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Abstract
We study a novel inertial proximal-gradient method for composite optimization. The
proposedmethod alternates between a variablemetric proximal-gradient iterationwith
momentum and anArmijo-like linesearch based on the sufficient decrease of a suitable
merit function. The linesearch procedure allows for a major flexibility on the choice of
the algorithm parameters. We prove the convergence of the iterates sequence towards
a stationary point of the problem, in a Kurdyka–Łojasiewicz framework. Numerical
experiments on a variety of convex and nonconvex problems highlight the superiority
of our proposal with respect to several standard methods, especially when the inertial
parameter is selected by mimicking the Conjugate Gradient updating rule.

Keywords Forward-backward methods · Inertial methods · Line-search · Nonconvex
optimization

1 Introduction

In this paper we consider a composite optimization problem with the following struc-
ture

min
x∈Rn

f (x) ≡ f0(x)+ f1(x), (1)

where f0 : Rn → R is a continuously differentiable function and f1 : Rn → R ∪
{∞} is convex. This kind of problem is especially relevant in the framework of the
variational approach to inverse problems, where a solution is obtained by minimizing
a function which combines data fidelity and regularization terms.

Forward–backward (FB)methods are a class of optimization algorithmswhich fully
exploit the structure of problem (1), namely the smoothness of f0 and the convexity
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of f1. They have reasonable theoretical convergence guarantees and, if implemented
with some care, they exhibit good practical performances.

The general iteration of a FB method can be expressed in the following way

ỹ(k) ≈ proxDk
αk f1

(
x (k) − αk Dk

−1∇ f0(x
(k))

)
(2a)

x (k+1) = x (k) + λk(ỹ
(k) − x (k)), (2b)

where αk is a positive steplength parameter, Dk is a symmetric positive definite matrix
and proxDf1(·) denotes the proximal operator associated to the function f1, in themetric
induced by D.

Many state-of-the-art algorithms can be stated in the form (2) [1, 16, 21, 24–28,
49], each depending on some specific choices of the parameters αk, λk, Dk and the
strategy for computing, possibly in an approximate way, the proximity operator. These
methods have been extensively analyzed in convex and nonconvex frameworks and
a wide numerical experience shows that they are a valid tool for solving large scale
problems. In the last two decades, more variants of iteration (2) have been proposed,
with the aim to overcome some known pitfalls of FB methods, as the so-called “hem
stitching” effect. These FB variants introduce a kind of extrapolation, or inertial, step
exploiting the two previous iterations and can be traced back to two main typologies:
FISTA-like methods and Heavy-Ball ones.

FISTA-like methods are reminiscent of the seminal work [37] and can be stated as

x̄ (k) = x (k) + βk(x
(k) − x (k−1)) (3a)

x (k+1) ≈ proxDk
αk f1

(
x̄ (k) − αk Dk

−1∇ f0(x̄
(k))

)
, (3b)

where βk is an extrapolation parameter. Method (3) has been analyzed for example
in [4, 7, 10, 20, 23, 45] in the convex case. Other recent contributions on this class
of methods and related developments can be found in [34, 54–56], where the anal-
ysis covers also the nonconvex case. The most remarkable property of method (3)
is the convergence rate estimation f (x (k)) − f ∗ = o(1/k2), which can be proved
under suitable assumptions on the parameters βk, αk, Dk , when f0 is convex and has
Lipschitz continuous gradient. In the same settings, the standard FB rate is 1/k and,
in this sense, FISTA is optimal among all first order methods. On the other side, the
implementation of (2) allows more flexibility in the choice of the parameters, which
may lead to practical performances which are often comparable or even better than
those of FISTA.

The second class of inertial methods, named Heavy-Ball, corresponds to the fol-
lowing scheme

x (k+1) ≈ proxDk
αk f1

(
x (k) − αk Dk

−1∇ f0(x
(k))+ βk(x

(k) − x (k−1))
)

. (4)
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The main idea behind iteration (4) dates back to Polyak [42] and, in the simple case
when f1 = 0, it can be derived as a discretization of the ordinary differential equation

ẍ(t)+ aẋ(t)+ b∇ f0(x(t)) = 0, (5)

while the standard gradient method is related to

ẋ(t)+ α∇ f0(x(t)) = 0.

The connection between the above dynamical systems and the algorithms which can
be obtained by discretization are investigated for example in [6, 36, 42]. Iteration (4)
has also connections with the Conjugate Gradient method for quadratic unconstrained
optimization and its extension to nonlinear smooth problems [32].

Heavy-Ball methods received considerable attention in recent years. In particular,
the properties of iteration (4) under convexity assumptions are investigated in [5, 6, 31,
39], where the theoretical convergence rate is also provided. In the convex framework,
the parameters αk and βk are usually selected in order to guarantee that the optimal
convergence rate estimate is achieved. From this point of view, the implementation of
iteration (4) requires explicit knowledge of the minimum and maximum eigenvalues
of ∇2 f0(x). This clearly implies that the method itself can be applied only to some
specific class of problems and, in addition, it may result in a lack of effectiveness, e.g.
when the minimum eigenvalue of the Hessian is small [6].

Other recent results can be found in [18, 35, 40, 41], where the analysis applies
also to the nonconvex case, assuming that the Kurdyka–Łojasiewicz property holds.
We also mention the Inertial Bregman proximal gradient methods proposed in [54,
56], which are closely related to the iteration (4). In these settings, the guidelines for
selecting αk , βk could be different than in the convex case and adaptive rules based
on a backtracking procedure have been also proposed [38, 40, 54].

Contribution. In this paper we propose the following generalization of the Heavy-
Ball iteration (4)

ỹ(k) ≈ proxDk
αk f1

(
x (k) − αk Dk

−1∇ f0(x
(k))+ βk(x

(k) − x (k−1))
)

(6a)

x (k+1) = x (k) + λk(ỹ
(k) − x (k)), (6b)

and we analyze it in a nonconvex setting, providing also some insights on the related
implementation issues.

The key feature of our proposed method is a line-search procedure to determine
the steplength parameter λk , in order to guarantee the sufficient decrease of a suitably
defined merit function. The combination of a line-search procedure with an inertial
step is, as far as we know, new. Thanks to the descent properties enforced by the line-
search, we can prove the convergence of the iterates to a stationary point of problem
(1), in the Kurdyka–Łojasiewicz (KL) framework.

Unlike most Heavy-Ball methods, the theoretical conditions employed to prove this
result do not impose significant restrictions on the choice of the parameters βk, αk, Dk ,
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which can be chosen freely within a compact set. This possibility allows to adopt
acceleration strategies for improving the performances.

Indeed, as a second contribution, we also devise practical rules for selecting the
algorithmparameters, by adapting some ideas proposed in the literature as acceleration
strategies for the standard FB methods. In particular, for the stepsize parameter αk we
propose an adaptation of the well known Barzilai–Borwein formulae [8], while for
selecting the inertial parameter βk we borrow the ideas behind the nonlinear Conjugate
Gradient (CG) method.

Our approach encompasses also the possibility to employ an approximation of the
proximal operator in (6a) and adopt a metric associated to the matrix Dk which may
vary throughout the iterations.

The numerical experience described in the last section shows that these implemen-
tation choicesmake the algorithm competitive if compared to themost effective FB and
FISTA algorithms, as well as with more standard implementations of the Heavy-Ball
itself.

Related work.
Our method shares with the Heavy-Ball algorithms proposed in [38, 40] and in

[54] the idea to combine an inertial step with a backtracking loop to compute some
of its parameters. The key difference is that our approach consists in an actual line-
search, i.e., the next iterate is found along the direction joining the current iterate
and the (approximate) inertial proximal-gradient point ỹ(k) (6b). Moreover, unlike the
above mentioned references, the line-search concerns only the steplength parameter
λk , allowing a totally different approach to the selection of the parameters αk, βk, Dk .
On the other side, the iterates x (k) produced by the rules (6), unlike the plainHeavy-Ball
iteration (4), are not necessarily obtained as the evaluation of the proximity operator
at some point. As a consequence of this, the convergence analysis of our proposed
method can not be obtained as a special case of [38, 40, 54].
Alternatives to theEuclideanmetric have been considered in [54, 56],where aBregman
distance is adopted. Here we adopt a scaled Euclidean metric, induced by the matrix
D−1k , which may vary at each iteration.

The convergence analysis of iteration (6) is performed by showing that it is a special
instance of the abstract scheme presented in [18]. From this point of view, our approach
shares similar convergence properties with the Heavy-Ball methods in [18, 38, 40].
More insights about the relations between our new algorithm and the existing ones are
given in Sect. 3.

Moreover, our approach to the selection of the steplength αk is in the same line
of [29, 30], where the authors shows that the effectiveness of line-search based FB
methods of the form (2) can be significantly improved by devising clever steplength
selection rules, in spite of lower theoretical rate estimates.

Paper organization. In Sect. 2 we state some basic definitions and results about
subdifferential calculus in nonconvex settings and we define the KL framework. The
proposed algorithm, named Phila, is described in Sect. 3, where the relations with
existing algorithms are discussed. The theoretical convergence analysis is developed in
Sect. 4, leading to the main result which is stated in Theorem 13. In Sect. 5 we describe
and motivate the implementation choices concerning the algorithm parameters. In
order to evaluate the effectiveness of these choices,wepresent the results of a numerical
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experience carried out on a variety of test problems, ranging from unconstrained
quadratic to nonconvex, nonlinear problems where the proximity operator of f1 is
not available in explicit form. The performances assessment is obtained comparing
our approach to several state-of-the-art methods. Final remarks and perspectives are
offered in Sect. 6.

2 Preliminaries

2.1 Notations

The notation R denotes the extended real numbers set, i.e., R = R ∪ {−∞,+∞}.
Given two vectors x, y ∈ R

n , we denote by 〈x, y〉 the scalar product on R
n and by

‖x‖ the Euclidean norm of x :

〈x, y〉 = xT y, ‖x‖ = √〈x, x〉.

If x ∈ R
n and D is a symmetric positive definite matrix, we denote by ‖x‖D the norm

induced by D:

‖x‖D =
√〈x, Dx〉.

Given μ > 1, we define the set Mμ of all symmetric positive definite matrices with
eigenvalues belonging to the interval [ 1

μ
,μ]:

Mμ =
{
D ∈ R

n×n : DT = D, μI  D  1

μ
I

}
.

If D ∈Mμ, then D−1 ∈Mμ. Moreover, for any D ∈Mμ, we also have

1

μ
‖x‖2 ≤ ‖x‖2D ≤ μ‖x‖2.

Given a function φ : Rn → R̄, the domain of φ is denoted as dom(φ) = {x ∈ R
n :

φ(x) < +∞}, and f is called proper if dom(φ) �= ∅ and φ(x) > −∞ for all x ∈ R
n .

Given a proper, convex function φ : Rn → R, a symmetric positive definite matrix D
and a point x ∈ R

n , the proximal operator of φ at point x in the norm induced by D
is defined as

proxDφ (x) = argmin
y∈Rn

φ(y)+ 1

2
‖y − x‖2D .
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2.2 Subdifferential calculus and KL functions

In this section, we draw the fundamental concept of subdifferential from the field of
variational analysis. We refer the reader to well-known textbooks such as [47, 48] for
more details.

We start with the definitions of Fréchet subdifferential and limiting-subdifferential.

Definition 1 [48, Definition 8.3] Let f : Rn → R and x ∈ dom( f ). The Fréchet
subdifferential of f at x is the set

∂̂ f (x) =
{
v ∈ R

n : lim inf
y→x,y �=x

1

‖x − y‖ ( f (y)− f (x)− (y − x)T v) ≥ 0

}
.

The limiting-subdifferential (or simply subdifferential) of f at x is defined as

∂ f (x) = {v ∈ R
n : ∃ {y(k)}k∈N ⊆ R

n, v(k) ∈ ∂̂ f (y(k)) ∀k ∈ N such that

y(k) → x, f (y(k))→ f (x) and v(k) → v},

and dom(∂ f ) = {x ∈ dom( f ) : ∂ f (x) �= ∅}.
Definition 2 We say that a point x ∈ R

n is stationary for f : Rn → R if x ∈ dom( f )
and 0 ∈ ∂ f (x).

Remark 3 Any (local) minimum point x ∈ R
n of f is a stationary point, while the

converse may not be true in general. If f is also convex, then x is a (local) minimum
point if and only if x is a stationary point.

The following subdifferential calculus rule will be used later in the paper.

Lemma 4 [48, Exercise 8.8c] If f = f0 + f1 with f1 finite at x and f0 continuously
differentiable on a neighbourhood of x, then

∂ f (x) = ∇ f0(x)+ ∂ f1(x).

Definition 5 [57, p. 82] Let f : Rn → R be a proper, convex function. Given ε ≥ 0
and x ∈ R

n , the ε−subdifferential of f at x is the set

∂ε f (x) = {v ∈ R
n : f (y) ≥ f (x)+ 〈v, y − x〉 − ε, ∀ y ∈ R

n}.

For our convergence analysis, we need to recall the definition of the so-called
Kurdyka-Łojasiewicz inequality [13], an analytical property which has been exten-
sively employed to ensure the convergence of iterative methods in the absence of
convexity [3, 14, 18, 38].

Definition 6 [14, Definition 3] Let f : Rn → R be proper and lower semicontinuous.
The function f satisfies the Kurdyka-Łojasiewicz (KL) inequality at the point x∗ ∈
dom(∂ f ) if there exist ν > 0, a neighbourhood U of x∗, and a continuous concave
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function ξ : [0, ν) → [0,+∞) such that ξ(0) = 0, ξ is C1 on (0, ν), ξ ′(s) > 0 for
all s ∈ (0, ν), and the following inequality holds

ξ ′( f (x)− f (x∗))dist(0, ∂ f (x)) ≥ 1, (7)

for all x ∈ U ∩ {y ∈ R
n : f (x∗) < f (y) < f (x∗) + ν}. If f satisfies the KL

inequality for all x∗ ∈ dom(∂ f ), then f is called a KL function.

Remark 7 The KL inequality is trivially satisfied around nonstationary points [2,
Remark 3.2], whereas it establishes a meaningful connection between the gradient
normand the function values of the objective function around stationary points. Several
classes of functions arising in signal and image processing satisfy the KL inequality,
including the indicator functions of semi-algebraic sets, real polynomials, p−norms
and, more generally, semi-algebraic functions or real analytic functions (see [14] and
references therein for more details).

3 The algorithm

In the following, we present Phila, a Proximal Heavy-ball Inexact Line-search Algo-
rithm for solving problem (1). Our proposal is reported step by step in Algorithm 1.

Phila requires as inputs an initial guess x (0) ∈ dom( f1), the backtracking parame-
ters δ, σ ∈ (0, 1) and γ > 0, the constants 0 < αmin ≤ αmax , βmax > 0, and μ ≥ 1
related to the choice of the steplength, the inertial parameter, and the scaling matrix,
respectively, and a tolerance parameter τ ≥ 0 for the (possibly inexact) computation
of the proximal-gradient point. Once the inputs are fixed, Phila starts an iterative pro-
cess, where at each iteration k the iterate x (k+1) is formed according to the following
steps.

At Step 1, we select a steplength αk ∈ [αmin, αmax ], an inertial parameter βk ∈
[0, βmax ], and a symmetric positive definite scaling matrix Dk ∈ Mμ. These three
parameters contribute to the definition of the (possibly inexact) proximal-gradient
point defined at the next step. No requirements are imposed on αk, βk, Dk , other than
they must belong to compact subsets in their corresponding spaces.

At Step 2, we compute the point ỹ(k) ∈ R
n , which approximates or pos-

sibly coincides with the inertial proximal-gradient point ŷ(k) = proxDk
αk f1

(x (k) −
αk D

−1
k ∇ f0(x (k)) + βk(x (k) − x (k−1))). To this aim, we define the function

h(k)( · ; x (k), x (k−1)) : Rn → R̄ as follows

h(k)(y; x (k), x (k−1)) =
〈
∇ f0(x

(k))− βk

αk
Dk(x

(k) − x (k−1)), y − x (k)
〉

+ 1

2αk
‖y − x (k)‖2Dk

+ f1(y)− f1(x
(k)).
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It is easy to see that the inertial proximal-gradient point ŷ(k) is the unique minimum
point of the strongly convex function h(k)( ·; x (k), x (k−1)), i.e.,

ŷ(k) = proxDk
αk f1

(
x (k) − αk Dk

−1∇ f0(x
(k))+ βk(x

(k) − x (k−1))
)

(8)

= argmin
y∈Rn

h(k)(y; x (k), x (k−1))

⇔ 0 ∈ ∂h(k)(ŷ(k); x (k), x (k−1)). (9)

Then, we compute ỹ(k) by means of the following condition

h(k)(ỹ(k); x (k), x (k−1))− h(k)(ŷ(k); x (k), x (k−1)) ≤ −τ

2
h(k)(ỹ(k); x (k), x (k−1)).

(10)

If τ = 0, the above condition implies ỹ(k) = ŷ(k), i.e., the inertial proximal-gradient
point is computed exactly; otherwise, if τ > 0, an approximation ỹ(k) of the exact
point ŷ(k) is computed. This condition has been employed for inexactly computing the
proximal-gradient point in several first-order methods, see e.g. [12, 17, 18, 33]. For
completeness, an explicit procedure for computing a point satisfying (10) is detailed
in the Appendix. By observing that ŷ(k) is a minimizer of h(k)(·; x (k), x (k−1)) and
h(k)(x (k); x (k), x (k−1)) = 0, the above condition entails that

h(k)(ỹ(k); x (k), x (k−1)) ≤
(

2

2+ τ

)
h(k)(ŷ(k); x (k), x (k−1)) ≤ 0,

so that the inexactness condition can be conveniently rewritten as

0 ∈ ∂εk h
(k)(ỹ(k); x (k), x (k−1)), (11a)

with

εk = −τ

2
h(k)(ỹ(k); x (k), x (k−1)) ≥ 0. (11b)

In other words, the computation of ỹ(k) is based on a relaxation of the optimality
condition (9), obtained by appropriately enlarging the subdifferential of the function
h(k)( ·; x (k), x (k−1)) at the point ỹ(k). Even if inequality (10) and its equivalent version
(11) are presented in an implicit way, there exists a well defined, explicit procedure to
compute it [20, 50, 52]. For completeness, this aspect is detailed in Appendix A. We
observe that the inexactness criterion based on the inclusion (11a) is employed also
in [56], where the accuracy parameter εk is chosen as a prefixed sequence instead of
our adaptive rule (11b).

Once the quantity �k = h(k)(ỹ(k); x (k), x (k−1)) and the search direction d(k) =
ỹ(k)− x (k) are assigned at Steps 3- - 4, an Armijo-like linesearch along the direction
d(k) is performed at Steps 5- - 6. Particularly, we compute the linesearch parameter
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as λk = δik , where δ ∈ (0, 1) is the backtracking factor and ik is the first non-negative
integer such that the following Armijo-like condition holds:

min
{
f (x (k) + δik d(k))+ γ

2
‖δik d(k)‖2, f (ỹ(k))+ γ

2
‖d(k)‖2

}

≤ f (x (k))+ γ

2
‖x (k) − x (k−1)‖2 + σδik�k . (12)

Since �k ≤ 0, we stop the backtracking procedure when the minimum between
f (x (k)+δik d(k))+ γ

2 ‖δik d(k)‖2 and f (ỹ(k))+ γ
2 ‖d(k)‖2 is sufficiently smaller than the

reference value f (x (k))+ γ
2 ‖x (k)− x (k−1)‖2. We remark that the minimum operation

is not necessary from a theoretical viewpoint, as our convergence analysis still holds if
we neglect the value f (ỹ(k))+ γ

2 ‖d(k)‖2 from (12); rather, it should be seen as a way
of saving unnecessary backtracking iterations. Note that we are enforcing a descent
condition on the merit function �(x, s) = f (x) + γ

2 ‖x − s‖2, rather than on the
original objective function f . This is motivated by the fact that d(k) might not be a
descent direction for the function f in general, so it might be unfeasible to impose the
decrease of f (x (k)+λd(k)) for a sufficiently small λ > 0. On the other hand, it is still
possible to ensure the decrease of the merit function � (see Sect. 4 for more details).

Finally, Step 7 updates the next iterate as either x (k+1) = x (k) + λkd(k) or
x (k+1) = ỹ(k), depending on whether or not f (x (k)+λkd(k))+ γ

2 ‖λkd(k)‖2 is smaller
than f (ỹ(k)) + γ

2 ‖d(k)‖2. Note that, as a consequence of Steps 5- - 7, the sequence
generated by Phila satisfies the following inequalities

f (x (k+1))+ γ

2
‖x (k+1) − x (k)‖2 ≤ f (x (k))+ γ

2
‖x (k) − x (k−1)‖2 + σλk�k (13)

‖x (k+1) − x (k)‖ ≤ ‖ỹ(k) − x (k)‖. (14)

Remark 8 (Related work) The main novelty of Phila lies in the original combination
between a proximal-gradient iteration with inertia and a linesearch along a prefixed
direction. In particular, our line-search approach involves only the steplength parame-
ter λk , while the other parameters, αk , Dk , can be selected in a completely independent
manner. This is in contrast with existing inertial proximal-gradient methods, where
the parameters αk, βk, Dk are usually prefixed, or selected through a backtracking
procedure based on a local version of the Descent Lemma, see e.g. [9, 38–40, 43].
To the best of our knowledge, the inertial proximal-gradient method with backtrack-
ing which are more similar to ours are [18, Algorithm 3] and [55, Algorithm 1]
(see also [54, Algorithm 2] for a generalization of it). All these methods employ
the same merit function as Phila. However, in contrast to Phila, the algorithm in
[18] introduces an auxiliary iterate s(k), and computes the inexact proximal point
as ỹ(k) ≈ proxDk

αk f1
(x (k) − αk D

−1
k ∇ f0(x (k)) + βk(x (k) − s(k))), where the term

βk(x (k) − s(k)) may not coincide with the inertial force βk(x (k) − x (k−1)) that is
typically employed in inertial proximal-gradient methods. Moreover, the backtrack-
ing procedure in [55, Algorithm 1] and [54, Algorithm 2] involves also the inertial
parameter and, in addition, it is not performed along a line but along the path defined
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Algorithm 1 Phila: Proximal Heavy-ball inexact Line-search Algorithm

Input: x(0) ∈ dom( f1), δ, σ ∈ (0, 1), γ > 0, 0 < αmin ≤ αmax , βmax > 0, μ ≥ 1, τ ≥ 0.
Set x(−1) = x(0).
For k = 0, 1, . . .

Step 1. Choose αk ∈ [αmin , αmax ], βk ∈ [0, βmax ], Dk ∈Mμ.
Step 2. Compute ỹ(k) ∈ R

n such that

h(k)(ỹ(k); x(k), x(k−1))− h(k)(ŷ(k); x(k), x(k−1)) ≤ − τ

2
h(k)(ỹ(k); x(k), x(k−1)).

Step 3. Set �k = h(k)(ỹ(k); x(k), x(k−1)).
Step 4. Compute the search direction d(k) = ỹ(k) − x(k).
Step 5. Compute the smallest non-negative integer ik such that

min
{
f (x(k) + δik d(k))+ γ

2
‖δik d(k)‖2, f (ỹ(k))+ γ

2
‖d(k)‖2

}

≤ f (x(k))+ γ

2
‖x(k) − x(k−1)‖2 + σδik�k .

Step 6. Set λk = δik .

Step 7. If f (ỹ(k))+ γ

2
‖d(k)‖2 ≤ f (x(k) + λkd

(k))+ γ

2
λ2k‖d(k)‖2

x(k+1) = ỹ(k)

Else
x(k+1) = x(k) + λkd

(k).

Endif

End

by the proximal-gradient operator. We also observe that the complexity of the back-
tracking procedure of these two algorithms might be more demanding, since each
reduction step requires the evaluation of the proximity operator, while our approach
needs it only once per outer iteration.

Our linesearch has two main advantages. On the one hand, it allows a relatively
free selection of the parameters αk, βk, Dk , as the theoretical convergence relies on the
linesearch parameter λk (see Sect. 4); on the other hand, it requires only one evaluation
of the proximal operator per iteration k, as opposed to the standard backtracking loops
based on the Descent Lemma that require a proximal evaluation at each backtracking
step. Note also that the Armijo-like condition (12) is applied to the merit function
�(x, s) = f (x) + 1

2‖x − s‖2, rather than to the objective function f ; again, this
is contrast with the prior literature, where condition (12) is typically employed by
setting γ = 0 and neglecting the term f (ỹ(k))+ γ

2 ‖d(k)‖2 on the left-hand side of the
inequality, see e.g. [17, 19, 51]. The merit function �(x, s) was inspired by the works
on the algorithm iPiano [38, 40], where the choice of the parameters αk, βk, Dk (either
prefixed or selected according to a local version of the Descent Lemma) guarantees the
sufficient decrease of a similar merit function along the iterates. A backtracking loop
based on the same merit function with a different acceptance rule and implementation
is proposed also in [54, 55]. In these works, unlike our approach, the backtracking
steps involve not only the steplength αk , but also the other parameters defining the
iteration rule.
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4 Convergence analysis

In this section,we are interested in providing the convergence analysis forAlgorithm1.
The analysiswill be carried out under the following assumptions on the functions f0, f1
appearing in problem (1).

[A1] f1 : Rn → R is a proper, lower semicontinuous, convex function.
[A2] f0 : Rn → R is continuously differentiable on an open set �0 ⊃ dom( f1).
[A3] f0 has L−Lipschitz continuous gradient on dom( f1), i.e., there exists L > 0

such that

‖∇ f0(x)− ∇ f0(y)‖ ≤ L‖x − y‖, ∀x, y ∈ dom( f1).

[A4] f is bounded from below.

First, let us state some lemmas holding for the sequences {x (k)}k∈N, {ỹ(k)}k∈N, and
{ŷ(k)}k∈N associated to Algorithm 1, which can be seen as special cases of the results
[18, Lemma 8-10].

Lemma 9 Suppose that Assumptions [A1]–[A2] hold true. Then, the following
inequalities hold.

1

2μαmax
‖ŷ(k) − x (k)‖2 ≤

(
1+ τ

2

)
(−h(k)(ỹ(k); x (k), x (k−1))) (15)

1

2μαmax
‖ỹ(k) − ŷ(k)‖2 ≤ τ

2
(−h(k)(ỹ(k); x (k), x (k−1))) (16)

θ

2μαmax
‖ỹ(k) − x (k)‖2 ≤ (−h(k)(ỹ(k); x (k), x (k−1))), (17)

with θ =
(√

1+ τ

2
+

√
τ

2

)−2
≤ 1.

Lemma 10 Suppose Assumptions [A1]–[A3] hold true. Then, there exists a subgradi-
ent v̂(k) ∈ ∂ f (ŷ(k)) such that

‖v̂(k)‖ ≤ p(‖ŷ(k) − x (k)‖ + ‖x (k) − x (k−1)‖) (18)

≤ q

(√
−h(k)(ỹ(k); x (k), x (k−1))+ ‖x (k) − x (k−1)‖

)
, (19)

where the two constants p, q depend only on αmin, αmax , βmax , μ, and the Lipschitz
constant L.

Lemma 11 Suppose Assumptions [A1]–[A3] hold true. Then, there exist c, d, c̄, d̄ ∈ R

depending only on αmin, αmax , βmax , μ, τ such that

f (ŷ(k)) ≥ f (ỹ(k))+ ch(k)(ỹ(k); x (k), x (k−1))− d‖x (k) − x (k−1)‖2 (20)

f (ŷ(k)) ≤ f (x (k))− c̄h(k)(ỹ(k); x (k), x (k−1))+ d̄‖x (k) − x (k−1)‖2. (21)
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Next, we show that the linesearch procedure at Step 5 terminates in a finite number
of steps, and that the linesearch parameter λk is bounded away from zero.

Lemma 12 Let {x (k)}k∈N be the sequence generated by Algorithm 1 and suppose
Assumptions [A1]–[A3] hold true.

(i) The linesearch at Step 5 is well-defined.
(ii) There exists λmin > 0 depending only on αmin, αmax , βmax , μ and τ , such that

the parameter λk computed at Step 6 satisfies

λk ≥ λmin, ∀ k ≥ 0. (22)

Proof Let λ ∈ (0, 1). Then, we have

f (x (k) + λd(k))+ γ

2
λ2‖d(k)‖2

= f0(x
(k) + λd(k))+ f1((1− λ)x (k) + λỹ(k))+ γ

2
λ2‖d(k)‖2

≤ f0(x
(k))+ λ〈∇ f0(x

(k)), d(k)〉 + (L + γ )
λ2

2
‖d(k)‖2+

+ (1− λ) f1(x
(k))+ λ f1(ỹ

(k))

= f (x (k))+ λ
(
f1(ỹ

(k))− f1(x
(k))+ 〈∇ f0(x

(k)), d(k)〉
)
+

+ (L + γ )
λ2

2
‖d(k)‖2 ± βk

αk
λ〈Dk(x

(k) − x (k−1)), d(k)〉

= f (x (k))+ λ

(
f1(ỹ

(k))− f1(x
(k))+ 〈∇ f0(x

(k))− βk

αk
Dk(x

(k) − x (k−1)), d(k)〉
)
+

+ 1

2
(L + γ )λ2‖d(k)‖2 + βk

αk
λ〈x (k) − x (k−1), Dkd

(k)〉

≤ f (x (k))+ λ

(
f1(ỹ

(k))− f1(x
(k))+ 〈∇ f0(x

(k))− βk

αk
Dk(x

(k) − x (k−1)), d(k)〉
)
+

+ 1

2
(L + γ )λ2‖d(k)‖2 + β2

k

2γα2
k

λ2‖Dkd
(k)‖2 + γ

2
‖x (k) − x (k−1)‖2

≤ f (x (k))+ λ

(
f1(ỹ

(k))− f1(x
(k))+ 〈∇ f0(x

(k))− βk

αk
Dk(x

(k) − x (k−1)), d(k)〉
)
+

+ 1

2

(
L + γ + μ2β2

max

γα2
min

)
λ2‖d(k)‖2 + γ

2
‖x (k) − x (k−1)‖2

≤ f (x (k))+ γ

2
‖x (k) − x (k−1)‖2 + λ�k + 1

2

(
L + γ + μ2β2

max

γα2
min

)
λ2‖d(k)‖2

≤ f (x (k))+ γ

2
‖x (k) − x (k−1)‖2 + λ�k − μαmax

θ

(
L + γ + μ2β2

max

γα2
min

)
λ2�k
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where the first inequality follows from the Descent Lemma and the convexity of f1,
the second one from the inequality

0 ≤ 1

2
‖√γ (x (k) − x (k−1))− βk

αk
√

γ
λDkd

(k)‖2

= γ

2
‖x (k) − x (k−1)‖2 + 1

2
λ2

β2
k

γα2
k

‖Dkd
(k)‖2 − λ

βk

αk
〈x (k) − x (k−1), Dkd

(k)〉,

and the third one from inequality (17). Setting κ = μαmax

θ

(
L + γ + μ2β2

max

γα2
min

)
, the

last inequality writes as

f (x (k) + λd(k))+ γ

2
λ2‖d(k)‖2 ≤ f (x (k))+ γ

2
‖x (k) − x (k−1)‖2 + λ(1− κλ)�k .

Let us denote bym the smallest integer such that δm ≥ (1−σ)/κ . Then, the parameter
λk computed at Step 6 using inequality (12) satisfies λk ≥ δm . Therefore, (22) is
satisfied with λmin = δm . ��

The main result about Phila is stated below.

Theorem 13 Let {x (k)}k∈N be the sequence generated by Algorithm 1. Suppose that
Assumptions [A1]–[A4] are satisfied and assume that the function F : Rn × R→ R

defined as

F(x, ρ) = f (x)+ 1

2
ρ2 (23)

is a KL function. Moreover, assume that the sequence {x (k)}k∈N is bounded. Then,
{x (k)}k∈N converges to a stationary point of f .

The proof of Theorem13 is given by showing that Phila can be cast in the framework
of the abstract scheme in [18]. More precisely, we will prove Theorem 13 as a special
case of [18, Theorem 5(iii)] which, for convenience, is restated below.

Theorem 14 Let F : Rn × R
m → R be a proper, lower semicontinuous KL function.

Consider any sequence {(x (k), ρ(k))}k∈N ⊂ R
n × R

m and assume that there exist a
proper, lower semicontinuous, bounded from below function � : Rn × R

q → R and
four sequences {u(k)}k∈N ⊂ R

n, {s(k)}k∈N ⊂ R
q , {ρ(k)}k∈N ⊂ R

m, {dk}k∈N ⊂ R≥0
such that the following relations are satisfied.

[H1] There exists a positive real number a such that

�(x (k+1), s(k+1))+ ad2k ≤ �(x (k), s(k)), ∀ k ≥ 0.

[H2] There exists a sequence of non-negative real numbers {rk}k∈N with lim
k→∞ rk = 0

such that

�(x (k+1), s(k+1)) ≤ F(u(k), ρ(k)) ≤ �(x (k), s(k))+ rk, ∀ k ≥ 0.
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[H3] There exists a subgradient w(k) ∈ ∂F(u(k), ρ(k)) such that

‖w(k)‖ ≤ b
∑
i∈I

θi dk+1−i , ∀ k ≥ 0,

where b is a positive real number, I ⊂ Z is a non-empty, finite index set and
θi ≥ 0, i ∈ I with

∑
i∈I θi = 1 (d j = 0 for j ≤ 0).

[H4] If {(x (k j ), ρ(k j ))} j∈N is a subsequence of {(x (k), ρ(k))}k∈N converging to some
(x∗, ρ∗) ∈ R

n × R
m, then we have

lim
j→∞‖u

(k j ) − x (k j )‖ = 0, lim
j→∞F(u(k j ), ρ(k j )) = F(x∗, ρ∗).

[H5] There exists a positive real number p > 0 such that

‖x (k+1) − x (k)‖ ≤ pdk, ∀ k ≥ 0.

Moreover, assume that {(x (k), ρ(k))}k∈N is bounded and {ρ(k)}k∈N converges. Then,
the sequence {(x (k), ρ(k))}k∈N converges to a stationary point of F .

In the remaining of this section, we will show that the sequence generated by Phila,
with a proper setting of the surrogate function � and all the auxiliary sequences,
satisfies the assumptions of the previous theorem.

Proposition 15 Let {x (k)}k∈N be the sequence generated by Phila and define the func-
tion � : Rn × R

n → R as

�(x, s) = f (x)+ γ

2
‖x − s‖2. (24)

If Assumptions [A1]–[A3] hold true, then for any k we have

�(x (k+1), x (k))− σλmin�k ≤ �(x (k), x (k−1)). (25)

If, in addition, Assumption [A4] is satisfied, we also have

0 = lim
k→∞‖x

(k+1) − x (k)‖ = lim
k→∞ h(k)(ỹ(k); x (k), x (k−1)) = lim

k→∞‖ỹ
(k) − x (k)‖.

(26)

Proof Inequality (25) follows from (13) and from Lemma 12. Since from Assump-
tion [A4] f is bounded from below, � is bounded from below as well. Therefore, (25)
implies −∑∞

k=0 �k < ∞, which, in turn, yields limk→∞�k = 0. Recalling (17),
this implies (26). ��
Proposition 16 Let {x (k)}k∈N be the sequence generated by Phila and suppose that
Assumptions [A1]–[A4] hold true. Let F : Rn × R→ R be defined as in (23). Then,
there exist {ρk}k∈N, {rk}k∈N ⊂ R, with limk→∞ rk = 0, such that

�(x (k+1), x (k)) ≤ F(ŷ(k), ρk) ≤ �(x (k), x (k−1))+ rk, ∀ k ≥ 0, (27)
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where � and ŷ(k) are defined in (24) and (8), respectively.

Proof From Step 8, we have

�(x (k+1), x (k)) ≤ �(ỹ(k), x (k)) = f (ỹ(k))+ γ

2
‖ỹ(k) − x (k)‖2

≤ f (ŷ(k))−
(
c + γ

μαmax

θ

)
h(k)(ỹ(k); x (k), x (k−1))

+d‖x (k) − x (k−1)‖2,

where the last inequality follows from (20) and (17). Setting

ρk =
√
2

(
−

(
c + γ

μαmax

θ

)
h(k)(ỹ(k); x (k), x (k−1))+ d‖x (k) − x (k−1)‖2

) 1
2
,

(28)

we obtain �(x (k+1), x (k)) ≤ F(ŷ(k), ρk), which represents the left-most inequality in
(27). On the other hand, from inequality (21) we obtain

F(ŷ(k), ρk) = f (ŷ(k))+ 1

2
ρ2
k

≤ f (x (k))− c̄h(k)(ỹ(k); x (k), x (k−1))+ d̄‖x (k) − x (k−1)‖2 + 1

2
ρ2
k .

Setting rk = ρ2
k /2− c̄h(k)(ỹ(k); x (k), x (k−1))+(d̄− γ

2 )‖x (k)− x (k−1)‖2, we can write

F(ŷ(k), ρk) ≤ f (x (k))+ γ

2
‖x (k) − x (k−1)‖2 + rk = �(x (k), x (k−1))+ rk,

which is the rightmost inequality in (27). Finally, from (26) we have that limk→∞ rk =
0. ��
Proposition 17 Let {x (k)}k∈N be the sequence generated by Phila and suppose that
Assumptions [A1]–[A4] hold true. Let ρk be defined as in (28). Then, for any k, there
exists a subgradient w(k) ∈ ∂F(ŷ(k), ρk) such that

‖w(k)‖ ≤ η(
√−�k +

√−�k−1) (29)

for some positive constant θ .

Proof From (19) we know that for any k there exists a subgradient v̂(k) ∈ ∂ f (ŷ(k))

such that

‖v̂(k)‖ ≤ q
√−�k + q‖x (k) − x (k−1)‖, (30)

where p, q are positive constants which do not depend on k. Setting

w(k) =
(

v̂(k)

ρk

)
,
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since F is separable, we have

w(k) ∈ ∂F(ŷ(k), ρk).

By the triangular inequality we also obtain

‖w(k)‖ ≤ ‖v̂(k)‖ + |ρk |. (31)

Let us analyze the two terms at the right-hand side of the inequality above. From (30)
we have

‖v̂(k)‖ ≤ q(
√−�k + ‖ỹ(k−1) − x (k−1)‖)

≤ q
√−�k + q

√
2μαmax

θ

(−h(k−1)(ỹ(k−1)); x (k−1), x (k−2))

= q
√−�k + q

√
2μαmax

θ
(−�k−1),

where the first inequality follows from the fact that x (k) − x (k−1) = λk−1(ỹ(k−1) −
x (k−1)), where λk−1 ≤ 1, the second one is a consequence of (17), and the third one
follows from the definition of �k . Setting q̄ = q · max

{
1,
√
2μαmax/θ

}
, the last

inequality above yields

‖v̂(k)‖ ≤ q̄
(√−�k +

√−�k−1
)

. (32)

Reasoning as above, from (28) we obtain

ρk =
√
2

(
(c + γμαmax/θ)(−�k)+ d‖x (k) − x (k−1)‖2

) 1
2

≤ √2
(
(c + γμαmax/θ)(−�k)+ d‖ỹ(k−1) − x (k−1)‖2

) 1
2

≤ √2
(

(c + γμαmax/θ)(−�k)+ d
2μαmax

θ
(−h(k−1)(ỹ(k−1); x (k−1), x (k−2))

) 1
2

≤ √2
(

(c + γμαmax/θ)(−�k)+ d
2μαmax

θ
(−�k−1)

) 1
2

≤ p̄
√−�k −�k−1 ≤ ζ

(√−�k +
√−�k−1

)
,

where p̄ = √2max {c + γμαmax/θ, 2μdαmax/θ} 12 and the last inequality follows
from the concavity of

√·. Therefore, by combining the last inequality above with (32)
and (31), it follows that (29) holds with η = q̄ + p̄. ��
Proposition 18 Let {x (k)}k∈N be the sequence generated by Phila and define ρk as in
(28). Assume that (x∗, ρ∗) is a limit point of {(x (k), ρk)}k∈N and that {(x (k j ), ρk j )} j∈N
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is a subsequence converging to it. Then, we have

lim
k→∞‖ŷ

(k) − x (k)‖ = 0, lim
j→∞F(ŷ(k j ), ρk j ) = F(x∗, ρ∗).

Proof Inequalities (15) and (26) implies that

lim
k→∞‖ŷ

(k) − x (k)‖ = 0. (33)

From (26) and (29), there exists a sequence {w(k)}k∈N with w(k) ∈ ∂F(ŷ(k), ρk) such
that limk→∞ ‖w(k)‖ = 0. Since F has a separable structure, this implies that there
exists a sequence {v(k)}k∈N with v̂(k) ∈ ∂ f (ŷ(k)) such that w(k) = (v̂(k), ρk) with
limk→∞ ‖v̂(k)‖ = limk→∞ ρk = 0. Moreover, thanks to Lemma 4, we can write
v̂(k) = ∇ f0(ŷ(k)) + z(k), with z(k) ∈ ∂ f1(ŷ(k)). Hence, by continuity of ∇ f0, the
assumption on the subsequence {(x (k j ), ρk j )} j∈N, and (33), the following implication
holds

lim
k→∞ v̂(k) = 0⇒ lim

j→∞ z(k j ) = −∇ f0(x
∗).

By applying the subgradient inequality to z(k), and adding the quantity 1
2ρ

2
k j

to both
sides of the same inequality, we get

f1(x
∗)+ 1

2
ρ2
k j ≥ f1(ŷ

(k j ))+ 〈z(k j ), x∗ − ŷ(k j )〉 + 1

2
ρ2
k j

= F(ŷ(k j ), ρk j )− f0(ŷ
(k j ))+ 〈z(k j ), x∗ − ŷ(k j )〉,

where the last equality is obtained by adding and subtracting f0(ŷ(k j )) to the right-
hand-side. Taking limits on both sides we obtain

f1(x
∗)+ 1

2
(ρ∗)2 ≥ lim

j→∞F(ŷ(k j ), ρk j )− f0(x
∗),

which, rearranging terms, gives lim j→∞F(ŷ(k j ), ρk j ) ≤ F(x∗, ρ∗). On the other
side, by assumption, F is lower semicontinuous, therefore lim j→∞ F(ŷ(k j ), ρk j ) ≥
F(x∗, ρ∗), which completes the proof. ��
Proof of Theorem 13 ByPropositions 15, 16, and17,weknow that conditions [H1], [H2],
and [H3] hold for Phila, with the merit functions defined in (23) and (24) with the
following settings:

s(k) = x (k−1), u(k) = ŷ(k), dk =
√−�k, a = σλmin .

Moreover, the inequalities in [H2] are satisfied with ρ(k) and rk set as in the proof
of Proposition 16, while the inequality [H3] holds with I = {1, 2}, θi = 1/2, for
i = 1, 2, b = 2η.
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Table 1 Summary of the test problems considered in Sect. 5

Test problem f0 prox f1

Section 5.1.1 Quadratic –

Section 5.1.2 Quadratic Projection

Section 5.2.1 Nonlinear, strongly convex Projection

Section 5.2.2 Nonlinear, nonconvex Projection

Section 5.2.3 Quadratic, strongly convex Soft thresholding

Section 5.2.4 Nonlinear, nonconvex Inexact

Moreover, Proposition 18 leads to conclude that [H4] holds.
Finally, condition [H5] holds as a consequence of (17) ans (14), since dk = √−�k .
Then, Theorem 14 applies and guarantees that the sequence {(x (k), ρk)}k∈N converges
to a stationary point (x∗, ρ∗) ofF . Note that, sinceF is the sum of separable functions,
its subdifferential can be written as ∂F(x, ρ) = ∂ f (x) × {ρ}. Then, (x∗, ρ∗) is
stationary for F if and only if ρ∗ = 0 and 0 ∈ ∂ f (x∗). Hence x∗ is a stationary point
for f and {x (k)}k∈N converges to it. ��

5 Numerical experiments

In this section, we show the flexibility and effectiveness of our proposed algorithm
on a series of optimization problems of varying difficulty, ranging from uncostrained
quadratic minimization to nonconvex composite minimization (see Table 1 for a sum-
mary of the test problems presented in the following and related features). For each
problem, we equip Algorithm 1with different selection rules for the parameters αk and
βk , and compare its numerical performance to other well-known methods available in
the literature. Overall, we will see that Algorithm 1 performs best when its parameters
are either partially or completely related to the nonlinear Conjugate Gradient itera-
tion. The numerical experience is carried out on a PC equipped with 11th Gen Intel(R)
Core(TM) i7 processor (16GB RAM) in Matlab (R2021b) environment.

5.1 Quadratic toy problems

5.1.1 Unconstrained quadratic problem

As a first test, we address the unconstrained minimization of a quadratic function, i.e.,

min
x∈Rn

f0(x) ≡ 1

2
xT Ax − bT x (34)

where n = 100, and A ∈ R
n×n is a symmetric positive definitematrixwith eigenvalues

μmin = μ1 < μ2 < . . . < μn = μmax , respectively. The test problem is generated
following the same procedure described in [44]: first, we compute an orthogonalmatrix
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Q ∈ R
n×n via the QR factorization of a random n × n matrix; then, we choose the

eigenvalues μ1 < μ2 < . . . < μn as n random values in the interval [μmin, μmax ],
and we define� ∈ R

n×n as the diagonal matrix where�i i = μi , i = 1, . . . , n; finally,
we define A = QT�Q. The solution of the test problem is then defined as a random
vector x∗ ∈ R

n and the linear term is set as b = Ax∗.
In the numerical experiments we consider different implementations of ourmethod.

In order to explain the rationale behind the setting of the algorithm parameters, we first
restate the iteration of Algorithm 1 applied to (34). As there is no need to compute an
(inexact) proximal point, Phila reduces in this case to the two-step iterative scheme

x (k+1) = x (k) + λk(−αk D
−1
k g(k) + βks

(k)), k = 0, 1, . . . ,

where

g(k) = ∇ f0(x
(k)), s(k) = x (k) − x (k−1).

The above relation shows that the Phila iteration has the same form of the precon-
ditioned CG updating rule, with an iteration dependent preconditioner. Assume now
that at the iteration k the steplength parameter αk and the scaling matrix Dk have been
selected. Borrowing the ideas behind the Spectral Conjugate Gradient Method (see
[11, Section 1]), we consider the following choice for the extrapolation parameter

βSGM
k = (αk D

−1
k w(k) − s(k))T g(k)

s(k)Tw(k)
, (35)

where w(k) = g(k) − g(k−1). The above formula with Dk = I has been proposed in
[11] and is a generalization of well known strategies in the framework of the nonlinear

Conjugate Gradient method (see [32] for a survey). For example, if s(k)T D−1k g(k) =
g(k)T D−1k−1g(k−1) = 0 for all k, it gives the following generalization of the Fletcher–
Reeves formula

βPCG
k = βFR

k
αk

αk−1λk−1
, βFR

k =
‖g(k)‖2

D−1k

‖g(k−1)‖2
D−1k−1

. (36)

Assuming that a fixed upper bound βmax is given as an input parameter of Phila, in all
our experiments we set the inertial parameter as follows

βk =
{
min

{
βmax , β

SGM
k

}
if βSGM

k ≥ 0
min

{
βmax , β

FR
k

}
otherwise

, (37)

where the thresholding operation is needed to comply with the theoretical prescrip-
tions.

As for the other parameters, in the experiments we set Dk = I , γ = 10−4, while
we consider different choices for the steplength αk , which are detailed below.
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• Phila-L: We set αk as a fixed value related to the Lipschitz constant of ∇ f0:

αk = 1.99

μmax
. (38)

• Phila-BB1: Here αk is computed by means of the first BB rule, namely,

αBB1
k = s(k)T s(k)

s(k)Tw(k)
. (39)

The formula for computing αk is then the following one:

αk = max
{
min

{
αBB1
k , αmin

}}
.

• Phila-BB2: We also consider the variant corresponding to the second BB rule:

αBB2
k = s(k)Tw(k)

w(k)Tw(k)
. (40)

We observed that the above quotient provided a good estimation of the inverse
of the Lipschitz constant of the gradient 1/μmax . Then, in analogy with (38), we
employ twice its value to define αk

αk = max
{
min

{
2αBB2

k , αmin

}}
.

• Phila-CG: In this implementation we aim to closely reproduce the CG iteration.
In particular, for k ≥ 1, we compute βFR

k as in (36) with Dk = Dk−1 = I and we

define p(k) = −g(k) + βFR
k

λk−1αk−1 (x
(k) − x (k−1)). Then, we define

αCG
k = − p(k)T g(k)

p(k)T Ap(k)
, (41)

which is the optimal steplength along the direction p(k), i.e., f (x (k)+αCG
k p(k)) =

minα>0 f (x (k) + α p(k)). Finally, we set

αk = max{min{αCG
k , αmax }, αmin} (42)

Thus, the CG iterations are exactly reproduced when, for all k, λk = 1, αCG
k ∈

[αmin, αmax ] and βSGM
k ∈ [0, βmax ].

We observe that all the above implementations, except Phila-CG which is specifically
tailored for quadratic problems, can be applied also to smooth nonlinear problems.

As a benchmark, we compare our proposed algorithm with the following state-of-
the-art methods.
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• SD: this is the classical Steepest Descent, based on the iteration (2) where Dk = I ,
λk = 1, and αk is computed by the exact minimization rule

αk = argmin
α>0

f0(x
(k) − α∇ f0(x

(k))) = ‖∇ f0(x (k))‖2
∇ f0(x (k))T A∇ f0(x (k))

.

• ISTA: with this acronym, we refer to iteration (2) with Dk = I , λk = 1 and αk ≡ α

given by the constant value α = 1.99/μmax , where μmax represents the Lipschitz
constant of ∇ f0 [10, 26, 28, p. 191].
• FISTA: this is the well-known accelerated FB method (3), with the parameter
setting described in [10, p.193].
• Heavy-Ball: this consists in iteration (4) with the constant choices for the param-
eters proposed in [42], which are defined as follows

βk ≡ β =
(√

κ − 1√
κ + 1

)2

, αk ≡ α = (1+√β)2

μmax
,

where κ = μmax/μmin .
• ADR denotes the inertial algorithm corresponding to formula (4.19) in [6].
• VMILA: theVariableMetric Inexact LinesearchAlgorithm is a FB scheme (2) first
proposed in [16] where αk ∈ [αmin, αmax ] and Dk ∈Mμ can be freely selected,
whereas λk ∈ (0, 1] is computed by Armijo-like backtracking. For our tests, the
scaling matrix Dk is equal to the identity matrix, whereas the steplength αk is
computed by alternating the two standard Barzilai–Borwein (BB) rules [8].

In Fig. 1 (left column), we show the relative decrease of the objective function with
respect to the iteration number for three different values of the conditioning number of
the matrix A. All implementations of Phila outperform ISTA and FISTA, while being
comparable or superior toVMILA,Heavy-Ball andADR.Wenote that the acceleration
of Phila-L with respect to ISTA is only due to the presence of the inertial term,
whereas the improvement with respect to all the inertial methods—FISTA, Heavy-
Ball and ADR—can be attributed to the automated CG-like choice of the Phila inertial
parameter in place of the prefixed FISTA, Heavy-Ball and ADR rules. Furthermore,
the implementation Phila-CG achieves the same convergence speed of the Conjugate
Gradient method, which provides the best performance among all the competitors.

5.1.2 Non-negatively constrained quadratic problem

In this section we consider a quadratic problem constrained onto the non-negative
orthant,

min
x≥0 f0(x) ≡ 1

2
xT Ax − bT x, (43)

where n = 100, A ∈ R
n×n is a symmetric positive definite matrix with minimum

and maximum eigenvalues denoted by μmin and μmax , respectively. This is a convex
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Fig. 1 Quadratic toy problems. Left column: unconstrained case with different condition numbers. Min-
imum eigenvalue μmin = 1 and μmax = 102 (top), 103 (middle), 104 (bottom). Right column:
non-negatively constrained case with μmin = 1, μmax = 103 and different number of active constraints at
the solution na = 1 (top), 20 (middle), 48 (bottom)

composite optimization problem of the form (1), where the nonsmooth term corre-
sponds to f1(x) = ι≥0(x). The proximal operator associated to f1 is the orthogonal
projection onto the constraint set P≥0(x) = max{x, 0}.

We aim to evaluate the effectiveness of Phila in comparison with some existing
approaches, with respect not only to the conditioning of the Hessian A, but also to the
number of constraints which are active at the solution.
To this end, the test problems are defined following [44]: first, a symmetric positive
definite matrix with uniformly spaced eigenvalues in [μmin, μmax ] is computed as
described in the previous section; then, we randomly define a set of indexes Ia ⊂

123



A new proximal heavy ball...

{1, . . . , n} of the constraints which will be active at the solution. We compute the
vector w∗ of the Lagrange multipliers such that w∗i = 1 if i ∈ Ia and w∗i = 0 if
i /∈ Ia . The solution x∗ is computed in a similar way as a random vector such that
x∗i ∈ (0, 1) if i /∈ Ia and x∗i = 0 for i ∈ Ia . The linear term is finally computed as
b = Ax∗ − w∗.

Also in this case we consider different implementations of Phila, which can be
considered as a generalization of those described in the previous sections. Indeed, the
optimality conditions of problem (43) write as

∂ f (x) = ∇ f0(x)+ ∂ι≥0(x) ! 0, [∂ι≥0(x)]i =
{
0 if xi > 0
R≤0 if xi = 0.

At each iteration k we compute the following set of indexes

Bk = {i : x (k)
i = 0 and ∇i f0(x (k)) ≥ 0} (44)

and we define the residual vector r (k) ∈ R
n as

r (k)
i =

{
0 if i ∈ Bk

∇i f0(x (k)) otherwise.
(45)

Clearly we have r (k) ∈ ∂ f (x (k)) and, in particular, ‖r (k)‖ = dist(∂ f (x (k)), 0).
According to the founding in [29, 30], we then propose to generalize the implemen-
tation of Phila described in the previous section with the subgradient (45) in place of
the gradient of f .

• Phila-L, Phila-BB1 and Phila-BB2 are the generalization of the corresponding
algorithms described in the previous section, where βk is still defined as in (37)
but with

w(k) = r (k) − r (k−1), g(k) = r (k) (46)

in (35)–(36). Moreover, the steplength parameter for Phila-L is defined as in (38),
while for Phila-BB1 and Phila-BB2we revisit theBB rules (39), (40) by computing
them with w(k) as in (46).
• Phila-CG: we compute βFR

k as in (36) with Dk = Dk−1 = I and r (k) in place of

g(k). Then, we define p(k) = −r (k) + βFR
k

λk−1αk−1 (x
(k) − x (k−1)) and αCG

k as in (41),

again with r (k) instead of g(k). Finally, αk is defined as in (42) while the inertial
parameter is

βk =
⎧⎨
⎩
min

{
βmax ,

αCG
k βCG

k

αCG
k−1λk−1

}
if Bk−1 = Bk

0 otherwise
.

Also in this case, the implementations Phila-L, Phila-BB1 and Phila-BB2 can be
directly applied to non-negatively constrained nonlinear smooth problems. The above
variants of Phila are then compared with the following methods.
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• ISTA, FISTA, VMILA, Heavy-Ball and ADR with the same parameters described
in the previous section. Since in this case f1 �= 0 is convex but not strongly con-
vex, the Heavy-Ball method actually corresponds to the algorithm named iPiasco
proposed in [39].
• BCCG: we include in the comparison the Bound Constrained Conjugate Gradi-
ent method [53], which is an adaptation of the CG iteration to box constrained
problems where the search direction is based on the residual vector. The conver-
gence properties of this method are not well established, but we include it in our
comparison since we observed good performances.

The results of the comparison are depicted in Fig. 1 (right column). Also in this case,
Phila-BB2 achieves the overall best performances.

5.2 Image restoration problems

5.2.1 Image denoising with edge preserving Total Variation regularization

We consider the variational model for image denoising

min
x∈Rn≥0

1

2
ρ‖x − g‖2 + T Vε(x), (47)

where g ∈ R
n is the noisy data, ρ is a positive parameter and the discrete, smoothed

version of the Total Variation function is defined as

T Vε(x) =
n∑

i=1

√
‖Ai x‖2 + ε2

where Ai ∈ R
2×n represents the discrete image gradient operator at the i-th pixel,

while ε > 0 is a smoothing parameter.
The noisy data g has been generated by choosing a good quality image of size

481×321 (hence n = 154401), with pixels in the range [0, 255], and adding Gaussian
noise with zero mean and standard deviation 25. The model parameters ρ and ε have
been empirically selected in order to obtain a good restoration: the values employed
in the experiments are ρ = 0.0531 and ε = 1. The ground truth and the noisy image
are shown in Fig. 2a, b.

Problem (47) is a strongly convex, nonlinear, smooth constrained optimization
problem, having a unique solution x∗, where the nonsmooth term consists in f1(x) =
ι≥0(x).

In the numerical experiments we consider the implementations Phila-L, Phila-BB1
and Phila-BB2 exactly as described in Sect. 5.1.2. In particular, for Phila-L, we set
μmax = 1 + ρ/ε in (38), which is motivated by the approximation of the Lipschitz
constant of ∇T Vε(x) with 1/ε (see [22, Section 3.3]).
The other parameters are set as γ = 10−4, αmin = 10−5, αmax = 105 and βmax = 1.5.

As a benchmark, we consider again ISTA, FISTA and VMILA. In particular, since
the Lipschitz constant is available only as an estimation, we equip both ISTA and
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Fig. 2 Image denoising problem. a Ground truth; b noisy image (PSNR = 20.27); c restoration (PSNR =
27.67)

FISTA with a backtracking procedure to possibly adjust the steplength. Since the
problem is strongly convex, we can still include in the comparison also the Heavy-
Ball method and ADR. In addition, we consider also the inertial methods ABPG-LS
[54], PGels [55], nmAPG-LS [34] and v-iBPG [56].
Moreover, for Phila and VMILA, we consider also a variable metric implementa-
tion, obtained by defining a diagonal scaling matrix Dk as prescribed in [58]. These
implementations are denoted with the suffix ’s’ added to the algorithm name.

As a stopping criterion we adopt the average relative difference of the objective
function value between two successive iterates over the last 10 steps

1

10

9∑
j=0

| f (x (k− j))− f (x (k+1− j))|
| f (x (k− j))| ≤ tol. (48)

Since the exact solution x∗ of problem (47) is not available, it has been approximated
by running all the considered methods for 200 iterations or until condition (48) is
satisfied with tol = 10−15 and then selecting the point corresponding to the lower
function value. We then compare the speed of each method in approaching the optimal
value.

The results of the numerical comparison are reported in Fig. 3. In the left panel, we
plot the relative distance of the objective function from the optimal value with respect
to the iteration number over the first 150 iterations, while the right panel plots the
same quantity with respect to the computational time in seconds. All algorithms are
stopped when a maximum number of 1000 iterations or 4.5 s of computing time are
exceeded, As a further reference, in Table 2 we report for each method the number
of iterations performed to satisfy the stopping criterion (48) with tol = 10−8 (i.e.,
for a medium-high accuracy solution), the total number of function evaluations, the
relativeEuclidean distance between the restored and the ground truth image, the PSNR,
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Fig. 3 Image denoising problem. Relative decrease of the objective function with respect to the iteration
number (left panel) and to the computational time (right panel)

and the corresponding computational time. Actually, iPiasco and ADR do not require
the computation of the objective function, but only of its gradient. However, since
the objective function evaluation can be obtained as a byproduct of the gradient, we
believe that the plots in Fig. 3 and Table 2 give a clear indication about the effectiveness
of the algorithms. In Fig. 2c we report the output image obtained from Phila-BB2.

Our proposed line-search based methods outperform the benchmark methods with
fixed parameters (Heavy-Ball, ADR, v-iBPG) as well as those employing a backtrack-
ing procedure (ABPG_LS, PGels, nmAPG_LS). In terms of execution time, the most
performing algorithm is Phila-BB2. Indeed, the presence of the scaling matrix seems
to slightly reduce the number of iterations needed to achieve a given accuracy as shown
in the left panel of Fig. 3, but in some cases this results in an increased number of the
backtracking steps. This explains why the scaled methods generally perform better
of their nonscaled version in terms of number of iterations (see left panel of Fig. 2),
whereas the computational time can be larger. This can also be explained by the fact
that the computation of the scalingmatrix adds some complexity. However, we believe
that a more reliable assessment of the algorithms based on the execution time would
require an highly optimized implementation of each code, which is out of the scope
of the present paper.

5.2.2 Image deblurring with bimodal nonconvex regularization

In this section we consider a simulated test problem inspired by the Helsinki Deblur
Challenge (HDC) 2021. The goal is to recover an image of some text string from
a noisy blurred acquisition. The target image has been generated by resizing and
binarizing a randomly selected ground truth image provided by the HDC dataset (the
ones acquired by Camera 1). The resulting image has size 183 × 295 and its pixels
are zero (black) or one (white). The binary image has been convolved with a disk psf
of radius 7 to simulate out-of-focus blur. Finally, Gaussian noise with zero mean and
standard deviation 0.01 has been added. The restored image is obtained by solving the
following optimization problem
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Table 2 Image denoising problems: benchmark of algorithms at (48) satisfied with tol = 10−8

Solver Tot. iter Tot. f. eval Rel. err. (�2) PSNR Time (s.)

ISTA 150∗ 155∗ 0.0835∗ 27.69∗ 1.24∗
FISTA 150∗ 314∗ 0.0836∗ 27.67∗ 2.12∗
VMILA 83 95 0.0836 27.68 0.78

VMILAs 64 73 0.0836 27.68 0.86

Heavy Ball 150∗ 150∗ 0.0841∗ 27.62∗ 1.55∗
ADR 150∗ 150∗ 0.0842∗ 27.61∗ 1.78∗
ABPG_LS 150∗ 300∗ 0.0834∗ 27.69∗ 2.64∗
PGels 150∗ 722∗ 0.0836∗ 27.67∗ 5.35∗
nmAPG_LS 111 110 0.0836 27.67 1.80

v-iBPG 150∗ 150∗ 0.0836∗ 27.68∗ 1.42∗
Phila-L 57 91 0.0836 27.67 0.93

Phila-Ls 56 56 0.0836 27.67 0.92

Phila-BB1 56 78 0.0836 27.68 0.90

Phila-BB1s 52 74 0.0836 27.67 1.11

Phila-BB2 55 59 0.0836 27.67 0.65

Phila-BB2s 54 57 0.0836 27.68 0.96

From left to right: number of iterations, total number of function evaluations, relative reconstruction error
(Euclidean norm), PSNR, CPU time (in seconds). An asterisk ∗ denotes that the maximum execution time
(4.5 s) or the maximum number of iterations (1000) was reached before the tolerance was satisfied

Fig. 4 Image deblurring problem - constrained. a Ground truth; b blurred noisy image; c restoration

min
x∈[0,1]n

1

2
‖Hx − g‖2 + ρT Vε(x)+ χ

n∑
i=1

xi (1− xi ), (49)

where g is the noisy blurred data and H represents the blurring matrix corresponding
to the disc psf. In addition to the TV functional, here the objective function includes
also a bimodal nonconvex regularization term, whose minima are attained when each
pixel value is either zero or one. This kind of regularization has been considered in [15]
in the HDC framework. The ground truth image and the simulated data are reported in
Fig. 4a, b, respectively. Problem (49) is a nonconvex, constrained, smooth optimization
problem. Due to nonconvexity, it may have multiple stationary points.

The implementation of Phila is based on a generalization of the settings described
in Sect. 5.1.2, taking into account the presence of box constraints instead of non-
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Fig. 5 Image deblurring problem: relative decrease with respect to the iteration number (left panel) and to
the computational time, in seconds (right panel)

negativity only. In particular, for each iteration k we define the following set of
indexes

Bk = {i : (x (k)
i = 0 ∧ ∇i f0(x) ≥ 0) ∨ (x (k)

i = 1 ∧ ∇i f0(x) ≤ 0)}

and we define the residual at the iteration k as in (45) and the vectors w(k), g(k) as
in (46). Also in this case we have r (k) ∈ ∂ f (x (k)) and ‖r (k)‖ = dist(∂ f (x (k)), 0).
Based on these definitions, we consider the implementations Phila-L, Phila-BB1 and
Phila-BB2 as described in Sect. 5.1.2. We also set Dk = I and γ = 10−4. For the
fixed stepsize version Phila-L, we adopt μmax = 1+ ρ/ε + 2χ as an estimate of the
Lipschitz constant of ∇ f0(x), and we define αk as in (38).
The other parameters are set exactly as in the previous section (γ = 10−4, αmin =
10−5, αmax = 105 and βmax = 1.5). The benchmark algorithms compared to Phila
are ISTA, FISTA, VMILA, ABPG_LS, PGels, nmAPG_LS and v-iBPG as in the
previous experiment. We include also FISTA, even if its convergence properties are
proved only for convex problems, since in this case we observed a good behaviour
anyway. In particular, for ISTA and FISTA we use the same estimate employed in
Phila-L for μmax to determine the steplengh parameter; also in this case, we include a
backtracking procedure as a safeguard for convergence. As a further benchmark, we
include also the Heavy-Ball method iPiano [40], with constant parameters.

The results are reported in Fig. 5, where the plots show the decrease of the objective
function with respect to the iteration number (left panel) and the computational time
(right panel). Table 3 reports a comparison of the algorithms when the stopping condi-
tion (48) with tol = 10−8 is satisfied. From left to right, the columns of the table report
the number of iterations, the corresponding total number of function evaluations, the
Euclidean relative error, the PSNR between the restored and the clean image and the
total computational time.

We can observe that all the Phila version perform well with respect to the reference
algorithms: in particular, Phila-BB2 exhibits the overall best performance.
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Table 3 Image deblurring problem

Solver Tot. iter Tot. f. eval Rel. err. (�2) PSNR Time (s.)

ISTA 3000∗ 3000∗ 0.4719∗ 70.11∗ 12.28∗
FISTA 1474 2946 0.4870 69.84 12.60

iPiano 3000∗ 3000∗ 0.4718∗ 70.11∗ 34.25∗
VMILA 1909 2131 0.4824 69.92 24.23

ABPG_LS 3000∗ 6000∗ 0.4938∗ 69.72∗ 63.52∗
PGels 3000∗ 8688∗ 0.4821∗ 69.93∗ 89.88∗
nmAPG_LS 830 1584 0.4873 69.83 26.06

v-iBPG 3000∗ 3000∗ 0.4864∗ 69.85∗ 11.09∗
Phila-L 1026 1031 0.4876 69.83 12.66

Phila-BB1 2216 4000 0.4838 69.90 45.00

Phila-BB2 682 786 0.4853 69.87 6.75

Results with stopping criterion (48) with tol = 10−8 and total number of function evaluations. An asterisk
∗ indicates that the maximum number of 3000 iterations or the time limitation of 65 s was reached

5.2.3 Image deblurring with sparsity inducing regularization on the wavelet
transform

In this section we consider a different approach to the deblurring problem, leading to a
convex composite �2-�1 minimization problem. Given a blurred noisy image g ∈ R

n ,
a restoration is obtained by solving the following optimization problem

min
x∈Rn

1

2
‖HRT x − g‖2 + ρ‖x‖1, (50)

where H ∈ R
n×n is the blurring operator and R ∈ R

n×n represents an orthogonal
wavelet transform. Here, the unknown x ∈ R

n corresponds to the wavelet coefficients
and the �1 regularization terms aims to induce sparsity on it. Once computed a solution
x∗ of the above problem, the restored image is obtained with formula RT x∗. The test
problem is defined following [10, Example 5.1]: as a ground truthwe take the 256×256
cameraman image and we blur it with a Gaussian psf of size 9 × 9 and standard
deviation 4. We assume reflective boundary conditions, therefore the matrix-vector
products involving the blurring operator H can be easily implemented via the dct2
transform. Finally,we add to the blurred image zeromeanGaussian noisewith standard
deviation 10−3. The ground truth and the noisy blurred image are shown in Fig. 6a, b.
As for the synthesis operator R we adopt a three stage Haar wavelet transform. Since
R is orthogonal, the eigenvalues of the Hessian matrix can be computed using the dct2
transform. The regularization parameter ρ is set to 2 · 10−5.
Problem (50) is convex, therefore the optimal value is unique.

We compare the same algorithms considered in the previous section. In particular,
for the implementation of Phila we first observe that in this case we have f1(x) =
ρ‖x‖1 and
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Fig. 6 Image deblurring problem - �2-�1. a Ground truth; b blurred noisy image (PSNR = 11.99); c
restoration (PSNR = 31.71)

[∂ f1(x)]i =

⎧
⎪⎨
⎪⎩

ρ if xi > 0

[−ρ, ρ] if xi = 0

−ρ if xi < 0

.

Then, using the same rationale behind the strategies proposed for non-negatively and
box constrained problems, at each iteration we define the following set of indexes

Bk = {i : x (k)
i = 0 ∧ ∇i f0(x) ∈ [−ρ, ρ]},

and we define r (k) as

r (k)
i =

{
0 i ∈ Bk

∇i f0(x (k))+ ρ sign(x (k)
i ) otherwise

so that r (k) ∈ ∂ f (x (k)) and ‖r (k)‖ = dist(∂ f (x (k)), 0). Using this definition of r (k)

and with w(k), g(k) as in (46), we compute the steplength and inertial parameters as in
(39), (40) and (35), leading to the corresponding implementations of Phila. Since R
is orthogonal and thanks to the special structure of H , the maximum eigenvalue μmax

of the Hessian employed in Phila-L, can be computed via the dct2 transform. The
other parameters are set as in the previous experiments (αmin = 10−5, αmax = 105,
βmax = 1.5 and Dk = I ).

The comparison still includes ISTA,FISTA,HeavyBall,ADR,VMILA,ABPG_LS,
PGels, nmAPG_LS and v-iBPG. In particular, ISTA and FISTAare implemented using
the exact value of the Lipschitz constant μmax .

The results are reported in Fig. 7, while the restoration obtained from the Phila-BB2
solution is shown in Fig. 6c. To evaluate the performances, we first obtain a numerical
approximation of the optimal value f ∗ by running 15,000 iterations of Phila-BB2.
Then, we run all methods for a maximum of 4000 iterations with a time limit of 200s
and we plot the function values with respect to the iteration number (left panel of
Fig. 7) and the computational time (right panel). In Table 4 we report the results of all
algorithms stopped when condition (48) with tol = 10−6 is satisfied. In the columns
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Fig. 7 Image deblurring with sparsity inducing regularization: relative decrease with respect to the iteration
number (left panel) and to the computational time (right panel)

Table 4 Image deblurring with sparsity inducing regularization: results at (48) satisfies with tol = 10−6

Solver Tot. iter Tot. f. eval Rel. err. (�2) PSNR Nonzero Time (s.)

ISTA 4000∗ 4000∗ 0.0619∗ 29.76∗ 4843∗ 80.91∗
FISTA 3882 3881 0.0271 36.93 104 84.12

VMILA 1895 2308 0.0371 34.21 17,539 48.76

Heavy Ball 4000∗ 4000∗ 0.0487∗ 31.83∗ 11,805∗ 192.40∗
ADR 4000∗ 3999∗ 0.0524∗ 31.20∗ 9318∗ 187.88∗
ABPG_LS 4000∗ 8002∗ 0.1064∗ 25.04∗ 96∗ 154.87∗
PGels 3574∗ 10,020∗ 0.0519∗ 31.28∗ 9759∗ 200.00∗
nmAPG_LS 2598 2597 0.0262 37.23 18,352 113.15

v-iBPG∗ 4000∗ 4000∗ 0.0279∗ 36.68∗ 0∗ 79.37∗
Phila-L 4000∗ 4000∗ 0.0318∗ 35.54∗ 1272∗ 96.42∗
Phila-BB1 4000∗ 7173∗ 0.0438∗ 32.75∗ 14257∗ 145.05∗
Phila-BB2 2002 2009 0.0273 36.86 24,408 45.23

From left to right: number of iterations, number of and function evaluations, Euclidean relative reconstruc-
tion error, PSNR, number of zero components of the computed solution, computational time. The asterisk
indicates that the stopping criterion was not satisfied within 4000 iterations or 200s of running time

of the table we list the same parameters as in Table 2 and 3 with, at the sixth column,
the additional information about the number of zero components of the computed
solution. Actually, FISTA, ISTA, Heavy-Ball and ADR do not require the function
evaluation; however, as we noticed before, the objective function can be obtained
as a byproduct of the gradient, which all methods need. Therefore, the performance
assessment can be still obtained by comparing the total number of function evaluations
of the backtracking methods—Phila and VMILA—with the number of iterations of
the methods employing fixed stepsize—ISTA, FISTA, Heavy-Ball and ADR.

We can observe that the fastest decrease of the objective function is achieved by
Phila-BB2, which also provides the sparsest solution. Also from the point of view of
the effectiveness, Phila-BB2 requires very few backtracking reductions, leading to the
overall best performance.
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5.2.4 Image deblurring in presence of signal dependent Gaussian noise

As a last image restoration example, we consider a deblurring problem where the data
g ∈ R

n are affected by signal dependent Gaussian noise. In this case, the likelihood
principle leads to the following fit-to-data term

f0(x) =
n∑

i=1

([Hx]i − gi )2

ai [Hx]i + ci
+ log(ai [Hx]i + ci ),

where H ∈ R
n×n models the blurring phenomenon and ai , ci > 0 are prefixed param-

eters. As a regularization term we consider the nonsmooth TV functional, given by
formula (48) with ε = 0. This is a case where the explicit formula for the proxim-
ity operator is not available and it has to be approximated with the dual procedure
described in the Appendix and detailed in Algorithm 2. Non-negativity constraints
are also included in the model, therefore the nonsmooth part of the objective function
reads as

f1(x) = ρT V0(x)+ ι≥0(x).

We observe that f0 is nonconvex and∇ f0 is Lipschitz continuous on dom( f1), but the
constant is not easy to estimate. The test problem, consisting in the ground truth and
noisy blurred image shown in Fig. 8a, b, has been downloaded from [46]. Moreover,
the data discrepancy parameters are ai = ci = 1 for all i = 1, . . . , n, H corresponds
to a convolution with a 7 × 7 Gaussian kernel and the regularization parameter is
ρ = 0.03.

The numerical comparison includes ISTA, VMILA, iPiano (in the implementation
described in [18]), the variable metric forward-backward algorithm (VMFB) proposed
in [25], whose Matlab code can be downloaded from [46] and the inexact version
of v-iBPG [56]. All these methods, as well as Phila, need an approximation of the
proximity operator. For ISTA, VMILA, iPiano and Phila we adopt the same approach,
i.e., Algorithm 2 with a = 2.1 and the adaptive stopping criterion (10) with τ = 106

(for more details concerning this point, see Sect.A.1). The inexactness criterion in
v-iBPG is very similar and it can be implemented using the same approach described
above but with a different stopping criterion. In particular, at the iteration k, the inner
iterations are stopped when the primal-dual gap is below the prefixed tolerance νk =
100/(1+ k1.1), fulfilling the theoretical prescriptions detailed in [56]. As for VMFB,
in the code [46] the proximal gradient point is still approximated with inner dual
iterations, until the relative differenceof two successive iterates and correspondingdual
function values are below to a fixed tolerance. Then, evaluation of the effectiveness of
the considered algorithms can bemeasured in terms of the number of function/gradient
evaluations and of the number of inner iterations required to achieve an approximate
solution with similar accuracy.

In the first phase of our numerical experience,we also considered the scaled versions
of VMILA and Phila based on the variable metric employed in VMFB: however,
since there was no improvement in the convergence behaviour, we do not report the
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Fig. 8 Image deblurring from data affected by signal dependent Gaussian noise: a Ground truth, b noisy
blurred data (PSNR = 23.38); c restoration (PSNR = 29.09)

Fig. 9 Image deblurring from data affected by signal dependent Gaussian noise: relative decrease of the
objective function with respect to the iteration number (left panel) and to the computational time (right
panel)

corresponding results. For Phila we adopt the fixed stepsize αk = 50, which was
empirically determined. The other parameters of Phila are set exactly as in the other
image restoration experiments (γ = 10−4, αmin = 10−5, αmax = 105 and βmax =
1.5).

The results of the comparison are shown in Fig. 9. In this case, even if the problem
is nonconvex, all methods seem to converge to the same value. Therefore, for a better
visual comparison we first computed an approximation of the optimal value f ∗ by
running 20,000 iterations of VMFB, then we evaluate the relative distance from f ∗
at each iteration of all methods and we plot this quantity with respect to the iteration
number (left panel) and the computational time (right panel). Table 5 collects some
information about the effectiveness of each algorithm. The first three columns report
the number of iterations, function evaluations and inner iterations needed to fulfill
condition (48) with tol = 10−8. In the last column we report a kind of optimality
measure in terms of the quantity hk , which is defined as as h(k)(ỹ(k); x (k), x (k)) for the
non inertial methods ISTA, VMILA and VMFB, while hk = h(k)(ỹ(k); x (k), x (k−1))
for the three implementations of Phila and iPiano. Then, for allmethods hk is a quantity
which must converge to zero, so that the smaller is hk , the closer is the algorithm to
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its limit. Moreover, for the inexact methods ISTA, VMILA and Phila, hk controls the
accuracy level in evaluating the proximity operator, which becomes more demanding,
in terms of inner iterations, for small values of hk .

From Fig. 9 and Table 5 we can observe that condition (48) with the same tolerance
stops different algorithms at a different accuracy level. In particular, the solutions
provided by Phila are more accurate with respect to both the closeness to the target
value f ∗ and the optimality measure hk . This also explains why the number of inner
iterations is larger. Again, the overall best performances are obtained by Phila-BB2.
The restored image provided by Phila-BB2 is shown in Fig. 8c.

6 Conclusions and future work

In this paper we proposed a new inertial proximal gradient algorithm whose con-
vergence is guaranteed by the descent properties enforced by a suitable line-search
procedure. This results in a flexible schemewhere, unlike previously proposed Heavy-
Ball methods, the parameters characterizing the iteration can be selected almost freely.
This freedom can be exploited by adapting acceleration techniques which already
demonstrated their effectiveness when combined with non inertial forward–backward
methods. In particular, we adopt a variant of the Barzilai–Borwein formulae for the
stepsize selection, while the inertial parameter is computed by mimicking the nonlin-
ear Conjugate Gradient rules. The results of the numerical experience show that these
practical rules make the proposed method more efficient than existing Heavy-Ball
methods and competitive alsowith accelerated forward–backwardmethods, especially
when seeking for amedium-high accuracy solution. Future researchwill concernmore
insights on the parameter selection from a spectral point of view.
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A Computation of the inexact proximal point

In this section we explain how to compute a point ỹ(k) such that condition (10) is
satisfied, when the convex term in the objective function has the following form

f1(x) =
q∑

i=1
φi (Ai x)+ ψ(x), (51)

where φi : Rni → R∪{+∞},ψ : Rn → R∪{+∞} are lower semicontinuous convex
functions and Ai ∈ R

ni×n . Denoting by φ∗i the Fenchel conjugate of φi (see (51)) and
the block matrix A = (AT

1 AT
2 · · · AT

p )T ∈ R
m×n , with m = n1+· · ·+ nq , using the

same arguments in [16, 20] we can define the dual function of h(k)(· x (k), x (k−1)) as

Q(k)(w) = −
q∑

i=1
φ∗i (wi )+�(k)(w)+

− f1(x
(k))− 1

2
αk‖∇ f0(x

(k))− βk

αk
Dk(x

(k) − x (k+1))‖2
D−1k

wherew ∈ R
m is the dual variable partitioned asw = (wT

1 , . . . , wT
p )T , withwi ∈ R

ni ,
and

�(k)(w) = ψ(proxDk
αkψ

(z(k) − αk D
−1
k ATw))

+ 1

2αk
‖proxDk

αkψ
(z(k) − αk D

−1
k ATw)− (z(k) − αk D

−1
k ATw)‖2Dk

+

− 1

2αk
‖z(k) − αk D

−1
k ATw‖2Dk

+ 1

2αk
‖z(k)‖2Dk

.
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By definition of the Fenchel dual, we have

h(k)(y; x (k), x (k−1)) ≥ Q(k)(w)

for any y ∈ R
n and for any w ∈ R

m and the equality holds if and only if y is the
minimizer of h(k) (i.e., y = ŷ(k)) and w is a maximum point ofQ(k). More in general,
the above inequality holds for y = ŷ(k) and for any w ∈ R

m . Therefore, if (y, w) is a
primal dual pair satisfying

h(k)(y; x (k), x (k−1)) ≤ 1

1+ τ
2

Q(k)(w),

then y is an inexact inertial proximal gradient point in the sense of (10). The existence
of such a pair is stated in the following proposition, which also indicates a way to
practically compute it.

Proposition 19 Suppose that f1 is defined as in (51), f1 is continuous in its domain
and dom( f1) = dom(ψ). Let {w(k,�)}�∈N ⊂ R

m a sequence converging to a maximum
point of the dual functionQ(k) such that lim�→∞Q(w(k,�)) = maxw∈Rm Q(k)(w). For
any �, define the corresponding primal point as

y(k,�) = proxDk
αkψ

(z(k) − αk D
−1
k ATw(k,�)).

Then,

lim
�→∞Q(w(k,�)) = lim

�→∞ h(k)(y(k,�); x (k), x (k−1)) = h(k)(ŷ(k); x (k), x (k−1))

and, therefore, inequality

h(k)(y(k,�); x (k), x (k−1)) ≤ 1

1+ τ
2

Q(k)(w(k,�))

holds for all sufficiently large �, for any given τ > 0.

The proof of the previous proposition can be found in [20, Proposition 4.2]. In sum-
mary, an inexact inertial proximal gradient point can be computed by approximately
solving the dual problem

max
w∈Rm

Q(k)(w),

which is a convex composite optimization problem where the smooth part is the func-
tion �(k)(w), whose gradient is given by ∇�(k)(w) = AproxDk

αψ(z(k)−αk D
−1
k ATw).

Moreover, an estimation of the Lipschitz constant of∇�(k) is L�(k) = αk‖A‖2‖D−1k ‖.
Therefore, the dual sequence w(k,�) can be obtained by applying FISTA to the dual
problem, setting the algorithmparameters as prescribed in [23] to guarantee the conver-
gence. For completeness, the FISTA dual algorithm for computing the inexact inertial
proximal point is detailed in Algorithm 2.
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Algorithm 2 FISTA for the computation of the inexact inertial proximal gradient point

Input: z(k), x(k), x(k−1), αk , Dk , τ , w
(k,1) ∈ R

m , a > 2.
Set L

�(k) = αk‖A‖2‖D−1k ‖.
Set w̄(k,0) = w(k,1).
For � = 1, 2, . . .

Step 1. Compute

y(k,�) = prox
Dk
αkψ

(z(k) − αk D
−1
k AT w(k,�))

Step 2. If h(k)(y(k,�); x(k), x(k−1)) ≤ 1

1+ τ
2
Q(k)(w(k,�))

Break

Endif
Step 3. Compute

v(k,�) = w(k,�) + 1

L
�(k)

AT y(k,�)

w̄
(k,�)
i = prox 1

L φ∗i
(v

(k,�)
i ), i = 1, . . . , p

Step 4. Update

w(k,�+1) = w̄(k,�) + �− 1

�+ a
(w̄(k,�) − w̄(k,�−1))

End
Output: y(k,�).

A.1 Inexact proximity operator evaluation for the test problem

In the test problem described in Sect. 5.2.4, the nonsmooth term can be written in the
form (51) with q = n, φi = ρ‖ · ‖2, Ai ∈ R

2×n representing the discrete gradient
operator at pixel i , for i = 1, . . . , n, while ψ = ι≥0. In these settings, the dual
functions φ∗i , i = 1, . . . , n are all equal to the indicator function of the set B = {w ∈
R
2 : ‖w‖ ≤ ρ}. Hence, proxφ∗i is the orthogonal projection onto B, which can be

computed in closed form. Therefore, Algorithm 2 can be easily implemented in this
case.
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