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Abstract
Motivated by recent literature demonstrating the surprising effectiveness of the heuris-
tic application of progressive hedging (PH) to stochastic mixed-integer programming
(SMIP) problems, we provide theoretical support for the inclusion of integer vari-
ables, bridging the gap between theory and practice. We provide greater insight into
the following observed phenomena of PH as applied to SMIP where optimal or at
least feasible convergence is observed. We provide an analysis of a modified PH algo-
rithm from a different viewpoint, drawing on the interleaving of (split) proximal-point
methods (including PH), Gauss–Seidel methods, and the utilisation of variational
analysis tools. Through this analysis, we show that under mild conditions, conver-
gence to a feasible solution should be expected. In terms of convergence analysis, we
provide two main contributions. First, we contribute insight into the convergence of
proximal-point-like methods in the presence of integer variables via the introduction
of the notion of persistent local minima. Secondly, we contribute an enhanced Gauss–
Seidel convergence analysis that accommodates the variation of the objective function
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under mild assumptions. We provide a practical implementation of a modified PH and
demonstrate its convergent behaviour with computational experiments in line with the
provided analysis.

Keywords Stochastic mixed integer programming · Progressive hedging ·
Variational analysis · Gauss–Seidel methods

Mathematics Subject Classification 68Q25 · 68R10 · 68U05

1 Introduction

Stochastic mixed integer programming (SMIP) models are, in essence, large-scale
mixed-integer programming (MIP) models in which the uncertain nature of the input
parameters is modelled by means of a finite set of discrete scenarios [1]. This general
framework allows one to model a broad class of decision problems, as can be attested
from the wealth of publications from diverse areas of science and engineering. Impor-
tant applications employingSMIPmodels include unit commitment [2], hydro-thermal
generation scheduling [3], military operations [4], vaccination planning [5], air traf-
fic flow management [6], forestry management and forest fire response [7], supply
chain and logistics planning [8], and other applications referred to on the SIPLIB
website [9]. The practical and theoretical development of stochastic programs (SP)
(without integer variables) preceded SMIP and has influenced its development. The
Progressive Hedging (PH) algorithm [10] for solving SP problems is well studied and
theoretically supported for convex problems with no integer-constrained variables.
Even without this theoretical support in the setting with integer-constrained variables,
PH as a heuristic often demonstrates effectiveness for providing both upper and lower
bounds [11] and often feasible solutions. Motivated by the limited theoretical support
of PH for its application to SMIP and the observed success of PH heuristics for SMIP,
our objective is to develop a theoretical framework and demonstrate convergence in
numerical experiments.

The large scale of the deterministic equivalent of SMIP models proves to be chal-
lenging for off-the-shelf solvers that do not utilise the decomposable structure inherent
in the extensive deterministic forms of SMIP models. By contrast, more promising
solution methods utilise the SMIP’s decomposable structure. The PH algorithm [10]
addresses the decomposable structure as a variant of the alternating direction method
of multipliers (ADMM) [12] where the non-anticipativity constraint is relaxed into an
augmented Lagrangian (AL) reformulation. One of the earliest detailed treatments of
its convergence was based on variational analysis techniques [10], where nonsmooth
analysis also provided important tools for the study of convergence with respect to the
satisfaction of optimality conditions. Augmented Lagrangian duality, which plays a
fundamental role in this work, also appeared in subsequent works to provide duality
theorems for very general nonconvex problems, including cases encompassing inte-
ger constraints [13, Chapter 11, section K], [14]. These publications have attracted
the attention of the integer programming community and resulted in a body of lit-
erature focussing specifically on the application of augmented Lagrangian duality to
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mixed-integer programming (MIP) [15, 16]. This in turn motivated researchers to
state, analyse, and test a version of the PH method containing nonsmooth augmenta-
tions [17]. Concurrently, researchers have also explored the combination of PH with
the Frank-Wolfe algorithm [18] to obtain provably convergent dual bounding meth-
ods for SMIP based on the Lagrangian relaxation of the non-anticipativity constraint
[19]. Other researchers produced primal (heuristic) methods where the quadratic sub-
problems of PH were replaced by mixed integer quadratic programs (MIQP) [11].
These approaches were shown to produce excellent solutions as long as the penalty
parameter was chosen judiciously, and so have remained an enigma, lacking any theo-
retical convergence result. In this paper, we show that variational analysis techniques
will further drawback the curtain on this enigmaand so explainwhat actually underpins
the success of PH with a MIQP when applied to SMIP.

Under reasonable assumptions,we analyse the convergence ofPHapplied toSMIPs,
where we allow the penalty parameters to vary in a less restricted fashion than is
typically required for PH and related approaches, while also applying Lagrangian
multiplier updates requiring a special rule due to the required satisfaction of conver-
gence/boundedness criteria that may not be automatically satisfied when PH is applied
to SMIPs. Furthermore, our approach allows for more generality in the type of aug-
mented Lagrangian terms. In our analysis, we view the PH method as an application
of Gauss–Seidel iterations with penalty and Lagrange terms allowed to vary between
iterations. In this setting, we contribute insight into when PH generates a sequence of
solutions that converges to a feasible point of the SMIP. Our approach may also be
viewed as interfacing some seemingly distinct solution methodologies found in prox-
imal point methods such as PH, Gauss–Seidel (GS) methods, and (mixed-integer)
augmented Lagrangian duality [15–17, 20]. Furthermore, connection with feasibility
pump (FP) primal heuristics is evident in the same spirit as contributed in [21].

Some of the conditions assumed for the penalty and/or augmented Lagrangian term
that are required to achieve an exact penalty effect in [15, 16] (e.g., [16, Theorem 5])
require the penalty functions to be non-differentiable, which can impede the analysis of
Gauss–Seidel methods [22]. Thus, in this paper, we set out to develop this theory from
another direction that allows for a differentiable penalty term, in linewith that typically
used for analysing progressive hedging-likemethods. To compensate for the loss of the
exact penalty effect shown in [15, 16], we provide an analysis describing the effect of
(potentially) letting the penalty coefficient go to infinity in order to achieve feasibility.
In particular, we analyse a SMIP solution method inspired by the FP, PH, and Gauss–
Seidel convergence analysis, that for short, will be denoted FPPH, which in practice
is similar to the use of PH as an heuristic [11], except we allow for greater generality
in the updating of Lagrange multipliers, the changing of penalty coefficients, and in
the allowable forms of the augmented Lagrangian penalty function itself. Successful
convergence of themethod allows for (but is not predicated on) the unbounded increase
of penalty parameters. To be clear, our analysis does not promise both primal and dual
optimal convergence as is provided for PH in the convex, continuous setting. Rather,
we address convergence goals similar to those of feasibility pump methods, where
high-quality feasible solutions are sought, and the main challenge is avoiding either
non-feasible convergence or cycling.
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Our experimental results will demonstrate the effectiveness of FPPH. As with all
FP approaches, one needs to develop heuristics for updating the penalty parameters
to encourage the methods to locate the best possible feasible solution and hence the
strongest primal bound. As a general conclusion, the FPPH presents promising per-
formance relative to Progressive Hedging in terms of quickly obtaining good feasible
solutions for SMIPs with pure integer first-stage variables.

This paper is structured as follows. In Sect. 2, we set up the assumptions on the
regularisation and the conceptual framework on which the analysis rests. In Sect. 3,
further results are developed on how we may decompose the regularisation into its
“cross-sections" where integer variables are fixed, which provides a foundation for
insight into the local minima of the (whole) regularisation. Section4 introduces the
concept of persistent local minima and their relationship to feasibility for SMIP (1).
The convergence analysis of the associated Gauss–Seidel algorithm is carried out in
Sect. 5. In Sect. 6, we present computational results illustrating the employment of
variants of FPPH to find high-quality feasible solutions to SMIP instances. In Sect. 7,
we provide concluding remarks and directions for future developments.

2 Fundamental concepts and conceptual algorithmic framework

Denote x = (xs)s∈S where xs ∈ Xd := R
n−q×Z

q ⊆ X := R
n . Similarly y = (ys)s∈S

where ys ∈ Yd := R
m−r × Z

r ⊆ Y := R
m . We state the SMIP in the following

split-variable deterministic formulation (see, e.g., [1])

ζ SM I P = min
x∈X|S|

d , y∈Y|S|
d ,z∈X,w∈Y|S|

∑

s∈S
fs(xs, ys) (1a)

s.t. (z − xs, ws − ys) = (0, 0), (xs, ys) ∈ Ks, s ∈ S, (1b)

where

fs (xs, ys) := ps
(
c�xs + d�

s ys
)

, s ∈ S (1c)

Ks := {(x, y) ∈ Xd × Yd | x ∈ X , y ∈ Ys(x)} , s ∈ S (1d)

X := {x ∈ Xd | Ax ≤ b} (1e)

Ys(x) := {y ∈ Yd | Tsx + Ws y ≤ hs} , s ∈ S. (1f)

Note that the constraints xs ∈ X that hold only for the first-stage decision variables
xs are identical for all s ∈ S.

We denote the extended real values by R+∞ := R ∪ {+∞}. For each scenario
s ∈ S copy of first-stage variables xs and separately for each scenario s ∈ S second-
stage variables ys we assume that the integer variable component indices (I) always
follow the real variable component indices (R). That is, xs := (xs,R, xs,I) and
ys := (ys,R, ys,I) for each s ∈ S. Define the projection projX,I : Xd → Z

q by
projX,I ((xR, xI)) = xI (with a similar definition for yI projection projY,I ). As the
first-stage consensus variable z components should match those for each xs , due to
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the non-anticipativity constraints z − xs = 0, s ∈ S, the same first-stage distinction
between real and integer components z := (zR, zI) apply. Corresponding distinctions
for the second-stage consensus ws := (ws,R, ws,I), s ∈ S, apply as well. Note that z
is not explicitly constrained to lie within the discrete feasible set X . Nor arews , s ∈ S,
explicitly constrained to lie withing Ys(xs) or Ys(z). Thus, strictly speaking, z ∈ X

and ws ∈ Y vary freely within their respective spaces. Denote w := (w1, . . . , w|S|)
and similarly for (x, y) and when needed we denote z := (z, . . . , z) ∈ R

n×|S|.
Since the second-stage non-anticipativity variables are independent for each

outcome scenario and otherwise unconstrained, the non-anticipativity constraints
ws − ys = 0, x ∈ S, have no practical effect on the feasibility of the second-stage
decisions ys in SMIP (1). Nevertheless, this formulation aids the subsequent analysis
by allowing the incorporation of all variables (regardless of stage) into regularisation
terms in a symmetric fashion. The second stage feasibility is propagated from y to
w via this constraint, while w remains unconstrained. The formulation (1) is also
conducive to generalising our results for two-stage SMIPs to multi-stage problems in
which all stages except the last have active non-anticipativity constraints. In the prac-
tical application of developed algorithms to two-stage problems, the use of w may be
suppressed, as it is in the description of the computational experiments of Sect. 6.

Throughout our developments, we assume the following assumptions to hold
regarding our SMIP (1). We explicitly assume the existence of an optimal solution,
which could be replaced by the standard assumption of rationality of the data defining
the problem.

Assumption 1 We make the following standard SMIP assumptions:

1. Stochasticity of ps : for each s ∈ S, we have ps > 0 and
∑

s∈S ps = 1.
2. Non-emptiness: Ks , s ∈ S, is a non-empty set of feasible decisions constructed

with linear constraints and integrality constraints on the xs and ys variables. (This
also implies that Ks is closed.)

3. Boundedness and Optimality: The optimal value of the SMIP (1) is bounded
from below. Also, the feasible sets Ks , s ∈ S, are bounded. Furthermore, ζ SM I P

is feasible and possesses an optimal solution.
4. Relatively complete recourse: The SMIPmodel has relatively complete recourse;

∀x ∈ X , ∀s ∈ S, we have Ys(x) 
= ∅: that is, first-stage decisions x that satisfy
the first-stage specific constraints x ∈ X have at least one second-stage decision
solution (ys)s∈S for which (x, ys) ∈ Ks for all scenarios s ∈ S.

Of interest is the dual function ζ : � × R
|S|
>0 × R>0 → R+∞ defined by

ζ(λ, π, ρ) := min{ϕλ,ρ,π (z,w) | (z,w) ∈ X × Y
|S|}, (2)

where

ϕλ,ρ,π (z,w) :=
∑

s∈S
ϕλ,ρ,π
s (z, ws) and �λ,ρ,π (z,w) :=

∏

s∈S
�λ,ρ,π

s (z, ws) (3a)
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with, for each s ∈ S,

ϕλ,ρ,π
s (z, ws) := min

(xs ,ys )∈Ks
fs(xs, ys) − λ�

s (z − xs) + ρπsψ (z − xs, ws − ys)

(3b)

�λ,ρ,π
s (z, ws) := argmin

(xs ,ys )∈Ks

fs(xs, ys) − λ�
s (z − xs) + ρπsψ (z − xs, ws − ys) .

(3c)

We assume that Ks is defined as in (1d), and that the usual dual feasibility λ ∈ � :=
{λ | ∑

s∈S λs = 0} holds. For each scenario s ∈ S, the penalty function ψ output
value is scaled by a penalty scaling parameter ρ > 0, and scenario s ∈ S specific
penalty weighting parameters πs > 0 (for which

∑
s∈S πs = 1) to be specified. Note

that under the assumption that λ ∈ �, the summation
∑

s∈S λs z conveniently vanishes
and so these terms may be dropped in subsequent developments.

Each instance of problem (2) is a continuous optimisation problem over the space
X×Y

|S|, and for nontrivial instances of SMIP (1), ϕλ,ρ,π is nonconvex with multiple
isolated local minima. Under assumptions in [15, 16], we have ζ SM I P = ζ(λ, π, ρ)

for sufficiently large but finite ρ. Properties of locally optimal solutions to the minimi-
sation of ϕλ,ρ,π , and how these local minimisers relate to the solutions to the original
SMIP (1), are of special interest in this paper’s subsequent analysis.

As mentioned earlier, the nonsmoothness of penalty functions ψ that support the
exact penalty properties discussed in [15, 16] prevents the support of convergence
theory provided byGauss–Seidel approaches. For this reason,wemodify the properties
assumed in [15, 16] for the penalty functionψ to the conditions stated inAssumption 2.
In particular, we assume that the penalty is strongly convex and differentiable from
the outset (departing markedly from [15, 16]), as this is required for a Gauss–Seidel
approach to be applied with desirable convergence properties (see Lemma 21).

Assumption 2 For our smooth penalty function ψ : X × Y → R, we make the
following integer compatible regularisation function (ICRF) assumptions:

1. ψ (u, v) ≥ 0 for all (u, v) and (u, v) = 0 if and only if ψ (u, v) = 0.
2. If γ ∈ [0, 1) then ψ (γ u, v) < ψ (u, v) for all u 
= 0 and ψ (u, γ v) < ψ (u, v)

for all v 
= 0.
3. Strong convexity holds with modulus m > 0 i.e.

ψ(u, v) ≥ ψ(u0, v0) +
〈
∇ψ(u0, v0),

[
u − u0

v − v0

]〉
+ m

2

∥∥∥∥

[
u − u0

v − v0

]∥∥∥∥
2

. (4)

We note that Assumption 2 implies (0, 0) = ∇ψ(0, 0) and thus (4) implies

ψ(u, v) ≥ m

2
‖(u, v)‖2, for all discrepancies (u, v). (5)
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Remark 1 In the theoretical development, we partition the discrepancies into u and v

components to correspond to the special treatment of early-stage variables against late-
stage variables. For a two-stage problem, u corresponds to first-stage discrepancies,
and v corresponds to second-stage discrepancies. To allow for versatility in how the
theoretical development informs algorithmic approaches, especially for application to
multi-stage problems, we carry the development with the distinction between u and v

discrepancies through Sect. 5.

Remark 2 In our computational developments in Sect. 6, we use a weighted squared
2-norm penalty function ψ(u, v) = 1

2

(∑n
i=1

[
μ̄i u2i

] + ‖v‖2) with weights μ̄i >

0, i = 1, . . . , n. In general, the strong convexity with modulus m is equivalent to
the convexity of the function (u, v) �→ ψ(u, v) − m

2 ‖(u, v)‖2. For the algorithmic
manifestation as presented in Sect. 6, v may furthermore be set identically to value
zero.

2.1 Preliminary application of Gauss–Seidel iterations

Wedefine the following notation based on the assumption that theLagrangemultipliers
λn ∈ � and the penalty parameters ρn > 0, πn > 0,

∑
s∈S πn

s = 1, vary with each
iteration n ≥ 0:

ϕn(z,w) :=
∑

s∈S
ϕn
s (z, ws) where ϕn

s (z, ws) := ϕλn ,ρn ,πn

s (z, ws). (6)

One iterative solution approach for finding locally optimal solutions for SMIP (1)
starting with initial z0 ∈ X is based on Gauss–Seidel (GS) iterations n ≥ 0 of the form

wn+1
s ← argmin

w∈Y
ϕn
s

(
zn, w

)
for all s ∈ S, (7a)

zn+1 ← argmin
z∈X

ϕn
(
z,wn+1

)
. (7b)

The z update (7b) is not easily computable, but the w update (7a) is so, as
demonstrated in the following proposition.

Proposition 3 Let (z, w) ∈ X × Y.

1. For each s ∈ S, w ∈ argminw′ ϕλ,ρ,π
s (z, w′) implies w ∈ projY

(
�

λ,ρ,π
s (z, w)

)
.

2. Moreover, given zn, wn+1 ∈ argminw′ ϕn(zn,w′) may be computed by solving for
each s ∈ S

(xn+1
s , yn+1

s ) ∈ arg min
(xs ,ys )∈Ks

fs(xs, ys) + (λns )
�xs + ρn πn

s ψ
(
zn − xs, 0

)
(8)

and then setting wn+1 = yn+1.

123



996 J. Christiansen et al.

Proof We show the contrapositive. Assume for some s ∈ S that w ∈
argminw′ ϕλ,ρ,π

s (z, w′), but that w /∈ projY
(
�

λ,ρ,π
s (z, w)

)
. Then as (xs, ys) ∈

�
λ,ρ,π
s (z, w) with ws 
= ys , we have

ϕλ,ρ,π
s (z, ws) = fs(xs, ys) + (λs)

�xs + ρπsψ (z − xs, ws − ys)

> fs(xs, ys) + (λs)
�xs + ρπsψ (z − xs, 0) (due to Assumption (2))

= fs(xs, ys) + (λs)
�xs + ρπsψ (z − xs, ys − ys)

≥ min
(x ′

s ,y
′
s)∈Ks

{
fs(x

′
s, y

′
s) + (λs)

�x ′
s + ρπsψ

(
z − x ′

s, ys − y′
s

)}

= ϕλ,ρ,π
s (z, ys)

which implies the contradiction that ws /∈ argminw ϕ
λ,ρ,π
s (z, ws). To show the

claim of Part 2, assume that wn+1 computed from (8) does not satisfy wn+1
s ∈

argminw′ ϕn
s (zn, w′) for at least one s ∈ S. Let ẃn+1

s ∈ argminw′ ϕn
s (zn, w′). By

Part 1, there exists x́n+1
s with (x́n+1

s , ẃn+1
s ) ∈ �n

s (z
n, ẃn+1

s ) such that

fs(x́
n+1
s , yn+1

s ) + (λns )
� x́n+1

s + ρn πn
s ψ

(
zn − x́n+1

s , 0
)

< fs(x
n+1
s , yn+1

s ) + (λns )
�xn+1

s + ρn πn
s ψ

(
zn − xn+1

s , 0
)

,

which would contradict the optimality in (8). ��

Computing the update zn+1 ∈ argminz ϕn(z,wn+1) given fixed wn+1 corresponds
to an infimal convolution of (xs, ys) �→ fs(xs, ys) + δKs (xs, ys) + (λns )

�xs and
(u, v) �→ ρn πn

s ψ(u, v), for each s ∈ S, where we denote the indicator function
of a set Ks by δKs (x, y) that takes the value zero if (x, y) ∈ Ks and +∞ otherwise.
The infimal convolution is well-studied [13, Chapter 1, section H], and later we make
use of certain convex “cross-sections" of this infimal convolution. However, the cal-
culation culminating in zn+1 ∈ argminz ϕn(z,wn+1) is still not easily computable,
as it requires the solution of a MIP of comparable difficulty to the original SMIP (1).
Nevertheless, this problem zn+1 ∈ argminz ϕn(z,wn+1) is useful from a theoretical
standpoint, as it links the consensus problem to theGauss–Seidel step of the continuous
regularisation.

A more practical approach to the z update takes the form of descent steps using the
usual consensus update, i.e.

zn+1 ∈ argmin
z∈X

∑

s∈S
πn
s ψ

(
z − xn+1

s , 0
)

, (9)

where wn+1 − yn+1 = 0 follows from Proposition 3. From Assumption 2(3) with
u0s = zn+1 − xn+1

s , us = z − xn+1
s and v0s = vs = 0 for all s ∈ S, and the optimality

condition associated with the zn+1 update
∑

s∈S πn
s ∇zψ(zn+1 − xn+1

s , 0) = 0 we

123



A study of progressive hedging… 997

have that

∑

s∈S
πn
s ψ

(
z − xn+1

s , 0
)

≥
∑

s∈S
πn
s ψ

(
zn+1 − xn+1

s , 0
)

+ m

2
‖z − zn+1‖2 (10)

and so the zn+1 update (9) must be unique.
Using this observation, we can devise a Gauss–Seidel algorithm that is guaranteed

to produce non-ascent steps while the stabilisation (zn,wn+1) = (zn+1,wn+1) is not
achieved, which is given in Algorithm 1.

Algorithm 1 Modified block GS method for SIP
1: initialise z0 ∈ X, ρ0 > 0, λ0s ← 0, s ∈ S
2: for n = 0, . . . , nmax − 1 do
3: Compute the following:
4: wn+1

s ∈ argminw ϕns (zn , w)

5:
(
xn+1
s , yn+1

s

)
∈ �n

s (zn , wn+1
s ) for all s ∈ S

6: zn+1 ← argminz
{∑

s∈S πn
s ψ

(
z − xn+1

s , wn+1
s − yn+1

s

)}

7: Update λn+1
s ∈ �,πn+1

s > 0 for all s ∈ S, and ρn+1 ≥ ρn > 0
8: end for
9: return (znmax , wnmax )

Algorithm 1 describes a two-block Gauss–Seidel iterative approach on the two
blocks (xs, ys, ws)s∈S and z, where the mixed-integer constraints only appear in the
block (xs, ys, ws)s∈S subproblem implicitly referred to in Lines 4–5 of Algorithm 1.
In the following sections, we analyse the convergence properties of certain embedded
subsequences of (mid-)iterations (xnk+1, ynk+1, wnk+1, znk )generatedbyAlgorithm1
for penalty coefficient values ρn > 0, penalty weights πn

s , s ∈ S, and Lagrangian
multipliers λns , s ∈ S, that vary with iteration n ≥ 1. (It is convenient to maintain
that

∑
s∈S λns = 0 for all s ∈ S and all n ≥ 0.) We must also assume the solu-

tion (xnk+1, ynk+1, wnk+1) is globally optimal in order to carry out our convergence
analysis in Sect. 5.1. Here we assume the existence of Fréchet subdifferentials at the
minimising points, and this is assured for any global minima. Furthermore, when ψ

is a quadratic form, a global minimum may be computed in practice using a MIQP
solver.

Remark 3 The classical progressive hedging algorithm is realised by taking πn
s = ps

and so ρn = ∑
s∈S psρn (as

∑
s∈S pns = 1). Then for ψ(·, 0) = 1

2‖ · ‖2 we have
zn+1 = ∑

s∈S ps xn+1
s and assuming dual feasibility

∑
s∈S λns = 0 one can also assert

for all s ∈ S that
(
xn+1
s , yn+1

s

)
∈ �n

s (z
n, wn+1)= argmin

(xs ,ys )∈Ks

fs(xs, ys)+(λns )
�xs+ρn psψ

(
zn − xs, 0

)

along with the multiplier update that retains dual feasibility of the multipliers i.e.
λn+1
s = λns − psρn(zn+1 − xn+1

s ). Moreover, the dual feasibility allows one to assert
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that the same zn+1 solves the minimisation with respect to z in the full augmented
Lagrangian. Penalties ρn between iterations with progressive hedging are usually left
unchanged or are updated in such a manner as to realise stabilisation. (See, e.g., [12,
Section 3.4.1].)

Next, we build on that development where Algorithm 1 is viewed as an approximate
two-block GS iterative approach within the continuous optimisation framework of
successively minimising ϕn in z (approximately) and w (globally and exactly) with
Lagrange multipliers λn ∈ �, penalty coefficient values ρn > 0 and penalty weights
πn
s , s ∈ S, varying between iterations n ≥ 0 under certain assumptions.
We conclude this section by noting that the above algorithm is essentially that of

[11], with alterations to the Lagrangian multiplier and penalty parameter updates. In
particular, we consider what happens when Lagrange multipliers λn ∈ � and penalty
weights πn stop changing after a finite number of iterations, while penalty parameters
{ρn} may increase without bound. The latter feature requires us to consider the limit-
ing behaviour of the regularisation ϕn as ρn → ∞. Such an analysis is facilitated by
analysing the level curves of the sequence of functions, denoted by levc ϕλ,ρ,π :=
{(z, w) | ϕλ,ρ,π (z, w) ≤ c} = {(z, w) | 1

ρ
ϕλ,ρ,π (z, w) ≤ c

ρ
} = lev c

ρ
ϕλ,ρ,π , prompt-

ing the use of epi-convergence as a tool in our analysis as this is associated with the
convergence of level sets.

3 Properties of the SMIP regularisation '�,�,�

The continuous regularisation ϕλ,ρ,π of SMIP (1) has properties that allow for feasible
points of SMIP (1) to be associatedwith certain localminima ofϕλ,ρ,π . To gain insight
into these properties ofϕλ,ρ,π , we first note some additional properties ofψ that follow
from the properties listed in Assumption 2.

Proposition 4 Assume ψ satisfies Assumption 2. Then, for all (z,w) ∈ X × Y
|S|,

ρ > 0, πs > 0, s ∈ S, and λ ∈ �, the following properties hold for each s ∈ S:

1. The set of solutions for problem (3), that is �
λ,ρ,π
s (z, w), is non-empty.

2. The function ρ �→ ϕ
λ,ρ,π
s (z, ws) is non-decreasing.

3. If in addition (z, ws) ∈ Ks, then ϕ
λ,ρ,π
s (z, ws) ≤ fs (z, ws) . If (z,w) ∈ K :=

�s∈SKs (with z := (z, z, . . . , z)) then

ϕλ,ρ,π (z,w) =
∑

s∈S
ϕλ,ρ,π
s (z, ws) ≤

∑

s∈S
fs (z, ws) < +∞. (11)

4. The function (z, ws) �→ ϕ
λ,ρ,π
s (z, ws) is locally Lipschitz continuous over

K
s := {(z, ws) ∈ X × Ys : (z, ws) ∈ conv(Ks) + B(0, 0)}, (12)

with modulus πsρL
s , where L


s depends on the diameter of conv(Ks)+B(0, 0).

Taking L := max{L
s }, we also haveϕλ,ρ,π is Lipschitz continuouswithmodulus

ρL.
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Proof See Appendix A. ��
Definition 1 Denote projI(·) := projX,I (·) × projY,I (·), integer-component projec-
tion and, for each (x̄I , ȳI) ∈ projI(K ) := �s∈SprojI(Ks), denote

K
(x̄I , ȳI )
s := {(xs, ys) ∈ Ks | (x̄I , ȳI) = proj I(x, y)}.

Note that this corresponds to a polyhedral subset of Ks once we have removed the
integrality constraint by fixing the integer variables at a specific integer value. We
now consider the behaviour of ϕλ,ρ,π within neighbourhoods having progressively
additional structure imposed. In preparation thereof, we introduce notation that facil-
itates the view of ϕλ,ρ,π in terms of its finitely numbered specific cross-sections over
(xI , yI) ∈ projI(K ).

Definition 1 induces the following notation for proximal cross-sections for each
(x0I , y0I) ∈ projI(K ).

Definition 2 For (λ, ρ, π) ∈ �×R>0 ×R
|S|
>0, the proximal cross-sectional values are

defined by

ϕλ,ρ,π
s

(
z, ws | x0I , y0I

)
:= inf

(xs ,ys )
{ fs(xs, ys) + λ�

s xs + δ
K

(x0I ,y0I )

s

(xs, ys)

+ ρπsψ(z − xs, ws − ys)}. (13a)

ϕλ,ρ,π
(
z,w | x0I , y0I

)
:=

∑

s∈S
ϕλ,ρ,π
s

(
z, ws | x0I , y0I

)
, (13b)

and the the set of arguments realising the proximal cross-sectional values are defined
by

�λ,ρ,π
s

(
z, ws | x0I , y0I

)
:= argmin

x,y
fs(xs, ys) + λ�

s xs + δ
K

(x0I ,y0I )

s

(xs, ys)

+ρπsψ(z − xs, ws − ys)} . (14a)

�λ,ρ,π
(
z,w | x0I , y0I

)
:=

∏

s∈S
�λ,ρ,π

s

(
z, ws | x0I , y0I

)
. (14b)

For each s ∈ S and (xs,I , ys,I) ∈ projI(Ks), the properties of Assumption 2 for ψ

allow for the following properties of the cross-sections to be established.

Lemma 5 For (x0I , y0I) ∈ projI(K ) the mapping (z, ws) �→ ϕ
λ,ρ,π
s

(
z, ws | x0I , y0I

)

is convex over Rn × R
m for each s ∈ S.

Proof This function can be represented as the infimal convolution of two closed,
convex functions

(xs, ys) �→ fs(xs, ys) + λ�
s xs + δ

K
(x0I ,y0I )

s

(xs, ys)

(us, vs) �→ ρπsψ (us, vs)
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with (z, ws) = (xs, ys) + (us, vs). The compactness of Ks ensures that of K
(x0I ,y0I )
s ,

which in turn ensures that the infimal convolution is bounded away from −∞. As the
strict epi-graph of an infimal convolution equals the sum of strict epi-graphs of the
constituent functions, convexity follows [13, Exercise 1.28]. ��

Note that ϕ
λ,ρ,π
s (z, ws) = min(xs,I ,ys,I )∈projI (Ks ) ϕ

λ,ρ,π
s

(
z, ws | xs,I , ys,I

)
, for

each s ∈ S, is aminimumof a finite number of convex functions, but ϕλ,ρ,π itself is not
guaranteed to be convex or differentiable on its entire domain X×Y

|S|. Nevertheless,
ϕ

λ,ρ,π
s is locally convex and differentiable on open neighbourhoods N where, for

all (z, ws) ∈ N , ϕ
λ,ρ,π
s (z, ws) = ϕ

λ,ρ,π
s

(
z, ws | xs,I , ys,I

)
holds for exactly one

(xs,I , ys,I) ∈ projI(Ks).

Lemma 6 Assume ψ satisfies the Assumption 2, with parameter m as in Assump-
tion 2(3). For each fixed D > 0, there exists a δ̃ > 0 such that if a discrepancy
(u0, v0) satisfies ‖(u0, v0)‖ < δ̃, then ψ(u0, v0) < ψ(u, v) for all discrepancies
(u, v) satisfying ‖(u − u0, v − v0)‖ > D.

Proof See Appendix A. ��
For ψ defined by ψ(u, v) = 1

2 ‖(u, v)‖2 and any fixed D > 0, we may identify
δ̃ = 1

2D (since m = 1 and ∇ψ(u, v) = (u, v)), so that if D = 1/2 for example, we
have that for all (u0, v0) such that ‖(u0, v0)‖ < 1

4 , then ψ(u0, v0) < ψ(u, v) for all
(u, v) such that ‖(u − u0, v − v0‖ > 1

2 . This observation will have practical value in
terms of separating values for different cross-sections of ϕ.

Proposition 7 Assume ψ satisfies Assumption 2 and (z0, w0
s ) ∈ Ks for all s ∈ S.

If there is at least one scenario s ∈ S such that (xs,I , ys,I) ∈ projI(Ks) with
(z0I , w0

s,I) 
= (xs,I , ys,I), then there exists a finite threshold penalty coefficient ρ̃ > 0

and a threshold δ̃ > 0 such that for all ρ > ρ̃ and 0 < δ < δ̃, the strict inequality
ϕ

λ,ρ,π
s (z, ws) < ϕ

λ,ρ,π
s

(
z, ws | xs,I , ys,I

)
hold over (z, ws) ∈ Bδ(z0, w0

s ).

Proof Assuming for some s ∈ S that we have (z0I , w0
s,I) 
= (xs,I , ys,I), then identi-

fying (us, vs) = (z − xs, ws − ys) and (u0s , v
0
s ) = (z − z0, ws − w0

s ) for each s ∈ S,
we have (us − u0s , vs − v0s ) = (z0 − xs, w0

s − ys) and
∥∥(us − u0s , vs − v0s )

∥∥ > 1
2 for

all (xs, ys) ∈ K (xI ,yI )
s . Thus, using Lemma 6 with D = 1

2 , we have a δ̃ > 0 for which
(z, ws) satisfying

∥∥(z − z0, ws − w0
s )
∥∥ < δ̃ implies that

ψ(z − z0, ws − w0
s ) < ψ(z − xs, ws − ys) (15)

for all (xs, ys) ∈ K (xI ,yI )
s given that (z0I , w0

s,I) 
= (xs,I , ys,I).

Due to the compactness of K (xI ,yI )
s , defining for fixed (z0, w0

s ), s ∈ S,

s(z, ws) := min
(x,y)

{
ψ(z − xs , ws − ys) − ψ(z − z0, ws − w0

s ) | (xs , ys) ∈ K (xI ,yI )
s

}
,
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we have s(z, ws) > 0. It follows for each s ∈ S′ :=
{
s | (z0I , w0

s,I) 
= (xs,I , ys,I)
}

that ψ(z − z0, ws − w0
s ) + s (z,ws )

2 < ψ(z − xs, ws − ys) for all (xs, ys) ∈ K (xI ,yI )
s .

Again due to the compactness of K (xI ,yI )
s , we have still for each s ∈ S′ that

fs(z0, w0
s ) + λ�

s z
0

ρ
+ πsψ(z − z0, ws − w0

s ) + πss(z, ws)

2

<
fs(xs, ys) + λ�

s xs
ρ

+ πsψ(z − xs, ws − ys)

for all (xs, ys) ∈ K (xI ,yI )
s when ρ > ρ̃ > 0 sufficiently large. Thus, for∥∥(z − z0, ws − w0

s )
∥∥ < δ̃ and ρ > ρ̃ > 0, we have

ϕλ,ρ,π
s (z, ws) < ϕλ,ρ,π

s

(
z, ws | xI , yI

)
(16)

for all ρ > ρ̃ and (z, ws) ∈ Bδ̃ (z
0, w0

s ) whenever s ∈ S′. (Otherwise, for s ∈ S\S′,
ϕ

λ,ρ,π
s (z, ws) = ϕ

λ,ρ,π
s

(
z, ws | xI , yI

)
holds.) Summing over s ∈ S, the same holds

then for ϕλ,ρ,π (z,w) < ϕλ,ρ,π
(
z,w | xI , yI

)
. ��

We note that for each (z, ws) ∈ Bδ̃ (z
0, w0), with s ∈ S′, we have s(z, ws) > 0

and so the gap between the left and right hand sides of the inequality in (16) can
only grow with increasing ρ. Recall that we seek elements of the set of feasible (non-
anticipative) solutions is given by F := {(z,w) | (z, ws) ∈ Ks for all s ∈ S}, which
is distinct from the set K . The next result follows immediately.

Corollary 8 Assume ψ satisfies Assumption 2. If (z0, w0) ∈ F, then there exists a
ρ̃ > 0 and a δ̃ > 0 such that for ρ ≥ ρ̃ and 0 < δ < δ̃ we have

ϕλ,ρ,π (z,w) = ϕλ,ρ,π
(
z,w | z0I ,w0

I
)

for all (z,w) ∈ Bδ(z
0,w0).

Hence, for (z, ws) ∈ Bδ(z0, w0
s ), s ∈ S, with 0 < δ < δ̃, the function ϕ

λ,ρ,π
s coincides

with a convex function for all ρ ≥ ρ̃.

4 The theory of persistent local minima

For iteration indices n ≥ 0, let (λn, πn, ρn) ∈ � × R
|S|
>0 × R>0 and define for

(λn, πn, ρn) →n→∞ (λ, π,∞):

f n(x, y,w, z) :=
∑

s∈S
fs(xs, ys) + (λns )

�xs + ρnπn
s ψ(z − xs, ys − ws), (17a)

ϕn
s := ϕλn ,πn ,ρn ; ϕn := ϕλn ,πn ,ρn ; �n

s := �λn ,πn ,ρn

s ; �n := �λn ,πn ,ρn
,

(17b)
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�∞ (z,w) :=
∏

s∈S
arg min

(xs ,ys )
{πsψ (z − xs, ws − ys) | (xs, ys) ∈ Ks} . (17c)

In this section, we consider sequences {(̃xn, ỹn, w̃n, z̃n)}∞n=0 where we have
(̃xn, ỹn) ∈ �n (̃zn, w̃n). Furthermore, we assume limn→∞ ρn = ∞ and we single
out a specific class of sequences of local minima {(̃zn, w̃n)}∞n=0 for ϕn , which we
call persistent, and which we show to be closely related to the feasible points of the
underlying SMIP (1). We assume the following.

Assumption 9 Solution Sequence Assumptions (SSA) on {(̃xn, ỹn, w̃n, z̃n)}∞n=0 and
{(λn, πn, ρn)}∞n=0, indexed by integers n ≥ 0:

1. Penalty coefficients are non-decreasing ρn+1 ≥ ρn > 0 for n ≥ 0 and increase
without bound limn→∞ ρn = ∞.

2. Dual feasibility λn ∈ � is satisfied, and boundedness lim supn→∞ ‖λn‖ < ∞
holds.

3. Each z̃n is a local minimum of the function z �→ infw ϕn(z, w).
4. The extracted sequence {̃zn}∞n=0 converges to z.
5. Each w̃n

s , s ∈ S, is globally optimal w̃n
s ∈ argminw ϕn

s (̃zn, ws); thus
(̃xn, ỹn, w̃n) ∈ argminw,(x, y)∈K

∑
s∈S f ns (xs, ys, ws, z̃n) is globally optimalwith

z = z̃n fixed.

We also consider the following assumption on penalty weights separately.

Assumption 10 Penalty Weight Assumptions (PWA): We assume that
∑

s∈S πn
s = 1

and πn
s > 0, s ∈ S. We assume in addition that the applied update rule for generating

penalty weights over iterations n ≥ 0 ensures that we have πn
s ≥ ξ , for some fixed

ξ > 0, for all but a finite number of iterations n ≥ 0, and for each s ∈ S such
that x̃ns,I 
= z̃nI holds infinitely often in n. Furthermore, for n ≥ 0 for which the set
Sn := {s ∈ S | x̃ns,I 
= z̃nI} is empty, we assume the penalty weight update rule also

ensures that πn+1
s = πn

s for all s ∈ S.

If Sn is empty for all but a finite number of iterations n, then consensus x̃ns,I = z̃nI
has been reached and the above assumption is trivially satisfied. When Sn = ∅ occurs,
then z̃n ∈ X and by relative complete recourse there exists ys ∈ Ys (̃zn) for all s ∈ S
so that (̃zn, y) is feasible for SMIP (1).

In the context ofAssumptions 9 and 10,we examinewhen it holds that z ∈ X . Under
Assumptions 9 and 10, local minimisers z̃n of z �→ infw ϕn(z,w) can be peculiar in
the sense that infw ϕn (̃zn,w) can increase without bound as ρn → ∞, while the
maximal neighbourhoods of the local minimiser z verifying local optimality of z̃n for
z �→ infw ϕn(z,w) vanish in measure as n → ∞. The local minimisers z̃n that do
not suffer from these issues are those that we wish to isolate, in that infw ϕn (̃zn,w)

remains bounded at the local minimum z̃n despite ρn → ∞.

Definition 3 Let {(̃xn, ỹn, w̃n, z̃n)}∞n=0 and {(λn, πn, ρn)}∞n=0 satisfy Assumption 9.

1. The sequence {(̃zn w̃n)}∞n=0 is persistent if lim supn→∞ ϕn (̃zn, w̃n) < ∞.
2. If limn→∞(̃zn, w̃n) = (z,w), we say that (z,w) is a persistent limit.
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Remark 4 Clearly when we have a convergent sequence of local minima z̃n → z for
z �→ infw ϕn(z,w), n ≥ 0, then for any w̃n with infw ϕn (̃zn,w) = ϕn (̃zn, w̃n), n ≥ 0,
we have any convergent subsequence {(̃znk , w̃nk )}∞k=0 converging to a persistent limit
(z,w).

The subdifferential analysis of ϕλ,ρ,π requires addressing its nonconvexity and
non-differentiability. A notion of differentiation suitable for this purpose is Fréchet
subdifferentiability as defined in [13].

Definition 4 The function ϕ : X × Y → R ∪ {∞} is Fréchet subdifferentiable at
(z0, w0) if there exists a Fréchet subderivative (ζ, ω) such that

lim inf
(z−z0,w−w0)→0

ϕ(z, w) − ϕ(z0, w0) − 〈(ζ, ω), (z − z0, w − w0)〉∥∥(z − z0, w − w0)
∥∥ ≥ 0.

We denote the collection of all such subderivatives by ∂̂ϕ(z0, w0), the Fréchet sub-
differential of ϕ at (z0, w0). A point (z0, w0) is Fréchet stationary point of ϕ

if (0, 0) ∈ ∂̂ϕ(z0, w0). The limiting, or Mordukhovich subdifferential, of ϕ is
denoted ∂ϕ(z, w), where (ζ̄ , ω̄) ∈ ∂ϕ(z, w) if there exists a sequence {(ζ n, ωn) ∈
∂̂ϕ(zn, wn)}∞n=0 such that (zn, wn) → (z, w) and (ζ n, ωn) → (ζ̄ , ω̄).

The first part of the following Lemma is a modest restatement of the cited result
which we shall use to deduce differentiability whenever the Fréchet subdifferential
is non-empty. In the second part we obtain local minimality from stationarity for
structured functions.

Lemma 11 Let ϕ : X × Y → R+∞ be a function defined by ϕ(z, w) :=
mini∈I ϕi (z, w) where {ϕi | X × Y → R+∞}i∈I is a finite family of proper, convex,
lower semicontinuous functions.

1. Then

∂̂ϕ(z, w) =
⋂

i∈I (z,w)

∂̂ϕi (z, w)

where I (z, w) := {i ∈ I | i ∈ argmini∈I ϕi (z, w)}. If each function ϕi , i ∈ I , is
differentiable then ∂̂ϕ(z, w) 
= ∅ implies ∂̂ϕ(z, w) = {∇ϕ(z, w)}.

2. If, in particular, Fréchet stationarity 0 ∈ ∂̂ϕi (z, w) is satisfied for all i ∈ I (z, w),
then (z, w) is a localminimumofϕ with (0, 0) ∈ ∂̂ϕ(z, w).Moreover, if at least one
of the ϕi , i ∈ I (z, w) is differentiable then we also have ∂̂ϕ(z, w) = ∇ϕ(z, w) =
0.

Proof Part 1: Follows due to [23, Theorem 1 via Theorem 10].
Part 2: Due to the convexity of ϕi , i ∈ I , we have (0, 0) ∈ ∂̂ϕi (z, w) being a

subgradient in both the Fréchet and classical sense for i ∈ I (z, w), and furthermore,
(z, w) is a globally optimal solution solution for each ϕi , i ∈ I (z, w). Themembership
(0, 0) ∈ ϕ(z, w) would follow immediately from Part 1. We claim that there exists
δ > 0 such that ϕ(z, w) ≤ ϕ(z, w) for all (z, w) ∈ Bδ(z, w). For otherwise, for some
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i ′ /∈ I (z, w), we have for (z, w) arbitrarily close to (z, w) that ϕ(z, w) > ϕi ′(z, w).
But since i ′ /∈ I (z, w), the inequality ϕ(z, w) < ϕi ′(z, w) holds, and so the lower
semicontinuity of ϕi ′ is contradicted. Thus, we have the local minimality ϕ(z, w) ≥
ϕ(z, w) for all (z, w) ∈ Bδ(z, w). Moreover, if (0, 0) ∈ ∂̂ϕ(z, w) and for at least
one i ∈ I (z, w) we have ∂̂ϕi (z, w) = {(0, 0)}, then by Part 1, we must also have
∂̂ϕ(z, w) = {(0, 0)} and so ∇ϕ(z, w) = (0, 0) exists. ��

The following motivates our set of assumptions on the penalty parameter update.

Proposition 12 Assume that SMIP (1) satisfies Assumption 1. Let ψ satisfy Assump-
tion 2. Suppose we have a persistent local minima sequence (̃zn, w̃n) → (z,w)

for ρn → ∞ (and hence Fréchet stationarity 0 ∈ ∂̂ϕn (̃zn, w̃n) for each n). If
the PWA Assumption 10 holds, then for n sufficiently large and for all (̃xn, ỹn) ∈
�n (̃zn, w̃n), we have z̃nI = x̃ns,I for all s ∈ S i.e. consensus holds in the integral
components at a fixed value z̃nI = zI , and furthermore, the Fréchet stationarity
0 ∈ ∂̂ f n (̃xn, ỹn, w̃n, z̃n) holds.

Proof In general, the Fréchet stationarity 0 ∈ ∂̂ϕn (̃zn, w̃n), n ≥ 0, is a much stronger
notion in that it allows us to deduce the Fréchet stationarity 0 ∈ ∂̂ f n (̃xn, ỹn, w̃n, z̃n)
via standard subderivative inclusions formarginalmappings (see [13, Theorem 10.13],
Lemma 11 and elsewhere). Hence the Fréchet stationarity 0 ∈ ∂̂ϕn (̃zn, w̃n) implies the
cross-sectional Fréchet stationarity 0 ∈ ∂̂ϕn

(
z̃n, w̃n | xI , yI

)
for all optimal cross-

sections (xI , yI) ∈ projI(�n (̃zn, w̃n)). Identifying in terms of Lemma 11 (Part 2)
ϕ with ϕn , the ϕi , i ∈ I , with the finite number of cross-sections ϕn

(·, · | xI , yI
)

with (xI , yI) ∈ projI(K ), and (z,w) with (̃zn, w̃n), we have a local minimum
of ϕn at (̃zn, w̃n) and by the definition of ϕn we have the Fréchet stationarity 0 ∈
∂̂ f n (̃xn, ỹn, w̃n, z̃n). From this, we show that all such solutions have a common set
of integral values for n sufficiently large. As {(̃zn, w̃n)}∞n=0 is persistent there exists
κ > 0 such that ϕn (̃zn, w̃n) ≤ κ for all n sufficiently large. Hence for each optimal
cross-section (̃xnI , ỹnI) ∈ projI(�n (̃zn, w̃n)) we have, using (5),

1

ρn
[κ + (‖c‖ + ‖d‖ + lim sup

n′→∞
‖λn′ ‖)( sup

(x,y)∈K
max{‖x‖, ‖y‖})]

≥
∑

s∈S
πn
s ψ(̃zn − x̃ns , 0) ≥ m

2

∑

s∈S
πn
s ‖̃znI − x̃ns,I‖2 (18)

The left-hand side of (18) tends to zero as ρn → ∞ and πn
s ≥ ξ for all s ∈ Sn . After

choosing a small 0 < δ < 1
2|S| we conclude that ‖x̃ns,I − znI‖ < 1

2 for all s ∈ Sn and
so x̃ns′,I = x̃ns,I = znI for all s, s′ ∈ Sn . As znI = x̃ns,I for all s /∈ Sn already, we have
equality for all s ∈ S and as x̃ns,I = xs,I = zI are fixed independent of ρn for n
sufficiently large. ��

Feasibility may also be shown to hold, as stated in Lemma 13. Furthermore, in
Proposition 14 we state the relationships between persistency and feasibility.

Lemma 13 Let the problem SMIP (1) satisfy the SMIP Assumption 1, and let
penalty function ψ satisfy Assumption 2. If a sequence {(̃xn, ỹn, w̃n, z̃n)}∞n=0 given
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{(λn, πn, ρn)}∞n=0 with integer index n ≥ 0 satisfies the Assumption 9, then ỹns =
w̃n
s ∈ Ys (̃xns ), s ∈ S, and z̃n ∈ argminz

∑
s∈S πn

s ψ(z − x̃ns , 0). Furthermore, for each
n ≥ 0 for which z̃n ∈ X holds, we have ϕn (̃zn, w̃n) = infw ϕn (̃zn,w) bounded from
above independent of the specific value of ρn.

Proof It follows from Lemma 4 that for all n ≥ 0, we have the existence of (̃xn, ỹn) ∈
K that attains the infimum in the definition of ϕn (̃zn, w̃n). Because w̃n

s , s ∈ S, is a
global optimum for ws �→ ϕn

s (̃zn, w), the claim ỹns = w̃n
s , s ∈ S follows readily from

Proposition 3.
To establish that z̃n ∈ argminz

∑
s∈S πn

s ψ(z − x̃ns , 0), assume that z̃n /∈
argminz

∑
s∈S πn

s ψ(z − x̃ns , 0). For any zn ∈ argminz
∑

s∈S πn
s ψ(z − x̃ns , 0), using

the convexity of ψ , and η ∈ (0, 1) we have

∑

s∈S
inf
w

ϕn
s (ηzn + (1 − η)̃zn, ws)

≤
∑

s∈S
ps

[
c� x̃ns + d�

s w̃n
s

]
+ (λns )

� x̃ns + ρnπn
s ψ

([ηzn + (1 − η)̃zn] − x̃ns , 0
)

≤ η
∑

s∈S
ps

[
c� x̃ns + d�

s w̃n
s

]
+ (λns )

� x̃ns + ρnπn
s ψ

(
zn − x̃ns , 0

)

+ (1 − η)
∑

s∈S
ps

[
c� x̃ns + d�

s w̃n
s

]
+ (λns )

� x̃ns + ρnπn
s ψ

(
z̃n − x̃ns , 0

)

< ϕn (̃zn, w̃n),

which would contradict the local optimality of z̃n for z �→ infw ϕn(z,w). Thus,
z̃n ∈ argminz

∑
s∈S πn

s ψ(z − x̃ns , 0) for all n ≥ 0.
Furthermore, it also follows that, when z̃n ∈ X (a compact set):

ϕn (̃zn, w̃n) =
∑

s∈S
pns

[
c� x̃ns + d�

s ỹns
]

+ (λns )
� x̃ns + ρnπn

s ψ
(
z̃n − x̃ns , w̃n

s − ỹns
)

≤ sup
n

inf
w̃∈Y (̃zn)

∑

s∈S
ps[c� z̃n + d�

s w̃s] + (λns )
� z̃n ≤ � < ∞.

where, after noting that
∑

s∈S(λns )� z̃n = 0 vanishes due to λ ∈ �, we have that
� < ∞ can be chosen to hold regardless of the specific realisations of ρn > 0 and
z̃n ∈ X due to the boundedness properties of the SMIP Assumptions; the finiteness of
� also requires the assumed relatively complete recourse. ��
Proposition 14 Assume ψ satisfies Assumption 2. If (z,w) is a persistent limit for a
persistent sequence {(̃zn, w̃n)}∞n=0 then

1. (z,w) ∈ F; namely z ∈ X and ws ∈ Ys(z);
2. there is a fixed neighbourhood Bδ (z,w) with δ > 0 on which (̃zn, w̃n) is locally

optimal for ϕn for all n large enough (i.e., for all ρn larger than some threshold
ρ̃).
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If we furthermore assume that the PWA Assumption 10 holds, then we have z̃nI = x̃ns,I
for all s ∈ S for all (̃xn, ỹn) ∈ �n (̃zn, w̃n) for n large enough.

Proof To prove (1), suppose (z,w) /∈ F . Then there exists δ > 0 such that
inf(xs ,ys )∈Ks ‖(z − xs, ws − ys)‖2 ≥ 2δ for at least one scenario s ∈ S. As
(̃zn, w̃n) → (z,w) we have, for n (and thus ρn) large enough that, inf(x,y)∈Ks ‖(̃zn −
xs, w̃n

s − ys)‖2 ≥ δ for some s ∈ Sn (in which case z̃n 
= x̃ns since by Proposition 3
we have w̃n = ỹn). We now use Assumption 2 (3) to bound the penalty values below.
By the differentiability assumed in Assumption 2 we apply the inequality (5) for each
s ∈ S to get ψ

(
z̃n − xs, w̃n

s − ys
) ≥ m

2 ‖(̃zn − xs, w̃n
s − ys)‖2. It follows that, as

limn→∞ ρn = ∞, we have lim infn πn
s ≥ ξ so

min
(xs ,ys )∈Ks

{
ρn

∑

s∈S
πn
s ψ

(
z̃n − xs, w̃

n
s − ys

) }

≥ mρnξ

2
inf

(xs ,ys )∈Ks

{
‖(̃zn − xs, w̃

n
s − ys)‖2

}
≥ mρnξ

2
δ

which is unbounded. This contradicts the assumption that {ϕn (̃zn, w̃n)}∞n=0 is bounded
above as required by the persistency assumption on {̃zn}∞n=0. Thus (z,w) ∈ F .

Having shown (z,w) ∈ F , it follows from definitions that ws ∈ Ys(z) and so
claim (2) follows readily from Corollary 8 using the same critical ρ̃ and δ̃ that apply
regardless of the choice of z ∈ X , and so it is established that (z,w) �→ ϕn(z,w) is
convex over Bδ(z,w) for all ρn > ρ̃ with n sufficiently large. By Remark 4 we have
the same neighbourhood associated with the local minimum at (z,w) also associated
with a persistent local minimum at some (z,w) and thus Bδ(z,w) serves as the fixed
neighbourhood verifying local optimality of (̃zn, w̃n) for (z,w) �→ ϕn(z,w) for each
n large enough. The last claim follows from Proposition 12. ��

The following contains a version of the strong augmented duality result for aug-
mented Lagrangian. Notice that this result is more general than those in [15], in that
it allows for the consideration of an inexact penalty that may be differentiable every-
where. When we have pure integer variables we see that all feasible solutions are
persistent and we have a stronger form of duality.

Theorem 15 Suppose problem SMIP (1) satisfies the SMIP Assumption 1 and ψ is an
ICRF.

1. If problem SMIP (1) has pure integer variable in both stages and feasible point
(z,w) ∈ F satisfies lim supn ϕn(z,w) < +∞ for limn→∞ ρn = ∞, then (z,w) ∈
F is a local minimum of ϕn for n large enough.

2. For any sequence {(̃zn, w̃n)}∞n=0 of global minimisers of ϕ
n with limn→∞ ρn = ∞

and λn, n ≥ 0, satisfying Assumption 9(2), and πs > 0, s ∈ S, then its limit points
(z,w) are globally optimal solutions to SMIP (1). That is, there exists at least one
globally optimal solution (z,w) to SMIP (1) that is a persistent limit. Moreover,
for any {ρn}∞n=0 with ρn → ∞ there exists a persistent local minimum sequence
{(̃zn, w̃n)}∞n=0 for which limn→∞ ϕn (̃zn, w̃n) = ζ SM I P
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3. We have for any λ ∈ �, πs > 0, s ∈ S,

sup
ρ>0

min
(z,w)∈X×Y|S|

ϕλ,ρ,π (z,w) = ζ SM I P . (19)

Moreover, for a pure integer SMIP a finite value of ρ̄ > 0 exists for which
min(z,w)∈X×Y|S| ϕλ,ρ,π (z,w) = ζ SM I P for ρ ≥ ρ̄.

Proof 1): Suppose (z,w) ∈ F . Using Lemma 7 and Corollary 8 we have a locally
convex function

(z,w) �→ ϕn(z,w) = ϕn(z,w | zI ,wI)

for all (z,w) ∈ Bδ(z,w) for some fixed δ > δ̃ > 0 and ρn > ρ̃ > 0 with n
large enough. Moreover for all (z′,w′) ∈ F with (zI ,wI) 
= (z′I ,w′

I) we have
ϕn(z,w | z′I ,w′

I) > ϕn(z,w | zI ,wI) for (z,w) ∈ Bδ(z,w) for some fixed δ >

δ̃ > 0 and ρn > ρ̃ > 0 with n large enough. Supposing (z,w) ∈ F is pure integer,
then we have (zI ,wI) = (z,w) and hence (z,w) is a local minimum of ϕn with
ϕn(z,w) ≤ ∑

s∈S c�z + d�
s ws < +∞, due to the boundedness assumptions for the

SMIP (and dual feasibility of any sequence {λn}∞n=0).
2): Let {(̃zn, w̃n)}∞n=0 be a sequence where each (̃zn, w̃n), n ≥ 0, is a global min-

imiser of ϕn which implies ϕn (̃zn, w̃n) ≤ ζ SM I P , so that {(̃zn, w̃n)}∞n=0 is a persistent
sequence. Its limit points (z,w) thus satisfy (z,w) ∈ F by Proposition 14. Further-
more (̃xns , ỹns ) ∈ �n

s (̃z
n, w̃n

s ) and as �∞(z,w) = {(z,w)} we have (after passing
to the subsequence) limn→∞(̃xns , ỹns ) = (z, ws) ∈ Ks . (For if not, the boundedness
of {λn}∞n=0, ρn → ∞, πs > 0, s ∈ S, and the minorisation (5) would imply that
lim supn→∞ ϕn (̃zn, w̃n) = ∞.) Furthermore, since ϕn (̃zn, w̃n) ≤ ζ SM I P , we must
have also

∑
s∈S fs (̃xns , ỹns ) + (λns )

� x̃ns ≤ ζ SM I P and so
∑

s∈S fs(z,ws) = ζ SM I P

(due to the boundedness and dual feasibility λn ∈ � and x̃ns → z for all s ∈ S, we
have lim supn→∞

∑
s∈S λns x̃

n
s = 0) and thus, (z, w) must be optimal for the original

SMIP (1).
3). Denote

ξ SM I P
ρ := min{ϕλ,ρ′,π

(
zρ

′
,wρ′) | {(zρ′

,wρ′
)} are persistent for ρ′ ≥ ρ}.

If (z,w) is a persistent limit, Lemma 14 implies (z,w) ∈ F and by Proposition 11
ϕλ,ρ,π (z,w) ≤ ∑

s∈S ps
[
c�z + d�

s ws
]
. It follows that:

lim
ρ→∞ ξ SM I P

ρ ≤ min
(z,w)

{
∑

s∈S
ps

[
c�z + d�

s ws

]
| (z,w) are persistent limits

}
≤ ζ SM I P ,

where the last inequality follows from the existence of global solutions that are limits
of persistent local minima. Let ρn → ∞ and {(̃zn, w̃n)}∞n=0 be a sequence of per-
sistent local minima, globally minimising ϕn with ϕn (̃zn, w̃n) → ζ SM I P . Via global
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optimality ϕn (̃zn, w̃n) ≤ ξ SM I P
ρn , fromwhich it follows that supρ>0 ξ SM I P

ρ = ζ SM I P .
As all global minima are eventually persistent we are finished.

When we have a pure integer SMIP then by Part 1, we have the existence of a
ρ̄ > 0 such that ϕλ,ρ,π (zρ,wρ) = ϕλ,ρ,π (z,w) for all ρ ≥ ρ̄, where (z,w) is a
global minimum of the SMIP. Hence, a global minimum is achieved for a finite ρ. ��

We now investigate the role of the fixed neighbourhoods verifying the local minima
for ϕn , n ≥ 0. Indeed, for limiting points that are not persistent, we show that such a
neighbourhood does not exist.

Assumption 16 The sequence {(̃xn, ỹn, w̃n, z̃n), (λn, πn, ρn)}∞n=0 satisfies the joint
PH assumptions (joint PHA) when:

1. The problem SMIP (1) satisfies the SMIP Assumption 1,
2. The penalty function ψ meets the Integer Compatibility Regularisation Functions

Assumptions, (ICRF) given in Assumption 2, and
3. the sequences {(̃xn, ỹn, w̃n, z̃n)}∞n=0 and {(λn, πn, ρn)}∞n=0 with integer index n ≥

0 satisfy the Solution Sequence Assumptions (SSA) in Assumption 9 and Penalty
Weighting (PWA) given in Assumption 10.

Proposition 17 Assume {(̃xn, ỹn, z̃n, w̃n), (λn, πn, ρn)}∞n=0 satisfies the joint PHA
Assumption 16. If the radii δn, n ≥ 0, on which (̃zn, w̃n) are locally optimal for
ϕn satisfies lim infn→∞ δn = δ̄ for some δ̄ > 0, then

1. limn→∞ ‖̃zn − x̃ns ‖ = 0 for all s ∈ S for which lim supn→∞ πn
s > 0. Thus, z ∈ X,

limn→∞
∑

s∈S πn
s x̃

n
s → z and for n sufficiently large, we have z̃nI = x̃ns,I for all

s ∈ S, and
∑

s∈S πs x̃ns ∈ X. (When ψ = 1
2‖ · ‖2 we have z̃n = ∑

s∈S πs x̃ns ∈ X
for all n ≥ 0.)

2. For all n we have w̃n
s = ỹns ∈ Ys (̃xns ) and limit points ws of {w̃n

s }∞n=0 satisfy
ws ∈ Ys(z) for all s ∈ S, with lim supn→∞ πs > 0.

Proof See Appendix A. ��
The previous analysis allows us to pose the following result which confirms that

the “basis of attraction” of non-persistent local minima has no interior in the limit.
The next result follows immediately as contra-positives of Proposition 17.

Corollary 18 Let {(xn, yn,wn, zn), (λn, πn, ρn)}∞n=0 satisfy the joint PH Assump-
tion 16. If any one of the following is true:

1. z /∈ X,
2. There exist arbitrarily large n such that znI 
= xns,I for at least one s ∈ S,
3. limn→∞ xns 
= z or limn→∞ xns does not exist for at least one s ∈ S for which

lim supn→∞ πn > 0 and
4. when ψ = 1

2‖ · ‖2, zn 
→ z,

then limn→∞ δn = 0 for the radii δn > 0, n ≥ 0, on which the local optimality of
each z̃n for z �→ infw ϕn(z, w) is verified.
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Example 1 Consider an augmented Lagrangian reformulation of a simple split variable
extensive form of a two-stage SMIP

min
x,y,z,w

{∑2
s=1

[
c�xs + d�

s ys
] + ρπsψ(z − xs , ws − ys) | (x1, y1) ∈ K1, (x2, y2) ∈ K2,

x1 = z, x2 = z, y1 = w1, y2 = w2, x1, x2 ∈ {0, 1}, y1, y2 ∈ [0, 1]
}

(20)
with penalty coefficient ρ > 0 where K1 = {(x, y) ∈ {0, 1} × [0, 1] | x ≤ y} ⊃
{(0, 0), (1, 1)}, K2 = {(x, y) ∈ {0, 1} × [0, 1] | 1 − x ≤ y} ⊃ {(0, 1), (1, 0)}, c = 0,
d1 = 1 = d2, and ψ(u, v) = ‖(u, v)‖2 for s = 1, 2. We assume p1 = p2 = π1 =
π2 = 1

2 , and λ = 0 throughout this example. For any {ρn}∞n=0 with ρn > 0, n ≥ 0, one
may verify that the local minimisers z̃n, w̃n and local optimal values as parameterised
by ρn , n ≥ 0, are as follows

The locally optimal solutions (̃zn, w̃n) are the same for all ρ > 0, so that (̃zn, w̃n) =
(z,w) for n ≥ 0 for each locally optimal (z,w). Here we see that the two globally
optimal solutions forϕλ,ρ,π are the persistent solutionswith either z = x1 = x2 = 0 or
z = x1 = x2 = 1, which both satisfy non-anticipativity. The non-persistent solution
has z = 0.5 with 0 = x1 
= x2 = 1; it only stays optimal over an ever shrinking
neighbourhood Bδ(z,w) with radius δ = 1/ρn vanishing as ρn → ∞.

Solution Value Locally Optimal Over Bδ(z,w)

(̃xn , ỹn , z̃n , w̃n) ϕn (̃zn , w̃n) (z,w) δ Persistent?

([
0
0

]
,

[
0
1

]
, 0,

[
0
1

])
1

(
0,

[
0
1

])
1
2 − 1

ρn Yes
([

0
1

]
,

[
0
0

]
, 1
2 ,

[
0
0

])
ρn

4

(
1
2 ,

[
0
0

])
1
ρn No

([
1
1

]
,

[
1
0

]
, 1,

[
1
0

])
1

(
1,

[
1
0

])
1
2 − 1

ρn Yes

5 Analysis of the block Gauss–Seidel sequence

Block Gauss–Seidel iterations are most easily analysed for differentiable optimisation
problems. However, we need to perform Gauss–Seidel iterations on nonsmooth func-
tions with varying parameterisations and, hence, we develop the necessary theory to
facilitate this analysis. We start with statements of elementary definitions and proper-
ties of Gauss–Seidel iterations that apply under general assumptions on the function
and their domain sets.

Definition 5 Let G : X × Y → R+∞ be a continuous function over a closed subset
of X × Y. A solution (z∗, w∗) ∈ X × Y is a partial minimum of G if

G
(
z∗, w

) ≥ G
(
z∗, w∗) for all w ∈ Y and (21a)

G
(
z, w∗) ≥ G

(
z∗, w∗) for all z ∈ X. (21b)
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For general non-smooth G, partial minimality does not imply (joint) minimality.
Under suitable assumptions of convexity and (additive) separability of non-smoothness
in G, we may recover joint minimality as described in Lemma 21

Assumption 19 Separability and Convexity Assumptions (SCA) on G : X×Y →
R+∞:

1. G is bounded from below and its level sets are bounded.
2. G has the form G(z, w) = Q(z, w) + h(w) where

(a) Q : X × Y → R is convex and continuously differentiable over X × Y;
(b) h : Y → R+∞ is proper, lower semicontinuous, and convex.

The following properties follow immediately from Assumption 19.

Lemma 20 Let G : X × Y → R+∞ satisfy SCA given in Assumption 19.

1. G, Q, and h are regular functions (due to the assumed convexity). Thus, ∂̂G = ∂G
exist; and likewise with ∂̂Q = ∂Q = ∇Q, ∂̂h = ∂h.

2. Calculus rules (e.g., [13, Exercise 8.8(c)]) imply that for any (z, w)

∂G(z, w) = {∇z Q(z, w)} × {∇wQ(z, w) + ∂wh(w)} 
= ∅, (22a)

∂̂G(z, w) = {∇z Q(z, w)} × {∇wQ(z, w) + ∂̂wh(w)} 
= ∅. (22b)

Lemma 21 Assume that G satisfies Assumption 19. If (z∗, w∗) ∈ X × Y is a partial
minimum of G as in Definition 5 (so that ∇zG(z∗, w∗) = 0 and 0 ∈ ∂̂wG (z∗, w∗)),
then we have the Fréchet stationarity (0, 0) ∈ ∂̂G (z∗, w∗).

Proof Follows as an application of [22, Theorem 4.1]. ��

5.1 On the stationarity of Gauss–Seidel limit points

Two views of framing the Gauss–Seidel step of Sect. 2.1 now apparent are: 1) via
continuous block z and blockw partial minimisation updates of the continuous “regu-
larisation function” ϕλ,ρ,π , and 2) continuous consensus block zminimisation updates
andmixed-integer block (x, y, w)minimisation updates applied directly to augmented
Lagrangian reformulations of SMIP (1). The former approach still requires an analysis
of the (x, y) update, but in a hidden form. On the other hand, the latter relies on the
fact that the iterates will eventually fall into a region where the integer variable will
become fixed in value, and thus subproblem optimisations are local and associated
with continuous (and convex) parts of the problem.

Motivated by the use of Lagrangian- and penalty-based solution approaches, we
furthermore assume thatG = Gk varies across iterations k ≥ 0 subject to the following
assumptions.

Assumption 22 Structural Assumptions (SA): Given {Gk : X × Y → R+∞}∞k=0,
let Assumption 19 hold for each Gk , k ≥ 0. We assume that {Gk}∞k=0 epi-converges
to G : X × Y → R+∞, {Qk}∞k=0 epi-converges to Q : X × Y → R and that {hk}∞k=0
epi-converges to h : X × Y → R+∞.
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In Sect. 5.2, we identify the sequences {Gk, (zk, wk)}∞k=0 with a subsequence of
GS (mid-)iterations associated with the application of Algorithm 1. For now, we
deliberately detach the analysis of {Gk, (zk, wk)}∞k=0 from its intended algorithmic
identification. The convexity of Qk and hk in Assumptions 19 and 22 allows for
{∂Gk}∞k=0 to converge in graph [13, Theorem 12.35]. This assumption will not prove
restrictive in the integration of the present analysis with the convergence properties of
Algorithm 1 even though the underlying problem has mixed-integer constraints.

Lemma 23 Let {Gk : X×Y → R+∞}∞k=0 epi-converge to G : X×Y → R+∞ satisfy
Assumption 22. For {(zk, wk)}∞k=0 → (z, w) we have 0 /∈ ∂̂G(z, w) if and only if
lim infk→∞ inf(ζ,ω)∈Gk (zk ,wk ) ‖(ζ, ω)‖ = γ > 0.

Proof Given that 0 /∈ ∂G(z̄, w̄), it follows from [13, Theorem 12.35(b)] that
the sequence {̂∂Gk(zk, wk)}∞k=0 must be strictly bounded away from zero in that
lim infk→∞ inf(ζ,ω)∈∂Gk (zk ,wk ) ‖(ζ, ω)‖ > 0. ��
Assumption 24 Stationarity of w (w-stat) on the (sub)sequence indexed by k: For
each k ≥ 1, 0 ∈ ∂̂wGk(zk, wk).

Lemma 25 Assume {Gk(zk, wk)}∞k=0 → (G, z, w) satisfies the SA Assumption 22.
If 0 /∈ ∂̂G(z, w) and w-stat (Assumption 24 holds), then ‖∇z Q(z, w)‖ 
= 0 and
lim infk→∞ ‖∇z Qk(zk, wk)‖ = γ > 0.

Proof Under Assumption 24 (w-stat), wemust have for thew subgradient components
0 ∈ {∇wQk(z̄, w̄) + ∂̂whk(w̄)} 
= ∅ for k ≥ 0, and so the hypothesis 0 /∈ ∂̂G(z, w)

and the calculus rules of Lemma 20 and Lemma 23 imply the intended result. ��
For the following results, we introduce an Armijo descent step rule for the z step

to aid in the convergence analysis.

Algorithm 2 Computing an Armijo rule step length α > 0.
Preconditions: β, σ ∈ (0, 1); G satisfies Assumption 19; d satisfies ∇zG(z, w) d < 0.

1: function ArmijoStep(G, z, w, d, β, σ )
2: α ← 1
3: while G(z + αd, w) − G(z, w) > ασ∇zG(z, w) d do
4: α ← βα

5: end while
6: return α

7: end function

Assumption 26 z-Descent Assumption (z-DA): Given β, σ ∈ (0, 1) and given sub-
sequences {dk}∞k=0, {Gk}∞k=0, and {(zk, wk)}∞k=0 such that ∇z Qk(zk, wk)dk < 0 for
k ≥ 1, z-DA is satisfied if

lim
k→∞Gk(zk + αkdk, wk) − Gk(zk, wk) = 0

where αk is computed with Algorithm 2 given z = zk and w = wk , k ≥ 1.
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The z-DA Assumption 26 itself makes no assumption on how the sequence
{(zk, wk), dk}∞k=0 is constructed. Subsequently stated identifications of the sequence
{(zk, wk)}∞k=0 with subsequences generated by Algorithm 1 will guarantee the sat-
isfaction of z-DA Assumption 26 under mild assumptions on the implementation
of Algorithm 1. The Armijo Step of Algorithm 2 is not actually used in our
implementation of Algorithm 1. Rather, it is merely a theoretical tool in what follows.

The proof of the following lemma is based on ideas from [24, Proposition 1.2.1],
[25, Proposition 3.2], and [26, Technical Lemmas, Appendix A].

Lemma 27 Assume that 1) {Gk : X×Y → R+∞}∞k=0 epi-converging to G : X×Y →
R+∞ satisfies SA (Assumption 22); 2) {(wk, zk)}∞k=0 converges to (w, z) and satisfies
w-stat (Assumption 24); and 3) ∇z Qk(zk, wk) 
= 0 for each k ≥ 1.

If, for some β, σ ∈ (0, 1), the z-DA (Assumption 26) holds for dk =
−∇z Qk(zk, wk), then 0 ∈ ∂G(z̄, w̄). Moreover, G is regular at (z̄, w̄) and so we
have also 0 ∈ ∂̂G(z̄, w̄).

Proof From (22), the satisfaction of w-stat Assumption 24, and Lemma 21, we only
need to show that limk→∞ ‖∇z Qk(zk, wk)‖ = 0. Due to SAAssumption 22 and z-DA
Assumption 26, we have

0= lim
k→∞Gk(zk+αkdk, wk)−Gk(zk, wk) = lim

k→∞ Qk(zk + αkdk, wk) − Qk(zk, wk)

≤ lim
k→∞ αkσ∇z Q

k(zk, wk)dk ≤ 0.

Thus, limk→∞ αkσ∇z Qk(zk, wk)dk = 0.
We consider two cases: 1) lim supk→∞ αk > 0, and 2) lim supk→∞ αk = 0. Due to

the assumed continuity of ∇z Qk , and given that dk = −∇z Qk(zk, wk), the first case
implies that

lim
k→∞ ∇z Q

k(zk, wk)dk = lim
k→∞ −‖∇z Q

k(zk, wk)‖2 = 0.

and so limk→∞ ∇z Qk(zk, wk) = 0. Otherwise, assuming that lim supk→∞ αk =
limk→∞ αk = 0, we have for some large enough k ≥ k̄ ≥ 0 that αk ≤ β < 1 and
so we have ᾱk = αk/β ≤ 1—that is, the state of αk at the penultimate iteration of
Algorithm 2—for which it holds that

Gk(zk + ᾱkdk, wk) − Gk(zk, wk) > ᾱkσ∇z Q
k(zk, wk)dk,

which implies

Qk(zk + ᾱkdk, wk) − Qk(zk, wk)

ᾱk
> σ∇z Q

k(zk, wk)dk .

Applying the Mean Value Theorem at each k, we have

∇z Q
k(zk + α̃kdk, wk)dk > σ∇z Q

k(zk, wk)dk .
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for some α̃k ∈ [0, ᾱk]. Using the continuity of ∇z Qk (and the Cauchy-Schwartz
inequality), we have for arbitrarily small ε > 0 that there exists δ < 0 where for large
enough k, we have α̃k ≤ ᾱk < δ so that

ε‖dk‖ + ∇z Q
k(zk, wk)dk > ∇z Q

k(zk + α̃kdk, wk)dk > σ∇z Q
k(zk, wk)dk

holds for sufficiently large k.
Recalling that dk = −∇z Qk(zk, wk) 
= 0, we then have

ε‖dk‖ > (σ − 1)∇z Q
k(zk, wk)dk = (1 − σ)‖∇z Q

k(zk, wk)‖22
and so ε > (1 − σ)‖∇z Qk(zk, wk)‖2 holds for sufficiently large k. In the limit, we
have 0 ≥ (1 − σ)‖∇z Q(z̄, w̄)‖2, which is a contradiction since (1 − σ) > 0 and
‖∇z Q(z̄, w̄)‖2 > 0 as established from Lemma 25 and the SA Assumption 22. Thus,
0 ∈ ∂G(z̄, w̄), and since G is regular, then 0 ∈ ∂̂G(z̄, w̄) holds also. ��

In order to apply Lemma 27 to a convergence analysis of Algorithm 1, we need to
establish the satisfaction of the SA Assumption 22, w-stat Assumption 24, and espe-
cially the z-DAAssumption 26 requiring limk→∞ Gk(zk+αkdk, wk)−Gk(zk, wk) =
0 given an appropriate identification with Algorithm 1 subsequence iterations {nk}∞k=0.

5.2 Interleaving analysis and algorithm

We analyse subsequences {(xnk+1, ynk+1, wnk+1, znk )}∞k=0 from the iterations gen-
erated by the application of Algorithm 1 applied to problem (1) that converge to
(x, y, w, z). (Such limit points with respect to the entire sequence in n exist due to inf-
compactness (1) that will be demonstrated in this subsection.) This analysis depends
on establishing that the Sect. 5.1 assumptions hold under the appropriate identifica-
tions with Algorithm 1 (i.e., the SA Assumption 22, the w-stat Assumption 24, and
the z-DA Assumption 26).

Given the assumed subsequence convergence, we may take the subsequence
{(xnk+1, ynk+1, wnk+1, znk )}∞k=0 so that integer component values for xI = xI and
yI = yI are fixed. With respect to Algorithm 1, we apply the identifications given
GS iterations indexed by n ≥ 1 and subsequence iterations indexed with nk , k ≥ 1:

Assumption 28 Algorithm 1 Identifications:

1. Variables: zk ← znk and wk ← (xnk+1
s , ynk+1

s , w
nk+1
s )s∈S

2. Expressions: Qk(zk, wk) ← ∑
s∈S π

nk
s ψ(znk − xnk+1

s , w
nk+1
s − ynk+1

s ) and

hk(wk) ←
∑

s∈S

[
1

ρnk

(
fs
(
xnk+1
s , ynk+1

s

)
− (λnks )�xnk+1

s

)
+ δ

K
(xI ,yI )
s

(xnk+1
s , ynk+1

s )

]

Recalling f n(x, y,w, z) = ∑
s∈S fs(xs, ys) + (λns )

�xs + ρnπn
s ψ(z − xs, ws − ys)

defined in (17), define for each n ≥ 0

gn(x, y,w, z) := 1

ρn
f n(x, y,w, z). (23)
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1014 J. Christiansen et al.

we have also

Gk(zk, wk) ← gnk (xnk+1, ynk+1,wnk+1, znk ) +
∑

s∈S
δ
K

(xI ,yI )
s

(xnk+1
s , ynk+1

s )

= gnk (xnk+1, ynk+1,wnk+1, znk )

where the last equality is by construction (fixed integral values) of the subsequence.

Furthermore, to guarantee the set of assumptions: SA,w-Stat, and z-DA,we assume
the following of the GS (sub)sequences:

Assumption 29 Algorithm Assumptions: In the application of Algorithm 1 to
problem (1), the following hold:

1. SMIP assumptions: Assumption 1 holds for problem (1).
2. Penalty function assumptions: ψ satisfies the Assumption 2. Furthermore, we

subsequently note special implications that hold in the cases where ψ takes the
weighted squared 2-norm form with weights μ̄i > 0 such that

ψ(z − xs, 0) = 1

2

∑

s∈S

n∑

i=1

μ̄i (zi − xs,i )
2. (24)

3. Global optimality: Each (xn+1, yn+1,wn+1) is globally optimal given fixed zn

in that

(xn+1, yn+1,wn+1) ∈ arg min
x,y,w

f n(x, y,w, zn)

(hence limit points (x, y,w) are globally optimal givenfixed limit point z byknown
results [27, Propositions 1.3.5 and 1.3.6]). Also, zn+1 ∈ argminz

∑
s∈S πn

s ψ(z −
xn+1
s , 0), n ≥ 1, are globally optimal. Furthermore, under the additional assump-
tion that ψ is of the weighted squared 2-norm form (24), we have (independent of
weights μ̄i > 0, i = 1, . . . , n)

zn+1 ←
∑

s∈S
πn
s x

n+1
s ∈ argmin

z

∑

s∈S
πn
s ψ(z − xn+1

s , 0).

4. Generation of Lagrange multipliers:λ0s = 0 for s ∈ S. Ifψ is not of theweighted
squared 2-norm form (24), then we may assume λns ≡ 0, n ≥ 1, identically.
Otherwise, if ψ is of the squared 2-norm form (24), For each subsequent iteration
n, either λns is left unchanged via λn+1

s ← λns for all s ∈ S, or

λn+1
s,i ← λns,i − ρnπn

s μ̄i

(
zn+1
i − xn+1

s,i

)
for all s ∈ S.

Under these assumptions on λ, it follows that for n ≥ 0, we have vanishing sums∑
s∈S λns = 0. (i.e., dual feasibility maintained and the absence of the

∑
s∈S λns z
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A study of progressive hedging… 1015

terms in the Lagrangian is thus justified.) Non-trivial λ updates between iterations
are suppressed as necessary to ensure in the limit that

∑∞
n=1 ‖λns − λn+1

s ‖ < ∞
hold. (In practice this will usually entail only a finite number of nontrivial updates.)

5. Update of penalty parameters: We assume the following.

(a) Penalty coefficients are nondecreasing ρn+1 ≥ ρn > 0, n ≥ 0.
(b) 0 < πn

s ρn ≤ πn+1
s ρn+1, s ∈ S, n ≥ 0. (πn

s ≤ πn+1
s does not hold in general.)

(c) For each n ≥ 0 and s ∈ S, we have πn
s > 0 and

∑
s∈S πn

s = 1, and {πn
s }∞n=0

converges to πs > 0 for all s ∈ S such that
∑∞

n=1|πn+1
s − πn

s | < ∞. Initially,
π0
s ← ps .

The algorithm does not necessarily adjustπn
s and ρn parameters separately. Instead,

it may apply penalty updates in a scenario-specific manner to ρn
s := πn

s ρn with
ρn = ∑

s∈S ρn
s . Under the condition that s ∈ Sn := {s ∈ S | zI 
= xs,I}, we place

ρn+1
s = γnρ

n
s with γn > 1.

Lemma 30 Under the Algorithmic Identifications 28 with Gk = hk + Qk and
Assumption 29, we have

1. {Gk}∞k=0 epi-converges to G = h + Q and satisfies the SA Assumption 22.
2. 0 ∈ ∂wGk(zk, wk) and 0 ∈ ∂wG(z, w).

Proof By regularity ofG due to its convexity, the (limiting)Mordukhovich and Fréchet
subdifferentials coincide.

We argue that we have epi-convergence of {Gk}∞k=0 to G, whenever {(πnk
s )s∈S}∞k=0

converges to {πs}s∈S . As

hk(w) := 1

ρnk

(
∑

s∈S
ps{c�xs + d�

s ys} − (λnks )�xs

)
+ δK (xI ,yI ) (x, y).

we have hk convex and converging both monotonically point-wise and uni-
formly to δK (xI ,yI ) . This is because we have uniform convergence to zero of
1

ρnk

(∑
s∈S ps{c�xs + d�

s ys} − (λ
nk
s )�xs

)
on the compact and convex polyhedral

set K (xI ,yI ). Thus we have epi-convergence of {hk}∞k=0 to δK (xI ,yI ) . Whenever
{(πnk

s )s∈S}∞k=0 converges to πs , for s ∈ S we then have a family of convex functions
{Qk := ∑

s∈S π
nk
s ψ}∞k=0, uniformly converging on compact sets and hence also epi-

convergent to Q = ∑
s∈S πsψs(·, ·). Applying [27, Theorem 7.1.5] or [13, Theorem

7.46], we know that the sumof a uniformly convergent sequence and an epi-convergent
sequence must epi-converge. Thus we may deduce that we have {Gk := hk + Qk}∞k=0
epi-converges to G = h + Q. Now we may apply [13, Theorem 12.35] to deduce that
the convex subdifferentials {∂wGk}∞k=0 converge in graph to ∂wG. As wk is a global
minimiser for w �→ Gk(zk, w), then we have (by definitions) that 0 ∈ ∂wGk(zk, wk)

and hence also over the subsequence indexed by k. Thus by graphical convergence
0 ∈ ∂wG(z, w). ��
Definition 6 Let intervening GS iterations between nk and nk+1 be denoted nk
+ 1, nk + 2, . . . , nk+1 − 2, nk+1 − 1, etc.
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Lemma 31 If (xn, yn,wn, zn), n ≥ 1, are computed with the GS iterations of
Algorithm 1, then for each fixed n ≥ 1 and positive integer j , we have

gn+ j (xn+ j+1, yn+ j+1,wn+ j+1, zn+ j ) − gn(xn+1, yn+1,wn+1, zn)

+
j−1∑

i=0

[
gn+i (xn+i+1, yn+i+1,wn+i+1, zn+i+1)

−gn+i+1(xn+i+1, yn+i+1,wn+i+1, zn+i+1)
]

≤ gn(xn+1, yn+1,wn+1, zn + αndn) − gn(xn+1, yn+1,wn+1, zn)

where zn+i+1 ∈ argminz{gn+i (xn+i+1, yn+i+1,wn+i+1, z) } for i = 0, . . . , j − 1 as
is consistent with an iteration of Algorithm 1.

Proof See Appendix A. ��
Corollary 32 Given nk, k ≥ 0, a subsequence index, and jk the positive integer such
that nk + jk = nk+1, if (xn+1, yn+1,wn+1, zn), n ≥ 1, are computed with GS
iterations, then

jk−1∑

i=0

[
gnk+i (xnk+i+1, ynk+i+1,wnk+i+1, znk+i+1)

−gnk+i+1(xnk+i+1, ynk+i+1,wnk+i+1, znk+i+1)
]

+ Gk+1(zk+1, wk+1) − Gk(zk, wk) ≤ Gk(zk + αkdk, wk) − Gk(zk, wk)

Proof By the construction of the subsequence, δ
K

(xs,I ,ys,I )

s
(xnk+1

s , ynk+1
s ) = 0 and so

any potential discrepancy between gnk (xnk+1, ynk+1,wnk+1, znk ) and Gk(zk, wk) is
avoided. ��
Lemma 33 Under Assumption 28 and Assumption 29, we have

lim
k→∞

jk−1∑

i=0

[
gnk+i (xnk+i+1, ynk+i+1,wnk+i+1, znk+i+1)

−gnk+i+1(xnk+i+1, ynk+i+1,wnk+i+1, znk+i+1)
]

= 0.

Proof See Appendix A. ��
Corollary 34 Assume the Algorithm Identifications 28. If the Algorithm Assump-
tions 29 hold, then z-DA Assumption 26 holds under any allowable realisation of
its assumptions on β, σ , dk , etc. (Thus, the intended z-DA condition will hold for
any convergent subsequence {(zk, wk)}∞k=0 = {(xnk+1, ynk+1,wnk+1, znk )}∞k=0 with
dk = −∇z Qk(zk, wk), and αk computed with the Armijo rule for any β, σ ∈ (0, 1).)
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Proof Given that Gk(zk + αkdk, wk) −Gk(zk, wk) ≤ 0 already holds per the Armijo
step, the satisfaction of z-DAAssumption 26 follows fromLemma 33 andCorollary 32
once it is noted that limk→∞ Gk+1(zk+1, wk+1) − Gk(zk, wk) = 0 follows from the
SA epi-convergence of Assumption 22 [13, Theorem 12.35]. ��
Definition 7 Under the epi-convergence of SA Assumption 22, we define the limiting
regularisation

φ∞(z,w) := lim
ρ→∞

1

ρ
ϕλ,ρ,π (z,w) = min

x,y

{
∑

s∈S
πsψ(z − xs , ws − ys) | (xs , ys) ∈ Ks

}

We now state one of our main results. Before doing so, we denote the following

Definition 8 To accommodate both possibilities limn→∞ ρn = ρ̄ < ∞ or
limn→∞ ρn = ∞ disjunctively, we define

g∗(x, y,w, z) := lim
n→∞ gn(x, y,w, z)

= lim
n→∞

∑

s∈S

[
1

ρn

(
fs(xs , ys) − (λns )

�xs
)

+ πn
s ψs(z − xs , ws − ys)

]

(25)

(recalling the definition (23)). From (25), we define the limiting regularisation

φ∗(z,w) := lim
n→∞

1

ρn
ϕn(z,w) = min

x,y
g∗(x, y,w, z)

φ∗ (z,w | xI , yI
) := min

x,y
g∗(x, y,w, z) + δK (xI ,yI ) (x, y)

The corresponding set of solutions (x, y) realising these values given (z,w) is denoted

�∗(z,w) := argmin
x, y

g∗(x, y,w, z)

�∗ (z,w | xI , yI
) := argmin

x, y
g∗(x, y,w, z) + δK (xI ,yI ) (x, y).

Proposition 35 Let (x, y,w, z) satisfy (x, y) ∈ K. The following implications hold.

1. If the Fréchet stationarity 0 ∈ ∂̂g∗(x, y,w, z) holds, then (0, 0) ∈
∂̂φ∗ (z,w | xI , yI

)
so that (z,w) is a minimum of φ∗ (z,w | xI , yI

)
.

2. (z,w) is a localminimumofφ∗ with (0, 0) ∈ ∂̂φ∗(z,w) = ∇φ∗(z,w) if and only if
(z,w) is a localminimumofφ∗ (·, · | xI , yI

)
with (0, 0) ∈ ∂̂φ∗ (z,w | xI , yI

) =
∂φ∗ (z,w | xI , yI

)
for all (xI , yI) ∈ projI(�∗(z,w)).

3. If z = xs for all s ∈ S, then (0, 0) ∈ ∂̂φ∗(z,w) and so (0, 0) = ∇φ∗(z,w).
Furthermore, (z,w) is also a (persistent) local minimum for φ∗.

4. In the specific case where limn→∞ ρn = ∞ (so that φ∗ = φ∞), the reverse of the
previous implication also holds, where (z,w) being a local minimum for φ∗ with
(0, 0) ∈ ∂̂φ∗(z,w) implies that z = xs , s ∈ S.
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Proof Part 1: Given 0 ∈ ∂̂g∗(x, y,w, z) and the structure of g∗ as the sum of a linear
function and an indicator function for a polyhedral set with integer cross-sections, we
have that g∗(x, y,w, z) ≥ g∗(x, y,w, z) for all (x, y) ∈ K (xI , yI ) and (z,w) ∈ X×Y

andmore particularly, g∗(x, y,w, z) ≥ g∗(x, y,w, z) for all (x, y) ∈ K (xI , yI ) Thus,

g∗(x, y,w, z) = φ∗ (z,w | xI , yI
)
.

Furthermore, since g∗(x, y,w, z) ≥ g∗(x, y,w, z) for all (x, y) ∈ K (xI , yI ) and
(z,w) ∈ X × Y, we have

φ∗ (z,w | xI , yI
) ≥ φ∗ (z,w | xI , yI

)

and so by the convexity of φ∗ (·, · | xI , yI
)
, we have also that (0, 0) ∈

∂̂φ∗ (z,w | xI , yI
)
.

Part 2: We have (0, 0) ∈ ∂̂ϕ∗(z,w | xI , yI) (in both the Fréchet and clas-
sical sense) due to (z,w) ∈ argminz,w φ∗(z,w | xI , yI) and as φ∗(z,w) =
min(xI , yI )∈projI (K ) φ∗(z,w | xI , yI) where each (z,w) �→ φ∗(z,w | xI , yI) is
convex, we may invoke Lemma 11 Part 2 to obtain both directions of the implica-
tion after identifying ϕ with φ∗ and ϕi , i ∈ I , with φ∗ (·, · | xI , yI

)
for (xI , yI) ∈

projI(�∗(z,w)).
Part 3: The fact that z = xs for all s ∈ S implies by Corollary 8 that φ∗(z,w) =

φ∗ (z,w | xI , yI
)
for just one (xI , yI) = (zI ,wI) only, and so the claim follows.

The persistency follows from the fact that inequality (11) implies a bound independent
of ρ.

Part 4: Knowing that (z,w) is a local minimum for φ∞, we form the cleared
instance of the SMIP (1) by clearing first- and second-stage coefficients c = d = 0,
and for all n ≥ 0, clearing λn = 0 and setting πn = π . Thus, for all ρ > 0, we
have that 1

ρ
ϕλ,ρ,π ≡ φ∞ and so (̃zn, w̃n) ≡ (z,w), n ≥ 0, forms a sequence with

limit (z,w) ≡ (̃zn, w̃n), n ≥ 0. Each (̃zn, w̃n) ≡ (z,w) is a local minimum for ϕn

over a fixed neighbourhood Bδ(z,w) for some fixed δ = δ̄ > 0, and since the SSA
Assumption 9 and the PWA Assumption 10 therefore hold, by Proposition 17 applied
to this sequence associated with this cleared instance of SMIP (1), we have z ∈ X
and w ∈ Y (z), which applies with respect to the original (non-cleared) instance of
SMIP (1) also. ��
Theorem 36 Assume that problem (1) satisfies the SMIP Assumption 1, to which Algo-
rithm 1 is applied to generate a sequence {(xn, yn,wn, zn)}∞n=0. If the Algorithm
Assumption 29 is satisfied, then there exists a limit point (x, y,w, z) of the mid-
iteration sequence {(xn+1, yn+1,wn+1, zn)}∞n=0, and each such limit point (x, y,w, z)
is a Fréchet stationary point for the problem

min
z,x, y,w

g∗(x, y,w, z) (26)

and in either limiting case, the cross-sectional optimality (z,w) ∈
argminz,w φ∗ (z,w | xI , yI

)
holds. Thus, the following implications hold:
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1. (z,w) is a local minimum of φ∗ if and only if (z,w) is a local minimum of
φ∗ (·, · | xI , yI

)
for all (xI , yI) ∈ projI(�∗(z,w)).

2. If z = xs for all s ∈ S (so that (x, y) is feasible and locally optimal for SMIP (1)),
then (z,w) is a (persistent) local minimum of φ∗.

3. In the specific case where limn→∞ ρn = ∞ (so that φ∗ = φ∞), the reverse of the
previous implication also holds, where (z,w) being a local minimum of φ∗ implies
that z = xs , s ∈ S, so that (x, y) is feasible and locally optimal for SMIP (1).

Proof Under the SMIP Assumption that Ks , s ∈ S, are compact and penalty ψ satis-
fies Assumptions 2, it follows that the level sets of g are compact, and so the sequence
{(xn+1, yn+1,wn+1, zn)}∞n=0 will have limit points (x, y,w, z) to which an associ-
ated subsequence {(xnk+1, ynk+1,wnk+1, znk )}∞k=0 converges. For k large enough, we

have (xnk+1
I , ynk+1

I ,w
nk+1
I ) = (xI , yI ,wI) becoming fixed. Therefore, it is only

the znk and the real-valued components (xnk+1
R , ynk+1

R ,w
nk+1
R ) that are still changing

throughout the (sub)sequence tail. After passing to a convergent subsequence with
integer components fixed, the required SA Assumption 22 and the w-stat Assump-
tion 24 applies to Assumption 28 identified with {(Gk, zk, wk)}∞k=0 by Lemma 30.
Under the same assumptions, the z-DA Assumption 26 is satisfied due to Corol-
lary 34. Thus, Lemma 27may be applied to the Assumption 28 identification sequence
{(Gk, zk, wk)}∞k=0 to establish the stationarity properties which, after dereferencing
the identifications back to the Algorithm 1 context, yield intended results.

The cross-sectional optimality (z,w) ∈ argminz,w φ∗ (z,w | xI , yI
)
holds by

Proposition 35 Part 1. The proof of the three implications follows, respectively, from
implications 2–4 of Proposition 35. ��

From Theorem 36 we know that the GS limit points (z,w) will be optimal for at
least one cross-section ϕλ,ρ,π

(·, · | xI , yI
)
or φ∞ (·, · | xI , yI

)
.

A simple example demonstrates the possibility that the above GS procedure
produces a limit point (z,w) for which ∂̂φ∞(z,w) is empty.

Example 2 We revisit a rescaled version of the augmented Lagrangian problem of (20)
defined for Example 1, where the objective function is rescaled by a factor of 1

ρ
.

Of note is the locally optimal solution (̃zn, w̃n) = ( 1
2 , [0, 0]T

)
, which for 0 < ρn < ∞

is clearly a local minimum for ϕn over |z − z| < 1/ρn . Furthermore for ρn < ∞,
∂̂ϕn (̃zn, w̃n) = {(

0, [0, 0]T )} is non-empty. However, in the limit as ρ → ∞, we
have clearly that (z,w) = ( 1

2 , [0, 0]T
)
realises the value φ∞(z,w) = 1

4 over all
cross-sections, but ∂̂zφ∞ (

z,w | xI , yI
) 
⊃ {0} for two of the four cross sections, and

furthermore their intersection
⋂

(xI , yI ) ∂̂zφ
∞ (

z,w | xI , yI
) = ∅ is empty and so

∂̂φ∞(z,w) = ∅. Also note that while this (z,w) is a partial minimum for φ∞, it is
not (even) a local minimum over (z,w) jointly.

We have demonstrated through example (but never observed in our experiments)
a pathological case where a partial minimum is encountered in the limit, but local
optimality or feasibility for SMIP is not achieved. This lack of local optimality is due
to a partial minimum being found for φ∗ where Fréchet subdifferentiability fails, a
problem foreshadowed in Lemma 21 (indeed the existence of a non-empty subdif-
ferential ensures stationarity from which local optimality follows, Lemma 11). This
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failure of subdifferentiability occurs only when our solution is minimising some (not
all) of active sections defining φ∗, see Lemma 11. Furthermore, for any solution to
problem (26) that satisfies consensus, this lack of Fréchet differentiability is ruled out,
see Theorem 36 (2) and we are then assured of obtaining a persistent local minimum.
A partial converse of this may be found in Proposition 12 where integer consensus is
ensured for a persistent minimum. Such pathological limit points are unstable in the
sense that they are mere partial minima but not even locally minimal jointly in (z,w)

for φ∗. Consequently, an apt minor perturbation of (z,w) (suggested by Corollary 18)
may be employed to get the iterative FPPH approach unstuck.

6 Computational results

6.1 Algorithm

Algorithm 3 presents a modified version of Algorithm 1, in which we explicitly con-
sider the initialisation steps and the rules for updatingLagrange and penalty parameters
between successive iterations. We use an algorithm formulation consistent with the
typical presentation of Progressive Hedging but allowing for differences in how (and
when) Lagrange and penalty parameters are updated. Also, since the second-stage
discrepancies are always zero in the context of a two-stage SMIP, we omit the second
component of the penalty function (the v component in Assumption 2).

The required properties of the penalty function specified in the ICRF Assump-
tion 2 gives us flexibility in choosing ψ . As described next, we compute weights for a
weighted squared 2-norm form of the penalty functionψ during the initialisation with
the aim of accelerating convergence to a reasonably high-quality feasible solution.
Subsequently, we describe update schemes and the termination condition used in our
computational experiments.

6.1.1 Initialisation

The penalty function weights in determining the weighted squared 2-norm penalty
function ψ are denoted μ̄i , i = 1, . . . , n, which do not change between iterations
n ≥ 0. The iteration n ≥ 0 penalty coefficients ρn

s = πn
s ρn denote the weighting

of the iteration n penalty magnitude ρn by penalty weight πn
s . Initially, ρ

0
s = π0

s =
ps . Once the PenaltyUpdateCondition is satisfied, the ρs terms are increased by
the PenaltyUpdate function to modify the penalty applied to each scenario. These
functions are defined in Sects. 6.1.2 and 6.1.3. The initial z0 of Algorithm 3 Line 3
may be computed by z0i = ∑

s∈S ps x0s,i for all i ∈ 1, . . . , n. Having z0, the values μi

for i = 1, . . . , n which are required to form the penalty weights for initialising the
penalty function ψ are computed as given in [11] for applying Progressive Hedging
to SMIPs:

μi = ci

max
{∑

s′∈S ps′
∣∣∣x0s′,i − z0i

∣∣∣ , 1
} for each i ∈ 1, . . . , n

123



1022 J. Christiansen et al.

Algorithm 3 FPPH algorithm for SMIP
1: n ← 0
2:

(
x0s , y0s

)
∈ argmin(xs ,ys )∈Ks

[
c�xs + d�

s ys
]

for all s ∈ S

3: z0 ← ∑
s∈S ps x0s

4: Use x0 and z0 to compute {μ̄i }ni=1, set ψ(u) := 1
2
∑n

i=1 μ̄i u
2
i

5: ρ0s ← ps for s ∈ S
6: UpdateDualFlag ← True
7: λ0s,i ← −ρ0s μ̄i (z

0
i − x0s,i ) for all s ∈ S and i = 1, . . . , n

8: while n < nmax and xns,I 
= znI for at least one s ∈ S do
9: n ← n + 1
10: for all s ∈ S do

11:
(
xns , yns

) ∈ argmin(xs ,ys )∈Ks ps
[
c�xs + d�

s ys
]

+
(
λn−1
s

)�
xs + ρn−1

s ψ
(
zn−1 − xs

)

12: end for
13: wn ← yn

14: zn ←
(∑

s∈S ρn−1
s xns

)
/
(∑

s∈S ρn−1
s

)

15: if UpdateDualFlag and PenaltyUpdateCondition(λ) then
16: UpdateDualFlag ← False
17: end if
18: if UpdateDualFlag then
19: ρns ← ρn−1

s , s ∈ S

20: λns,i ← λn−1
s,i − ρn−1

s μ̄i (z
n
i − xns,i ) for all s ∈ S and i = 1, . . . , n

21: else
22: (ρns )s∈S ← PenaltyUpdate((ρn−1

s )s∈S , xn , zn)

23: λn ← λn−1

24: end if
25: end while
26: return (zn , wn)

when variable i is continuous, and

μi = ci(
maxs′∈S x0s′,i

)
−

(
mins′∈S x0s′,i

)
+ 1

for each i ∈ 1, . . . , n

when variable i is discrete.
We employ a slightly modified version of this scheme, where penalty parameters

that would be set to zero by this rule are instead set to the smallest non-zero value μ′
among all other penalty parameters μi , i = 1, . . . , n. We denote the modified penalty
function weights as μ̄i := max{μi , μ

′} for each i = 1, . . . , n. This modification did
notmaterially affect the performance of ProgressiveHedging and provides a guarantee
that in the penalty-updating algorithms, all penalties can grow to be arbitrarily large,
as required by Assumption 10.

This choice of penalty initialisation has been made to allow as direct a comparison
as possible between Progressive Hedging (using a set of parameters established to
be reasonable for that algorithm) and the penalty-updating variations of Algorithm 3.
Having computed μ̄i for all i = 1, . . . , n, we set the penalty function for our com-
putational experiments as ψ(u) = 1

2

∑n
i=1 μ̄i u2i and initialise ρ0

s = π0
s = ps for all

s ∈ S. (Note that ρn
s := πn

s ρn for n ≥ 0.) With the definition of ψ , the z update step
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on Line 14 of Algorithm 3 can be written in the form

zni ←
∑

s∈S
πn−1
s xns,i for all i ∈ 1, . . . , n,

where πn
s = ρn

s∑
s′∈S ρn

s′
for each s ∈ S, n ≥ 0. (Note that μ̄i does not influence this

update step.) Furthermore, the dual multiplier update based on this definition of ψ is
given at each iteration n ≥ 0 as

λns,i ← λn−1
s,i − ρn−1

s μ̄i (z
n
i − xns,i ) for all s ∈ S and i = 1, . . . , n.

One may verify that this dual multiplier update maintains the feasibility condition∑
s∈S λns = 0 for each n ≥ 0.

6.1.2 Penalty update condition

We consider three update-type conditions:

1. PenaltyUpdateCondition always returns False, meaning that the algorithm per-
forms dual updates at every iteration and never increases the penalty parameters.
This is equivalent to the Progressive Hedging algorithm for SMIP. This update
condition does not satisfy Assumption 10, since the penalty parameters do not
become arbitrarily large.

2. PenaltyUpdateCondition always returns True, meaning that the algorithm does
not update the dual variables again after the initialisation step and instead increases
the penalty parameters. This is designated as the Penalty Only variant of FPPH.

3. Track the degree of change in the dual variables

k =
∑

s∈S

n∑

i=1

|λk−1
s,i − λks,i |

at each iteration k. If in the current iteration k′ the condition

k′ < β
1 + maxk k

2
− γ (27)

is satisfied, PenaltyUpdateCondition returns True so that no further dual
updates are performed; otherwise it returns False. We set the parameters β and γ

to 0.5 and 10−3 respectively. This is designated as the Dual Step Length variant
of FPPH.

As a simple guarantee that theDual Step Lengthmethod satisfiesAssumption 10we
could specify a specific number of iterations after which PenaltyUpdateCondition
must return True. However, in our computational tests with this update condition
either (27) or integer-variable consensus was always satisfied after a reasonably small
number of iterations.
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6.1.3 Penalty update scheme

We gradually increase the penalty parameter for the scenario whose first-stage vari-
ables are furthest from consensus with the following method. For each scenario s ∈ S,
we calculate its distance from consensus Dn

s = ∥∥zn − xns
∥∥
2. Then, update the penalty

multipliers as follows:

ρn
s ←

(
1 + α|S| Dn

s∑
s∈S Ds

)
ρn−1
s for all s ∈ S.

We set the parameter α to 0.1. This rule is intended to prioritise increasing the penalty
parameters corresponding to the scenarios whose first-stage variables are furthest
from consensus. Assuming that PenaltyUpdateCondition returns True after a finite
number of iterations, this update scheme satisfies Assumption 10.

6.1.4 Termination condition and nmax

Termination of each computational test is conditioned on attaining consensus znI =
xs,I , for all s ∈ S in all integer variables. For the instances with pure integer first-stage
variables, this condition is the same as requiring first-stage consensus. For the instances
with mixed integer first-stage variables, we generally do not have full consensus in the
continuous variables at this point. To obtain feasible solutions, we take each unique
first-stage solution xs and find the corresponding optimal second-stage decisions y.
We then report the best solution value found among these candidate solutions.

Our motivation for applying this convergence criterion to mixed integer first-stage
instances is that when allowed to run beyond achieving integer consensus, the FPPH

variants typically satisfied the convergence criterion
√∑

s∈S ps
∥∥xns − zn

∥∥2
2 < 10−3

within 100 iterations but with very poor solution quality, whereas PH failed to satisfy
this criterion given even 200 iterations. Any potentialmethod for finding a high-quality
solution quickly given a fixed value for the first-stage integer variables could be applied
to the solutions produced by both PH and FPPH, but implementing and tuning such a
method is outside the scope of this paper.

We set nmax = 100 since both FPPH variants generally converge well within this
iteration limit, and in cases where PH does not it is already clearly slower than FPPH
in terms of both runtime and iteration count.

6.2 Computation environment

The experiments in this section were conducted with a C++ implementation of
Algorithm 3 using CPLEX 22.1 [28] as the solver. For reading SMPS files into
scenario-specific subproblems and for their interface with CPLEX, we used modi-
fied versions of the COIN-OR [29] Smi and Osi libraries to instantiate appropriate
C++ class instances of the subproblems directly.

The computing environment is the Gadi cluster maintained by Australia’s National
Computing Infrastructure (NCI) and supported by the Australian government [30]. To
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Fig. 1 Comparison between our implementation of Progressive Hedging and variants of FPPH, applied
to instances with pure integer first stage (SSLP and CAP). Bar height indicates the time required for
convergence compared to the slowest converging algorithm. Solid bars indicate the best quality solution
found among the three algorithms. Tinted bars indicate convergence to a lower-quality solution. Suboptimal
solutions are indicated by a percentage optimality gap. A solid bar with no percentage gap indicates the
optimal solution was found. Empty bars indicate non-convergence within 100 iterations; the arrow signifies
that these 100 iterations took much longer than the slowest converging algorithm

maintain a comparable environment, experiments were performed on a single CPU
using one thread per CPLEX solve for both algorithms.

The PH and FPPH algorithms are deterministic in terms of the solutions produced,
but the time required for CPLEX to solve the subproblems at each iteration has some
variation. Therefore, for each test, we ran each algorithm three times on each instance
and report the average runtime.

6.3 Computational experiments: Pure integer first-stage instances

We first consider the application of FPPH and our implementation of Progressive
Hedging to the CAP instance set [31] using the first 250 scenarios for each instance,
and the SSLP instance set [32]. To evaluate algorithm performance we compare it to
the known IP optimal solution. To obtain the integer feasible optimal solutions for
the CAP instances we used CPLEX to directly solve the MIP reformulation of each
instance. The integer feasible optimal solutions for the SSLP instances are provided
by SIPLIB [9].

The computational results are summarised in Fig. 1. These figures compare both
the wall-clock time required for convergence (compared to the slowest algorithm to
achieve convergence) and the quality of the feasible solutions obtained at termination.
A more detailed summary of our results, including absolute runtime and solution
values, is provided in the supplementary material (Table B1).

When applied to the SSLP instances, all three algorithms typically find the same
solution, and it is often optimal. TheDual StepLength variant of FPPHoutperformsPH
in terms of runtime for all instances except for SSLP-15-45-5, where they require an
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1026 J. Christiansen et al.

Fig. 2 Comparison between our implementation of Progressive Hedging and variants of FPPH, applied to
instances with mixed integer first stage (DCAP). Bar height indicates the time required for integer variable
consensus compared to the slowest converging algorithm. Solid bars indicate the best quality solution found
among the three algorithms. Tinted bars indicate lower-quality solutions. The percentage gap between found
solution and the known upper bound is given in each case

equal (and small) amount of time. The PenaltyOnly variant of FPPHoften outperforms
both the Dual Step Length variant and PH, but fails to find the optimal solution of
SSLP-15-45-10 and is a little slower when applied to SSLP-5-25-50 and SSLP-15-
45-5. PH fails to converge to a feasible solution within 100 iterations when applied to
SSLP-15-45-15.

When applied to theCAP instances, PH fails to converge to a feasible solutionwithin
100 iterations for four of the eight instances and is again consistently outperformed in
terms of runtime and matched in solution quality by the Dual Step Length variant of
FPPH even when it does converge. There is not a clear favourite between the Penalty
Only and Dual Step Length variants when applied to the CAP instances; each variant
finds a higher-quality solution than the other variant for at least one instance, and
converges faster than the other variant for several instances.

6.4 Computation experiments: Mixed-integer first-stage instances

We also compared the performance of FPPH and our implementation of Progressive
Hedging applied to the DCAP instance set [33, 34]. In this case, we compare with
the known upper bounds given by SIPLIB [9]. These results are summarised in Fig. 2,
with further detail in the supplementary material (Table B2).

For these instances, PH consistently obtains consensus in the integer variables
within 100 iterations and generally outperforms the Dual Step Length variant of FPPH
in terms of runtime and solution quality. The Penalty Only variant of FPPH obtains
better solution quality than PH when applied to DCAP342 (with 200, 300 and 500
scenarios) but finds considerably worse solutions when applied to the other DCAP
instances.
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7 Conclusions

We have shown that the tools and techniques of variational analysis are well-suited
for the analysis of the progressive hedging algorithm as applied to SMIP. Indeed the
analysis interfaces well with the “just MIP it” approach to the development heuristics
in this field. It allows for a new study of augmented Lagrangians and Gauss–Seidel
methods, specifically recognising where the presence of smoothness is essential for
the success of algorithmic approaches. The theory is able to shed light on how critical
parameters need to be updated to ensure convergence.

Our computational results demonstrate that the FPPH algorithm,which ismotivated
by the above theory, has the potential to outperform PH in terms of quickly and reliably
converging to high-quality feasible solutions for SMIP instances, particularly those
with pure integer first-stage variables. By contrast, PH tended to outperform FPPH
when applied to the DCAP instances which have mixed-integer first-stage variables,
though the variant of FPPH performing no dual variable updates found higher-quality
solutions than PH for the DCAP342 subclass. Further testing on a wider variety of
instance classes is needed for a deeper understanding of how the structure of SMIP
instances influences the relative performance of PH and FPPH, and how to set the
penalty update rules of FPPH for the best performance on a given class of instances.
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Appendix A: Proofs of selected results

A.1 Proof of Proposition 4

Proof The proofs of all four claims are the same for each s ∈ S. The first three
claims are obvious from the compactness of the constraint sets Ks , the coercivity
of ψ and its other properties as implied by Assumptions 2, and the role of ρ in the
objective function (xs, ys, ws, z) �→ fs(xs, ys) + λ�

s xs + ρπsψ(z − xs, ws − ys). To
show claim (4), let (z1, w1

s ), (z, ws) ∈ X × Ys , ‖(z1 − z, w1
s − ws)‖ < δ, and let

(xρ
s , yρ

s ) ∈ �
λ,ρ,π
s (z, ws). Via convexity [13, Example 9.14], wemay choose, L

s ≥ 1
to be the local Lipschitz continuity modulus associated with the finite valued function
ψ on B(0, 0) := {(u, v) : ‖(u, v)‖2 ≤ }, with  = ‖(z − xρ

s , ws − yρ
s )‖ + δ.

Then using dual feasibility (
∑

s∈S λs = 0) we have

ϕ
λ,ρ,π
s (z1, w1

s ) − ϕ
λ,ρ,π
s (z, ws) ≤

∑

s∈S
λs(z

1 − xρ
s − (z − xρ

s ))

+ πsρ[ψ(z1 − xρ
s , w1

s − yρ
s ) − ψ(z − xρ

s , ws − yρ
s )]

≤ πsρL
‖(z1 − z, w1

s − ws)‖

for (z, ws), (z1, w1
s ) ∈ K

s , thus establishing the Lipschitz modulus πsρL. It readily
follows by summation that ϕλ,ρ,π is Lipschitz continuous with modulus ρL for
(z, ws), (z1, w1

s ) ∈ K
s , s ∈ S. ��

A.2 Proof of Lemma 6

Proof By the continuity of ∇ψ , we have for each fixed D > 0 that there exists δ̃ > 0
for which ‖∇ψ(u0, v0)‖ < m

2 D whenever ‖(u0, v0)‖ < δ̃. For any discrepancy (u, v)

for which ‖(u − u0, v − v0)‖ > D, we have ‖∇ψ(u0, v0)‖ < m
2 ‖(u − u0, v − v0)‖,

which then implies by the Cauchy-Schwartz inequality

〈∇ψ(u0, v0) + m

2
(u − u0, v − v0), (u − u0, v − v0)〉 > 0

which implies

〈∇ψ(u0, v0), (u − u0, v − v0)〉 + m

2
‖(u − u0, v − v0)‖2 > 0.

Adding the last inequality to the inequality

ψ(u, v) ≥ ψ(u0, v0) + ∇ψ(u0, v0), (u − u0, v − v0)〉 + m

2
‖(u − u0, v − v0)‖2

obtained due to Assumption 2(3), we have the intended inequality ψ(u0, v0) <

ψ(u, v). ��
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A.3 Proof of proposition 17

Proof Proof of 1: Assume for sake of contradiction that lim supn→∞ ‖̃zn − x̃ns ‖ > 0
for at least one s ∈ S. As z̃n → z, δ̄ > 0, and the boundedness of X , so there exists
a fixed 0 < η < 1 such that for all sufficiently large n ≥ 0 and any xn ∈ X we
have zη,n := η̃zn + (1 − η)xn ∈ Bδ̄ (̃z

n) (indeed there exists a fixed κ > 0 such that
κBδ̄ (̃z

n) ⊇ X for n large).
For any given n, there exists s′ ∈ argmins∈S ψ(η(̃zn − x̃ns ), 0). Set xn := x̃ns′ ∈ X .

Then

∑

s∈S
πn
s ψ(η(̃zn − xn), 0) = ψ(η(̃zn − xn), 0) ≤

∑

s∈S
πn
s ψ(η(̃zn − x̃ns ), 0) (A1)

By the relative recourse assumption, there exists yn ∈ Ys(xn) for all s ∈ S.
Let zη,n = η̃zn + (1 − η)xn and note that for any 0 < η < 1 we have by (A1)

∑

s∈S
πn
s ψ(zη,n − xn, 0) =

∑

s∈S
πn
s ψ(η(̃zn − xn), 0) ≤

∑

s∈S
πn
s ψ(η(̃zn − x̃ns ), 0)

≤
∑

s∈S
πn
s ψ(̃zn − x̃ns , 0) − m(1 − η)2

2

∑

s∈S
πn
s ‖̃zn − x̃ns ‖2.

We used the fact that the gradient descent term 〈∇ψz(η(̃zn− x̃ns ), 0), (1−η)(̃zn− x̃ns )〉
of the ICRF strong convexity assumption 2(3) is guaranteed to be positive due to the
convexity of ψ and the strict increasing property in ICRF assumption 2(2). Define

M := lim sup
n→∞

max
x,x ′,y,y′{

∑

s∈S
ps[(c + λns

ps
)�(xs − x ′

s) + d�
s (y − y′)]

| (x, ys), (x ′, y′
s) ∈ Ks, s ∈ S},

which is guaranteed to be finite due to the boundedness of Ks , s ∈ S and the PWA
assumption 10 boundedness of {λn}∞n=0. We have for each n ≥ 0 and ρn sufficiently
large that

∑

s∈S
inf
w

ϕn
s
(
zη,n, ws

) ≤
∑

s∈S
ps

[(
c + λns

ps

)�
xn + inf

y∈Ys (xn)
{d�ys}

]
+ ρnπn

s ψ(zη,n − xn, 0)

≤
∑

s∈S
ps [(c + λns

ps
)�xn + inf

y∈Ys (xn)
{d�ys}] + ρnπn

s ψ(̃zn − x̃ns , 0)

− m(1 − η)2ρn

2

∑

s∈S
πn
s ‖̃zn − x̃ns ‖2

≤
∑

s∈S
inf
w

{ϕn
s (̃zn, ws)} + M − m(1 − η)2ρn

2

∑

s∈S
πn
s ‖̃zn − x̃ns ‖2 <

∑

s∈S
inf
w

ϕn
s (̃zn, ws).
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The last inequality follows from the assumptions that lim supn→∞ ‖̃zn − x̃ns ‖ > 0
for at least one s ∈ S and the assumption that the correspondingπn

s values are bounded
away fromzero as due to the PWAassumption 10(2). But since zη,n ∈ Bδ̄(z), for n large
enough, we have a contradiction of the local optimality of z̃n for z �→ infw ϕn(z, w)

for some n arbitrarily large. Therefore, limn→∞ ‖̃z − x̃s‖ = 0 for all s ∈ S, as long
as πn

s 
→ 0 as in the PWA assumptions 10(2), and hence x̃ns → z. In particular∑
s∈S πn

s x̃
n
s → z. Taking into account the definition of Sn we have x̃ns,I = z̃nI for

all s ∈ S and n sufficiently large. (When ψ = 1
2‖ · ‖2 we have from Lemma 13

that z̃n ∈ argminz
1
2

∑
s∈S ‖z − x̃ns ‖2 so z̃n = ∑

s∈S πs x̃ns . Moreover, in general∑
s∈S πs x̃ns ∈ X for n large enough due to the fact that all x̃ns ∈ X , z̃nI = x̃ns,I for all

s ∈ S and
∑

s∈S πs = 1.)
Proof of 2: By Proposition 3 have the first assertion of 4. holding. The second

follows from the closed graph of xs �→ Ys(xs). ��

A.4 Proof of lemma 31

Proof The proof is by induction, with the key observations that, for j = 1

gn(xn+1, yn+1, wn+1, zn + αndn) − gn(xn+1, yn+1, wn+1, zn)

≥ gn(xn+1, yn+1, wn+1, zn+1) − gn(xn+1, yn+1, wn+1, zn)

= gn(xn+1, yn+1, wn+1, zn+1) − gn+1(xn+1, yn+1, wn+1, zn+1)

+ gn+1(xn+1, yn+1, wn+1, zn+1) − gn(xn+1, yn+1, wn+1, zn)

≥ gn(xn+1, yn+1, wn+1, zn+1) − gn+1(xn+1, yn+1, wn+1, zn+1)

+ gn+1(xn+2, yn+2, wn+2, zn+1) − gn(xn+1, yn+1, wn+1, zn)

and, more generally for j > 1, the satisfaction of the inequality

gn(xn+1, yn+1, wn+1, zn + αndn) − gn(xn+1, yn+1, wn+1, zn)

≥
j−2∑

i=0

[
gn+i (xn+i+1, yn+i+1, wn+i+1, zn+i+1)

−gn+i+1(xn+i+1, yn+i+1, wn+i+1, zn+i+1)
]

+ gn+ j−1(xn+ j , yn+ j , wn+ j , zn+ j−1) − gn(xn+1, yn+1, wn+1, zn)

implies

gn(xn+1, yn+1, wn+1, zn + αndn) − gn(xn+1, yn+1, wn+1, zn)
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≥
j−2∑

i=0

[
gn+i (xn+i+1, yn+i+1, wn+i+1, zn+i+1)

−gn+i+1(xn+i+1, yn+i+1, wn+i+1, zn+i+1)
]

+ gn+ j−1(xn+ j , yn+ j , wn+ j , zn+ j ) − gn+ j (xn+ j , yn+ j , wn+ j , zn+ j )

+ gn+ j (xn+ j , yn+ j , wn+ j , zn+ j ) − gn(xn+1, yn+1, wn+1, zn)

≥
j−2∑

i=0

[
gn+i (xn+i+1, yn+i+1, wn+i+1, zn+i+1)

−gn+i+1(xn+i+1, yn+i+1, wn+i+1, zn+i+1)
]

+ gn+ j−1(xn+ j , yn+ j , wn+ j , zn+ j ) − gn+ j (xn+ j , yn+ j , wn+ j , zn+ j )

+ gn+ j (xn+ j+1, yn+ j+1, wn+ j+1, zn+ j ) − gn(xn+1, yn+1, wn+1, zn)

=
j−1∑

i=0

[
gn+i (xn+i+1, yn+i+1, wn+i+1, zn+i+1)

−gn+i+1(xn+i+1, yn+i+1, wn+i+1, zn+i+1)
]

+ gn+ j (xn+ j+1, yn+ j+1, wn+ j+1, zn+ j ) − gn(xn+1, yn+1, wn+1, zn)

��

A.5 Proof of lemma 33

Proof As aid, denote ρnk+i = ρnkηki for i = 0, 1, . . . . jk − 1, where it is evident for
all k ≥ 0 that ηk0 = 1 and ηki ≥ 1 for i > 1. Thus, given fixed k with nk+1 = nk + jk ,
the sum of differences becomes (setting j = jk)

∑

s∈S

j−1∑

i=0

(
1
ηki

− 1
ηki+1

)
fs(x

nk+i+1
s , ynk+i+1

s )

ρnk
(A2a)

−
(

λ
nk+i
s

ρnk+i
− λ

nk+i+1
s

ρnk+i+1

)�
xnk+i+1
s (A2b)

+
(
πnk+i
s − πnk+i+1

s

)
ψ(znk+i+1 − xnk+i+1

s , wnk+i+1
s − ynk+i+1

s ). (A2c)

We address the vanishing limits of the three summation term groupings (A2a)– (A2c)
separately. Because 1

ηki
− 1

ηki+1
≥ 0 and due to the boundedness

−M ≤
∑

s∈S

[
fs(x

nk+i+1
s , ynk+i+1

s )
]

≤ M
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of the inner summation over s ∈ S in (A2a) implied by the SMIP assumption 1 and
assumption 29, we have

−M

ρn

j−1∑

i=0

[
1

ηki

− 1

ηki+1

]
≤ 1

ρn

j−1∑

i=0

[
1

ηki

− 1

ηki+1

]
∑

s∈S

[
fs(x

nk+i+1
s , ynk+i+1

s )
]

≤ M

ρn

j−1∑

i=0

[
1

ηki

− 1

ηki+1

]

which implies (via telescoping)

− M

ρn

[
1

ηk0

− 1

ηkjk

]
≤ 1

ρn

j−1∑

i=0

[
1

ηki

− 1

ηki+1

]
∑

s∈S

[
fs(x

nk+i+1
s , ynk+i+1

s )
]

≤ M

ρn

[
1

ηk0

− 1

ηkjk

]

If limn→∞ ρn = ∞, then limn→∞ M
ρn

= 0 while

[
1
ηk0

− 1
ηkj

]
≤ 1 for all k ≥ 0,

and so the summation (A2a) vanishes. Otherwise, if limn→∞ ρn = ρ̄ < ∞, then

limn→∞ M
ρn

= M
ρ̄

and limk→∞
[

1
ηk0

− 1
ηkj

]
= 0 will vanish instead (as ηkjk

= 1

eventually). Therefore, the summation (A2a) vanishes in either case as k → ∞.
To demonstrate the vanishing of the second summation (A2b) we note that when

ρn → ∞ then this term vanishes since xs ∈ X being compact implies ‖xs‖ ≤ M <

+∞. Otherwise if ρn = ρ eventually we have the inner sum of the term eventually
bounded by M

ρ
(
∑ jn

i=0 ‖λnks − λ
nk+i
s ‖). Now limk→∞(

∑ jn
i=0 ‖λnks − λ

nk+i
s ‖) = 0 as the

tail of a convergent series converges to 0.
To demonstrate the vanishing of the third summation (A2c) as k → ∞, the

satisfaction of assumption29(3) implies that it only needs to be shown that the sequence

{
ψs(z

nk+i − xnk+i+1
s , wnk+i+1

s − ynk+i+1
s )

}∞
k=0

(A3)

is bounded in magnitude by M for all n. Indeed if this is the case then the inner
summation of the third term may be bounded in both cases: we have

j−1∑

i=0

(
π
nk+i
s − π

nk+i+1
s

)
ψ

(
znk+i+1 − xnk+i+1

s , w
nk+i+1
s − ynk+i+1

s

)

≤ M
∑ j−1

i=0

∥∥∥πnk+i
s − π

nk+i+1
s

∥∥∥ .

Now limk→∞
∑ j−1

i=0

∥∥∥πnk+i
s − π

nk+i+1
s

∥∥∥ = 0 as the tail of a convergent series con-

verges to 0. The boundedness of (A3) follows from the strong convexity assumption
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on ψ and the compactness of K . Indeed it is enough to observe that under these
assumptions we have lim inf‖z‖→∞ inf x∈X {ψ(z − x, 0)} = +∞. But the conver-
gence limk→∞ znk = z while (x, y) are bounded due to the compactness of K , and
so the boundedness of (A3) must hold. ��
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