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Abstract
Gradient-based methods have been highly successful for solving a variety of both
unconstrained and constrained nonlinear optimization problems. In real-world appli-
cations, such as optimal control or machine learning, the necessary function and
derivative information may be corrupted by noise, however. Sun and Nocedal have
recently proposed a remedy for smooth unconstrained problems by means of a stabi-
lization of the acceptance criterion for computed iterates, which leads to convergence
of the iterates of a trust-region method to a region of criticality (Sun and Nocedal
in Math Program 66:1–28, 2023. https://doi.org/10.1007/s10107-023-01941-9). We
extend their analysis to the successive linear programming algorithm (Byrd et al.
in Math Program 100(1):27–48, 2003. https://doi.org/10.1007/s10107-003-0485-4,
SIAM J Optim 16(2):471–489, 2005. https://doi.org/10.1137/S1052623403426532)
for unconstrained optimization problems with objectives that can be characterized as
the composition of a polyhedral function with a smooth function, where the latter and
its gradient may be corrupted by noise. This gives the flexibility to cover, for example,
(sub)problems arising in image reconstruction or constrained optimization algorithms.
We provide computational examples that illustrate the findings and point to possible
strategies for practical determination of the stabilization parameter that balances the
size of the critical region with a relaxation of the acceptance criterion (or descent
property) of the algorithm.
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1 Introduction

Handling non-smoothness is an ubiquitous research question in nonlinear optimiza-
tion because it arises naturally in different areas, for example, penalty functions for
constrained optimization [4], statistical data analysis and signal processing [5, 6], and
neural network architectures [7]. In this work we study the convergence properties of
successive linear programming algorithms to solve the optimization problem

min
x∈Rn

φ(x) := ω(F(x)), (P)

whereω : Rp → R is convex and Lipschitz continuous with polyhedral epigraph, and
F : Rn → Rp is twice continuously differentiable. Moreover, we assume that F and
its Jacobian can only be accessed inexactly so that their evaluations are corrupted by
noise. This and similar problems have been studied in the literature, see, for example,
[8–12] and the references therein.

Many optimization problems can be formulated in terms of problem (P) such as the
Lagrangian form

min
x∈Rn

‖y − Ax‖22 + β‖x‖1
of the famous LASSO problem [5, 13] with A ∈ Rm×n , β > 0, and y ∈ Rm that is
particularly popular among data scientists for sparse parameter identification in over-
parameterized models. More broadly speaking, a wide class of nonlinear optimization
problems fall under (P) as well. As an example, the unconstrained minimization of a
smooth objective f : Rn → R can be modeled by setting p = 1 and ω(x) = x for
x ∈ R. We can also examine nonlinear programs constrained by smooth functions
g : Rn → Rm and h : Rn → Rk yielding problems of the form

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0. (NLP)

These problems may be solved by minimizing a non-smooth exact penalty function
of the form

φ(x, ν) := f (x) + ν

∥
∥
∥
∥

(

g(x)T+, h(x)T
)T

∥
∥
∥
∥
1
, (1)

where y+ := max(y, 0) and ν > 0. In fact, strict local solutions of (NLP) are local
minimizers of φ(x, ν) for a sufficiently large value of ν if g and h are smooth and
satisfy the Mangasarian–Fromovitz constraint qualification [14, Theorem 4.4], [4,
Theorem 17.3] at the respective points. The penalty function φ can be expressed

as ω(F(x)), where F(x) := ( f (x), g(x)T, h(x)T)
T
is smooth and ω(x, y, z) := x +

ν‖(y+T, zT)
T‖1 is convex and polyhedral. Besides problems of type (NLP), a variety

of other problems, such as linear or nonlinear fitting problems can be formulated in
terms of (P) as well.
Noisy functions
The combination of unconstrained optimization with noisy observations has recently
been examined [1, 15–21]. The authors consider theminimization of a smooth function
φ : Rn → R while only having access to
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f (x) = φ(x) + ε(x) and g(x) = ∇φ(x) + e(x), (2)

where the only assumptions are that both |ε| and ‖e‖ are uniformly bounded. Conse-
quently, it is not generally possible to generate a sequence {xk} of iterates converging
to a local optimum or stationary point of φ. Intuitively, while the gradient noise e is
small compared to ∇φ, the direction g is a suitable search direction with respect to φ.
This allows for the use of an Armijo-like globalization strategy [16, 20] or, in case of
[1, 17], a trust-region method, where the noise is handled by stabilizing the reduction
ratio, which is of course closely related to the Armijo condition. As soon as a region is
reached where the noise produced by ε and e becomes too large relative to φ and ∇φ

respectively, no further progress can be expected and the algorithm may stall. How-
ever, this critical region is visited infinitely often and once reaching it, the algorithm
does not produce objective values much larger than the objective values attained in the
critical region. The authors also study the problem of adapting quasi-Newton methods
to the noisy setting.
Contribution
We build on the ideas in [1, 15, 21] and consider the non-smooth problem (P) in a
setting, where function and derivative evaluations are only available as noisy obser-
vations. As the authors in [1, 15, 21], we assume the following noise model: Rather
than being able to evaluate F and its derivative F ′ directly, we only have access to

F̃(x) := F(x) + δF (x) and G(x) := F ′(x) + δF ′(x).

These proxies consist of the original functions F and F ′ as well as error functions δF :
Rn → Rp and δF ′ : Rn → Rp×n . In terms of the problem (NLP), this is tantamount to
noise in the objective f , the constraints g, h, and their respective derivatives. Contrary
to this, we assume that the function ω does not suffer from any noise. What is more,
we presume that the structure of ω is well understood in the sense that, for example,
its Lipschitz constant is known, which is certainly the case for the penalty function
in (1).

In order to solve optimization problems of the form (P), we propose a trust-region
algorithm leaning on the successive linear programming template proposed in [2] and
a convergence analysis that builds on the ideas in [3, 15, 21]. Specifically, we use a
stabilization of the iterate acceptance test in order to assert that a neighborhood of a
stationary point is visited infinitely often by the iterates produced by the algorithm.
The polyhedral structure of ω is handled by first solving a linear program in order to
determine a direction for a subsequent Cauchy point determination. This can also be
interpreted as an active set determination for the corresponding kinks of the polyhedral
epigraph of ω.

We also provide computational examples that illustrate the theoretical results and
the practical behavior of the algorithm. Moreover, the results point to open questions
and possible approaches regarding the choice of the correct stabilization parameter in
the acceptance test.
Structure of the Remainder
We introduce the successive linear programming algorithm and the modified accep-
tance test in Sect. 2. The asymptotics of the algorithm are analyzed in Sect. 3. We
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provide computational examples and the corresponding results in Sect. 4. We draw a
conclusion in Sect. 5.

2 A noise-tolerant successive linear programming algorithm

In the noisy setting, we cannot expect to find the true optimumor stationary points ofφ,
since we do not have access to F and F ′. Specifically, in a small region around the true
optimum x∗, F̃ andG may oscillate, thereby making their evaluations unreliable. This
impairs globalization strategies in nonlinear programming because their acceptance
tests require reliable evaluations of F and a model function involving F ′.

In the non-noisy regime, a trust-region method produces a sequence {xk} of iterates
by assembling and subsequently optimizing model functions qk : Rn → R, yielding
a step dk . The quality of dk is determined according to the reduction ratio

ρk := φ(xk) − φ(xk + dk)

φ(xk) − qk(dk)
,

which is used to determine whether or not the step will be accepted. However, in
the noisy setting, we only have access to F̃ leading to a noisy composite function
φ̃(x) := ω(F̃(x)). While we can build a model q̃k : Rn → Rp which coincides with
F̃ at xk , we cannot control the numerator φ̃(xk) − φ̃(xk + dk). Indeed, if we reduce
the trust region, sending dk to zero, the denominator of ρk will tend to zero while the
numerator will oscillate, making the ratio unreliable. To alleviate this problem, we
turn towards a recent adaptation [1] of trust-region methods in order to solve the noisy
counterpart of (P). The authors of [1] add a correction term, that is a positive constant
ϑ > 0, to both the numerator and denominator of the reduction ratio ρk to mitigate
the effect of noisy evaluations, yielding a modified ratio

ρ̃k := φ̃(xk) − φ̃(xk + dk) + ϑ

φ̃(xk) − q̃k(dk) + ϑ
.

The parameter ϑ can then be chosen appropriately in order to stabilize the ratio. As
we will see, this means that for ϑ large enough, the iterates of the successive linear
programming algorithm converge to a critical region around a stationary point. The
downside is that this region grows with ϑ and the algorithm also accepts steps that do
not improve the objective.

Apart from this adjustment, we follow the algorithmic approach in [3]. Specifically,
we use the following partially linearized and quadratic models at xk ∈ Rn


̃(x; d) := ω
(

F̃(x) + G(x)d
)

, (3)


̃k(d) := 
̃(xk; d), and (4)

q̃k(d) := 
̃k(d) + 1
2 〈d, Bkd〉, (5)
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where the Bk ∈ Rn×n are symmetric (not necessarily positive definite) approximations
of the curvature of ω ◦ F . Here and throughout we let 〈·, ·〉 be the standard scalar
product in Rn , inducing the 2-norm, which we simply denote by ‖ · ‖. For matrices,
we let ‖ · ‖ be the corresponding operator norm, given by its largest singular value.
Algorithm
Based on the models above, our noise-tolerant approach to solving (P) is laid out in
Algorithm 1. In each iteration, an initial step dLP is computed in Line 3 by solving the
problem

min
‖d‖LP≤�LP

k


̃k(d),

where ‖·‖LP is a norm onRn defining the trust region associated with 
̃k . While we
make no further assumptions regarding this norm, it is in practice advantageous to cast
this subproblem as a linear program to be solved using state-of-the-art LP solvers [22,
23]. To this end, two conditions should be met. First, the epigraph of ω should be
polyhedral. Second, the feasible region should be polyhedral as well, or, equivalently,
‖ · ‖LP should be a polyhedral norm, such as ‖ · ‖1 or ‖ · ‖∞. In any case, due to the
equivalence of norms in Rn there exists a constant γ > 0 such that for each d ∈ Rn

it holds that
‖d‖ ≤ γ ‖d‖LP. (6)

The algorithm proceeds to compute a Cauchy step dCk in Lines 4–7. To this end, it
employs a line search initialized with a step size sufficiently small to ensure that the
Cauchy step falls into the trust region bounded by�LP

k . During the line search the step
size is shortened by a factor of 0 < τ < 1 until the quadratic reduction achieved by
the Cauchy point is within a factor of 0 < η < 1 of its linear reduction.

The actual step dk to be taken in Line 8 can be different from the Cauchy step
dCk , provided that it improves upon the quadratic reduction of dCk . This gives some
algorithmic flexibility, allowing for the computation of Newton-type steps in order
to achieve local quadratic convergence. Based on the stabilized reduction ratio ρ̃k
computed in Line 9, the step is either accepted (Lines 11–12) or rejected (Lines 14–
15) according to an acceptance threshold of ρu > 0. Additionally, the trust-region
radii �k+1 and �LP

k+1 are adjusted based on ρ̃k :

1. The value of �k+1 is increased or decreased based on whether ρ̃k achieves a value
of at least ρs . The decrease is such that the new trust-region radius is at most κu < 1
times as large as the previous one, thereby ensuring a true reduction, while being
at least κl‖dk‖ (with 0 < κl ≤ κu) in order to prevent an immediate collapse of
the trust region.

2. If ρ̃k achieves at least ρu (note that ρu ≤ ρs), the LP trust-region radius �LP
k+1

is increased beyond ‖dCk ‖LP, as long as it does not exceed the upper bound of
�LP

max ≥ 1. The new LP trust-region radius is also only increased beyond �LP
k+1

if the full LP step dLP was accepted (i.e., αk = 1), indicating that the partially
linearizedmodel 
̃k is a good approximation of φ̃k across the entire LP trust region.
If ρ̃k falls short of ρu , �LP

k+1 is decreased while being kept within a factor of θ > 0
of ‖dk‖LP.
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Remark 2.1 When applied to problem (NLP), Algorithm 1 uses the strategies intro-
duced in [2], which form the basis of the active set method in the highly successful
Knitro code [24], which combines sequential linear programming with equality con-
strained quadratic programming approaches in order to achieve robust performance
over a range of large-scale nonlinear programming problems.

Algorithm 1: A noise-tolerant algorithm to minimize φ(x) = ω(F(x))

Input : Functions ω, F̃ , G,
Initial point x0 ∈ Rn ,
Initial trust region radii 0 < �LP

0 ≤ �LP
max, 0 < �0

Parameters: Acceptance thresholds 0 < ρu ≤ ρs < 1,
Step adjustments 0 < κl ≤ κu < 1, θ > 0,
Cauchy line search parameters 0 < η < 1, 0 < τ < 1,
Ratio stabilizer ϑ > 0,
Maximum LP trust region radius �LP

max ≥ 1
Output : Primal point x∗ ∈ Rn

1 k ← 0
2 until Some termination criterion is satisfied
3 Compute LP step

dLPk ← argmin‖d‖LP≤�LP
k


̃k (d)

4 αk ← min
(

1,�k/‖dLPk ‖
)

5 while φ̃(xk ) − q̃k (αkd
LP
k ) < η

[

φ̃(xk ) − 
̃k (αkd
LP
k )

]

do

6 αk ← ταk

7 dCk ← αkd
LP
k

8 dk ← Step d such that ‖d‖ ≤ �k and q̃k (d) ≤ q̃k (d
C
k )

9 Compute stabilized reduction ratio

ρ̃k ← φ̃(xk ) − φ̃(xk + dk ) + ϑ

φ̃(xk ) − q̃k (dk ) + ϑ

10 if ρ̃k ≥ ρu then � Accept step
11 Set xk+1 ← xk + dk

12 Pick �LP
k+1 ∈

[

‖dCk ‖LP, �LP
max

]

such that �LP
k+1 ≤ �LP

k if αk < 1

13 else � Reject step
14 Set xk+1 ← xk

15 Pick �LP
k+1 ∈

[

min(θ‖dk‖LP, �LP
k ), �LP

k

]

16 if ρ̃k ≥ ρs then
17 Set �k+1 ≥ �k
18 else
19 Choose �k+1 ∈ [κl‖dk‖, κu�k ]
20 k ← k + 1

21 return x∗ = xk
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3 Convergence analysis of Algorithm 1

We begin our convergence analysis with the introduction of the standing assumptions
and a recap of the relevant stationarity concept for (P) in Sect. 3.1. We analyze the
criticalitymeasure for this notion of stationarity in the noisy setting in Sect. 3.2.We use
these results to prove lower bounds on the trust-region radii that occur in Algorithm 1
in Sect. 3.3, which are then used to obtain sufficient decrease and, as a consequence,
convergence of the produced iterates to critical regions in Sect. 3.4.

3.1 Standing assumptions and stationarity

In order to study the convergence properties of Algorithm 1, we make several assump-
tions regarding the amount of noise, the functions ω, F , and the matrices Bk used in
the quadratic models q̃k .

Assumption 1 We assume that the noise is uniformly bounded via ‖δF (x)‖ ≤ εF and
‖δF ′(x)‖ ≤ εF ′ for all x ∈ Rn . We refer to εF and εF ′ as the noise levels of the
functions F̃ and G respectively.

Assumption 2 ω is Lipschitz-continuous with constant Lω, i.e., it holds for all x, y ∈
Rn that

|ω(x) − ω(y)| ≤ Lω‖x − y‖.
Assumption 3 F and F ′ are Lipschitz-continuous with constants LF and LF ′

, i.e., it
holds for all x, y ∈ Rn that

‖F(x) − F(y)‖ ≤ LF‖x − y‖ and

‖F ′(x) − F ′(y)‖ ≤ LF ′ ‖x − y‖.

Assumption 4 The Hessian approximations Bk are bounded, i.e., there exists β > 0
such that for all d ∈ Rn , k > 0 it holds that

|〈d, Bkd〉| ≤ β‖d‖2.

Our aim in the following is to find a local optimum of φ. A first-order necessary
condition (see [25, p. 184]) of optimality for (P) states that x∗ ∈ Rn can only be a
local optimum if

max
λ∈∂ω(F(x∗))

〈λ, F ′(x∗)d〉 ≥ 0 for all d ∈ Rn, (7)

where ∂ω(z) denotes the subdifferential of ω at z ∈ Rp. To measure how close a point
x ∈ Rn is to satisfying these conditions, we use the criticality measure introduced
in [26]. Specifically, we let

�(x;�) := φ(x) − min‖d‖LP≤�

(x; d)

123



C. Hansknecht et al.

and set�k(�) := �(xk;�) as before. Clearly, since d = 0 is a feasible solution of the
inner optimization problem, the value �(x;�) is always non-negative. On the other
hand, the following result establishes that a vanishing reduction over a nontrivial trust
region is tantamount to reaching a point satisfying first-order conditions, which we
call a critical point:

Lemma 3.1 ([26], Lemma 2.1) A point x∗ ∈ Rn satisfies conditions (7) iff there exists
� > 0 such that

�(x∗;�) = 0.

As a consequence of this result, an algorithm solving (P) should aim at generating a
sequence of iterates such that lim infk→∞ �k(�) = 0 for some fixed� > 0 (assumed
to be 1 in the following). This ensures the existence of an accumulation point x∗ of
the iterates satisfying first-order conditions.

3.2 Analysis of model function and criticality measure in the presence of noise

Since we do not have access to the values of F and F ′ required to compute �k , we
define a noisy measure of criticality via

�̃(x;�) := φ̃(x) − min‖d‖LP≤�

̃(x; d)

and set �̃k(�) := �̃(xk;�) as before. This function is also non-negative if the same
realization of the function noise δF (xk) is usedwhen computing φ̃(xk) and constructing
the linear approximation 
̃k(d).We analyze its properties and relationship to�k below.
Since δF cannot be assumed to be continuous, neither can φ̃. This differs from the
analysis in [3], where the Lipschitz-continuity of φ is used to argue that the reduction
ratio approaches one if the trust-region radius is driven to zero. We can, however, state
that the criticality measures �k and �̃k are related by the following approximation
result: when considering a fixed xk , we claim that �̃k(1) → �k(1) for εF → 0 and
εF ′ → 0 and that we also have convergence of the minimizers of the convex programs
in the definitions of �̃k(1) and �k(1). This follows from the epi-convergence of the
functionals

LεF ,εF ′ (d) := 
̃k(d) + i‖d‖LP≤�(d) and L0,0(d) := 
k(d) + i‖d‖LP≤�(d),

where i A : Rd → {0,∞} is the indicator function of A ⊂ Rd , that is i A(x) = ∞ if
x /∈ A and i A(x) = 0 else. We recall that the functionals LεF ,εF ′ epi-converge to L0,0
if and only if for all d ∈ Rn the inequalities

L0,0(d) ≤ lim inf
εF ,εF ′→0

LεF ,εF ′ (dε) for all sequences dε → d and (8)

L0,0(d) ≥ lim sup
εF ,εF ′→0

LεF ,εF ′ (dε) for some sequence dε → d (9)

hold, see, for example, [27, § 7], which is shown below.
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Proposition 3.2 Let � > 0. Then the functionals LεF ,εF ′ epi-converge to L0,0 for

εF → 0 and εF ′ → 0. In particular, �̃k(1) → �k(1) for εF → 0 and εF ′ → 0 in
case of a fixed xk ∈ Rn.

Proof We begin by showing the first inequality and consider dε → d. W.l.o.g. we
assume that lim infεF ,εF ′→0 LεF ,εF ′ (dε) < C for some C > 0, which implies that
there is a subsequence (denoted by d ′

ε) such that ‖d ′
ε‖LP ≤ � for all elements d ′

ε.
The continuity of the norm ‖ · ‖LP yields 0 = i‖d ′

ε‖LP≤� = i‖d‖LP≤� for all elements

of the subsequence inside the trust region with radius �. Moreover, F̃(xk) → F(xk)
and G(xk) → F ′(xk) for εF → 0 and εF ′ → 0 and thus the continuity of ω gives

̃k(dε) → 
k(d) and in turn the first inequality.

We continue with the second inequality and consider the constant sequence dε := d.
Then i‖dε‖LP≤� = i‖d‖LP≤� and F̃(xk) → F(xk) and G(xk) → F ′(xk) for εF → 0
and εF ′ → 0. Again, the continuity of ω gives 
̃k(dε) → 
k(d) and in turn the second
inequality.

The functionals LεF ,εF ′ always admit a minimizer because the feasible set {d |
‖d‖LP ≤ �}, on which LεF ,εF ′ is finite, is compact. A standard argument yields
that all accumulation points of a sequence of minimizers of the functionals LεF ,εF ′
minimize the limit functional L0,0. ��

Consequently, if we drive �̃k to zero over the iterations, we have an upper bound
on �k , defining a critical region (sublevel set) into which the iterates converge.

Lemma 3.3 Under Assumption 3 it holds for all x, d ∈ Rn that

‖F(x + d) − F(x) − F ′(x)d‖ ≤ LF ′ ‖d‖2.

Proof This follows directly from Assumption 3 and the mean value theorem. ��
Lemma 3.4 Under Assumptions 1–4, it holds that

|φ̃(xk + dk) − q̃k(dk)| ≤ Mε
0 + Mε

1‖dk‖ + Mε
2‖dk‖2, (10)

where Mε
0 := 2LωεF , Mε

1 := LωεF ′ , and Mε
2 := LωLF ′ + 1

2β.

Proof The assumed Lipschitz continuity ofω, F , F ′, the representations F̃ = F+δF ,
G = F ′ + δF ′ , Lemma 3.3, and the bounds on δF , δF ′ yield the claim by repeated
application of the triangle inequality. ��
Remark 3.5 If Assumptions 2 to 4 hold in the noiseless case, the achievable reduction
is related to the trial value via |qk(dk) − φ(xk + dk)| ≤ M‖dk‖2 for some M > 0.
This is no longer the case in the noisy model.

Several of the following results are due to [3] and are largely unaffected by moving
from the noiseless to the noisy regime. We refer to their counterparts in [3] and prove
them in the appendix. We begin by establishing that the linearized model 
̃ is still
Lipschitz-continuous, albeit with a Lipschitz-constant affected by the noise level εF ′ :

123



C. Hansknecht et al.

Lemma 3.6 Under Assumptions 1–3 it holds for all d ∈ Rn that

|
̃k(d) − 
̃k(0)| ≤ L

ε‖d‖LP,

where L

ε := γ Lω(LF ′ + εF ′).

Proof The assumed Lipschitz continuity of ω, F ′, the representation G+ δF ′ , Lemma
3.3. and the bound on δF ′ and the norm estimation (6) yield the claim by repeated
application of the triangle inequality. ��

We proceed to examine the reduction according to the partially linearized model as
a function of the size of an improvement step. The following result establishes that the
reduction is well behaved in the step size in the following sense: the model reduction
that is achieved for a reduced step size is bounded from below by the model reduction
achieved without step reduction multiplied by the step reduction.

Lemma 3.7 It holds for all α ∈ [0, 1] that

φ̃(xk) − 
̃k(αd) ≥ α
[

φ̃(xk) − 
̃k(d)
]

.

Proof This follows directly from the fact that 
̃k is convex, where we note that 
̃k(0) =
φ̃(xk) holds for d = 0. ��

Next, we establish that the criticality �̃k(�) for a given trust-region radius � > 0
is bounded below by �̃k(1) multiplied by � if the latter is less than one. This holds in
particular during the computation of the LP step in Algorithm 1. The proof requires
the relationship established in Lemma 3.7.

Lemma 3.8 (Lemma 3.1 in [3]) It holds for any � > 0 that

�̃k(�) ≥ min(�, 1)�̃k(1).

Proof The proof is in Appendix A. ��
The next result states that when progress is possible with respect to the criticality

�̃k(1), the LP step either lies on the trust-region boundary or has a norm proportional
to �̃k(1).

Lemma 3.9 (Lemma 3.2 in [3]) Suppose that Assumptions 1–3 hold and that
�̃k(1) �= 0. Let d� be a minimizer achieving �̃k(�) for some � > 0. Then it fol-
lows that

‖d�‖LP ≥ min

(

�,
�̃k(1)

L

ε

)

.

Proof The proof is in Appendix A. ��
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We are now ready to examine the step dk computed by Algorithm 1 with respect
to the reduction achieved by the model q̃k . Specifically, if progress can be made with
respect to the criticality �̃k(1), then we can expect a positive reduction in q̃k . We use
this result to prove that the objective φ̃ decreases as well as long as �̃k(1) is sufficiently
large.

Lemma 3.10 (Lemma 3.3 in [3]) The model decrease satisfies

φ̃(xk) − q̃k(dk) ≥ φ̃(xk) − q̃k(d
C
k ) ≥ ηαk�̃k(�

LP
k ) ≥ ηαk min(�LP

k , 1)�̃k(1).

Proof The proof is in Appendix A. ��

The following technical lemma shows that if �̃k(1) �= 0, then ‖dCk ‖LP is bounded
below, which we will need to ensure that the updated trust region radii do not collapse
while progress in the objective can still be made.

Lemma 3.11 (Lemma 3.5 in [3]) Under Assumptions 1–4 it holds that

αk�
LP
k ≥ ‖dCk ‖LP

≥ min

(

�k

γ
,�LP

k ,
�̃k(1)

L

ε

,min

(

1,
1

�LP
k

)

2(1 − η)τ�̃k(1)

βγ 2

)

.

Proof The proof is in Appendix A. ��

3.3 Lower bounds on the trust-region radii

We are now able to state a key result that provides lower bounds on both the trust-
region radius � for the quadratic model and the LP trust-region radius �LP. It ensures
that the algorithm does not stall while progress can be made with respect to the noisy
criticality �̃k . The proof strategy follows Lemma 3.6 in [3] for the noiseless case. In
order to compensate for the noise, we need to assume a sufficiently large stabilization
parameter ϑ , which in turn depends on the constants introduced by the noise.

Lemma 3.12 Consider an application of Algorithm 1 to the noisy variant of prob-
lem (P). Suppose that Assumptions 1–4 hold, �̃k(1) ≥ δ > 0 for all k, and that

ϑ ≥ ϑ∗
ε := Mε

0 + Mε
1

1 − ρs
, (11)

with Mε
0 , M

ε
1 from Lemma 3.4. Then it follows that

�k ≥ �min and αk�
LP
k ≥ �min

γ
,
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where �min = min(A, Bδ) with

A := min
(

θ, κl ,�0,�
LP
0 γ

)

, and

B := min

(

θ2(1 − ρu)η

γ Mε
2�

LP
max

,
κ2
l (1 − ρs)η

γ Mε
2�

LP
max

,
γ

L

ε

,
2(1 − η)τ

βγ�LP
max

)

.

Proof Using �̃k(1) ≥ δ and �LP
max ≥ 1 the bound in Lemma 3.11 becomes

‖dCk ‖LP ≥ min

(

�k

γ
,�LP

k ,
�̃k(1)

L

ε

,min

(

1,
1

�LP
k

)

2(1 − η)τ�̃k(1)

βγ 2

)

≥ min

(
�k

γ
,�LP

k ,
δ

L

ε

,
2(1 − η)τδ

�LP
maxβγ 2

)

= min

(
�k

γ
,�LP

k ,�crit

)

, (12)

where

�crit := min

(
δ

L

ε

,
2(1 − η)τδ

�LP
maxβγ 2

)

.

If a step is accepted in the k-th iteration (that is ρ̃k ≥ ρu), it follows that

�LP
k+1 ≥ ‖dCk ‖LP ≥ min

(
�k

γ
,�LP

k ,�crit

)

. (13)

If, on the other hand, the step is rejected, we can deduce the inequalities

1 − ρu < 1 − ρ̃k = φ̃(xk + dk) − q̃k(dk)

φ̃(xk) − q̃k(dk) + ϑ
≤ Mε

0 + Mε
1‖dk‖ + Mε

2‖dk‖2
ηαk min

(

�LP
k , 1

)

�̃k(1) + ϑ

from Lemmas 3.4 and 3.10. Based on the bounds �̃k(1) ≥ δ, �LP
k ≤ �LP

max, and
‖dCk ‖LP = ‖αkdLPk ‖LP ≤ αk�

LP
k , we can estimate the denominator via

ηαk min
(

�LP
k , 1

)

�̃k(1) + ϑ ≥ ηαk�
LP
k min

(

1,
1

�LP
k

)

δ + ϑ

≥ η‖dCk ‖LP δ

�LP
max

+ ϑ

≥
(12)

ηmin

(
�k

γ
,�LP

k ,�crit

)
δ

�LP
max

+ ϑ.

Consequently, we obtain the relationship

(1 − ρu)ηmin

(
�k

γ
,�LP

k ,�crit

)
δ

�LP
max

+ (1 − ρu)ϑ < Mε
0 + Mε

1‖dk‖ + Mε
2‖dk‖2.

(14)
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Furthermore, the choice of ϑ together with 0 < ρu ≤ ρs < 1 implies that

ϑ ≥ Mε
0 + Mε

1

1 − ρs
≥ Mε

0 + Mε
1

1 − ρu
. (15)

To obtain a lower bound on �LP
k+1, we distinguish two cases with respect to ‖dk‖:

1. If ‖dk‖ ≥ 1, it follows that θ‖dk‖LP ≥ θ
γ
‖dk‖ ≥ θ

γ
. Using that �LP

k+1 ∈
[min(θ‖dk‖LP,�LP

k ),�LP
k ] implies that �LP

k+1 ≥ min
(

θ
γ
,�LP

k

)

.
2. If ‖dk‖ < 1, (14) and the lower bound on ϑ given by (15) imply that

1 − ρu

Mε
2

ηmin

(
�k

γ
,�LP

k ,�crit

)
δ

�LP
max

<‖dk‖2. (16)

We now make a case distinction on the minimizer resulting from Line 15 in Algo-
rithm 1. If �LP

k+1 has a value of at least θ‖dk‖LP, we obtain
(

�LP
k+1

)2 ≥ θ2‖dk‖2LP ≥ θ2/γ 2‖dk‖2 (17)

>
θ2(1 − ρu)ηδ

γ 2Mε
2�

LP
max

min

(
�k

γ
,�LP

k ,�crit

)

(18)

≥ min

(
θ2(1 − ρu)ηδ

γ 2Mε
2�

LP
max

,
�k

γ
,�LP

k ,�crit

)2

(19)

If θ‖dk‖LP > �LP
k+1, then

�LP
k+1 ≥ min

(
θ2(1 − ρu)ηδ

γ 2Mε
2�

LP
max

,
�k

γ
,�LP

k ,�crit

)

(20)

holds true.

We combine all of the above cases by taking their minimum, resulting in

�LP
k+1 ≥ min

(
θ

γ
,
θ2(1 − ρu)ηδ

γ 2Mε
2�

LP
max

,
�k

γ
,�LP

k ,�crit

)

. (21)

This lower bound on �LP
k+1 dominates the previously shown lower bound (13) for

accepted iterates. In order to derive a uniform lower bound on�LP
k (that is independent

of k), we may assume the worst case, i.e. all steps are rejected, and resort to only (21).
Regarding trust-region radius�k+1 for the quadraticmodel, we can follow a similar

chain of reasoning as for�LP
k+1: If the reduction ratio ρ̃k achieved by the step is at least

ρs , then we know that �k+1 ≥ �k . Otherwise, it holds that �k+1 ≥ κl‖dk‖. We can
use the same estimations as before to derive a bound analogous to (14):

(1 − ρs)ηmin

(
�k

γ
,�LP

k ,�crit

)
δ

�LP
max

+ (1 − ρs)ϑ < Mε
0 + Mε

1‖dk‖ + Mε
2‖dk‖2.
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The case distinction regarding ‖dk‖ is similar: If ‖dk‖ ≥ 1, then it must hold that
�k+1 ≥ κl . Otherwise, we can deduce the inequality

�k+1

γ
≥ min

(

κ2
l (1 − ρs)ηδ

γ 2Mε
2�

LP
max

,
�k

γ
,�LP

k ,�crit

)

.

using the same steps as before, where κl has the role of θ in the argument before
(after dividing �k+1 by γ ). We can combine these two cases to derive a lower bound
on �k+1, which again holds uniformly regardless of whether the step is accepted or
not.

Combining the lower bounds on �LP
k+1 and �LP

k+1/γ , we obtain the lower bound

min

(
�k+1

γ
, �LP

k+1

)

≥ min

(

θ

γ
,
κl

γ
,
�k

γ
, �LP

k , �crit,
θ2(1 − ρu)ηδ

γ 2Mε
2�

LP
max

,
κ2
l (1 − ρs)ηδ

γ 2Mε
2�

LP
max

)

.

Starting from some k, we apply the inequality above recursivelywhile decrementing
k and arrive at

min

(
�k

γ
,�LP

k

)

≥ min

(
θ

γ
,
κl

γ
,
�0

γ
,�LP

0 ,�crit,

θ2(1 − ρu)ηδ

γ 2Mε
2�

LP
max

,
κ2
l (1 − ρs)ηδ

γ 2Mε
2�

LP
max

)

=: �low.

It must therefore hold that �k ≥ γ�low. Moreover, it holds that

αk�
LP
k ≥ ‖dCk ‖LP ≥ min

(
�k

γ
,�LP

k ,�crit

)

≥ min (�low,�crit) = �low.

The result follows from grouping the terms in γ�low, according to whether or not
they contain δ. ��

3.4 Global convergence theorem

We are now ready to establish the convergence of Algorithm 1. In order to simplify the
proof of the main theorem, we separately handle the special case in which Algorithm
1 converges in a finite number of iterations to a point x∗, which is critical with respect
to the noisy function φ̃:

Lemma 3.13 (Corollary 3.7 in [3]) Consider an application of Algorithm 1 to the
noisy variant of problem (P). Suppose that Assumptions 1 to 4 and (11) hold. If
there are finitely many successful iterations (that is ρ̃k ≥ ρu) during the execution of
Algorithm 1, then it holds that xk is invariant and critical for all sufficiently large k.
In particular,

xk ≡ x∗ and �̃k(1) = 0

for some x∗ and all sufficiently large k.
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Proof The proof is in Appendix A. ��

The following convergence theorem states that when the objective of (P) is bounded
below, an application of Algorithm 1 will produce one of two possible mutually exclu-
sive outcomes: the algorithm may stop at a critical point after a finite number of
iterations as described in Lemma 3.13 or, alternatively, Algorithm 1 visits a critical
region infinitely often. In terms of the functions ω, F̃ , and G, the critical region is
defined as

C(δ) :=
{

x

∣
∣
∣
∣
�̃(x; 1) ≤ δ

}

.

By definition, an iterate xk produced during the execution of Algorithm 1 is contained
in C(δ) if �̃k(1) ≤ δ. What is more, Proposition 3.2 establishes that �̃k(1) tends to
�k(1) as the errors εF and εF ′ approach zero. These results therefore suggest that the
iterate is close to being optimal in the sense of Lemma 3.1.

Theorem 3.14 Consider an application of Algorithm 1 to the noisy variant of prob-
lem (P). Suppose that Assumptions 1 to 4 and (11) hold. Then either

�̃k(1) = 0 for some k ≥ 0,

or
lim
k→∞ φ̃(xk) = −∞,

or there are infinitely many k ∈ N such that xk ∈ C(δmax), where

δmax := max

⎛

⎝

√

ϑ(1 − ρu)γ�LP
max

ρuηB
,
ϑ(1 − ρu)γ�LP

max

ρuηA

⎞

⎠

is given in terms of the constants A, B from Lemma 3.12.

Proof If there are only finitely many accepted steps, the result follows from Lemma
3.13, yielding the first possibility. Otherwise, we can assume that during the algo-
rithm, an infinite number of accepted steps occurs. If φ̃(xk) tends to −∞, the second
possibility occurs, so we can assume in the following that φ̃(xk) (and hence φ(xk)) is
bounded below.

LetK be the sequence of accepted steps, i.e., consisting of those k where xk+1 �= xk .
Clearly, if lim infk→∞ �̃k(1) = 0, then the result follows. So we can assume that there
exists a δ > 0 such that �̃k(1) ≥ δ for all k ≥ k0. The claim stating that the region
C(δmax) is visited infinitely often is tantamount to ensuring that δ ≤ δmax, which will
be the aim of the remainder of this proof. For each k ∈ K, k ≥ k0 we have that

φ̃(xk) − φ̃(xk+1) + ϑ

φ̃(xk) − q̃k(dk) + ϑ
≥ ρu > 0.
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We deduce using Lemma 3.10 that

φ̃(xk) − φ̃(xk+1) ≥ ρu

[

φ̃(xk) − q̃k(dk)
]

+ (ρu − 1)ϑ

≥ ρu

[

ηαk min(�LP
k , 1)�̃k(1)

]

+ (ρu − 1)ϑ.

It follows that

φ̃(xk) − φ̃(xk+1) ≥ ρu

[

ηαk�
LP
k min

(

1

�LP
k

, 1

)

�̃k(1)

]

+ (ρu − 1)ϑ

≥ ρu

[

ηαk�
LP
k

1

�LP
max

�̃k(1)

]

+ (ρu − 1)ϑ.

We can now apply Lemma 3.12 to bound αk�
LP
k below based on �min and the

constants A and B:

φ̃(xk) − φ̃(xk+1) ≥ ρu

[

η
�min

γ�LP
max

�̃k(1)

]

+ (ρu − 1)ϑ

= ρu

[

η
min(A, Bδ)

γ�LP
max

�̃k(1)

]

+ (ρu − 1)ϑ

≥ ρu

[

η
min(A, Bδ)

γ�LP
max

δ

]

+ (ρu − 1)ϑ.

Let us assume towards a contradiction that δ > δmax.We distinguish two cases with
respect to the minimum min(A, Bδ):

1. The minimum is attained at A, implying that

φ̃(xk) − φ̃(xk+1) ≥ ρu

[

η
A

γ�LP
max

δ

]

+ (ρu − 1)ϑ

≥ ρu

[

η
A

γ�LP
max

δmax

]

+ (ρu − 1)ϑ + C1.

for a constant C1 > 0. Using the fact that

δmax ≥ ϑ(1 − ρu)γ�LP
max

ρuηA

by definition of δmax, this implies that φ̃(xk) − φ̃(xk+1) ≥ C1 > 0.
2. The minimum is attained at Bδ, implying that

φ̃(xk) − φ̃(xk+1) ≥ ρu

[

η
Bδ2

γ�LP
max

]

+ (ρu − 1)ϑ

≥ ρu

[

η
Bδ2max

γ�LP
max

]

+ (ρu − 1)ϑ + C2
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for a constant C2 > 0. We now use the fact that

δmax ≥
√

ϑ(1 − ρu)γ�LP
max

ρuηB

to deduce that φ̃(xk) − φ̃(xk+1) ≥ C2 > 0.

In either case φ̃ decreases by min(C1,C2) > 0 from xk to xk+1. Since this decrease
is strictly positive and there are infinitely many accepted steps in the sequence K, it
follows that φ̃(xk) tends to −∞, which is a contradiction. It must therefore hold that
δ ≤ δmax as desired. ��
Interpretation of Theorem 3.14
In theoretical terms, the result in Theorem 3.14 is as expected: the size of the critical
region C depends on the stabilization parameter ϑ , If we increase ϑ , Algorithm 1 can
tolerate a larger amount of noise at the cost of a decreased accuracy with respect to the
criticality measure �̃. Of course, problem (P) can generally also be unbounded. The
remaining case, where �̃k(1) = 0 for some k ∈ N, can involve different scenarios.
If �k(1) = 0 holds as well, the iterate xk is a critical point of (P), which is the ideal
situation. Otherwise, the noises δF (xk) and δF ′(xk) attain values such that xk appears
to be critical in the noisy model. In case of an unconstrained version of (NLP), this is
tantamount to a non-zero gradient that is canceled out by noise.

For a function F that is not afflicted by noise, i.e., satisfying εF = εF ′ = 0, it holds
that Mε

0 = Mε
1 = 0, where Mε

0 and Mε
1 are the constants from Lemma 3.4. This allows

us to set ϑ = 0, whereby we recover the original algorithm discussed in [3]. If we
apply Theorem 3.14 in this situation, it follows from ϑ = 0 that δmax = 0, implying
that the region C(δmax) contains precisely the points critical with respect to φ̃, which
itself coincides with φ in this particular case. Thus, the original convergence result [3,
Theorem 3.8] follows for Algorithm 1 in the noiseless case.

As mentioned in the introduction, we can also apply Algorithm 1 to solve smooth
unconstrained nonlinear problems affected by noise. To this end, we can setω(x) = x ,
achieving aLipschitz constant of Lω = 1. Lemma3.12, specifically (11), then suggests
a stabilization of

ϑ ≥ 2εF + εF ′

1 − ρs
> 2εF + εF ′ , (22)

which may be weaker than the stabilization of rεF analyzed in [1] if εF ′ becomes
sufficiently large. This is particularly true for all εF ′ > 0 for the choice r = 2/(1−ρs),
which corresponds to the choice r = 2/(1 − c2) in (8) in [1].

The reason is the estimate in Lemma 3.7 based on the convexity of ω. Conversely,
the authors of [1] have a Lipschitz continuous derivative of the objective at hand. In
that case, the criticality measure satisfies

x ∈ C(δ) ⇐⇒
(

− min‖d‖LP≤1
G(x)d

)

≤ δ,
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Table 1 Parameters used for numerical experiments

Symbol Explanation Value

�LP
0 Initial LP trust-region radius 1

�LP
max Maximum LP trust-region radius 10

�0 Initial trust-region radius 1

ρu Step acceptance threshold 0.1

ρs Threshold for increase of � 0.5

κl Lower bound for adjustment of � after failed step 0.1

κu Upper bound for adjustment of � after failed step 0.8

θ Lower bound for adjustment of �LP after failed step 0.5

η Factor of relative decrease for Cauchy step 0.1

τ Shortening factor for Cauchy line search 0.5

which in turn is equivalent to ‖G(x)‖ being bounded above by a constant.

4 Numerical experiments

In order to illustrate the performance and examine the behavior of Algorithm 1,
we implement the algorithm1 in Python (3.11.5), using numpy [28] (1.26.0),
scipy [29] (1.11.3) (including HiGHS [23] (1.5.0) as LP solver), and Ipopt [30]
(3.14.13) to solve the respective subproblems. We generally compare the performance
of the classical algorithm (i.e., Algorithm 1 with a stabilization of ϑ = 0), with its
stabilized counterpart (where ϑ > 0).

In terms of termination criteria, we first of all impose an iteration limit, after which
the algorithm terminates. Secondly, we monitor the LP trust-region radius,�LP. If the
radius contracts to a value close to zero (1 × 10−10), we see this as a failure of the
algorithm and let it terminate. Lastly, when the noise criticality �̃k(1) falls below the
threshold of 1× 10−6, we terminate the algorithm, knowing that the current iterate is
very close to being optimal. We then examine the final iterate x f , i.e., the iterate xk

in Algorithm 1 of the iteration at which the termination criterion becomes satisfied.
If not indicated otherwise, we choose the parameters of Algorithm 1 according to
the values in Table 1 and the stabilization parameter ϑ∗

ε . In order to obtain inexact
evaluations of a given function F : Rn → Rp and its derivative, we inject noise by
setting

δF (x) = XF ∈ Rp, XF ∼ Bn(εF ), and

δF ′(x) = XF ′ ∈ Rp×n, XF ′ ∼ Bnp(εF ′), (23)

whereBn(s) denotes the uniform distribution on the n-dimensional Euclidean ball cen-
tered at the origin with radius s ≥ 0. We can compute a sample from this distribution

1 Available at https://github.com/chrhansk/noisy-nonlinear.
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by first sampling n times from a standard normal distribution and scaling the resulting
vector [31] by its Euclidean norm to obtain a sample from the uniform distribution on
Sn(1). We can then use inverse transform sampling to obtain a suitable radius in [0, s]
and rescale the vector accordingly. The injected noise is bounded according to the
noise levels εF and εF ′ while being sufficiently unpredictable to significantly affect
the solution process.

In Sect. 4.1, we augment an example of a quadratic test problem from [1] with a
non-smooth term.We obtain qualitatively similar results in this case. Thenwe compare
and visualize the different behaviors of the unstabilized algorithm and the stabilized
algorithm for the Rosenbrock test function in Sect. 4.2. In Sect. 4.3, we apply the
algorithm to an image reconstruction problem with total variation regularization and
assess the impact of different choices of the stabilizationparameter. Finally, inSect. 4.4,
we apply the algorithm in a penalty method for a small constrained optimization
problem from CUTest [32] as motivated in the introduction, which points to future
research directions. Sections4.1, 4.2 and 4.4 use essentially the same type of a non-
smooth objective function that includes an 
1-penalty term andwe provide the required
estimates of its Lipschitz constant in Appendix B.

4.1 Failure of the classical algorithm

To illustrate the difference in performance between the classical algorithm and Algo-
rithm 1, we consider the case of 
1-penalized optimization problems of the form
x �→ f (x) + λ‖x‖1 with a smooth function f : Rn → R. It is clear that these prob-
lems are non-smooth due to the presence of the ‖ · ‖1 term, while being expressible as
problems of type (P) based on suitable choices of ω and F . This problem class also
enables us to minimize 
̃k and q̃k over the trust regions defined in terms of �LP and �

by solving linear or quadratic programs respectively. What is more, the only curvature
information in this problem class is due to f , enabling us to either use the Hessian
of f (or any quasi-Newton approximation) to obtain the matrices Bk . We specifically
examine the case where f is a quadratic of the form

f (x) = 1
2 〈x, Dx〉,

where D is the matrix in Rn×n for n = 8 given as

D = diag(10−5, 10−4.75, 10−4.5, . . . , 10−3.25),

taken from [1], where this optimization problem has been studied without an 
1-
penalty. It is apparent that the optimal solution of this instance of (P) is x∗ = 0. We
set the parameter λ to 1 × 10−2 while injecting noise according to (23) with noise
levels εF = 1× 10−1 and εF ′ = 1× 10−5, and initialize Algorithm 1 with the initial
point x0 = (1000, 0, . . . , 0)T , limiting the number of iterations to 50, and performing
quadratic steps based on the true Hessian D.

We show an example of the difference in performance in Fig. 1, where the values
of the reduction ratio are clipped to ±5 in order to properly display the results. We
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see that the classical algorithm performs dramatically worse than its stabilized coun-
terpart. Indeed, the classical algorithm stalls almost immediately, due to the reduction
ratio ρk becoming unreliable. Consequently, the LP trust region collapses, and the
classical algorithm makes no progress towards optimality. Conversely, the addition of
a stabilization yields an algorithm rapidly approaching the optimum, both in terms
of primal distance and objective value while maintaining a reasonably large LP trust-
region radius. Similarly, noisy and noiseless criticality decrease rapidly throughout the
iterations of the stabilized algorithm. Unfortunately, the criticality bound established
in Theorem 3.14 attains a value of δmax ≈ 54 000, limiting its use in terms of the
criticality actually achieved throughout the iterations.

Wewould like to point out that the failure of the classical algorithm is not guaranteed
in this scenario: By running the experiment with 100 different random seeds we found
that the classical algorithm stalls in about half (57) of the cases, while performing well
in the other half. Conversely, the stabilized algorithm consistently performs well in all
cases. Its characteristics are qualitatively similar to the case that is depicted in Fig. 1.
A key problem of the classical algorithm is therefore its unreliability when applied to
noisy functions.

4.2 A variant of the Rosenbrock problem

Following the previous experiments conducted based on the quadratic function, we
go on to examine the performance on a variant of the famous Rosenbrock function,
given by

R(x, y) := (a − x)2 + b(y − x2)2

with parameters of a = 1, b = 100. The Rosenbrock function has a unique optimum at
(x∗, y∗) = (a, a2), i.e., at (1, 1) for our choice of parameters. We modify the problem
by adding a penalty of λ‖(x, y) − (x∗, y∗)‖1 with a value of λ = 1 × 10−1, yielding
a problem of type (P) having the same global optimum as R. We show an example
of the difference in performance between the classical and stabilized algorithms in
Fig. 2. The figure shows the trajectories generated by Algorithm 1 with and without
stabilization starting at (x0, y0) = (−1.5, 0), injecting noise according to (23) for
different values of εF and a fixed value of εF ′ = 1×10−5, performing quadratic steps
according to the true Hessian of R with an iteration limit of 50.

Examining the trajectories of the classical algorithm, shown in Fig. 2a, we find that
for different values of εF , the trajectories are initially almost identical, until the algo-
rithm stalls at points with a distances to the optimum increasing with εF . Conversely,
the trajectories of the stabilized algorithm, shown in Fig. 2b, vary significantly for dif-
ferent noise levels. However, the stabilization yields trajectories leading significantly
closer to the optimum than those of the classical algorithm even for larger noise lev-
els. This is confirmed by the statistics shown in Fig. 3, displaying the distribution of
the distance to the optimum for various noise levels for 100 different random seeds,
demonstrating that the stabilized algorithm consistently outperforms the classical one,
in particular for larger noise levels.
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Fig. 1 Performance on an 
1-penalized quadratic problem over 50 iterations of Algorithm 1 with noise
levels of εF = 1× 10−1 and εF ′ = 1× 10−5. The x-axes always show the iteration count of Algorithm 1,
the y-axes show the quantities indicated in the captions below the respective subplots

4.3 Image reconstruction

Although this is not the focus of this article, we also provide a computational example
that has a meaningful problem size. Specifically, we consider an artificial task of
reconstructing an image under noisy observations. That is we seek to recover a matrix
Y ∈ RM×N with values normalized to be in [0, 1]. In our setting, Y is only available
in the form of noisy observations. Specifically, for an input X ∈ RM×N , the fidelity
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Fig. 2 Trajectories for the modified Rosenbrock problem plotted over the shifted criticality 1 + φ(x) −
min‖d‖LP≤1 ω(F(x) + F ′(x)d), which allows to show it on a logarithmic scale. The markers show the
position of the final iterate

of X , given by the squared Frobenius norm of X − Y , 1
2‖X − Y‖2F , as well as its

derivative with respect to X cannot be evaluated. Instead, we have access to the map
X �→ 1

2‖X − Ỹ‖2F , where Ỹ is a noisy version of Y , redrawn for each guess X . We
obtain the term Ỹ by sampling from a componentwise uniform distribution

δY (X) = YF ′ ∈ RM×N , YF ′ ∼ UM×N (−εimg, εimg),

and setting Ỹ to Y + δY (X) clipped back to have coefficients in [0, 1]. The amount of
noise injected to the image is in turn governed by the parameter εimg ≥ 0. This noise
model translates into noise injected into the evaluations of F and F ′, which can be
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Fig. 3 Distribution of the distance between the final iterate x f and noiseless optimum x∗ for different
values of the noise level εF

estimated in terms of εimg, M , and N (see Appendix B) while not conforming to the
noise model (23). We also impose an anisotropic total variation (TV) regularization
penalty, defined as

TV(X) :=
M−1
∑

i=1

N
∑

j=1

|Xi+1, j − Xi, j | +
M

∑

i=1

N−1
∑

j=1

|Xi, j+1 − Xi, j |,

to our objective, turning the problem non-smooth, balancing off fidelity and regularity
by a parameter λ > 0. The regularization term can be expressed as ‖AM,N X‖1 with
a suitable matrix AM,N . Consequently, we can formulate the reconstruction problem
as problem of type (P), consisting of a smooth term (the fidelity), and an 
1-penalized
linear function. Naturally, the regularization does not suffer from any noise.

Based on a regularization parameter of λ = 5 × 10−3 we reconstruct the image
shown in Fig. 4a. To avoid having to solve large quadratic problems,we do not compute
quadratic steps and opt to instead increase the number of iterations to 100 starting from
X0 = 0. As a baseline, Fig. 4b shows the image when we apply Algorithm 1 to the
original image (i.e., setting εimg = 0). The restored image closely resembles the
original one.

We proceed to study the effect of the value of ϑ on the quality of the reconstructed
image. In principle, it must hold that ϑ ≥ ϑ∗

ε in order for the criticality to provably
converge. It is however unclear whether setting ϑ to ϑ∗

ε yields the best results in
practice. The large value of δmax seen in Sect. 4.1 seems to suggest that (11) is rather
pessimistic. We therefore examine the performance of Algorithm 1 for values of ϑ not
necessarily satisfying the inequality.
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Fig. 4 Sample image for the image reconstruction

To gauge performance, we record both the original and noisy objective after the
iterations. The results, shown in Fig. 5, demonstrate the effect ofϑ : For small stabiliza-
tion values, Algorithm 1 stalls early on, as was the case in our previous experiments.
As we increase ϑ , there appears to be an optimal choice or small region, where both
the noisy and the noiseless evaluation of the final objective are minimized. This effect
is more pronounced for higher values of εimg, where the noiseless objective for ϑ = 0
is about 4 times as large as that of the optimal choice of ϑ . It is interesting to see
that this sweet spot also shows in the noisy objective, suggesting that noisy obser-
vations may be sufficient to find it. Lastly, as we increase ϑ beyond the sweet spot,
the final objective increases sharply. This is likely due to the case that the algorithm
simply accepts too many steps, even when they are in fact disadvantageous in terms
of progressing towards an optimum. Ultimately, for a sufficiently large value of ϑ , all
steps are accepted, which, as the final objective suggests, leads to poor solutions. The
values of ϑ∗

ε are given by 4×104, 2×105, and 4×105 for the respective noise levels,
significantly exceeding the optimal values and beyond the point, where all steps are
accepted.

We also find that the objectives are consistent with the visual appearance of the
reconstructed images, shown in Fig. 6: While setting ϑ to zero yields satisfactory
results, even though a grainy appearance remains for larger noise levels, a dispropor-
tionately large value of ϑ produces a distorted result with visible artifacts. For our best
guess of ϑ , the restored images do not suffer from artifacts and closely resemble the
original one even for larger noise levels.

4.4 Constrained optimization

As a final example and in order to demonstrate the possible use of Algorithm 1 as
a subproblem solver in constrained optimization algorithms, we study a constrained
optimization problem of the type (NLP). Specifically, we examine the behavior of
Algorithm 1 when applied to the HS71 benchmark problem of the CUTest [32]
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Fig. 5 Noiseless (red) and noisy evaluations (blue) of the objective values achieved by the final iterate of
Algorithm 1 on an image reconstruction problem with different noise levels and stabilization parameters
(Color figure online)
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Fig. 6 Reconstructed images for different noise levels and stabilizations (left: no stabilization, center: best
stabilization, right: large stabilization so that all iterates are accepted)

suite. The problem is given as

min
x

x1x4(x1 + x2 + x3) + x3

s.t. x21 + x22 + x23 + x24 = 40

x1x2x3x4 ≥ 25

1 ≤ x ≤ 5,

(HS71)

leading to suitable functions g and h according to (NLP). The problem features of four
bounded optimization variables, two nonlinear constraints, and a nonlinear objective
with an optimum at the point x∗ ≈ (1.0, 4.74, 3.82, 1.38) that satisfies MFCQ and in
turn the conditions for the convergence of an exacty penalty method. As mentioned in
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Fig. 7 Noiseless (red) and noisy (blue) performance of the criticality and feasibility residual for different
values of ϑ as well as the value of ϑ∗

ε (vertical line) (Color figure online)

the introduction, we solve problems of type (NLP) by using the penalty function (1)
with a suitable penalization of ν > 0, knowing that convergence is guaranteed for
a sufficiently large ν under mild assumptions, i.e., MFCQ. Increasing ν beyond its
required value may slow down practical performance, but convergence is maintained.
Consequently, ν is often set to a small initial value and increased when necessary (see
for example [2]).

If the functions in (NLP) are affected by noise, the choice of ν is not as straight-
forward: The required stabilization (11) is dependent on Mε

0 and therefore Lω, which
increases with ν. Similarly, the value of δmax increases with Lω and therefore with
ν, so a large penalization has the adverse effect of increasing the size of the critical
region C(δmax), making a suitable choice of the parameter an interesting problem in
and of itself. What is more, if the constraint functions g and h suffer from noise, we
cannot assume the iterates xk to tend towards feasibility in the underlying noiseless
problem regardless of the value of ν.

Therefore, for our investigation, we consider a fixed value of ν, which is suitable to
solve the noiseless variant of (HS71), in our case ν = 100. We once again inject noise
according to (23) with different values of εF and a fixed εF ′ = 0. Specifically, we run
the algorithm with the choice εF = 10−2 and εF = 10−1. Since a reasonable choice
of the quadratic model would likely require some dual estimation, we once again opt
to skip quadratic steps and instead set the iteration limit to 100. After the algorithm
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has terminated, we record the criticality �k(1), the feasibility residual,

max(‖g(xk)+‖∞, ‖h(xk)‖∞),

as well as their noisy counterparts for different values of ϑ (see Fig. 7).
As was the case for the image reconstruction problem, we observe pronounced

minima of the quality metrics criticality and feasibility with respect to the choice of
ϑ . For a given choice of εF , the obtained minima for both quality metrics, criticality
and feasibility residual, are in close vicinity to each other. The position of these min-
ima is also fairly consistent across the noisy and noiseless measurements of both the
criticality and the feasibility residuum. Unfortunately, setting ϑ = ϑ∗

ε does not yield
optimal results, even though it appears as if ϑ∗

ε is closer to being optimal compared
to the image reconstruction problem. Once again, for an informed choice of ϑ , the
stabilized algorithm significantly outperforms the classical one, leading to about an
order of magnitude of reduction in terms of both criticality and feasibility. The precise
choice of the parameter and a systematic means to determine it do, however, remain
elusive.

5 Conclusion

We have presented a noise-tolerant adaptation of a well-established trust-region
method for a non-smooth optimization problem with a structured and convex non-
smoothness described by a polyhedral function, which is therefore suitable to handling
by linear programming techniques. The adaptation only requires knowledge of a Lip-
schitz constant and bounds on the noise in the objective function and its derivative.
The analysis of the asymptotics of the successive linear programming algorithm can
be carried out analogously to [3], where the noiseless case is handled. As we expect
from the results in [1], we do not get convergence to a first-order stationary point but
a critical region instead.

In a noiseless setting, both the behavior of the algorithm and its convergence prop-
erties are consistent and similar to previous analyses. The computational results show
that an informed choice of the stabilization parameter ϑ may improve the quality of
the obtained results significantly so that we believe it makes sense to dedicate research
to improved bounds and efficient practical determination strategies.

Further analysis is also needed in order to be able to use and interpret the method as
a subproblem solver for constrained optimization with noisy constraint and objective
evaluations. In particular, it is necessary to study the asymptotics of the feasibility
residual, identify means to control it, and classify it with respect to existing concepts
from the field of uncertainty quantification like (distributional) chance constraints or
expectation constraints.
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A Proofs

In the following we give the proofs of some of the result used in Sect. 3. These proofs
closely follow those in [3]. We provide them here to make this article more self-
contained.

Proof of Lemma 3.8 Let d1 ∈ Rn be a minimizer of �̃k(1) for � = 1, i.e., �̃k(1) =
φ̃(xk) − 
̃k(d1). If � ≥ 1, it follows that

�̃k(�) ≥ φ̃(xk) − 
̃k(d1) = �̃k(1).

It remains to prove the case� < 1. From ‖d1‖LP ≤ 1 it follows that ‖�d1‖LP ≤ �,
i.e., �d1 is a feasible solution with respect to �. Therefore, it holds that

�̃k(�) = φ̃(xk) − min‖d‖LP≤�

̃k(d) ≥ �

[

φ̃(xk) − 
̃k(d1)
]

= ��̃k(1),

where the inequality is due to the feasibility of �d1 and Lemma 3.7. ��
Proof of Lemma 3.9 Let d1 be a minimizer for � = 1. Assume (towards a contradic-

tion) that ‖d�‖LP < min(�,
�̃k (1)
L


ε
) ≤ �̃k (1)

L

ε
. It follows from Lemma 3.6 that


̃k(d�) ≥ 
̃k(0) − L

ε‖d�‖LP > 
̃k(0) − �̃k(1) = 
̃k(d1). (24)

If � ≥ 1, (24) cannot hold because d1 is feasible with respect to � and therefore
cannot yield a better objective with respect to 
̃k than the minimizer d�. So it must

hold that ‖d�‖LP ≥ �̃k (1)
L


ε
in this case � ≥ 1. If, on the other hand, � < 1, then d1

may not be feasible. However, since 
̃k is convex, it holds for all λ ∈ (0, 1] that


̃k(λd1 + (1 − λ)d�) ≤ λ
̃k(d1) + (1 − λ)
̃k(d�) <
(24)


̃k(d�).
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Therefore, any point on the line segment (d�, d1] has a strictly lower value of 
̃k
than d�. Therefore, no such point can be feasible with respect to the constraint on
‖ · ‖LP. Consequently, d� must lie on the boundary of the feasible set implying that
‖d�‖LP = �. The result is obtained by combining these bounds. ��
Proof of Lemma 3.10 The actual step must satisfy that q̃k(dk) ≤ q̃k(dCk ), so the first
inequality is a given. Similarly, the last inequality is an application of Lemma 3.8. To
show that the remaining inequality holds, recall that the line search for the Cauchy
step dCk terminates with an αk such that

φ̃(xk) − q̃k(d
C
k ) ≥ η

[

φ̃(xk) − 
̃k(d
C
k )

]

≥ ηαk

[

φ̃(xk) − 
̃k(d
LP
k )

]

= ηαk�̃k(�
LP
k )

by means of a standard argument on Armijo line search because 0 < η < 1, see
also [4]. Since dCk = αkdLPk and dLPk , the last inequality follows from Lemma 3.7,
while the last equality is due to dLPk achieving �̃k(�

LP
k ). ��

Proof of Lemma 3.11 The first inequality is due to the fact that the Cauchy step is the
LP step scaled by αk , where the LP norm of the LP step is bounded by �LP

k . Consider
two cases for the second inequality:

1. The decrease condition is immediately satisfied for the initial step size of αk =
min(1,�k/‖dLPk ‖). Consequently it follows that

‖dCk ‖LP = ‖αkd
LP
k ‖LP = min

(

1,�k/‖dLPk ‖
)

‖dLPk ‖LP

We consider two cases:

(a) �k/‖dLPk ‖ ≥ 1, which is to say that ‖dCk ‖LP = ‖dLPk ‖LP. It follows from
Lemma 3.9 that

‖dLPk ‖LP ≥ min

(

�LP
k ,

�̃k(1)

L

ε

)

,

which implies the claimed bound.
(b) Otherwise we know that ‖dCk ‖LP = ‖dLPk ‖LP�k/‖dLPk ‖. We can use (6) to

obtain that ‖dLPk ‖ ≤ γ ‖dLPk ‖LP, inferring that

‖dCk ‖LP = ‖dLPk ‖LP�k/‖dLPk ‖ ≥ ‖dLPk ‖LP�k/(γ ‖dLPk ‖LP) = �k/γ,

which implies the claimed bound.

2. The decrease condition is only satisfied at a later iteration of the line search. Recall
that the line search computes step sizes bymultiplying a base lengthwith powers of
an input parameter τ ∈ (0, 1). We can therefore deduce that the sufficient decrease
condition was not satisfied for αk/τ in the previous iteration, i.e.,

φ̃(xk) − q̃k(αk/τd
LP
k ) < η

[

φ̃(xk) − 
̃k(αk/τd
LP
k )

]
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Since the only difference between the linearized and quadratic model is the
quadratic term, we have that

1
2 (αk/τ)2〈dLPk , Bkd

LP
k 〉 ≥ (1 − η)

[

φ̃(xk) − 
̃k(αd
LP
k /τ)

]

.

The left hand side can be bounded above by using Assumption 4 and relation (6)
to yield

1
2 (αk/τ)2〈dLPk , Bkd

LP
k 〉 ≤ 1

2 (αk/τ)2βγ 2‖dLPk ‖2LP
≤ 1

2 (αk/τ)2βγ 2‖dLPk ‖LP�LP
k .

Similarly, for the right hand side we can use Lemmas 3.7 and 3.8 to obtain

[

φ̃(xk) − 
̃k(α/τdLPk )
]

≥αk/τ
[

φ̃(xk) − 
̃k(d
LP
k )

]

≥αk/τ min(1,�LP
k )�̃k(1),

Putting these inequalities together yields the bound

‖dCk ‖LP = αk‖dLPk ‖LP ≥ 2(1 − η)τ

βγ 2 min

(

1,
1

�LP
k

)

�̃k(1)

required to complete the proof.

��
Proof of Lemma 3.13 Let k0 be the index of the last accepted step. Then, xk+1 =
xk =: x∗ for all k > k0. Consequently, after finishing the k0-the iteration, �̃k(1) stays
at a constant value of δ ≥ 0. What is more, due to the rejection of the steps following
iteration k0 it holds for all k > k0 that�k+1 ≤ κu�k < �k (since κu < 1). Therefore,
�k tends to zero. Recall from Lemma 3.12 that if δ > 0, then �k is bounded away
from zero. Therefore, since �k tends to zero, it must hold that δ = 0. ��

B Estimations

Lipschitz constant of the 
1-penalty function
In the following, we give an estimation for the Lipschitz constant Lω of the penalty
function ω : R × Rm → R, ω(x, y) = x + ν‖y‖1, based on the constant ν > 0 and
the dimension m ∈ N. Since we use this function in all of the examples in Sect. 4, and
since the value of ϑ∗

ε depends on the value of Lω, we make its derivation explicit. To
obtain an optimal value of Lω, we solve the optimization problem

max
x,y,x ′,y′ |ω(x ′, y′) − ω(x, y)|

s.t. (x − x ′)2 + ‖y − y′‖2 ≤ 1,
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i.e., we maximize the difference in values of ω while controlling the distance between
the points (x, y) and (x ′, y′). Observe that

|ω(x ′, y′) − ω(x, y)| = |(x − x ′) + ν‖y − y′‖1|,

from which it follows that both the objective and the constraint value only depend on
x− x ′ and y− y′. We can therefore simplify the problem by setting y′ = 0 and y′ = 0:

max
x,y

|x + ν‖y‖1|
s.t. x2 + ‖y‖2 ≤ 1.

We can simplify the problem further by realizing that we can assume both x and y
to be non-negative, eliminating the absolute value in the objective. The largest ratio
of ν‖y‖1 over ‖y‖2 is achieved by setting all entries of y to the same value y0 ∈ R,
yielding the problem

max
x,y0

x + νmy0

s.t. x2 + my20 ≤ 1

x, y0 ≥ 0.

By setting z := √
my0, we obtain the problem

max
x,z

x + ν
√
mz

s.t. x2 + z2 ≤ 1

x, z ≥ 0.

The optimal solution of this problem is attained at

(

x∗
z∗

)

= 1√
1 + ν2m

(

1
ν
√
m

)

,

yielding the objective
√
1 + ν2m =: Lω.

Image Reconstruction
In the following, we provide estimations regarding the noise levels associated with the
image fidelity map introduced in Sect. 4.3. Recall that the squared Frobenius norm of
a matrix A ∈ RM×N is given by ‖A‖2F := ∑M

i=1
∑N

j=1 a
2
i j . Thus, if |ai j | ≤ ε for a

given ε > 0, it follows that

‖A‖2F ≤
M

∑

i=1

N
∑

j=1

ε2 = ε2MN ,
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and therefore, that ‖A‖F ≤ ε
√
MN . The noisy fidelity function F̃(X) satisfies the

identities

F̃(X) = 1

2
‖X − Ỹ‖2F = 1

2
‖X − (Y + δY (X))‖2F

= 1

2
‖X − Y‖2F + 〈X − Y , δY (X)〉F + 1

2
‖δY (X)‖2F ,

where 〈·, ·〉F denotes the inner product that induces the Frobenius norm. Since the
entries of X and Y are in [0, 1], and therefore have absolute values bounded by 1, it
follows that ‖X − Y‖F ≤ √

MN . The choice of distribution implies that the values
in δY (X) are bounded by ±εimg, and therefore that ‖δY (X)‖F ≤ εimg

√
MN , from

which it follows that

|F̃(X) − F(X)| ≤ ‖X − Y‖F‖δY (X)‖F + 1

2
‖δY (X)‖2F ≤

(

εimg + 1

2
ε2img

)

MN ,

by means of the Cauchy–Schwarz inequality for 〈·, ·〉F . Furthermore, it holds for any
matrix A ∈ Rm×n that ‖A‖ ≤ ‖A‖F . Any estimation with respect to the Frobenius
norm therefore also produces an upper bound for our standard norm ‖ · ‖. Specif-
ically, the noise level εimg yields a corresponding value for εF . Similarly, it holds
that G(X) = F ′(X) − δY (X), and therefore ‖G(X) − F ′(X)‖F ≤ ‖δY (X)‖F ≤
εimg

√
MN , corresponding to a value for ε′

F .
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