on one simple mesh quality criterion. More precisely, we
downscale the step size, i.e., « = t«, until all finite element nodes of the resulting
mesh (Id —i—oszk)(Qk) are a subset of 2. After that, we continue with the backtracking
line search in Line 18 of Algorithm 1.

6 Concluding remarks and future work

We have conducted a numerical investigation of shape optimization problems which
are constrained by nonlocal system models. We have proven through numerical exper-
iments the applicability of established shape optimization techniques for which the
shape derivative of the nonlocal bilinear form represents the novel ingredient. All
in all, this work is only a first step along the exploration of the interesting field of
nonlocally constrained shape optimization problems.

@ Springer



Shape optimization for interface identification...

A Proof of Lemma 4.6

Proof Define u'(x) = 1(Fy(x)), &'(x) = det DF¢(x), ¥/ (X, y)
= yr (Fe(x), Fe(y), fr(x) = fr(Fe(x)) and V f.(x) := V fr (Fe(x)).
Assumption(H0):

Set G : [0, 1] = R, G(s) = G(t, su' + (1 — 5)u®, v). We show that G is continuous
differentiable and therefore also absolutely continuous. By using the linearity of A we
can compute

3,G(s) = dyG(t, su' + (1 —s)u®, v)[u' — u°]
=d,A(t, su’ + (1 — s)uo, V[u' — uo] +d,J(t, su' + (1 — s)uo)[ut — uo]

= A, u' — u®, v) +/ (sut + (1 - s)u’ — IZ’) (u' — u0> £ dx
Q

=A@t u' —u°, v)+s/ (ut —u0>2§’ dx+f (uo—ﬁ’) (ut —u0> £ dx,
Q Q

which is obviously continuous and therefore the first condition of Assumption (HO)
holds.
Furthermore the second criterion of (HO) is also satisfied:

1
/ |d,G(t, su’ + (1 —s)u®, v)[i]| ds
0
1
=/ |A(t, 1, v)+f(su’+(l—s)u0—ﬁ)ﬁ§’ dx|ds
0 Q
1
< |A(t,ﬂ,v)|+/ sds|/(u’—u°)ﬂsf dx|+|/(u0—ﬁ’)ﬁsf dx|
0 Q Q
N 1 t o ONagt 0 =t\;gt
=|At,u,v)|+=| | W' —uHu& dx|+| | (u —u")u&' dx| < oo.
2 Ja Q
As mentioned in Sect. 3.2 the averaged adjoint equation (18) can be reformulated as
1
At i, 0" = —f <§(u’ +u% — ﬁ’) aE' dx forallii € V.(QUQy). (31
Q

Since the right hand side of (31) is a linear and continuous operator with regards to
it, Eq. (31) is a well-defined nonlocal problem, which has a unique solution v’ due to
the assumptions (P0). By further using assumptions (P0), we can conclude for u’, that
there exists a C> > 0, such that
111226y < CLIA u', uh)] = CLICF'E" 1) 2| < CLllf E 20 1 1200
= ||ut||L2(Q) = Cl||ft§t||L2(Q) < (Cy,

where we used in the last step, that ||f15$t||Lz(Q) = [ frllz2@) (158, Lemma 2.16]).
Since &/(x) = det(I + DV (x)) is continuous on [0, T] x €2, there exists a &, such
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that |£(x)| < & for all (¢, x) € [0, T] x Q. Because i’ — i in L%(S2), there exists a
C3 > 0 with ||i!||» < C3 fort € [0, T]. Then we derive for v’ that

1 -
11172y = ClIAG, Y, 0D = ClIG (' +u®) = @DE' V) 2()]
£ 1 t 0 ~t t
< écllli(u +ut) —ullp2)llvll2g)
t & 1 t 0 ~1 & ~1
= 2@ = $C1||§(M +u) =l = ECHII 120

1_
+ S ECHU 2 + 1111 12 ()
<&EC|C3+EC|C,.

Assumption (H1):

Since u' and v’ are bounded for ¢ € [0, T], then for every sequence {t,},en With
t, — 0 there exist subsequences {f;, }xen and {#,, };en, such that there exist functions
q1,q92 € L2(Q U Q) with u™ —g1 v —~¢5 in LZ(Q U Q).

In the next part of the proof, we will make use of the following observation: Let
{tt}ren € [0, T1Y be a sequence with p — 0 for k — oo and g’, h%*, h® € L2(Q U
Q) fort € [0, T] and k € N. Additionally, assume that g' — g° and h%*—h® in
L2(2 U Q) holds. Then, we can conclude

/hfkg’ dx—/ h0g% dx
Q Q

< 1" 218" — %M1 12+ / (h"*—h%)g" dx| — 0 for k — oo and ¢ \ 0.
Q
(32)

=

f n(g' — ¢°) dx
Q

+ ' / (W™ — )¢ ax
Q

Case 1: Proof of (H1) for square integrable kernels
Since ¢;; is essentially bounded on € x €, bi1 is essentially bounded on 2 x €7 and
&" is continuous and therefore bounded on 2, we can conclude that

Vi (y) i= (0X) — vV, NE WE'(y) € LH(QU Q)
Then, applying [58, Lemma 2.16] yields y* — y in L?(Q x (2 U £2;)) and therefore
yI(x,y) = y(x,y) for ae. (x,y) €  x (U Q). As a consequence by using the

dominated convergence theorem we get

Yi(y) = (0(x) — v()yr(x,y) in L2 (QU Q) for 1 (0.

Thus, by (32) we derive

/Q W) — o)) @™ Xy (X, y) — u™ (y)yp (v, X)E™ (X)E™ (y) dy

- /Q(U(X) — v @@ YT (X Y) — @1y (Y, x) dy forx € Q,v € LF(QU Q).
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Due to the continuity of parameter integrals, we have

/Q /Q (W(X) — VU™ )y (%, ¥) — u (1) (3, 30)E™ (R)E™ (y) dydx
. /Q /Q W) — v (@1 ®7r &, Y) — g1 $)Yr (Y. X)) dydx.

Analogously, we can show
In
[ umne [ s ayax = [ aive [ yreey) ayax
Q Qr Q Q7

So we can conclude lim;_, o A(ty,, u™,v) = A(0, g1, v). Because fL&" — fr in
LZ(Q) according to [58, Lemma 2.16], we can compute for all v € L%(SZ U Qr)

A0, g1, v) = lim Ay, u™,v) = lim / Flvg dx:/ frv dx.
[—00 =00 Jo Q

Since the solution is unique we derive ¢; = u° and u’ —u°. Similarly, we have for ¢,
and for all ii € L2(Q U Q)

1
A0, i, g2) = lim A(ty,, @i, v") = — lim / (= (u + u®) — @ )iag™ dx
k— 00 k—o0 Jo 2

= _f u® — )it dx.
Q

So we conclude g» = v? and v/ —v°(¢ \ 0). By using the mean value theorem, there
exist s; € (0, 1), s.t. sy — 0(r N\ 0) and

G(t,u® v') — G0, u®, v

. = 8,G(sy, u®, v").

Therefore we now prove assumption (H1) by showing
Jim 3G, u®, v*) = 3,G(0, u’, ).
Computing the derivative regarding ¢ yields
3G (t,u, v*) = A, u®, v*) — 8, F(t,v°) + 8, J (t, u).
First we can show

& dx

r=tt

K t\NT St t.s d
8;F(t,v)=/(Vfr) Vuv'é dx+/ frv' —
Q Q dr

— / (Vo) TVl dx + / Fro¥divV dx = 8, F (0, v%) as follows:
Q Q
(33)
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By applying [58, Lemma 2.16], we obtain VfL&" — Vfr in L*(Q,RY) and
fli — fr in L%(2). Since every V € Col(Q Uy, Rd) is bounded, we can con-
clude (V1) TVE" — V£V in L?(Q2). Moreover for every ¢ € [0, T) the derivative
j—r et &= (;ir ,—+ det( +rDV) is continuous in r and %}r=0+ &" = div V(see
e.g. [45]), so we derive f}. % |r:lJr £" — frdivVin L?($2). Again by using (32), we
obtain the convergence in (33).
Analogously, the convergence of lim,\ o 9, J (¢, 1% = 8,J(0, u®) can be shown.
Furthermore, we now employ representation (7) of the nonlocal bilinear form A to
compute the partial derivative of A regarding ¢

A, ul, v*)

.
= / / v (0 (10 Varf- %, y) — @ Vyrf . 0)) | VEE 8! () dydx
o Joue;

=:A1(,u0)(x.y)

.
[ v (T - Vb e.0) VWE 0 @) dyds
Q Joug;

Ax(r,u®)(x,y)

d
+ / / v @) (1 @y x,y) — @Yy, %) —
Q Jaug, ( r r ) dr

A3(1,u0)(x,y)

(" & (y) dydx.

r=tt

Since %!r
tially bounded for (x,y) € QxQ and ¢ir, Voir are essentially bounded for
(x,y) € © x Qy, we can conclude in the same manner as above that A; (¢, u®)(x, -) €
L2(QU Q) forall x € \ T and therefore

/ / v (x)A; (1, u®)(x, y) dydx
Q JQUQ;

—>// V0 x)A; 0, u®)(x,y) dydx (i =1,2,3).
Q Joug,

ot £7(x) and £'(x) are continuous in X € Q, ¢ij, Vij are essen-

As a consequence, we derive limg o 0; A(%, u®, v%) = 3;A(0, u®, v9).
All in all, we obtain

lim 3,G(t, u°, v*) = lim 9,A(t,u’, v*) — lim 8 F(t, v*) + lim 8,J (r, u®)
5.0\0 $,.1\0 $.1\0 N\O
=0,A0,u", 0% — 8, F (0,0 + 8,J0,u’) = 8,G(0, u°, v°).
Case 2: Proof of (H1) for singular kernels
Define D, := {(x,y) € (QU Q) : |Ix—y|]» > }l} for n € N. Since, as shown in

Remark 4.3, y'(x,y) < Ly*n?t?s forallt € [0, T], (x, y) € D, and &' is continuous
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on QU 7, we can conclude that

/ (V@) — v@)Y" (%, PE ®E" W) xp, (. ¥))* dydx < o0

(QuUe)?

and by using [58, Lemma 2.16] that

Jim // (W) — vy (X, YE"(E"(¥) xp, (X, y) dydx

(QuU2;)?

=/ (W) —v(¥)y X, Y)xpo (X, y) dydx.
(QUQ )?

With this convergence and (32), we derive the second step and with the dominated
convergence theorem we get the first and third step of the following computation

1
: / (W) — v (@1 X) — 1Y)y (x. y) dydx

(QUR)?

1
— lim 1 / W) — v¥)(q1X) — 1 (Y)Y (X, y) dydx
Dy

lim lim / / (W) — V) ®) — u G)y" & PETRET(y) dydx

n—oo|/ —)oo

= lim / (WX) — V) ) — u Gy % PETRE(y) dydx

(QUQl)2

= lim / flvgh dx:/ fvdx.
Q

=0 Jo

So we can conclude, that g1 = u” and u’—u°. Analogously, we can show

1
3 / (u(x) — u(y)(g2(x) — q2(y))y (x,y) dydx

(Quep)?

1
= lim. 5/ (u(x) — u(¥)(g2(x) — 2(y)y (x,y) dydx
D,

= lim lim —/ (u(x) — u(y) (0™ ) — v* @)y (x, yE* x)E* (y) dydx

k%oo n—00 2

= lim > / (u(x) — u(y) (0" @) — v*@)y* (x, yE* x)E* (y) dydx

k—o00 2
(QuUe)?
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k— 00

1
= — lim (—(utk +u%) — ﬁ”‘) ué' dydx = — / w° — )u dx
Q\2 Q

and therefore derive go = v” and v’ —1°. As in case 1, the next step is to prove
lim 3,G(z, u’, v*) = 3,G(0, u®, V7).
s,0\0

By again applying (32) and the dominated convergence theorem we conclude

lim 9,A(t, u®, v*)
5,0N\0

= lim - // W' ® — '@’ ® — u’ )y (x, Y) -

Yt\O r=t+
(QUQ)?

(S’(X)é’(y)) dydx

+ lim 3 f / WX — ¥ @) EC®) — 1 $)(Var' % ) V)
(QUQI)Z

+ Vyy' (x, y) T V(y)E (x)E (y) dydx

= lim lim —/ &) — () x) —u’ @)y x,y) _r

n—>oo g 1\0

r=t+
& W&y dydx
+ Jim_ lim > / @ ® = v’ @) '® — 1" @) (Vay' xy) V)

+Vyr'(x, y)TV(y))S ()& (y) dydx

Jim % / @' ®) = v @’ ® — u’ @)y (. ) (div V) + div V(y)) dydx
Dn

1
+ Jim > f @) =" @)’ ® — u @) (Vey &) VE)
Dy,
+ Yy (x.y) ' V() dydx

% f W@ — ")’ — u’ )y x, y)div V() + div V(y)) dydx
QUL )?

+% f W ® = ()’ ®) - u’ @) (Viyx y) V)
(QUQ[)2

+ Vyy (x,y) V() dydx

=8, A0, u%,v%)
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Analogously to case 1, we obtain
lim 8,G(t,u’, v*) = lim 3 A, u’, v*) — lim 8, F(t,v*) + lim 8, J (¢, u®)
5,00 5,0\0 5,0\0 [AN)
= 3,40, u®, %) — 3, F (0, v°) + 3,7 (0, u®) = 3,G(0, u®, v°).
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